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Studying nutritional effects on health is an important piece of chronic disease epidemiology, but many challenges arise when attempting to adequately measure and account for complete dietary exposure.  The exploratory approach to dietary patterns is a useful method that utilizes multivariate data reduction techniques to summarize overall dietary exposure into variables that can represent diet in observational studies.  This dissertation presents two projects that focus on methodological considerations for the exploratory approach to dietary patterns.  The first project compared different analytic methods used to derive dietary patterns, with and without data transformations.  Findings from the project demonstrated that, with the use of appropriate data transformations, different analytic methods provide similar dietary patterns.  The second project focused on the collapsing/grouping of dietary data prior to patterning to understand whether the number of food group variables alters the resulting patterns.  Results demonstrated that dietary patterns were similar as food groups were collapsed to a smaller number of variables.  A third project then utilized methods from the previous projects to explore diet’s association with A1C, a biomarker of glucose control, and examined the possible role of diet in the race/ethnic disparities in A1C.  Findings demonstrated that non-Hispanic blacks and Mexican-Americans have higher A1C levels compared to non-Hispanic whites, and while a dietary pattern characterized by higher intakes of dark breads is associated with lower A1C levels, this dietary pattern and other lifestyle characteristics such as body mass index and physical activity did not appreciably explain race/ethnic differences in A1C levels.        
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Chapter 1:  Introduction

Since the early 1900’s death rates from infectious diseases have declined and chronic diseases have become the primary cause of morbidity and mortality.  Today seven of the top ten causes of death in the US are chronic diseases (Cohen, 2000).  Although not fully understood, chronic diseases appear to develop from multiple lifestyle, genetic, and environmental risk factors over long periods of time.  Among these factors, nutritional exposure appears to influence risk of a number of chronic diseases including cardiovascular disease (Hu et al., 2001a; Reddy & Katan, 2004), type 2 diabetes (Hu et al., 2001b), hypertension (Reddy & Katan, 2004), and certain types of cancer (Donaldson, 2004).  Because of the critical role that diet may play in the development of many diseases, research aiming to understand pathways through which nutrition affects health is both focal and timely.  Examining dietary exposure, however, is a challenging process because of the complexity of the human diet (Moeller et al., 2007).  In nutritional epidemiology studies often examine effects of single nutrients or single food types on health (e.g. effect of dietary fiber or Vitamin C on cancer risk), but this type of methodology has been criticized for being too limited.  The human diet is made up of many components that are often consumed together in characteristic patterns.  Attempting to separate these patterns makes it very difficult to determine whether a health effect is due to the dietary property being studied or whether the effect is actually due to some underlying correlated dietary component.             

A broader approach to studying diet’s effect on health is the study of dietary patterns (Hu, 2002b; Kant, 2004; Moeller et al., 2007; Newby & Tucker, 2004).  Dietary patterning methods combine data on the total diet so that the overall pattern of foods eaten is studied rather than the individual components.  This approach helps minimize the problem of correlated nutrients because co-occuring nutrients are considered together.  Nutritional epidemiologists have suggested that this approach may be a preferable way to study diet because, while effects of single nutrients may be too small to detect, the combined effect of multiple nutrients may be large enough to detect associations with disease outcomes (Hu, 2002a; Moeller et al., 2007).  Furthermore, dietary patterns reflect the way people actually eat, the combinations of foods/nutrients that are consumed, and the interacting effects that may not be seen in single-nutrient studies.    

There are many statistical methods that have been used to summarize dietary data into patterns.  One common method, often referred to as the exploratory approach to dietary patterning, utilizes data reduction techniques to group foods or individuals together based on similarities or correlations in food intake.  The grouped data are then used in further analyses to represent diet.  Different analytic methods have been used for the exploratory approach, and there are many methodological issues that should be considered.  There is need for more research that focuses on these issues.  Therefore, in the first two projects of the dissertation, I considered some of the methodology related to the exploratory approach to dietary patterning, in attempt to learn and describe some of the issues that arise in summarizing diet data into patterns and associating these patterns with health.  Two specific methodological issues that were addressed involve the statistical techniques used for dietary patterning and the handling of dietary survey data prior to analysis.  First, I derived dietary patterns using various multivariate techniques as well as various data transformations to compare and contrast the resulting dietary patterns.  Second, I considered the input data used in the multivariate techniques and examined whether the number of input food variables affected the resulting dietary patterns and their subsequent ability to correlate with health.  

The third project of the dissertation focused on type 2 diabetes (T2D) and applied the first two sections by exploring whether differences in dietary patterns help explain the race/ethnic disparities in prevalence of diabetes.  Differences in diet and other health behaviors across race/ethnic groups may contribute to race/ethnic differences in prevalence of diet-related diseases such as diabetes.  In the third project I examined the mediating effects of dietary patterns in the association between race/ethnicity and hemoglobin A1C (a biomarker of diabetes), while controlling for the effects of age, gender, education, poverty-to-income ratio, physical activity, total caloric intake, body mass index, and family history of diabetes.    

Specific Aims 

General Approach and Structure of the Dissertation    

The general aims for this work were to first review and present the background on the following key topics related to the three projects: the study of dietary patterns and dietary measurement, the etiology of diabetes and the role of nutrition, and race/ethnic disparities in diabetes.  Following this description, three projects were presented as chapters.  The first two projects focused on methodological considerations for deriving dietary patterns.  The third project utilized dietary patterns to study diet’s influence on race/ethnic disparities in diabetes.        

Description of Project One

The exploratory approach to dietary patterning utilizes multivariate data reduction techniques to summarize underlying correlations/patterns in dietary survey data.  Two classes of multivariate models have commonly been used for patterning: spatial techniques such as factor analysis and grouping techniques such as clustering.  While these two methods are analytically different, they provide similar results when used on the same data.  However, data transformations that are carried out either by the investigator prior to pattern analysis or inherently carried out with the multivariate procedure can affect the resulting patterns and will affect the agreement among various analytic techniques.  

Specific Aim 1

The objective of the first project was to explore dietary patterns using various multivariate data reduction techniques in conjunction with different data transformations in a single data set to learn how using different analytic methods may affect the resulting dietary patterns.  Three different multivariate techniques (principal component analysis, k-means cluster analysis, and correspondence analysis) were used, both with and without different transformations (% total frequency of foods and z-score standardization), and the resulting dietary patterns from each method were compared and contrasted.  

Description of Project Two 

The second project focused on the strategies for collapsing/combining survey responses prior to patterning with multivariate data reduction techniques.  Dietary surveys often collect detailed information about the quantity or frequency of intakes of hundreds and sometimes thousands of food items.  Often before analysis using multivariate models, these hundreds/thousands of responses are collapsed into a more manageable number of variables.  However, there is no current standard for aggregating foods, and so different food grouping schemes are used.  One important issue to consider regarding food grouping schemes is whether the number of food groups and/or the relative amount of collapsing that is done on the raw data affects the resulting patterns and the ability of these patterns to represent diet adequately so that diet/disease relationships can be detected.      

Specific Aim Two  

The goal of the second project was to test whether the number of food group variables input into data reduction techniques would affect the resulting dietary patterns and their subsequent ability to relate to health.  To carry out this aim, three food-grouping schemes were created collapsing the original 201 NHANES food frequency questionnaire dietary variables into: 106 food variables, 48 food variables, and 30 food variables.  Dietary patterns were derived for each of the schemes using principal component analysis (PCA), and factors from the 3 analyses were compared.  Following this comparison, dietary patterns from each of the 3 schemes were used in 3 sets of multivariate models that tested the association between blood pressure (systolic blood pressure and hypertension) and dietary patterns, adjusted for age, race/ethnicity, education, gender, and physical activity.   

Description of Project Three

Diabetes is one of the leading causes of death in developed countries and is a major cause of numerous co-morbidities including end-stage renal disease, blindness, lower extremity amputations, and cardiovascular disease (American Diabetes Association (ADA), 2010).  In the US there are large race/ethnic disparities in prevalence of diabetes.  Non-Hispanic blacks and Mexican-Americans have nearly twice the prevalence of diabetes compared to non-Hispanic whites (Cowie et al., 2006).  Socioeconomic inequality may contribute to these disparities (Robbins et al., 2000).  Poorer social and economic conditions have a consistent association with diabetes, most likely due to a constellation of risk factors that are more extreme in poorer living conditions and limited resources.  However, measures that represent social and economic conditions in studies (e.g. education level and income) do not appear to completely explain the variations in prevalence.  Culturally-associated behaviors, independent of social class, may also help explain race/ethnic gaps in diabetes.  

Dietary exposure could be associated with race/ethnic gaps in prevalence through both of these pathways: socio-economic influence and/or culturally-associated behaviors.    The third section of this project focuses on understanding how dietary exposure may contribute to variation in the prevalence of diabetes across race/ethnic groups.  To do this, I first examine the associations among race/ethnicity, socio-economic status (represented as education and poverty-to-income ratio), and dietary patterns to understand the meaningful relationships among these three variables.  Following this description I consider differences in A1C, a biomarker of diabetes, among the three major race/ethnic groups in the US, non-Hispanic whites, non-Hispanic blacks, and Mexican-Americans who have no prior diagnosis of DM, and explore the mediating roles of demographic, lifestyle, and environmental factors including socioeconomic status and dietary patterns.                 

Specific Aims for Project Three

The purpose of this project is to examine dietary patterns across non-Hispanic whites, non-Hispanic blacks, and Mexican-Americans in the US and to understand the mediating role of socioeconomic status in differences in dietary patterns across these race/ethnic groups.  This project then explores the correlates of hemoglobin A1C, a biomarker of diabetes risk, in a non-diagnosed diabetic sample and to test possible mediators of race/ethnic disparities in A1C.           

Data

Data from the National Health and Nutrition Examination Survey (NHANES) were used to carry out the specific aims of the projects (National Center for Health Statistics, 2006).  NHANES is a nationally representative cross-sectional survey that is conducted by the National Center for Health Statistics (NCHS).  NHANES was designed to provide population estimates of the nutrition and health status of non-institutionalized US residents.  It is the only US representative sample that combines a full medical evaluation with extensive data collection of diet and nutrition-related factors by collecting both 24-hour dietary recalls and food frequency questionnaire data, along with additional questions regarding dietary supplement use, food security, and dieting/body weight management.  

NHANES began in 1971 with the addition of a nutrition component to the existing National Health Examination Survey (NHES).  NHANES was first collected and released in six-year intervals, with surveys I (1971-1975), II (1976-1980), and III (1988-1994).  Since 1999, data have been released in 2-year intervals for increased timeliness of the research and to allow for survey updates according to emerging public health issues.  Nutritional data, namely the 24-hour diet recall and the food frequency questionnaire (FFQ), have varied somewhat throughout the survey years.  Table 1.1 displays the nutritional data for each survey.  An abbreviated questionnaire replaced the existing 61-item FFQ in 1999.  The abbreviated questionnaire (“Diet Behavior Questionnaire, DBQ”) asked questions regarding types of foods consumed, mostly pertaining to dairy food consumption.  In 2003, an extensive food frequency questionnaire replaced the DBQ to supplement the 24-hour recall data with dietary information that could be used to approximate usual intake.  

Table 1.1:  Dietary Data Collected Throughout Past Survey Cycles of NHANES

	
	6-Year Survey Cycles
	Continuous

	
	I
	II
	III
	99-00
	01-02
	03-04
	05-06

	24-hour recall
	X
	X
	X
	X
	X
	X
	X

	2nd 24-hour recall
	--
	--
	--
	--
	--
	X
	X

	FFQ/DBQ (# of items)
	61
	61
	61
	DBQ
	DBQ
	151
	151

	Food Security
	X
	X
	X
	X
	X
	X
	X

	Weight management.
	X
	X
	X
	X
	X
	X
	X

	Dietary Supp Use
	X
	X
	X
	X
	X
	X
	X


The majority of the data collection in NHANES was conducted in a two-step process.  First, participants completed an interviewer-administered questionnaire in their homes.  Information on age, gender, income, education, physical activity, diet/weight management practices, history of diabetes and other chronic conditions, and dietary supplement use were collected during this portion of the survey.  Second, participants completed a full physical evaluation, laboratory specimen collection, and collection of a 24-hour dietary recall in an NHANES mobile exam center (MEC).  The MEC was established to allow for standardization of data collection, using up-to-date equipment that is run by a highly trained health examination team.  Separate from these two steps, participants completed the FFQ via mail following the home interview and MEC exam, and a follow-up phone interview was used to collect the second 24-hour diet recall.  A food model booklet, ruler, and a set of measuring cups/spoons were sent home with every participant from the MEC exam for use during the follow-up phone interview to attempt to standardize the data being collected.  

For this dissertation data from the 2003-2004 and 2005-2006 survey cycles were used for the analysis.  Cycles prior to 2003 were not used because they did not include the more extensive FFQ.  Additionally, the 2003-2004 survey was the first survey cycle to complete 2 dietary recalls for each participant.  Exclusion criteria and measures varied somewhat for each specific project, so sample characteristics and variables are presented in each manuscript separately, along with a more concise description of the NHANES survey.  

Chapter Two:  Background

Dietary Patterns: Using the Exploratory Approach

Two main approaches have been used to derive dietary patterns.  A first approach, commonly referred to as the a-priori approach, scores the diet based on established knowledge of diet quality (Kant, 1996; Kant & Graubard, 2005).  An index is developed by creating a ‘grading scale’ from an established list of recommended dietary practices, such as the USDA Dietary Guidelines.  Diet quality is then ‘graded’ or scored based on the index, and each individual is assigned a diet quality score that can be used to represent dietary pattern or adherence to recommended guidelines.  

A benefit of this a-priori approach is that the scores are based on dietary guidelines and can therefore estimate the degree to which the dietary pattern meets recommendations.  Given that each individual is assigned a single score, results can be easily compared between various populations and/or subgroups.  One key drawback to using a diet quality score, however, is that ‘quality’ is only relative to whatever is measured by the given index, and each index varies in terms of the dietary components that are included in the total score.  Therefore, results of studies may vary depending on the diet quality components chosen by investigators.   

A second approach to dietary pattern analysis, known as the more descriptive or exploratory approach, utilizes data reduction techniques such as factor or cluster analysis to summarize and group dietary data based on similar consumption patterns (Moeller et al., 2007; Newby & Tucker, 2004).  This approach to dietary patterns was used throughout the dissertation and is the primary focus of this section.  

Factor analysis has commonly been used to summarize patterns among food variables.  Using factor analysis foods are reduced to smaller groups (factors) that represent main patterns in dietary intake.  These smaller groupings of foods can then be used to describe and distinguish dietary patterns in the study sample.  For example, factor analysis was used in the Nurse’s Health Study (NHS) to derive dietary patterns (Fung et al., 2004).  In that study, five FFQs were collected for each participant over a 14 year study period.  Prior to analysis, foods were classified into 38 food groups based on nutritional content and/or culinary usage and then, factor analysis of these 38 variables identified two major groups (factors) of foods based on their co-occurrence in individual reports (pattern was measured with the Pearson correlation coefficient).  The two factors were labeled “prudent” (characterized by higher intake of fruits, vegetables, whole grains, fish, poultry, and low-fat dairy products) and “western” (characterized by higher intakes of red meats, processed meats, refined grains, sweets/desserts, and high-fat dairy products).  These profiles of food intake were then used to assign each study participant a ‘score’ for each dietary pattern, and these ‘scores’ were used to represent diet in further analyses.  

Cluster analysis is another data reduction technique that has been used to derive dietary patterns.  In contrast to factor analysis which is a spatial technique and allows items to belong to groups along a continuum, cluster analysis groups variables into discrete groups.  In the study of dietary patterns, this technique has mainly been applied to the study of people rather than foods.  With a person or row-oriented approach, individuals are grouped into mutually-exclusive groups with a distinctive profile of variables.  Limitations of this approach concern the independence of the variables in the profile, and sometimes researchers first use a column-oriented data reduction technique, such as factor analysis, to reduce the set of variables to non-redundant measures.  A main difference between the column/variable and row/subject oriented approaches is that the column oriented approach identifies the latent factors to summarize the food types or nutrient variables and those factors can be used to describe the profile for each subgroup; and a row oriented approach describes the subject profiles with regard to food consumption.  These smaller groups of people can then be described based on the foods that distinguish them into their respective groups.  Because cluster analysis divides individuals into mutually-exclusive groups, this approach can be used to create a categorical variable to represent dietary patterns in further analyses.  

Measures of Similarity     

‘Pattern’, or similarities in the data, may be measured in different ways by different multivariate techniques.  The Pearson correlation coefficient, commonly used in factor analysis techniques, is an ideal measure of similarity because this measure inherently standardizes variables, thus removing variance due to magnitude effects before similarity is measured.  Another measure of similarity is Euclidean distance, which is a measure of the distance between a set of variables in Euclidean space.  Euclidean distance measures are commonly used with clustering techniques, assuming that the variables are orthogonal factors in space.  These two types of similarity measures may identify similar patterns given a single set of data, but Euclidean distance measures do not implicitly remove magnitude differences.  Therefore, Euclidean distance may confound magnitude effects with true pattern differences (Cronbach & Gleser, 1953).    

Methodological Considerations for the Exploratory Approach of Dietary Patterns    

The exploratory approach to dietary pattern analysis (using factor or cluster analysis) may have some benefits when compared to the a-priori approach (like a diet quality score).  First, the exploratory method does not assume any prior knowledge of diet characteristics.  Therefore, individuals are not grouped according to what is assumed to be healthy.  Instead, the dietary patterns are derived directly from subjects’ eating patterns.  This yields diet information that is more specific to the given population.  Second, this approach allows for a description of specific foods that distinguish eating patterns, so it may be particularly useful for describing and comparing dietary characteristics across various population groups. 

Across dietary pattern literature, different methodologies have been used and there are many considerations in terms of the methods for deriving patterns.  One consideration that is often highlighted involves the subjectivity used in deriving patterns (Newby & Tucker, 2004).  For instance, the investigator must make decisions such as how to group food responses from the original data, how many food groups to use, and whether data need to be transformed or standardized prior to patterning, and which multivariate reduction technique to use.  In addition, there may be subjectivity in interpretation of the patterns.  For example, the researcher has to decide how many patterns (factors or clusters) to retain from the analysis.  Using factor analysis, the number of retained patterns/factors is often decided based on the eigenvalues, either by retaining all factors with an eigenvalue over a certain cut-point or by identifying an ‘L’ bend in a scree plot of the eigenvalues (Cattell, 1966).  However, while these objective measures are available and may help guide the investigator, it is ultimately up to him/her to decide what criteria to use and how to interpret it.  

Dietary Survey Instruments 

Another important factor to consider for patterning is the type of dietary survey data that is being used.  Dietary measurement is a major challenge.  While there are several established dietary survey instruments, there is not a superior or ‘gold standard’ method, and each method has unique properties that make it best suited for various study designs and research questions.  This section will briefly review the three most common dietary survey instruments, (food record, 24-recall, and the food frequency questionnaire) and present the strengths and weaknesses of each measurement tool as they pertain to epidemiology.  

Actual Versus Usual Dietary Intake

Food records (written records of everything consumed during a 7-day period) and 24-hour recalls (respondent recall of everything consumed in the previous 24-hour period) differ from food frequency questionnaires in that these two methods are based on records of food actually eaten during a clearly defined period of time.  Thus, data collected with these two instruments provide estimates of actual food intake during the specified period of time, but the data may not represent usual food intake.  Food frequency questionnaires (FFQs), on the other hand, are based on the respondent’s perception of what he/she usually eats and typically surveys based on a more broadly defined period of time.  For instance, a FFQ survey question might read:  “Over the previous one year period, how often did you drink whole milk?”...with possible answers ranging from: ‘one time per month or less’ to ‘six times per day or more’.     

In epidemiologic studies that aim to link diet to disease outcomes, usual dietary intake is of course the more relevant measure.  This does not mean, however, that epidemiologic studies must choose an FFQ as the only survey instrument.  Given repeated measures of either diet records or 24-hour recalls (e.g. collecting 24-hour recalls on 6 different occasions or 4 one-week diet records throughout a 1-year period) these instruments may also be used to represent usual intake.  The exact number of repeated measures needed varies depending on the specific dietary components of interest.  As the day-to-day variability in intake of a nutrient or dietary exposure increases, the number of repeated measures needed to represent usual intake also increases (Willett, 1998).  For some components of the diet (e.g. calories, total fat, and other macronutrients) day-to-day intake remains fairly consistent, and thus, fewer repeated measures are needed.  For others, particularly micronutrients that are present in a limited variety of foods, day-to-day variability is high, and many days of intake might be needed to represent usual intake.  For instance, Willett (1998) suggests that for Vitamin A, which is present in a small number of foods and is also often eaten seasonally, 106 repeated days would be needed to get an estimate that would fall within 20% of an individual’s actual mean intake.  For total fat, which does not have as high of a day-to-day variability, he suggests only 4 repeated days would be needed for an estimate that would fall within this same range.    

Construct Validity of Dietary Measurements

As diet records and 24-hour recalls require repeated measures in order to represent usual intake, they are often not feasible in large epidemiologic studies due to time and cost constraints.  Therefore, FFQ are the efficient choice.  They require minimal time from respondents, and trained personnel are not needed for survey administration.  However, validity of FFQ is difficult to measure and is thought to be lower compared to the other two methods (Gibson, 2005).

Using direct observation of food intake the absolute validity of food records and diet recalls can be tested since the recalled intakes can be directly compared to the foods and portions actually eaten.  For FFQ, however, this type of validition is not feasible as it would be impossible to directly observe dietary intakes over long periods of time.  Therefore, construct validity is often measured by comparing the performance of an FFQ to repeated measures of one of the other methods, typically diet records.  Using this method of validation, agreement between FFQ and other dietary survey instruments has varied considerably across 46 different studies (range of correlations: 0.10-0.82,  EQ \O(x,¯) = 0.60) (Willett, 1998).  Some question the use of repeated 24-hour recalls or diet records to validate FFQ.  The reason, they suggest, is that the measurement error among these three methods is not independent.  Therefore, using one method to validate another method (that has correlated measurement error) may overestimate validity of the survey instrument (Day et al., 2001).  Although the correlation between two measures purported to measure the same construct is evidence of construct validity, it is generally recognized that there is truly no single ‘gold standard’ dietary measurement for validating an FFQ.  

An alternative way that validity of dietary measures has been assessed is by comparing these instruments to established biomarkers of dietary intakes.  Biomarkers of diet are typically components of body fluids and/or tissues (e.g. blood or urine) that are known to strongly correlate with intakes of certain food components.  For instance, validity of reported caloric intake can be measured using the doubly-labeled water technique that measures the caloric expenditure of the body by estimating CO2 production from metabolism.  Once caloric expenditure is known, accuracy of reported caloric intake can be assessed by the ratio of reported caloric intake to caloric expenditure.  Assuming weight maintenance for a given period of time, the ratio of reported caloric intake to caloric expenditure should be 1:1 if reporting is completely valid.  A recent review of studies that used this method found that there are widespread problems of under-reporting calories (ratios < 1.0) across diet survey instruments, and under-reporting is positively associated with body mass index (BMI).  Ratios across 11 studies averaged 0.87 in men (Range: 0.70-1.02) and 0.85 in women (Range: 0.68-1.01) (Livingstone & Black, 2003).  

The doubly-labeled water technique is just one example of a biological measurement that has been used to validate dietary instruments.  However, while these biological measures may hold more promise for validation purposes in the future, there are currently few established biomarkers that strongly associate with diet over the entire spectrum of intakes.  Moreover, biomarkers are often temporally associated with nutritional intake (e.g. concentration rises directly after absorption of a nutrient and falls soon after), which makes them less useful for validating reports of usual intakes (Willett, 1998). 

In summary studying effects of overall dietary patterns rather then effects of single nutrients may improve the ability to identify important diet/disease associations.  However, dietary patterning is a relatively new concept and there is need for more focus on the methodologies used for deriving patterns.  The type of dietary survey instrument, the handling of dietary data prior to patterning, and the specific data reduction technique chosen may all affect the resulting patterns and therefore are all important considerations when using these methods.  
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Type 2 Diabetes and the Role of Nutrition

Type 2 diabetes is one of the leading causes of morbidity and mortality in the US today.  Current data estimate that 9.3% of US adults aged ≥ 20 years have either diagnosed or undiagnosed diabetes (Cowie et al., 2006).  This disease is a metabolic disorder characterized by hyperglycemia (high blood glucose) that is caused by either a defect in insulin secretion from the pancreas, a limitation of cellular response to insulin (insulin resistance), or a mixture of these two problems.  Despite the origin of diabetes, hyperglycemia that occurs from the disease causes a vast number of micro- and macro- vascular complications.  In fact, diabetes is the leading cause of blindness and end-stage-renal disease (ESRD) in this country (American Diabetes Association (ADA), 2010).    

Type 1 diabetes accounts for 5-10% of all cases of diabetes (American Diabetes Association (ADA), 2010).  It is caused by an autoimmune destruction in the function of insulin-producing cells, called β-cells, of the pancreas.  Because of the lack of insulin production from β-cells, blood glucose cannot be intrinsically regulated, which results in hyperglycemia.  Insulin therapy is required to sustain life in individuals with type 1 diabetes (American Diabetes Association (ADA), 2010).  

Type 2 diabetes (T2D), in contrast, is not caused by autoimmune destruction of the β-cells of the pancreas.  Rather, hyperglycemia in this form of diabetes is caused from decreases in the cellular action of insulin, often referred to as insulin resistance.  This decrease in cellular action is often accompanied by a decrease in insulin secretion.  Unlike type 1 diabetes, however, this decrease in insulin secretion does not typically result in a complete cessation of insulin secretion.  In fact, insulin secretion may appear adequate, or even elevated at the beginning of the disease process, and then slowly decrease over time (American Diabetes Association (ADA), 2010).

Etiology of Type 2 Diabetes

Type 2 diabetes accounts for 90-95% of all cases (American Diabetes Association (ADA), 2010), and prevalence of T2D appears to be increasing (Cowie et al., 2006).  The etiology of T2D is not well understood.  There appear to be many factors that influence its development and severity.  Consequently, T2D has proven to be a difficult disease to study.  Literature supports the notion that risk of development is a mixture of genetic and environmental factors (Poulsen et al., 1999; Zimmet, 1992).  Observational studies of population distributional patterns provide evidence of a genetic link to T2D, demonstrating that prevalence varies widely across population groups that have seemingly similar environments (Alberti et al., 2007; Zimmet, 1982).  

Environmental influence is somewhat difficult to study separate from genetics, but studies carried out in migrant families and groups moving from rural life into greater urbanization have demonstrated that environment also plays a role in risk.  Increased “westernization,” which includes becoming habitually less active, adopting diets of high caloric density, and becoming more obese, increases the risk of diabetes (Zimmet, 1992).  From the 1999-2000 NHANES prevalence estimates by BMI category were 4.1%, 6.5%, 11.0%, and 18.3% for < 25, 25.0-25.9, 30.0-34.9, and ≥ 35 respectively among adults aged 20-74 years (Gregg et al., 2004).  Central adiposity (Hadaegh et al., 2007; Meisinger et al., 2006) and weight gain (Colditz et al., 1995; Nagaya et al., 2005; Schienkiewitz et al., 2006) is also thought to increase the risk of T2D, independent of body size.  Quite possibly, the contribution of environmental factors changes according to genetic susceptibility (Cowie et al., 1993; Harris, 1991; Zimmet, 1982).  For instance, two studies using NHANES data demonstrated that an association between higher desirable bodyweight and increased risk of diabetes varied according to race/ethnic group (Cowie et al., 1993; Harris, 1991).   

Diet indirectly affects risk of DM2 through energy balance and weight gain.  When more calories (energy) are consumed than are expended by the body, weight gain occurs.  Therefore, diet may be an important risk factor of diabetes because of its critical role in energy balance.  However, there is building epidemiologic evidence that certain dietary exposures may also affect the risk of diabetes, independent of caloric intake and weight gain. 

Studies examining specific nutrients or non-nutrient food components suggest that, after controlling for risk factors such as age, gender, BMI, caloric intake, physical activity, and other health behaviors, intakes of polyunsaturated fat (Salmeron et al., 2001), fiber (Lau et al., 2005; Liese et al., 2005; Meyer et al., 2000), magnesium (Huerta et al., 2005; Lopez-Ridaura et al., 2004; Rumawas et al., 2006; Song et al., 2004), and moderate alcohol (Beulens et al., 2005; Hodge et al., 2006; Mackenzie et al., 2006) decrease the risk of T2D, and higher intake of trans-fatty acids (Salmeron et al., 2001) is thought to increase the risk.  While these observational studies may provide new insight into the etiology of diabetes, it is difficult to know whether these single nutrient studies adequately represent specific influences on diabetes risks or whether these results may be spurious associations due to underlying correlated dietary components or other factors.  

Dietary patterning methods also link diet to T2D.  Using factor analysis in both men (van Dam et al., 2002) and women (Fung et al., 2004) in US cohorts, a “western” dietary pattern (characterized by higher intakes of red meats, processed meats, refined grains, sweets/desserts, and high-fat dairy products) was associated with greater incidence of diabetes over a 12 year period in men and a 14 year period in women.  After controlling for age, BMI, caloric intake, physical activity, and other potential confounders, individuals in the highest quintile of  intake for the “western” dietary pattern had a greater risk for developing T2D [(1.53 (CI: 1.22-1.91) in women, 1.59 (CI: 1.32-1.93) in men] compared to those in the lowest quintile.  Neither study controlled for SES, but both cohorts were designed to be fairly homogeneous in terms of SES because the samples include individuals from a single occupation.  Other longitudinal studies have reported findings consistent with these two US cohorts, with dietary patterns characterized by red meats and fatty foods being associated with approximately a 50% risk increase among those in the highest intake compared to those with the lowest in adjusted models (Hodge et al., 2007; Montonen et al., 2005).  

It is important to note that dietary patterns have been associated with T2D risk, independent of BMI and total caloric consumption.  Inflammation and endothelial dysfunction may partially explain the association between diet and diabetes.  In a nested case-control study in women from the Nurse’s Health Study II, Schulze and colleagues (2005) demonstrated that a dietary pattern that was correlated with serum markers of chronic inflammation, consisting of higher intakes of soft drinks, processed meats, and refined grains, was strongly associated with T2D (OR = 3.09 for highest quintile of intake of this pattern compared to the lowest quintile) (Schulze et al., 2005).  

Glycemic-index of foods also has been proposed as a possible explanation of association between T2D and diet.  In a similar paper using data from the Nurse’s Health Study II, Schulze and colleagues (2004) demonstrated that glycemic index was positively associated with risk for T2D while intake of cereal fiber was negatively correlated with risk after adjustment for energy intake, BMI, and other confounders.  Foods with a higher glycemic index increase blood glucose concentrations and insulin demand compared to foods with lower glycemic index.  Higher insulin demand in turn may lead to pancreatic exhaustion and/or increase cellular resistance to insulin (Schulze et al., 2004).                      

In conclusion risk of T2D is influenced by a combination of genetic and lifestyle/environmental factors including nutritional exposure.  Weight gain, which results from caloric consumption above the body’s caloric need over time, increases the risk of T2D.  However, there is building evidence that other aspects of the diet may also influence risk.  Diets characterized by higher intakes of red and processed meats, refined grains, sugar-sweetened beverages, and sweets/desserts are associated with risk of T2D even after adjustment for caloric intake and BMI.  Dietary influences on chronic inflammation and glycemic response have been hypothesized as possible reasons why this dietary pattern may be related to T2D.  
Race/Ethnic Disparity in Type 2 Diabetes

‘Race/Ethnicity’ Nomenclature

Before delving into the subject of ‘race’ and/or ‘ethnicity’ and health it is crucial to first define these terms and describe why they are used as measures in research.  Race and ethnicity are not synonymous terms, but often, data collected separately on race and ethnicity are combined to yield one measure of a person’s self identification.  According to Williams (1994) race is an unscientific taxonomy that is based on ideological social principles.  Race classifications are typically based on perception of physical traits that are not objectively measured, such as skin, eye, and hair color.  Race is a social construct, which means the definition and categorization of ‘race’ varies by place and culture and changes over time.  Ethnicity, on the other hand, refers to a person’s membership in a group.  Group members identify with each other and share certain cultural characteristics, such as language, religion, diet, and economics (Karlsen & Nazroo, 2006).  Although race and ethnicity are different, they both refer to ways in which people self-identify and are characterized by others in a society, and both influence lifestyle choices including health behaviors.   

The use of these measures in health research is controversial.  Many studies include them as variables without describing how they were measured or why they are being included.  Often, it appears that they are included as proxy measures for genetic, cultural, social, or environmental characteristics in attempt to control for possible confounding effects from the factors.  However, the measures ‘race’ and ‘ethnicity’ by themselves may be poor indicators of a person’s exposure to these characteristics.  For instance, two people that identify as the same race and ethnicity may have strikingly different cultural, social, and environmental exposures if they are born in separate countries or born into very different socioeconomic conditions.  However, race and ethnic identification is an important facet of health disparities research.  Unexplained differences in health exist between ‘race/ethnic’ sub-groupings in this country, and thus, research designed to understand determinants of these differences is warranted.  

Prevalence of Diabetes across Race/Ethnic Groups

Prevalence of T2D is disproportionately high among non-Hispanic blacks and Mexican-Americans compared to non-Hispanic whites.  Prevalence estimates from 1999-2000 NHANES report that 14.6% of blacks and 13.5% of Mexican-Americans compared to 7.8% of whites have either diagnosed or undiagnosed diabetes among adults 20 years and older (Cowie et al., 2006).  

Interpreting the Race/Ethnic Disparities in T2D
When interpreting these race/ethnic disparities there are at least three hypotheses that need to be explored: 1) genetic/biologic influence, 2) underlying socioeconomic disparities, and 3) cultural/ethnic influence.  

Genetic/biological Influence

As described earlier genetics are thought to play a role in the development of T2D.  Therefore, it is plausible that inherited biological differences influence differential risk of the disease across various race/ethnic groups.  Conversely, some argue that genetic variation most likely contributes very little to race/ethnic disparities in disease burden (Cruickshank et al., 2001), and that emphasizing genetic influence may discount the importance of focus on risk factors that are modifiable.  Because race/ethnicity is a social construct rather than a biological category, it does not necessarily represent genetic variation (particularly when speaking of ‘race’).  Williams and colleagues (1994) state that a genetic model of racial differences in health is based on the following three assumptions (Williams et al., 1994):   1) Race is a valid biological category. 2) The same genes that determine racial characteristics also determine health. 3) The health of a population is largely determined by biological constitution.  

These three assumptions, of course, have limited validity, and therefore point out the weaknesses involved in a genetic theory for race/ethnic differences in health.  However, completely discounting the possibility of genetic influence in race/ethnic disparities in health is also not advantageous.  For instance, apparent racial clustering (although not exclusive to a single race) is evident in sickle cell anemia which is known to have strong genetic influence.  However, in terms of T2D where the strength of genetic influence is not known, and evidence continues to suggest that both biologic and environmental factors may play a role, and that describing unexplained race/ethnic differences in health as solely a consequence of un-modifiable genetic differences is inaccurate.  In the near future technological advances in human genome research may make it possible to identify variation in specific genes related to diabetes across race/ethnic groups.  However, it is not yet known how strongly genetics influences these disparities.  
Socioeconomic Status

Broadly defined socioeconomic status (SES) refers to an individual’s social and economic factors that influence the position that person holds in a society (Galobardes et al., 2006).  It has been measured and conceptualized in a variety of ways, but it is most often classified using the following three measures, either singly or in combination:  education level, occupation, and income.  Socioeconomic status is a strong independent predictor of health.  Persons of higher socioeconomic standing live longer and enjoy better health than those of lower social standing, and this relationship is consistent across many health outcomes (Crimmins et al., 2004; Hayward et al., 2000).  Race/ethnic minority groups are disproportionately represented at low SES levels in the United States compared to non-Hispanic whites.  Taking this into account, and considering the strong association between SES and health, one can recognize that differences in SES across various race/ethnic groups would lead to considerable race/ethnic variation in disease burden.  However, SES does not fully explain race/ethnic disparities across various health outcomes (Hayward et al., 2000).  Research specifically focusing on diabetes disparities is consistent with the broader literature.  For instance, Robbins and colleagues (2000) reported based on data from NHANES III, that black women and men had 1.59 and 1.3 times the odds of diabetes compared to white women and men after education was controlled, but adding education to the model reduced the odds by 22% (reduced from OR = 1.76) and 30% (reduced from OR = 1.43) respectively from the age-adjusted odds ratios (Robbins et al., 2000).    

For some health outcomes there is also evidence that the effect of SES on health may vary by race/ethnic group.  Farmer and Ferraro (2005) longitudinally compared health outcomes between blacks and whites in NHANES I and the corresponding Epidemiologic Follow-up Study (NHEFS).  In adjusted models self-rated health was similar between blacks and whites at the lowest education levels, but as education level increased, self-rated health drastically improved for whites and remained fairly unchanged for blacks (Farmer & Ferraro, 2005).  Results from this study underscore the importance of research that focuses on both SES and race/ethnicity, so that we can better understand how these two social determinants might work together to influence health. 

Cultural/Ethnic Influence Independent of SES

Culture is a learned set of beliefs, attitudes, and values that characterize and are shared by a group and passed from generation to generation.  Culturally-associated behaviors, independent of SES, may be important contributors to race/ethnic differences in health behaviors.  Cultural behaviors in the US, with regard to ‘race/ethnic’ differences in behaviors, are difficult to articulate because there are very few measures that can represent ‘culture’ in research.  Language, religion, and birthplace are examples of characteristics that have been used to represent cultural effects.  However, these measures apply primarily to ethnic-associated culture and not necessarily race-associated culture.  Race-associated culture, however, may also be important indicators of health because blacks and whites differ in terms of health behaviors.  For instance, a recent review of research on the cultural concept of obesity presented evidence that blacks prefer a larger, more curvaceous figure than whites and consider this type of figure more attractive, more sexually desirable, and more socially acceptable (Davidson, 2006).  Black women may be less likely than white women to view obesity as a health risk, and instead, may view obesity as a sign of “shapeliness, strength, stamina, and presence” (Allan, 1993).   

Dietary Influence on Race/Ethnic Disparities in Diabetes
Food choices and eating behavior are developed through a myriad of cultural, socioeconomic, and environmental factors, including beliefs/perceptions about food, cultural identity of foods, exposure to food, knowledge about health, media exposure to food, accessibility to food, and food costs (French et al., 2001; Shatenstein & Ghadirian, 1998).  Therefore, dietary differences across race/ethnic groups could be due to both underlying SES and cultural/ethnic influences.  The relationships across these variables are important to articulate because if diet influences the risk of T2D through both socioeconomic and cultural/ethnic pathways, then interventions aiming to change dietary behaviors need to focus on SES and cultural competence.

Few studies have focused on understanding diet in the context of both race/ethnicity and SES, but available research does demonstrate that there are meaningful dietary differences across both SES levels and race/ethnic groups.  Using NHANES data, Kant and colleagues (2007) demonstrated that non-Hispanic blacks have significantly lower calcium, potassium, and vegetable intakes at every level of education and poverty status.  Three dietary pattern studies have also demonstrated that race/ethnic differences in dietary patterns persist after statistically controlling for educational level (Park et al., 2005), or income (Forshee & Storey, 2006) or both, with the healthier patterns tending to favor non-Hispanic whites (Kant et al., 2007; Kerver et al., 2003; Park et al., 2005).       

In summary non-Hispanic blacks and Mexican-Americans have approximately twice the prevalence of T2D compared to non-Hispanic whites, and it is still unclear why.  Differences in nutritional intake may contribute to the disparities, either because of underlying socioeconomic disparities in diet or because of cultural-related diet behaviors.  Understanding how diet is related to T2D risk may help tailor interventions to prevent excess disease burden among race/ethnic minorities.  
Chapter Summary

This chapter summarized the methodology related to the exploratory approach to dietary patterns and highlighted some the complexities of dietary measurement.  The chapter also presented a review of T2D and the race/ethnic disparities in T2D for non-Hispanic blacks and Mexican-Americans compared to non-Hispanic whites.  

The following chapters explore and apply dietary pattern methods.  Chapter Three presents a comparison of dietary patterns that were derived from three different data reduction techniques with and without two separate data transformations.  Chapter Four presents one of the techniques used in the third chapter, PCA, and compares three different food grouping schemes to understand whether different food groupings affect the resulting dietary patterns’ ability to predict health outcomes.  Chapter 5 applies dietary patterning methodologies from chapters three and four to explore the race/ethnic differences in T2D and to explore whether differences in dietary patterns across race/ethnic groups may help explain the race/ethnic gaps in T2D prevalence.    

Chapter 3:  A Methodological Focus on Dietary Patterns 

Introduction

Dietary pattern analysis is becoming a common method used by nutritional epidemiologists to describe food consumption habits and to relate diet to health.  Studying characteristics of overall diet allows for the examination of the combined effect of nutrients and/or foods on health.  The use of this method has grown in the past 20 years out of concern that, because of the complexity of the human diet, the focus on single nutrients or single food types cannot fully represent diet’s effect on health.       

A common strategy used to summarize over-all dietary patterns is to use multivariate reduction techniques to group individuals or foods into meaningful patterns of eating.  These multivariate techniques can conceptually be classified into two groups: spatial models and grouping models.  Spatial models summarize similarity among variables with a reduced set of dimensions and place these variables into dimensional space (either high or low on a continuum) according to their similarity.  In contrast to spatial models, which allow items to vary along multiple continuous dimensions, grouping models represent the similarity among variables into mutually exclusive groups or clusters.  Either spatial or clustering techniques can be used to summarize structure among variables (column-oriented approach) or among people (row-oriented approach).  For dietary patterns, factor analysis, a spatial technique, has commonly been applied to food variables (Fung et al., 2004), and clustering, a grouping approach, has been applied to people’s profiles (Carrera et al., 2007; Newby et al., 2006).

The goal of any multivariate reduction technique is to identify the underlying structure of the data.  That is, to find and summarize interrelatedness among variables and detect how these variables may group or co-occur in the diet.  Thus, similarity must be assessed.  When attempting to identify similarity among a set of variables, magnitude is often a confounding factor present in the data.  In the case of dietary patterns, ‘magnitude’ issues may occur either among individuals (e.g. there are differences in the amount people report eating rather actual differences in food types) or among food variables (e.g. some foods are eaten more than others).  Although total food intake affects health, this is not the dietary information that is desired from patterning.  Instead, patterns should identify differences in food types, and variance due to magnitude (the amount of food), should be statistically controlled or held constant in some way.

In assessing pattern the Pearson correlation coefficient removes magnitude differences present between two variables by standardizing each variable in order to measure their similarity.  This is accomplished by dividing each variable by its standard deviation.  Factor analysis and principal component analysis (PCA) typically start with a correlation matrix so that summarization of the data occurs with implicit standardization of the variables.  This means that, when factor analysis or PCA are used to derive dietary patterns, differences in magnitude are removed from the variables being analyzed.  So that if PCA is used to summarize foods (foods that co-occur in the same diets), magnitude differences among the food variables would be removed, and comparisons between foods will be made on the relative amount of each food eaten by individuals.  Or, if PCA is used to summarize types of people (based on food types they report), magnitude differences among people would be removed, and comparisons between people will be made on the relative amount of each food eaten.

Sometimes, other measures of similarity are used, such as Euclidean distance.  Euclidean distance measures similarity between a pair of variables in terms of distance between the variables in Euclidean space.  In contrast to the Pearson correlation coefficient, Euclidean distance measures similarity in terms of magnitude and pattern, confounding the two (Cronbach & Gleser, 1953).  Thus, when Euclidean distance measures are used, it is important to first assess whether the desired pattern to be detected is magnitude or whether a transformation of the variables is needed to remove magnitude differences.            
    

  A newer multivariate technique, correspondence analysis (CA), addresses the problem of separating pattern from magnitude effects by removing magnitude effects prior to analysis.  Correspondence analysis, also referred to in the past as canonical analysis, optimal scaling, or dual scaling, is appropriate for a wider type of data than either PCA or clustering, accommodating frequency data for categorical variables as well as interval and ratio-scaled variables (Greenacre, 1984; Weller & Romney, 1990).  The method utilizes data in a contingency table format, and the transformation that removes the row and column magnitude effects is equivalent to removing the differences among the row and column totals; subtracting out the expected values for each cell, and then analyzing the deviation from chi square expected values.  Correspondence analysis is a spatial technique, similar to PCA, but in contrast to PCA, magnitude is removed from both row- and column- variables prior to data modeling.  Thus, the resulting underlying structure and ‘variance’ (referred to as inertia in this method) that is found among variables is truly due to pattern and not variance that can be explained by magnitude differences among either the column or the row variables.  In addition, post data-reduction transformations that the technique employs allow for the simultaneous and joint representation of both variables and people in the same geographic space, rather than the representation of either row or columns that can be derived using PCA or clustering.    

Objective
 In this chapter the effect of data transformations used in conjunction with various multivariate data reduction techniques will be demonstrated in the study of dietary patterns using a single data set.  For this work, the food frequency questionnaire (FFQ) from two recent cycles of the National Health and Nutrition Examination Survey (NHANES 2003-2006) are used to derive dietary patterns from three multivariate methods: PCA on foods, k-means clustering on respondents, and CA.  Results from these analytical techniques are compared and contrasted with and without normalization transformations prior to analysis in order to see the effects of data transformations on models of dietary pattern data.  Tests for the identification of possible bias due to magnitude factors such as the number of food types reported and the number of unique food items reported are conducted by comparing indices of food intake to the multivariate solutions.  The resulting multivariate solutions are also compared by age, gender, race/ethnicity, and education groups to see if patterns differ across these groups.   

Methods

Study Sample

The National Health and Nutrition Examination Survey (NHANES) is a nationally representative cross-sectional survey that is conducted by the National Center for Health Statistics (NCHS).  Most recent NHANES surveys are collected and released in two-year intervals.  For this analysis, data from the 2003-2004 and 2005-2006 survey cycles were combined.  

Analyses focused on US adults over the age of 20, as dietary patterns of children and adolescents may be substantially different from adults.  Of the NHANES participants who were 20 years of age and older and who completed the household interview and the medical exam (n=9,515), pregnant (n = 544) and lactating (n = 75) women were excluded as dietary intake in these women may not be representative of usual intakes of healthy adult women.  Individuals who did not complete the food frequency questionnaire were also excluded (n = 3,077).  Analysis focused on the three main race/ethnic groups of the NHANES sample, and thus persons who reported their race/ethnicity as anything other than non-Hispanic white, non-Hispanic black, or Mexican-American were excluded (n = 367).  The final sample included 5,452 individuals age 20 and older, who completed the household interview and the medical exam, who were not pregnant or lactating, and who also completed both 24 hour recalls and the FFQ interview.  

NHANES was carried out using a complex multistage sampling design that over-sampled young children, older persons, non-Hispanic blacks, and Mexican Americans.  Because the NHANES sampling design yields unequal probability of selection for participation, appropriate weighting is needed for variance estimation in order to make statistical inferences to the US population.  For this chapter, analyses are not weighted because factor and cluster procedures are not available that can account for survey design weights.  However, the purpose of the chapter is to compare methods and not necessarily to make inference to the US population.  Therefore, all procedures were carried out using un-weighted estimates in SAS 9.1 so that results derived using the three structuring methods could be directly compared.  

Materials and Measures

Food Frequency Questionnaire

The 151-item FFQ was developed from the National Cancer Institute’s Diet History Questionnaire (DHQ), which is a widely used FFQ.  The FFQ data do not estimate nutrient or caloric intakes, as portion size questions were not included.  Instead, the FFQ was designed to supplement the NHANES 24-hour recall data by providing longer-term estimates of food intakes to better approximate usual intake.  Validation studies for the DHQ and the modified NHANES FFQ demonstrate similar performance compared to other widely used FFQs and acceptable correlations with repeated 24-hour recalls (Subar et al., 2001; Subar et al., 2006).  Respondents were asked to report frequency of intake of foods and beverages over the previous 12-month period. (e.g. Over the past 12-month period, how often did you eat apples?)  Optional responses ranged from ‘never’ to ‘2+ times per day’ for food-item questions and from ‘never’ to ‘6+ times per day’ for beverage questions.  All responses were then re-coded into daily frequency. 

Twelve of the items on the survey asked respondents to report season-specific intakes.  Seasonal foods included two responses, seasonal frequency and non-seasonal frequency.   Total frequency for these questions was derived by summing seasonal frequency (weighted by .25), and non-seasonal frequency (weighted by .75).    

Certain questions included sub-questions regarding various fat, sugar, and/or caffeine content of foods and beverages.  For instance, on question asks “Over the past 12 months, how often did you eat sour cream”.  A follow-up question then asks, “How often was the sour cream that you ate low-fat or fat-free”.  Optional responses to the follow-up question were: almost never or never, ¼ of the time, ½ of the time, ¾ of the time, and almost always or always.  On survey questions that included this type of sub-question, a second frequency/variable was created so that each respondent has a frequency for the original food/beverage and a separate frequency for the altered product.  For instance, if a respondent said they ate sour cream ‘1 time per week’ (daily frequency =.14), and it was reduced fat approximately ½ the time, then this individual was assigned a frequency of .07 for ‘sour cream’ and .07 for ‘low-fat sour cream’.  After variables were created for each proportion sub-question, there were a total of 201 variables per survey respondent on the FFQ.

Food Group Variables Created from the FFQ

Before dietary patterns are derived dietary variables (201 in this case) are typically collapsed into 35-50 food groups.  For this analysis, the following rationale was used to create 48 food groups out of the 201 variables:  (1.) In most instances, foods were grouped based on the similarity of nutritional content and/or culinary usage, which is consistent with recent dietary pattern research (Carrera et al., 2007; Fung et al., 2004; Newby et al., 2003).  (2.)  Some foods that likely represent separate dietary patterns from their nutritional similar counterparts (i.e. French fries vs. other potatoes) were left as individual variables.  However, some foods that may represent separate dietary patterns were grouped with nutritional similar counterparts if the food’s contribution to total caloric intake was negligible. (i.e. ketchup was grouped with tomatoes, pickles were grouped with other vegetables).  (3.)  Foods with low frequency of consumption that do not necessarily group with other foods based on nutritional content (i.e. non-dairy creamer and artificial sweeteners) were grouped as miscellaneous.  Table 3.1 describes the 48 food groups.    

Table 3.1: Food Grouping Scheme for Responses from the NHANES Food Frequency Questionnaire
	Food Group Name
	Description

	1.  Milk
	Whole, 2% fluid milks

	2.  Low fat Milk
	1% and Skim fluid milks

	3.  Cheese
	Cheese, cottage cheese

	4.  Other Dairy
	Yogurt, pudding

	5.  Frozen Desserts
	Frozen Yogurt, Ice cream

	6.  Butter
	Regular and Reduced-fat Butter

	7.  Margarine
	Regular and Reduced-fat Margarine

	8.  Oils and Dressings
	Oils, Salad dressings, Mayo spreads

	9.  Other Fats
	Gravies, Cream Cheese, Sour Cream

	10.  Citrus Fruit
	Citrus fruits

	11.  Melon and Berries
	Melons and berries

	12.  Bananas
	Bananas

	13.  Other Fruit
	Apples, pears, pineapples, dried fruit, grapes, peaches/plums/nectarines

	14.  Citrus Juice
	Orange juice, grapefruit juice

	15.  Other Fruit Juice
	Other 100% Fruit juice

	16.  Orange Vegetables
	Carrots, sweet potatoes, winter squash

	17.  Dark Green Leafy Vegetables
	Cooked and raw greens, leaf lettuce varieties

	18.  Tomatoes
	Tomatoes and tomato products including sauces, ketchup, salsas, and juice

	19.  Cruciferous Vegetables
	Broccoli, Cauliflower, Cabbage, coleslaw

	20.  Other Vegetables
	Green beans, corn, peas, mixed vegetables, summer squash, peppers, onions, cucumbers, pickles, Lettuce – not dark green

	21.  Fried Potatoes
	French fries, hash browns, other fried potatoes

	22.  Other Starchy Vegetables
	Other potatoes (baked, boiled, mashed, potato salad), other starchy tubers

	23.  Beans
	Beans: dried or cooked

	24.  Nuts and Seeds
	Nut butters, nuts and seeds 

	25.  Soy
	Soy milk, soy beans/nuts, tofu

	26.  Eggs
	Whole eggs, egg whites, egg salads

	27.  White Meat
	Chicken, Turkey – all cooking methods

	28.  Red Meat
	Beef and Pork – all cooking methods

	29.  Processed Meat
	Hot dogs, Deli meats/Cold Cuts, Bacon, Sausage, Ham

	30.  Fish and Seafood 
	Fish, Smoked fish, shellfish, sushi

	31.  Organ Meats
	Liver and other organ meats

	32.  Pastas
	Pasta and pasta dishes

	33.   Refined bread and bread products
	White bread, biscuits, pancakes/waffles, crackers, stuffings/dumplings, English muffins, dinner rolls/buns

	34.  Whole Grain bread and bread products    
	Dark bread varieties and whole grain products

	35.  Hot Cereals
	Oatmeal and other hot cereals

	36.  Cold RTE Cereals 
	Ready to eat (RTE) cold cereals

	37.  Tortillas, Tacos, Cornbread
	Tortillas, tacos, and cornbread

	Table 3.1:  Food Grouping Scheme Continued…..

	38.  Soups
	Broth, cream, tomato, and bean based soups

	39.  Pizza
	Pizza with and without meat toppings

	40.  Salty Snacks
	Chips, popcorn, pretzels

	41.  Sweets
	Cakes, cookies, pies, donuts, muffins, granola bars

	42.  Candy
	Sugar, Jams/Jellies, Honey, Syrups, Chocolate candy, other candy

	43.  Sodas
	Regular and Diet soft drinks

	44.  Coffee and Tea
	Coffee and Tea

	45.  Fruitades 
	Fruit drinks (not 100% juice), sports drinks, sugar-sweetened non-carbonated beverages

	46.  Meal Replacements
	Meal Replacement drinks and bars

	47.  Alcohol
	Beer, Wine, Liquor, Mixed Drinks

	48.  Miscellaneous
	Artificial sweeteners, creamer, rice milk


Race/Ethnicity

Data on race/ethnicity was collected in two separate questions, one focusing on racial identification and the other focusing on Hispanic ethnicity.  These two questions were recoded and combined into a single variable, separating those who identify as Hispanic from those who do not.  Individuals were categorized into the following race/ethnic groups: non-Hispanic whites, non-Hispanic blacks, Mexican-Americans, and Other.  This study focused only on the three main ethnic groups, and the small group of ‘others’ (which represents all Hispanics who are not Mexican-American and all non-Hispanics who do not racially identify as white or black) were omitted. 

Education

Level of education was measured with the highest level of school that was completed.  Throughout the analysis, education was used as a categorical variable.  If education were treated as a continuous measure, the analysis would be making the assumption that each year of education contributes equally to a person’s SES, and this may not be true (Galobardes et al., 2006).  Therefore, education was categorized as less than high school, high school, and greater than high school to attempt to capture milestones in the education process that most strongly affect SES.  In the US, average years of schooling is 12.05 years (based on the year 2000) (Barro & Lee, 2000).  Therefore, 3 categories for education were created to distinctively separate those with average education levels from those below and those above average.   

Other Demographic Measures

Age and gender are both strongly associated with nutritional requirements, and current Dietary Reference Intakes are categorized based on these two demographic subgroups (Insitute of Medicine.Food and Nutrition Board, 2004).  Therefore, dietary patterns will also be compared by age and gender.  

Age in years was calculated from self-reported birth date.  All participants who were 90 years or greater were recorded as ‘90’ to protect the personal identity of this small group of people.  For the following analyses, a 3-category variable was created for comparison of dietary patterns by age: 20-39 years, 40-59 years, and 60+ years.  

Indices of Total Food Intake

In order to identify possible magnitude effects in the data, two indices of total food intake were created.  First, an index labeled ‘Frequency Sum’ was created to represent the total number of foods reported, regardless of food type on the FFQ.  (note: This does not necessarily correspond to servings, as the data only provided frequency per day and not an actual measure of servings per day.)  A second index, labeled ‘Diversity Score’, represents the total number of unique types of foods that a person reported eating in a day.  (Food items were only counted if average daily frequency was ≥ 1 time per day.)  

Analysis

Multivariate Modeling of Raw Data

The overall approach of this chapter was to derive dietary patterns using various transformations and data reduction techniques in a single data set and to compare the derived patterns to demographic subgroups in the US population.  First, a column-oriented approach (PCA) was used to derive patterns from the 48 food variables.  PCA was carried out using the PROC FACTOR procedure in SAS on the 48 food group variables described earlier.  PCA produces a correlation matrix of the data and then identifies linear combinations (called factors) that explain redundancies in the 48 variables.  If the 48 foods are truly independent, then the number of linear combinations provided by the method would be equal to the number of input variables (in this case, 48).  However, when foods are eaten or not eaten by the same people, they may be grouped together and the number of meaningful linear combinations is reduced.  In this application, the number of dimensions or factors needed to adequately account for variance in the data was determined using a scree plot of the eigenvalues (Cattell, 1966).  

Second, patterns between people were defined using k-means cluster analysis with Euclidean distance as the measure of similarity using the PROC FASTCLUS procedure in SAS.  Clustering was repeated specifying 2 to 10 clusters, and these solutions were compared using a goodness of fit test, the pseudo F-statistic (also called Callinski and Harabanz method), to determine the appropriate number of clusters (Milligan & Cooper, 1985).  This statistical test is most reliable when clustering is carried out using uncorrelated variables.  Because dietary variables are correlated, results from the goodness of fit tests were compared to cluster analysis on factor scores derived from PCA.  Because PCA yields orthogonal linear combinations of the variables, this allowed for a comparison to the data in an uncorrelated format.    

  The original data (prior to transformations) were also analyzed using correspondence analysis to examine row and column structures simultaneously and to examine the ability of data transformations to remove magnitude effects.  Specifically, the three approaches were compared for the content and types of dietary patterns that were found.  Two-way correspondence analysis was carried out using the PROC CORRESP procedure in SAS.  Two-way CA requires a contingency table format.  Therefore, a stacked contingency table was formed with the 48 food group variables as the columns and levels of the 4 demographic variables as the rows.  The resulting table was a 54 X 48 table, with each cell frequency representing the average food group intakes of the corresponding column variable and row group (Greenacre, 1984).  Using this method, data structuring occurs in such a way that each row- and column- level are represented by a point in a plot that is determined from the cell frequencies.  For presentation of CA results, row and column ‘coordinates’ that represent the location of the plot points were used to assess relationships between and among dietary variables and demographic subgroups.        

Data Transformations 

To see the possible effects of data transformations on pattern solutions, the original response data and transformed data were analyzed by different multivariate techniques.  Because pattern in diet may be confounded with magnitude effects, different transformations of the original response data were combined with PCA and clustering to explore these effects on patterning.  A common source of magnitude in dietary data is that some people eat more than others.  To remove this individual-level magnitude, each food group frequency was divided by the individual’s total frequency.  Thus, transformed data represented a percent of total frequency in place of the original raw frequency.  Although ‘percent of total frequency’ has not been used in published work, ‘percent of total calories’ has been used to control individual-level magnitude in data where total caloric intake is known (Carrera et al., 2007; Lin et al., 2003).   

In addition to this row-normalization Z-scores of the ‘percent of total frequency’ variables were derived to create column-standardization for cluster analysis so that results from clustering could be more comparable to patterns derived from PCA since PCA implicitly standardizes the input variables.        

Comparisons to Demographic Variables and Magnitude Indices

Multivariate solutions were compared to the Frequency and Diversity Indices to test for magnitude bias in the solutions.  For PCA, Pearson correlations were used to examine the association between factors scores from the retained factors and the two indices.  For clustering, the indices were compared using ANOVA to test differences in the average index scores across cluster groups.  

In order to examine differences in dietary patterns across demographic subgroups, associations between factor scores and demographic variables were assessed.  Differences in mean factor scores from PCA were compared across levels of the variables using one-way ANOVA to explore the bi-variate associations between demographics and dietary patterns.  Multivariate-adjusted estimates were derived using linear regression models to demonstrate differences in dietary patterns across demographics, controlling for other demographic characteristics.  Cluster results were also tested for differences across socio-demographic groups using Chi Square test of independence to explore differences in cluster frequency across the demographic groups.  

Results

Sample Characteristics

 Individuals in the sample were primarily non-Hispanic white, and more than half reported greater than a high school education.  As older individuals are over-sampled in the NHANES, more than 1/3 of the sample was 60 or older.  The un-weighted demographic characteristics of the sample are shown in Table 3.2.  Indices of total food intake showed that individuals reported eating, on average, 19.3 (10.4 SD, Range: 0 – 220.8) food items per day and consumed an average of 6.75 (3.88 SD, Range: 0 - 40) unique foods per day (0-48 possible range for diversity).  Distributions of the indices are presented in Figures 3.1 and 3.2.  Frequency of food items reported was strongly and positively related to diversity in reported foods (r = .86 p < .0001), so that those who reported more types of foods also reported higher frequencies across foods.  

Table 3.2:  Demographic Characteristics of the Study Sample, NHANES 2003-2006

	 
	Frequency   
	Un-weighted Percents

	
	(n = 5,452)
	

	Race/Ethnicity
	
	

	    Non-Hispanic White
	3,326
	61.01

	    Non-Hispanic Black
	1,143
	20.96

	    Mexican-American
	983
	18.03

	
	(0 missing)
	

	Gender
	
	

	    Male
	2685
	49.25

	
	(0 missing)
	

	Age
	
	

	    20-39
	1583
	29.04

	    40-59
	1755
	32.19

	    60 and over
	2114
	38.77

	
	(0 missing)
	

	Education
	
	

	<  High school
	1339
	24.58

	    High school
	1439
	26.42

	>  High school
	2669
	49

	 
	(5 missing)
	 


Figure 3.1:  Distribution of Frequency Sum (Sum of all Food Items Reported): NHANES Food Frequency Questionnaire 
[image: image11.emf]0

5

10

15

20

Percent

0 50 100 150

Daily Frequecy Total


Figure 3.2:  Distribution of Diversity Score (Sum of Unique Food Items Reported): NHANES Food Frequency Questionnaire 
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Principal Component Analysis on Foods 

In order to describe the dietary patterns present in the FFQ data, PCA was carried out on the 48 food group variables.  The resulting solution suggested that magnitude strongly drives the detectable pattern across variables in the data.  Table 3.3 presents the first 10 eigenvalues from PCA.  Eigenvalues represent the dimensionality of the data and correspond to the linear combinations of the variables.  Using the eigenvalues the contribution of each linear combination (factor) to the total variance in the variables can be examined, and the number of factors needed to describe meaningful underlying combinations or patterns in the data can be identified.  Table 3.3 shows that 17% of the total variance is explained by the first factor, approximately 6% by the second, and 4.5% by the third.  The plot of the eigenvalues (Figure 3.3) shows that an ‘L’ bend occurs between the first and second factors (ratio = 2.73:1).  Notably, all loadings on the first factor are positive (refer to Table 3.4: loadings that are |.30| or higher have been highlighted).  Thus, the solution suggests a single factor solution, and the positive loadings on factor one suggest the pattern is reflecting a magnitude factor.  

Table 3.3:  Eigenvalues from Principal Components Analysis using 48 Food Group Variables from NHANES FFQ        
	 
	Eigenvalue
	Ratio of Adjacent Eigenvalues
	Proportion
	Cumulative

	1
	8.2875
	2.73
	0.173
	0.173

	2
	3.0345
	1.42
	0.063
	0.236

	3
	2.1343
	1.13
	0.045
	0.280

	4
	1.8898
	1.17
	0.039
	0.320

	5
	1.6139
	1.12
	0.034
	0.353

	6
	1.4461
	1.14
	0.030
	0.384

	7
	1.2648
	1.07
	0.026
	0.410

	8
	1.1816
	1.04
	0.025
	0.434

	9
	1.1383
	1.05
	0.024
	0.458

	10
	1.0798
	-----
	0.023
	0.481

	


Figure 3.3: Scree Plot of the Eigenvalues from Principal Components Analysis using 48 Food Group Variables from NHANES FFQ     
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Table 3.4:  Un-rotated Factor Loadings for Factors 1 and 2 from PCA using 48 Food Group Variables from NHANES FFQ
	 
	Factor1
	Factor2

	Milk
	0.269
	0.175

	Lowfat Milk
	0.006
	-0.227

	Cheese
	0.348
	0.159

	Other Dairy
	0.373
	-0.188

	Frozen Desserts
	0.439
	0.056

	Butter
	0.301
	0.192

	Margarine
	0.269
	0.171

	Oils and Dressings
	0.483
	-0.024

	Other Fats
	0.534
	0.186

	Citrus Juice
	0.335
	-0.142

	Other Fruit Juice
	0.362
	-0.088

	Bananas
	0.359
	-0.401

	Citrus
	0.495
	-0.350

	Melons and Berries
	0.488
	-0.326

	Other Fruit
	0.592
	-0.489

	Orange Veggies
	0.515
	-0.446

	Dark Green Leafies
	0.446
	-0.483

	Tomatoes
	0.471
	-0.046

	Cruciferous Veggies
	0.546
	-0.375

	Other Veggies
	0.665
	-0.281

	Fried Potatoes
	0.403
	0.449

	Other Potato
	0.509
	0.152

	Beans
	0.350
	-0.116

	Nuts and Seeds
	0.388
	-0.127

	Soy
	0.064
	-0.176

	White Meat
	0.573
	-0.016

	Eggs
	0.280
	0.117

	Red Meat
	0.653
	0.388

	Processed Meat
	0.603
	0.349

	Fish
	0.543
	-0.024

	Liver
	0.397
	0.100

	Pastas
	0.646
	0.205

	White Breads
	0.547
	0.323

	Dark Breads
	0.313
	-0.274

	Hot Cereals
	0.242
	-0.265

	RTE Cereals
	0.124
	0.169

	Tortillas and Tacos
	0.339
	0.021

	Soups
	0.445
	-0.009

	Pizza
	0.397
	0.309

	Snacks
	0.394
	0.322

	Sweets
	0.537
	0.186

	Candy
	0.337
	0.321

	Sodas
	0.144
	0.414

	Coffee and Tea
	0.176
	0.141

	Fruitades
	0.319
	0.129

	Meal Replacements
	0.124
	-0.020

	Alcohol
	0.070
	0.111

	Misc
	0.100
	0.127


In order to identify and interpret the magnitude effects present in the FFQ responses, the indices for food diversity (Diversity Score) and for the number of total foods (Frequency Sum) were compared to the resulting PCA factor scores.  The first factor, which represents the primary dietary pattern present in these responses, is positively correlated with the total number of foods reported, the Frequency Sum (r = .90 p < .0001) and with the number of different types of foods reported, the Diversity Score (r = .84 p < .0001).  Although column/food variables were standardized in this analysis, these results suggest that simple differences among subjects in the number of foods reported and the number of various foods reported is the primary pattern being detected and described in the model, and that true ‘patterns’ (differences in food types) are being overwhelmed by the effect of magnitude in the responses of subjects.  Thus, the multivariate model identifies the predominant pattern that some people report eating a lot of foods with high diversity and some people report fewer foods with less diversity.    

PCA on Foods with Row Normalization 

To attempt to remove the observed magnitude effect (e.g. some people reported many more foods than did others) so that pattern (similarities in food types and differences in co-occuring foods types) could be examined, the reported food group frequencies for each individual were divided by the individual’s total number of foods reported.  Therefore, each of the 48 food variables was transformed to represent a percentage of the person’s total reported frequencies.  Thus, the magnitude effects of the indices for number of foods and different types of foods were removed for each person, so that each person’s responses would sum to 1.0 or 100%.  

A PCA on these row-normalized data (with implicit column standardization) reveals dietary patterns present in the data without the main source of magnitude bias.  Table 3.5 and Figure 3.4 present eigenvalues for the first 10 factors from PCA using the 48 variables.  The ratio of adjacent eigenvalues and the scree plot suggest that, with row magnitude controlled, there are now approximately 4 meaningful dimensions in dietary patterns, with an ‘L’ bend occurring between the 4th and 5th pattern.  Of the total variance, 22% is explained by the first 4 factors.  Table 3.6 presents the un-rotated factor loadings of the food group variables for factors 1 through 4.  As in the previous PCA table, loadings |.30| or greater are highlighted.  

Table 3.5:  Eigenvalues of First 10 Factors for the ‘Percent Total Frequency’ Variables from PCA using NHANES FFQ 
	 
	Eigenvalue
	Eigen Ratio 
	Proportion
	Cumulative

	1
	3.6263
	1.28
	0.076
	0.076

	2
	2.8344
	1.27
	0.059
	0.135

	3
	2.2321
	1.27
	0.047
	0.181

	4
	1.7621
	1.17
	0.037
	0.218

	5
	1.5080
	1.03
	0.031
	0.249

	6
	1.4584
	1.07
	0.030
	0.280

	7
	1.3649
	1.06
	0.028
	0.308

	8
	1.2929
	1.04
	0.027
	0.335

	9
	1.2383
	1.03
	0.026
	0.361

	10
	1.2007
	----
	0.025
	0.386


Figure 3.4:  Scree Plot of the Eigenvalues for the ‘Percent Total Frequency’ Variables from PCA using NHANES FFQ 
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Dietary patterns were named based on the major food group contributors to positive associations with each factor (loadings > .30):  (1) Fruit and Vegetables, the first factor, positively correlates with higher dietary intakes of fruits and vegetables and lower intakes of red meat, processed meat, snacks, refined grains, and sodas.  (2) Meat, the second factor, is associated with higher intakes of red and processed meats, poultry, pastas, fried potatoes, tomatoes, beans, tortillas and tacos, and the ‘other’ vegetables category and negatively correlated with coffee/tea and candy.  The second factor also has relatively strong positive correlations with white bread, pizza, and snacks.  (3)  Dark breads, the third factor, is characterized by higher intakes of dark breads and nuts/seeds and is strongly negatively correlated with intakes of traditional Mexican foods: beans, tortillas, tomatoes, and soups.  (4)  Breakfast and Fruit, the fourth factor, is associated with higher intakes of ready-to-eat cereals, fruit juices, fruit-ades, and full-fat milk and lower intakes of ‘other’ vegetables category, oils/dressings, and coffee/tea.  

In order to test for the presence of magnitude effects that were present in the original response data, the two indices were once again compared to the factor scores.  Correlations between factor scores and the frequency sum and diversity score show that the first factor is no longer strongly correlated with these indices (refer to Table 3.7).  The first factor still reflects, to a small degree, the magnitude in diversity reporting of FFQ, but the first factor is no longer synonymous with the magnitude indices.  The strong correlations that were observed using the raw data no longer exist for any factors, and these correlations are relatively similar across factors.  
Table 3.6:  Un-rotated Factor Loadings for Factors 1 through 4 for the ‘Percent Total Frequency’ Variables from PCA using NHANES FFQ 
	 
	Factor1
	Factor2
	Factor3
	Factor4

	Milk
	-0.118
	-0.175
	-0.233
	0.370

	Lowfat Milk
	0.167
	-0.089
	0.267
	-0.007

	Yogurt and Pudding
	0.228
	0.053
	0.214
	0.073

	Cheese
	-0.229
	0.240
	0.237
	-0.198

	Frozen Desserts
	-0.055
	0.043
	0.240
	0.155

	Butter
	-0.146
	-0.136
	0.147
	-0.119

	Margarine
	-0.133
	-0.169
	0.225
	-0.050

	Oils and Dressings
	0.103
	0.222
	-0.036
	-0.420

	Other Fats
	-0.171
	0.208
	0.082
	-0.107

	Citrus 
	0.381
	0.140
	0.023
	0.197

	Citrus 
	0.154
	0.016
	-0.006
	0.445

	Other Juice
	0.098
	0.071
	-0.077
	0.413

	Bananas
	0.424
	0.000
	0.047
	0.317

	Other Fruit 
	0.615
	0.151
	0.083
	0.220

	Melons and Berries
	0.356
	0.146
	0.094
	0.162

	Orange Veggies
	0.484
	0.183
	0.214
	-0.057

	Dark Green Leafies
	0.535
	0.231
	0.109
	-0.225

	Tomatoes
	0.084
	0.391
	-0.513
	-0.084

	Cruciferous Veggies
	0.449
	0.268
	0.121
	-0.110

	Other Veggies
	0.432
	0.365
	-0.013
	-0.304

	Fried Potatoes
	-0.473
	0.333
	-0.027
	0.008

	Other Potato
	-0.154
	0.174
	0.249
	0.003

	Beans
	0.155
	0.271
	-0.630
	-0.024

	Nuts and Seeds
	0.154
	-0.020
	0.287
	-0.104

	Soy
	0.174
	0.009
	0.100
	-0.055

	White Meat
	0.042
	0.346
	0.130
	-0.102

	Eggs
	-0.089
	0.081
	-0.016
	-0.204

	Red Meat
	-0.469
	0.439
	0.023
	-0.033

	Processed Meat
	-0.393
	0.319
	0.139
	-0.025

	Fish
	0.118
	0.268
	0.164
	-0.052

	Liver
	-0.003
	0.123
	0.026
	0.089

	Pastas
	-0.267
	0.369
	0.150
	0.097

	White Breads
	-0.372
	0.194
	0.126
	0.049

	Dark Breads
	0.218
	-0.031
	0.330
	-0.016

	Hot Cereals
	0.246
	0.004
	0.103
	0.204

	RTE Cereals
	-0.154
	0.035
	-0.011
	0.416

	Tortillas and Tacos
	0.058
	0.305
	-0.671
	-0.008

	Soups
	0.081
	0.255
	-0.351
	-0.032

	Pizza
	-0.369
	0.257
	0.137
	0.101

	Snacks
	-0.334
	0.244
	0.137
	-0.018

	Sweets
	-0.177
	0.021
	0.244
	0.146

	Candy
	-0.251
	-0.395
	-0.096
	0.068

	Sodas
	-0.420
	0.180
	-0.011
	0.083

	Coffee and Tea
	-0.019
	-0.652
	-0.068
	-0.303

	Fruitades
	-0.110
	0.093
	-0.053
	0.317

	Meal Replacements
	0.028
	-0.038
	-0.006
	0.117

	Alcohol
	-0.105
	-0.020
	0.015
	-0.117

	Misc
	-0.023
	-0.523
	-0.209
	-0.188


Table 3.7:  Correlations between Indexes of Total Food Intake and Factor Scores using ‘Percent of Total Frequency’ Variables 
	 
	Frequency Sum
	Diversity Score

	
	r (p-value)
	r (p-value)

	Factor 1
	   .07      (<.0001)
	  .14   (<.0001)

	Factor 2
	  -.02      (<.0001)
	 -.10   (.2356)

	Factor 3
	   .0005  (.969)
	 -.02   (.07)

	Factor 4
	  -.01      (.372)
	 -.02   (.07)


To explore whether the patterns present in the data were associated with demographic factors, respondents’ factor scores for each of the four dietary patterns were compared to the demographic characteristics of respondents.  Table 3.8 presents the simple ANOVA bi-variate comparisons of dietary patterns (mean factor scores) by demographic subgroups in the US, and demonstrates that race/ethnicity, gender, age, and education are all related to the five dietary patterns.  To explore these variables together in adjusted linear regression models, multivariate analyses are presented in Table 3.9.  Four models were tested, with each of the dietary patterns as the dependent variable in a model and the demographic covariates as the independent variables.  Mexican-Americans, females, older individuals and respondents with more education have higher intakes of factor #1, the fruit and vegetable pattern (Table 3.8), and multivariate analyses (Table 3.9) demonstrate that these relationships to factor 1 do not change in adjusted models.  Pattern 2 (Meats), which most closely resembles the Western-style eating, is consumed more by Mexican-Americans and blacks compared to whites.  This pattern is also negatively correlated with age so that highest intakes are among the youngest in the sample.  Pattern 3, with higher intakes of dark breads and lower intakes of traditional Mexican foods, closely resembles the demographic distributions as the first pattern, with the exception of differences across race/ethnic groups.  Mexican-Americans have much lower intakes of pattern 3 compared to whites.  This is not surprising given the strong negative correlations with traditional Mexican foods that this pattern represents.  Compared to whites, Non-Hispanic blacks have higher intakes of Pattern 4 (ready-to-eat cereals and fruit).  The cereal and fruit juice pattern also appears to reflect intakes of younger and less educated respondents.  

Table 3.8:  Bivariate Comparisons of Mean Factor Scores (SD) of Dietary Patterns across Demographic Groups in NHANES 2003-2006 
	 
	Fruit and Veg
	Meat
	Dark Breads
	Breakfast

	 
	Pattern1
	Pattern2
	Pattern3
	Pattern4

	Race/Ethnicity
	
	
	
	

	      NH White
	- 0.06 (0.97)**
	- 0.19 (0.96)**
	  0.30 (0.65)**
	- 0.15 (0.90)**

	NH Black
	- 0.07 (1.09)  
	   0.21 (0.96)
	  0.17 (0.63)
	  0.40 (1.18)

	Mex Am
	  0.30 (0.95)
	   0.42 (1.02)
	- 1.21 (1.38)
	  0.04 (0.95)

	Gender
	
	
	
	

	Male
	- 0.18 (0.96)**
	   0.005 (1.03)
	- 0.08 (1.05)**
	  0.03 (0.98)*

	Female
	  0.18 (1.01)
	- 0.004 (.97)
	  0.08 (0.94)
	- 0.03 (1.01)

	Age
	
	
	
	

	    20-39
	- 0.39 (1.05)**
	  0.48 (0.97)**
	- 0.08 (1.10)**
	   0.17 (1.11)**

	   40-59
	- 0.02 (0.98)
	- 0.04 (1.01)
	- 0.03 (0.96)
	- 0.14 (0.95)

	         60+ 
	  0.31 (0.86)
	- 0.32 (0.87)
	  0.08 (0.95)
	- 0.01 (0.93)

	Education Level
	 
	
	
	

	<HS
	  0.004 (0.98)**
	  0.06 (1.08)*
	- 0.48 (1.27)**
	   0.22 (1.04)**

	  HS
	- 0.17 (0.98)
	- 0.07 (1.02)
	  0.06 (0.93)
	   0.05 (0.99)

	        >HS 
	  0.09 (1.00)
	  0.01 (0.94)
	  0.21 (0.79)
	- 0.14 (0.96)

	** p < .0001
	 
	 
	 
	 

	  * p < .05 
	
	
	
	


Table 3.9:  Adjusted Coefficients: Differences in Factor Scores for the Four Dietary Patterns, Controlling for Race/Ethnicity, Gender, Age, and Education 
	 
	Fruit and Veg

Pattern 1
	Meat

Pattern 2
	Dark Breads

Pattern 3
	Breakfast

Pattern 4

	 
	Beta
	STD Beta
	Beta
	STD Beta
	Beta
	STD Beta
	Beta
	STD Beta

	Race/Ethnicity
	
	
	
	
	
	
	
	

	   NH White (ref)
	…
	…
	…
	…
	…
	…
	…
	…

	   NH Black
	0.11*
	0.05*
	 0.31**
	0.13**
	-0.07*
	-0.03*
	 0.51**
	0.21**

	   Mex Am
	0.53**
	0.20**
	 0.54**
	0.21**
	-1.38**
	-0.53**
	 0.07
	0.03

	Gender
	
	
	
	
	
	
	
	

	   Female
	0.36**
	0.18**
	-0.02
	-0.01
	 0.16**
	 0.08**
	-0.07*
	-0.03*

	Age
	
	
	
	
	
	
	
	

	  20-39
	…
	…
	…
	…
	…
	…
	…
	…

	  40-59
	0.39**
	0.18**
	-0.49**
	-0.22**
	-0.04
	-0.02
	-0.29**
	-0.14**

	  60+ 
	0.79**
	0.39**
	-0.73**
	-0.36**
	 0.11**
	  0.05**
	-0.17**
	-0.08**

	Education Level
	
	
	
	
	
	
	
	

	<HS
	...
	…
	…
	…
	…
	…
	…
	…

	  HS
	0.03
	0.01
	-0.03
	-0.02
	 0.21**
	 0.09**
	-0.13*
	-0.06*

	>HS 
	0.34**
	0.17**
	 0.03
	 0.01
	 0.31**
	 0.16**
	-0.31**
	-0.16**

	** p < .0001, *p < .05 
(n = 5,447)
	
	
	
	
	 
	 
	 


Clustering of Subjects   

To compare results of the previous spatial patterns derived from PCA to a clustering model of people, the 48 food variables were entered into a k-means cluster analysis.  Results from clustering demonstrated the same problem with magnitude that was seen using PCA.  A two cluster solution appeared to provide the best fit for the data based on the pseudo F-statistic, and this solution explained approximately 13% of the total variance in the data.  Within-cluster means for each food variable are presented in Table 3.10 for the two cluster solution.  As the table demonstrates, cluster #2 reported a high frequency of foods:  all but two foods have the higher mean frequency than cluster #1.  For each food variable, the cluster with the highest mean frequency has been highlighted.  Frequencies are bolded that contribute ≥ 3% to the total cluster frequency.  
In order to test for magnitude in the subject-oriented clustering analysis, the two clusters of subjects were compared to the indices for food diversity and number of foods.  An ANOVA compared the average level of food diversity and the average number of total foods reported between the two groups.  Again, results indicate that the primary pattern detected is a magnitude difference.   Average intakes for the total number of foods reported by each person for clusters 1 and 2 were 17.15 (+/- 7.55) and 30.72 (+/- 14.89), respectively (p < .0001 and R2 = .23).  Average number of different types of foods reported (diversity scores) by cluster were 6.28 (+/- 3.47) for cluster 1 and 9.31 (+/- 4.86) for cluster 2 (p < .0001 and R2 = .08).  Thus, the cluster solution also primarily reflects differences in the amount of foods reported and/or unique foods, separating those who report eating a lot of food with high diversity from those who report eating less food and fewer types of food.

Table 3.10:  K-Means Cluster Analysis: Average Food Group Frequencies by Group using NHANES FFQ Food Group Variables 
	 
	Cluster 1
	Cluster 2

	
	(n = 4,591)
	(n = 861)

	Milk
	0.640
	1.483

	Lowfat Milk
	0.322
	0.283

	Cheese
	0.367
	0.480

	Other Dairy
	0.145
	0.190

	Frozen Desserts
	0.168
	0.229

	Butter
	0.336
	0.605

	Margarine
	0.400
	0.677

	Oils and Dressings
	0.723
	0.975

	Other Fats
	0.158
	0.244

	Citrus Juice
	0.412
	0.425

	Other Fruit Juice
	0.177
	0.223

	Bananas
	0.299
	0.327

	Citrus
	0.084
	0.116

	Melons and Berries
	0.068
	0.088

	Other Fruit
	0.678
	0.862

	Orange Veggies
	0.182
	0.222

	Dark Green Leafies
	0.309
	0.343

	Tomatoes
	0.588
	0.740

	Cruciferous Veggies
	0.245
	0.303

	Other Veggies
	1.501
	2.003

	Fried Potatoes
	0.146
	0.192

	Other Potato
	0.207
	0.301

	Beans
	0.127
	0.151

	Nuts and Seeds
	0.272
	0.360

	Soy
	0.039
	0.038

	White Meat
	0.339
	0.403

	Eggs
	0.220
	0.308

	Red Meat
	0.408
	0.612

	Processed Meat
	0.569
	0.843

	Fish
	0.174
	0.227

	Liver
	0.011
	0.020

	Pastas
	0.191
	0.288

	White Breads
	0.782
	1.113

	Dark Breads
	0.520
	0.599

	Hot Cereals
	0.087
	0.105

	RTE Cereals
	0.088
	0.095

	Tortillas and Tacos
	0.218
	0.254

	Soups
	0.111
	0.167

	Pizza
	0.060
	0.077

	Snacks
	0.306
	0.417

	Sweets
	0.459
	0.715

	Candy
	0.917
	2.761

	Sodas
	0.523
	0.593

	Coffee and Tea
	1.416
	4.732

	Fruitades
	0.323
	0.431

	Meal Replacements
	0.080
	0.090

	Alcohol
	0.263
	0.278

	Misc
	0.494
	3.732

	Total Frequency
	17.15
	30.72


Clustering of Subjects Using Row-Normalized Data 

Two data transformations were used for cluster analysis.  First, cluster analysis on people was conducted with their responses normalized to percent of total frequency to remove within-row magnitude differences between subjects as above.  Second, these food (column) variables were then standardized (mean = 0, SD = 1) prior to subsequent cluster analysis to be consistent with the standardization that is implicit in PCA.  The 48 transformed food variables were then analyzed with k-means with Euclidean distance.  

A first cluster analysis was conducted on the row-normalized data without standardization of the column variables (variables as percent of total frequency) produced a three-cluster solution.  Cluster solutions specifying 2 to 10 clusters were compared for goodness of fit.  Based on the pseudo F-statistic, the 3-cluster solution appeared to be the best fit for the data.  Approximately 20% of the over-all variance in the data was explained by this solution.  Table 3.11 presents the clustering results.  For each food group variable, the cluster with the highest percent of total frequency has been highlighted.  For each cluster, cells that contribute approximately 3% or more to the total frequency have been bolded.  Clusters of people were named based on foods that contributed most strongly to patterns in the data: (1) Meal Replacements, Milk, and Fruit Juice: greatest contribution to total frequency is made by meal replacement drinks, full fat and reduced fat milks, fruit juices, other vegetables, and candy. (n = 33)  (2) Meats, Fruits, Vegetables, and Traditional Mexican: highest intakes of most foods including fruits, vegetables, breads, meats, beans, tortillas/tacos, soups, salty snacks, and sodas. (n = 3322) (3) Coffee/Tea and Candy: primarily characterize by coffee/tea consumption (18% of total frequency compared to 6% and 5% for clusters 1 and 2 respectively) (n = 2086).  

Patterns derived from clustering do not appear to represent dietary patterns as clearly as PCA.  (e.g. low-fat milk contributes most strongly to the same cluster whole-fat milk, and cluster 2 appears to have the highest frequency of most foods)  This may be due to that fact that the Euclidean distance measure of similarity do not standardize column variables as PCA does (as PCA works from a correlation matrix of the variables).  Therefore, while using ‘percent of total frequency’ has row-normalized the data, the analysis is still not column-normalized.  Therefore, magnitude differences may still exist among the column variables.  
A second cluster analysis used both row normalization and column standardization.  To better compare results from k-means cluster to results from PCA, the cluster analysis was repeated first transforming within person responses to percentages of the total number of foods reported and second, standardizing the column/food variables.  Thus, z-scores of the food variables were created to produce row-normalized and column-standardized transformation of the original data, as was analyzed by PCA.  Examination of the pseudo F-statistic specifying 2 to 10 clusters demonstrated that a 3-cluster solution still provided the best fit for the data, but variance explained by the solution was much lower than in previous cluster solutions (over-all R2 = .03).  Table 3.12 presents the mean frequencies (back-transformed from z-scores) for each cluster and food variable.  As in the previous table, each food variable was highlighted in the cluster in which it had the highest percentage, and all food groups providing ≥ 3% of the within-cluster total frequency were bolded.  Patterns were named based on the major food contributors to the patterns: 1) Meal Replacements and Fruit Juice, 2) Meat and Refined Grains: characterized by higher frequencies of fats, potatoes, eggs, red meat, processed meat, pastas and white breads, pizza, snacks, sweets, candy, and sugary beverages, and 3) Fruits, Vegetables, Traditional Mexican, and Coffee/tea.  
Table 3.11:  K-Means Clustering with Row-Normalization:  Percent of Total Frequencies by Group Using NHANES FFQ Food Group Variables
	 
	Cluster 1
	Cluster 2
	Cluster 3

	
	(n = 33)
	(n = 3332)
	(n = 2086)

	Milk
	0.0454
	0.0393
	0.0382

	Lowfat Milk
	0.0319
	0.0185
	0.0161

	Cheese
	0.0117
	0.0232
	0.0171

	Other Dairy
	0.0062
	0.0086
	0.0064

	Frozen Desserts
	0.0088
	0.0102
	0.0079

	Butter
	0.0115
	0.0183
	0.0200

	Margarine
	0.0154
	0.0221
	0.0231

	Oils and Dressings
	0.0262
	0.0439
	0.0352

	Other Fats
	0.0040
	0.0095
	0.0074

	Citrus Juice
	0.0191
	0.0266
	0.0154

	Other Fruit Juice
	0.0253
	0.0114
	0.0046

	Bananas
	0.0146
	0.0182
	0.0138

	Citrus
	0.0026
	0.0050
	0.0031

	Melons and Berries
	0.0030
	0.0042
	0.0025

	Other Fruit
	0.0247
	0.0410
	0.0268

	Orange Veggies
	0.0076
	0.0108
	0.0073

	Dark Green Leafies
	0.0114
	0.0185
	0.0119

	Tomatoes
	0.0207
	0.0374
	0.0238

	Cruciferous Veggies
	0.0098
	0.0149
	0.0100

	Other Veggies
	0.0564
	0.0920
	0.0661

	Fried Potatoes
	0.0042
	0.0097
	0.0065

	Other Potato
	0.0115
	0.0124
	0.0101

	Beans
	0.0029
	0.0084
	0.0043

	Nuts and Seeds
	0.0098
	0.0152
	0.0135

	Soy
	0.0006
	0.0023
	0.0016

	White Meat
	0.0192
	0.0217
	0.0137

	Eggs
	0.0114
	0.0134
	0.0117

	Red Meat
	0.0224
	0.0260
	0.0187

	Processed Meat
	0.0220
	0.0355
	0.0262

	Fish
	0.0081
	0.0107
	0.0072

	Liver
	0.0010
	0.0006
	0.0004

	Pastas
	0.0097
	0.0124
	0.0083

	White Breads
	0.0191
	0.0489
	0.0371

	Dark Breads
	0.0165
	0.0312
	0.0252

	Hot Cereals
	0.0066
	0.0056
	0.0042

	RTE Cereals
	0.0037
	0.0067
	0.0035

	Tortillas and Tacos
	0.0066
	0.0154
	0.0074

	Soups
	0.0037
	0.0069
	0.0047

	Pizza
	0.0033
	0.0041
	0.0028

	Snacks
	0.0109
	0.0192
	0.0139

	Sweets
	0.0243
	0.0276
	0.0223

	Candy
	0.0685
	0.0502
	0.0735

	Sodas
	0.0135
	0.0382
	0.0225

	Coffee and Tea
	0.0562
	0.0449
	0.1848

	Fruitades
	0.0260
	0.0219
	0.0099

	Meal Replacements
	0.2087
	0.0039
	0.0025

	Alcohol
	0.0186
	0.0151
	0.0141

	Misc
	0.0346
	0.0181
	0.0923


Row normalization and column standardization produced clusters that are more similar to results produced using PCA.  Cluster 2 (Meat and Refined Grains) is similar to factor 2 (Meats), and Cluster 3 (Fruits, Vegetables, Traditional Mexican, and Coffee/tea) is similar to factor 1, although the contribution of traditional Mexican foods is somewhat different.  One striking difference between the two results is the large contribution of meal replacements using cluster analysis.  Whereas meal replacements did not produce a high factor loading for any of the 4 factors derived from PCA, they contributed 21% of total frequency of the first cluster in the row normalized, column standardized data.  Of note, the cluster that has this large percent of total frequency from meal replacements is very small (n = 56).  This could indicate that the k-means solution may be better at identifying the most distinctive patterns in the data but less able to identify the primary patterns for the entire group.  In addition, considerable instability was observed in cluster solutions specifying between 2 and 10 clusters.  For instance, cluster membership frequencies were as follows for 4, 3 and 2 cluster solutions: [n = 4, 46, 5,398, and 3 for clusters 1, 2 , 3 and 4 respectively;  n = 56, 1198, and 4197 for clusters 1, 2 and 3 respectively; and n = 294 and 5,157 for clusters 1 and 2 respectively].     

Using row-normalization and column-standardization with k-means cluster analysis, average total number of foods reported still vary somewhat by cluster, 17.07 (+/- 11.5), 17.14 (+/- 12.16), and 19.95 (+/- 9.69) (p < .0001), for clusters 1, 2, and 3 respectively, but very little variance was explained by this model (R2 = .01), suggesting that clusters did not strongly vary in terms of total frequency.  Clusters were also more similar in terms of average diversity of foods: 5.57 (+/- 4.11) for cluster 1, 5.85 (+/- 4.38) for cluster 2, and 7.02 (+/- 3.7) respectively (R2 = .02, p < .0001).  

Table 3.12:  K-Means Cluster with Row Normalization and Column Standardization: Percent of Total Frequencies by Group using NHANES FFQ Food Group Variables Back-transformed from Z-Scores
	 
	Cluster 1
	Cluster 2
	Cluster 3

	
	(n = 56)
	(n = 1,198)
	(n = 4197)

	Milk
	0.0346
	0.0360
	0.0393

	Lowfat Milk
	0.0262
	0.0088
	0.0205

	Cheese
	0.0146
	0.0332
	0.0176

	Other Dairy
	0.0102
	0.0061
	0.0083

	Frozen Desserts
	0.0093
	0.0101
	0.0090

	Butter
	0.0117
	0.0195
	0.0189

	Margarine
	0.0158
	0.0223
	0.0223

	Oils and Dressings
	0.0353
	0.0395
	0.0409

	Other Fats
	0.0044
	0.0123
	0.0077

	Citrus Juice
	0.0208
	0.0158
	0.0238

	Other Fruit Juice
	0.0231
	0.0074
	0.0090

	Bananas
	0.0157
	0.0079
	0.0189

	Citrus
	0.0034
	0.0021
	0.0049

	Melons and Berries
	0.0031
	0.0021
	0.0040

	Other Fruit
	0.0333
	0.0171
	0.0407

	Orange Veggies
	0.0088
	0.0053
	0.0107

	Dark Green Leafies
	0.0135
	0.0085
	0.0182

	Tomatoes
	0.0254
	0.0340
	0.0318

	Cruciferous Veggies
	0.0132
	0.0090
	0.0142

	Other Veggies
	0.0632
	0.0684
	0.0864

	Fried Potatoes
	0.0060
	0.0184
	0.0056

	Other Potato
	0.0108
	0.0151
	0.0104

	Beans
	0.0047
	0.0049
	0.0073

	Nuts and Seeds
	0.0119
	0.0113
	0.0156

	Soy
	0.0006
	0.0006
	0.0025

	White Meat
	0.0213
	0.0224
	0.0174

	Eggs
	0.0101
	0.0138
	0.0125

	Red Meat
	0.0211
	0.0400
	0.0183

	Processed Meat
	0.0225
	0.0523
	0.0258

	Fish
	0.0095
	0.0101
	0.0091

	Liver
	0.0009
	0.0006
	0.0005

	Pastas
	0.0096
	0.0180
	0.0086

	White Breads
	0.0230
	0.0642
	0.0385

	Dark Breads
	0.0213
	0.0213
	0.0312

	Hot Cereals
	0.0066
	0.0025
	0.0058

	RTE Cereals
	0.0033
	0.0093
	0.0043

	Tortillas and Tacos
	0.0072
	0.0113
	0.0125

	Soups
	0.0041
	0.0054
	0.0061

	Pizza
	0.0036
	0.0075
	0.0025

	Snacks
	0.0139
	0.0309
	0.0133

	Sweets
	0.0233
	0.0304
	0.0242

	Candy
	0.0614
	0.0562
	0.0601

	Sodas
	0.0143
	0.0702
	0.0212

	Coffee and Tea
	0.0605
	0.0498
	0.1141

	Fruitades
	0.0203
	0.0275
	0.0143

	Meal Replacements
	0.1675
	0.0029
	0.0029

	Alcohol
	0.0182
	0.0187
	0.0135

	Misc
	0.0393
	0.0180
	0.0550


Comparing row-normalized/column-standardized clusters of subjects to their demographic variables using Chi Sq tests of independence also showed some similarities to PCA (Table 3.13).  Proportionally more Mexican-Americans cluster into the pattern representing higher intakes of fruit, vegetables, and traditional Mexican foods (Pattern 3).  Proportionally more males and younger individuals group in the cluster with the highest intakes of the meat and refined grains, whereas intake of fruits and vegetables is more common in the older age groups compared to the youngest and is consumed more by females compared to males.    

Although there were some differences in results between the two multivariate methods, both PCA and clustering demonstrated that, when using transformed variables to remove the magnitude bias, the majority of the variance among the 48 food groups is explained by differences in intakes of fruits, vegetables, traditional Mexican foods, fats, meats, and the following beverages: sodas, fruit-ades, and coffee/tea.  Additionally, the findings demonstrated that race/ethnicity, age, sex, and education are all related to dietary patterns.  

Correspondence Analysis

From the previous analyses, it was clear that magnitude effects in the data biased results and that variations in results were demonstrated according to different transformations of the data (row normalization and column standardization).  When similar transformations of the data were used, results from PCA and clustering were similar.  Because correspondence analysis examines relationships among column and row variables without magnitude effects, this procedure was used to determine whether the combination of these data transformations were sufficient in removing magnitude effects so that differences in food types (patterns) could be examined.  This technique accommodates the inclusion of demographic variables into the analysis.  

Table 3.13:  K-Means Cluster Patterns with Row-Normalization and Column- Standardization by Demographics: Demographic Representation (%) Across the 3 Dietary Cluster Groups

	 
	Row Percents

	
	Cluster 1
	Cluster 2
	Cluster 3

	
	(n = 56)
	(n =1,198)
	(n = 4,197)

	Race/Ethnicity**
	
	
	

	     White
	0.93
	21.17
	77.9

	     Black
	1.31
	30.97
	67.73

	     Mexican American
	1.02
	14.26
	84.73

	Age**
	
	
	

	     20 - 40
	1.58
	43.9
	54.52

	     40 - 60
	0.8
	20.97
	78.23

	     60 + 
	0.8
	6.39
	92.81

	Sex**
	
	
	

	     Male
	1.04
	26.23
	72.73

	     Female
	1.01
	17.85
	81.13

	Education**
	
	
	

	  < High school
	1.12
	18.83
	80.04

	     High school
	0.63
	26.55
	72.83

	  > High school
	1.2
	21.09
	77.71

	**p < .0001 (ChiSq)
	
	
	


Because CA utilizes a contingency table format, a contingency table was formed with the 48 food group variables (Table 3.1) as the columns and levels of the 4 demographic variables as the rows (3 age groups, 2 gender groups, 3 education levels, and 3 race/ethnic groups = 54 categories).  The resulting stacked table was a 54 X 48 table, with each cell frequency representing the average food group intakes of the corresponding food category and demographic subgroup (Refer to the Appendix to see the full frequency table used in CA).  For example, average daily frequency of the food category “milk” for white males aged 20-39 years who have less than a high school education is 1.29 times per day and is 0.94 times per day for white females in the same age group and education level.  In the appended table, relationships between column and row variables are visible.  For example, the food category “low-fat milk” is substantially different by race/ethnicity, comparing non-Hispanic whites (frequency range among white subgroups: .07-.65) to non-Hispanic blacks (frequency range among black subgroups: .01-.18).  Additionally, a strong race/ethnic relationship is apparent for beans, where mean frequencies range from .03 to .12 among the non-Hispanic white and black demographic subgroups and range from .22 to .62 among the Mexican Americans subgroups.  

Comparing CA to the previous methods results indicate that when magnitude effects are well controlled (as with CA) patterns produced are very similar to PCA and clustering when both columns and rows are transformed.  Table 3.14 presents the inertia and chi square decomposition of the first 10 dimensions resulting from CA.  In CA, the term ‘inertia’ is used to refer to explained variance in pattern once magnitude effects are removed.  Both CA and PCA are spatial techniques that group data into geometric space based on similarity.  Almost three-quarters (74.2%) of total inertia is explained with the first four dimensions.  Percent of inertia explained drops and remains consistently low after dimension four, suggesting that a four dimensional representation of the data most appropriately describes meaningful relationships among the variables.  

Table 3.14:  Inertia Results from Correspondence Analysis of 54 Demographic Groups by 48 Food Group Variables using NHANES 2003-2006 (n = 5,447)
	Inertia and Chi-Square Decomposition

	Singular
	Principal
	Chi-
	
	Cumulative
	    6   12   18   24   30   

	Value
	Inertia
	Square
	Percent
	Percent
	----+----+----+----+----+---

	0.18806
	0.03537
	37.372
	28.03
	28.03
	***********************     

	0.18208
	0.03315
	35.031
	26.27
	54.3
	**********************      

	0.12586
	0.01584
	16.738
	12.55
	66.85
	**********                  

	0.09651
	0.00931
	9.841
	7.38
	74.23
	******                      

	0.07255
	0.00526
	5.561
	4.17
	78.4
	***                         

	0.06387
	0.00408
	4.311
	3.23
	81.63
	***                         

	0.05459
	0.00298
	3.149
	2.36
	84
	**                          

	0.04767
	0.00227
	2.402
	1.8
	85.8
	**                          

	0.04548
	0.00207
	2.186
	1.64
	87.44
	*                           

	0.04286
	0.00184
	1.941
	1.46
	88.89
	*                           

	0.04051
	0.00164
	1.734
	1.3
	90.19
	*           

	             …..
	…..
	…..
	…..
	…..
	

	Total
	0.12619
	133.342
	100
	
	

	Degrees of Freedom = 2491


In order to better understand these four dimensions (factors), food group coordinates (similar to factor loadings in PCA) of the derived structure were examined.  Table 3.15 presents the column-variable (food group) coordinates that result from CA for dimensions 1 through 4 and the percentage of inertia (variance) that each food group contributes to each dimension.  Foods with coordinates greater than |.15| or with column inertia contributing ≥ 5% are highlighted.  As the table demonstrates, food variables group into similar patterns compared to the previous analyses.
Dimensions were named based on foods that contributed most strongly to those patterns: 1) Traditional Mexican, the first dimension, is characterized by higher intakes of tomatoes, beans, tortillas/tacos, and soup and lower intakes of butter and margarine.  2) Western-style foods, the second dimension, represents higher intakes of Meats, Refined Grains, Snacks, Fried potatoes, Pizza, Pastas, Sodas, Fruit-ades, Alcohol, and RTE Cereal, and lower intakes of reduced-fat milk and coffee/tea. 3) Fruit and Vegetables, the third dimension, is characterized by higher intakes of fruit and vegetables, hot cereals, fruit juices, and fish, and lower intakes of sodas, pizza, whole-fat milk, tortillas and tacos, and fried potatoes.  4) Dairy, dimension 4, which represents higher intakes of reduced-fat milk, cheese, yogurt, meal replacements, and pizza.  
The percentage contributions to column inertia show which food groups contribute strongest to the total amount of variance explained within each dimension.  As the Table 3.15 demonstrates, dimension 1, which represents the primary inertia (explained 28.03% of total inertia), is most strongly explained by traditional Mexican foods.  Dimension 2, which also explained a large amount of inertia in the data (26.3%), is most strongly explained by beverages: reduced-fat milk, citrus juice, sodas, coffee/tea 

Table 3.15:  Column Estimates from Correspondence Analysis NHANES 2003-2006 
	Column Coordinates
	% Contribution to Inertia

	 
	Dim1
	Dim2
	Dim3
	Dim4
	Dim1
	Dim2
	Dim3
	Dim4

	Milk
	0.055
	0.011
	-0.193
	-0.048
	0.00
	0.00
	0.10
	0.01

	Lowfat Milk
	-0.266
	-0.553
	-0.101
	0.458
	0.02
	0.10
	0.01
	0.24

	Cheese
	-0.136
	0.052
	-0.162
	0.247
	0.01
	0.00
	0.03
	0.12

	Other Dairy
	0.016
	-0.069
	0.069
	0.270
	0.00
	0.00
	0.00
	0.06

	Frozen Desserts
	-0.134
	0.002
	0.117
	0.028
	0.00
	0.00
	0.01
	0.00

	Butter
	-0.266
	-0.064
	-0.019
	-0.019
	0.04
	0.00
	0.00
	0.00

	Margarine
	-0.217
	-0.110
	0.137
	-0.064
	0.03
	0.01
	0.03
	0.01

	Oils and Dressings
	0.079
	-0.044
	0.025
	0.047
	0.01
	0.00
	0.00
	0.01

	Other Fats
	-0.033
	0.069
	-0.006
	0.044
	0.00
	0.00
	0.00
	0.00

	Citrus Juice
	0.000
	0.406
	0.173
	-0.065
	0.00
	0.06
	0.02
	0.01

	Other Fruit Juice
	0.115
	-0.147
	0.158
	-0.063
	0.01
	0.01
	0.02
	0.01

	Bananas
	0.229
	0.011
	0.190
	-0.015
	0.01
	0.00
	0.01
	0.00

	Citrus
	0.008
	0.159
	0.200
	-0.014
	0.00
	0.02
	0.06
	0.00

	Melons and Berries
	0.144
	-0.059
	0.196
	0.008
	0.02
	0.00
	0.09
	0.00

	Other Fruit
	0.129
	0.016
	0.178
	0.071
	0.00
	0.00
	0.01
	0.00

	Orange Veggies
	0.072
	-0.129
	0.171
	0.115
	0.00
	0.00
	0.02
	0.01

	Dark Green Leafies
	0.098
	-0.053
	0.222
	0.039
	0.00
	0.00
	0.05
	0.00

	Tomatoes
	0.320
	0.015
	-0.105
	0.054
	0.10
	0.00
	0.02
	0.01

	Cruciferous Veggies
	0.063
	0.017
	0.171
	0.060
	0.00
	0.00
	0.02
	0.01

	Other Veggies
	0.084
	-0.059
	0.065
	0.031
	0.02
	0.01
	0.02
	0.01

	Fried Potatoes
	-0.039
	0.213
	-0.171
	0.030
	0.00
	0.01
	0.02
	0.00

	Other Potato
	-0.167
	-0.083
	-0.050
	0.032
	0.01
	0.00
	0.00
	0.00

	Beans
	0.793
	-0.053
	-0.142
	0.008
	0.15
	0.00
	0.01
	0.00

	Nuts and Seeds
	-0.137
	-0.144
	0.121
	0.097
	0.01
	0.01
	0.01
	0.01

	Soy
	-0.181
	0.068
	0.240
	0.545
	0.00
	0.00
	0.01
	0.05

	White Meat
	-0.018
	0.186
	0.108
	0.073
	0.00
	0.02
	0.01
	0.01

	Eggs
	0.028
	0.033
	0.016
	-0.040
	0.00
	0.00
	0.00
	0.00

	Red Meat
	-0.006
	0.174
	-0.125
	-0.005
	0.00
	0.02
	0.02
	0.00

	Processed Meat
	-0.083
	0.178
	0.019
	-0.108
	0.01
	0.03
	0.00
	0.04

	Fish
	-0.025
	0.204
	0.149
	0.097
	0.00
	0.01
	0.01
	0.01

	Liver
	-0.043
	0.282
	0.283
	-0.289
	0.00
	0.00
	0.00
	0.01

	Pastas
	-0.086
	0.249
	-0.062
	0.090
	0.00
	0.02
	0.00
	0.01

	White Breads
	-0.127
	0.094
	-0.013
	-0.049
	0.02
	0.01
	0.00
	0.01

	Dark Breads
	-0.099
	-0.131
	0.104
	0.098
	0.01
	0.01
	0.02
	0.03

	Hot Cereals
	0.010
	-0.083
	0.367
	-0.123
	0.00
	0.00
	0.04
	0.01

	RTE Cereals
	-0.069
	0.428
	-0.107
	0.131
	0.00
	0.03
	0.00
	0.01

	Tortillas and Tacos
	0.850
	0.071
	-0.194
	0.022
	0.33
	0.00
	0.04
	0.00

	Soups
	0.480
	-0.034
	-0.113
	0.012
	0.05
	0.00
	0.01
	0.00

	Pizza
	-0.202
	0.308
	-0.225
	0.183
	0.00
	0.01
	0.01
	0.01

	Snacks
	-0.072
	0.199
	-0.075
	0.105
	0.00
	0.02
	0.01
	0.02

	Sweets
	-0.079
	0.037
	0.043
	0.006
	0.00
	0.00
	0.00
	0.00

	Candy
	-0.063
	0.026
	-0.019
	-0.072
	0.01
	0.00
	0.00
	0.04

	Sodas
	-0.178
	0.268
	-0.262
	0.015
	0.03
	0.06
	0.13
	0.00

	Coffee and Tea
	-0.142
	-0.304
	-0.086
	-0.055
	0.05
	0.24
	0.04
	0.03

	Fruitades
	-0.083
	0.460
	0.141
	-0.092
	0.00
	0.14
	0.03
	0.02

	Meal Replacements
	0.029
	0.267
	0.009
	0.176
	0.00
	0.01
	0.00
	0.01

	Alcohol
	-0.321
	0.186
	-0.222
	-0.042
	0.04
	0.01
	0.04
	0.00

	Misc
	0.071
	-0.235
	-0.040
	-0.174
	0.01
	0.09
	0.01
	0.17


and fruit-ades.  Variance in intakes of whole-fat milk, green leafy vegetables, and sodas contributes most strongly to dimension 3, and dimension 4 is primarily explained by variation in consumption of dairy products.  
As in other spatial techniques such as PCA variables in the analysis that are correlated are similar.  One advantage of CA, however, is that food categories and subject (demographic) variables can be plotted in the same geographic space and can be directly compared.  Therefore, coordinates from the demographic subgroups (row variables) were also explored.  Table 3.16 presents the row coordinates and percentage of dimension inertia for each of the demographic subgroups.  Dimension 1 (Traditional Mexican) coordinates show that non-Hispanic white males and females negatively correlate with the pattern, while all Mexican-American groups correlate positively.  Additionally, referring to percentage of row inertia, Mexican-Americans explain the most inertia in dimension 1 among the row variables (sum = 63%).  Therefore, of the 4 demographic variables that make up the row groups, race/ethnicity (Mexican-Americans v. non-Hispanics) explains the most variance in dietary patterns (since dimension 1 explains the majority of total inertia in the data), and this is because of the strong influence of traditional Mexican foods eaten primarily by Mexican-Americans. 

Referring to Dimension 2 (Western-style foods), Table 3.16 suggests that age contributes most strongly to this dimension.  The youngest (20-39 years) and oldest age groups (60+) contribute more strongly to inertia compared to other demographic groups.  The row coordinates show that the older age groups (30-49 years and 60+) are primarily lower on this dimension, whereas the youngest age groups have higher intakes of foods in this dimension.  Referring back to Table 3.15, beverages contributed most strongly to inertia in the second dimension.  This suggests that, with magnitude controlled, beverages contribute strongly to variation in dietary patterns, and the largest demographic influence in beverages is age.  

Row coordinates (Table 3.16) for dimension 3 (Fruits and Vegetables) show that the greatest separation is between white males and black females.  White males tend to have lower intakes of foods represented in this dimension, while black females (particularly those who are older) have higher intakes of these foods.  Dimension 4, which was characterized by dairy intake, is consumed most by whites and Mexican-Americans with greater education and consumed less by blacks.  

Although column and row variables cannot be compared simultaneously using PCA or clustering, results from CA appear to correspond to results from the other two methods.  For instance, traditional Mexican foods made a large contribution to Factor 3 in PCA, although these foods were negatively correlated with the pattern (Factor Loadings: -.63, -.67, -.35, and -.51 for beans, tortillas/tacos, soups, and tomatoes respectively).  Furthermore, reported intakes of Factor 3 were much lower for Mexican-Americans compared to the other two race/ethnic groups (Table 3.10).  Also referring back to the demographic comparisons to PCA patterns (Table 3.10), age was significantly associated with every dietary pattern, and there is a linear relationship apparent in every pattern, where the strongest difference is between the youngest and the oldest age group.  In the cluster patterns, proportionally more of the 60 + age group clustered into the pattern consisting of higher intakes of vegetables and traditional Mexican foods (92.81% compared to 54.52% of 20-40 year olds), and proportionally more 20-39 year olds clustered into the meat, refined grains, and sweets pattern (43.9% compared to 6.39% of the 60+ age group).  In CA, younger groups tended to have positive loadings for the Western-style pattern (meat, refined grains, snacks, and sodas) and older groups tended to have negative coordinates.  With respect to beverages, PCA and clustering both demonstrated that sodas, coffee/tea, and fruitades contributed strongly to dietary patterns.  However, with these two methods, it was not apparent that variance in beverages is strongly related to age, as can be seen in CA results.  This highlights a benefit of CA, where demographics and food groups are examined in the same dimensional space.  

 Table 3.16:  Row Estimates from Correspondence Analysis: NHANES 2003-2006 

	Row Coordinates
	% Contribution to Row Inertia

	
	 
	 
	Dim1
	Dim2
	Dim3
	Dim4
	Dim1
	Dim2
	Dim3
	Dim4

	
	Educ
	Age
	 
	 
	 
	 
	 
	
	
	

	White Males     
	 
	
	
	

	1
	< HS
	20-39
	-0.266
	0.235
	-0.330
	-0.032
	0.04
	0.03
	0.13
	0.00

	2
	 
	40-59
	-0.162
	-0.080
	-0.180
	-0.129
	0.01
	0.00
	0.04
	0.03

	3
	 
	60+
	-0.184
	-0.182
	-0.028
	-0.063
	0.02
	0.02
	0.00
	0.01

	4
	   HS
	20-39
	-0.187
	0.100
	-0.196
	0.035
	0.02
	0.01
	0.05
	0.00

	5
	 
	40-59
	-0.220
	-0.129
	-0.189
	-0.039
	0.03
	0.01
	0.04
	0.00

	6
	 
	60+
	-0.198
	-0.257
	-0.005
	0.041
	0.02
	0.04
	0.00
	0.00

	7
	> HS
	20-39
	-0.150
	0.045
	-0.109
	0.213
	0.01
	0.00
	0.01
	0.08

	8
	 
	40-59
	-0.180
	-0.162
	-0.101
	0.071
	0.02
	0.01
	0.01
	0.01

	9
	 
	60+
	-0.164
	-0.251
	0.019
	0.061
	0.01
	0.03
	0.00
	0.01

	White Females
	 
	 
	 
	 

	10
	< HS
	20-39
	-0.123
	0.116
	-0.147
	0.061
	0.01
	0.01
	0.03
	0.01

	11
	 
	40-59
	-0.165
	-0.210
	-0.116
	-0.063
	0.02
	0.03
	0.02
	0.01

	12
	 
	60+
	-0.140
	-0.228
	0.045
	-0.041
	0.01
	0.03
	0.00
	0.00

	13
	   HS
	20-39
	-0.197
	-0.026
	-0.200
	0.063
	0.02
	0.00
	0.04
	0.01

	14
	 
	40-59
	-0.146
	-0.130
	-0.103
	-0.058
	0.01
	0.01
	0.01
	0.01

	15
	 
	60+
	-0.174
	-0.299
	0.097
	0.101
	0.02
	0.05
	0.01
	0.02

	16
	> HS
	20-39
	-0.142
	-0.088
	-0.041
	0.274
	0.01
	0.00
	0.00
	0.13

	17
	 
	40-59
	-0.128
	-0.248
	0.002
	0.149
	0.01
	0.03
	0.00
	0.04

	18
	 
	60+
	-0.132
	-0.313
	0.149
	0.173
	0.01
	0.06
	0.03
	0.06

	Black Males
	 
	 
	 
	 

	19
	< HS
	20-39
	-0.107
	0.370
	0.074
	-0.018
	0.01
	0.07
	0.01
	0.00

	20
	 
	40-59
	-0.122
	0.181
	0.030
	-0.141
	0.01
	0.02
	0.00
	0.04

	21
	 
	60+
	-0.069
	0.062
	0.114
	-0.123
	0.00
	0.00
	0.01
	0.03

	22
	   HS
	20-39
	-0.157
	0.355
	-0.099
	-0.044
	0.01
	0.06
	0.01
	0.00

	23
	 
	40-59
	-0.101
	0.133
	0.124
	-0.053
	0.00
	0.01
	0.02
	0.00

	24
	 
	60+
	-0.082
	-0.158
	0.097
	-0.151
	0.00
	0.01
	0.01
	0.04

	25
	> HS
	20-39
	-0.137
	0.324
	0.041
	0.019
	0.01
	0.05
	0.00
	0.00

	26
	 
	40-59
	-0.081
	0.058
	0.113
	-0.016
	0.00
	0.00
	0.01
	0.00

	27
	 
	60+
	-0.053
	-0.026
	0.110
	-0.079
	0.00
	0.00
	0.01
	0.01

	Black Females
	 
	 
	 
	 

	28
	< HS
	20-39
	-0.154
	0.269
	0.064
	-0.054
	0.01
	0.04
	0.01
	0.01

	29
	 
	40-59
	-0.110
	0.210
	0.117
	-0.103
	0.01
	0.02
	0.02
	0.02

	30
	 
	60+
	-0.011
	0.059
	0.184
	-0.073
	0.00
	0.00
	0.04
	0.01

	31
	   HS
	20-39
	-0.093
	0.335
	0.132
	0.034
	0.00
	0.06
	0.02
	0.00

	32
	 
	40-59
	-0.074
	0.201
	0.167
	-0.013
	0.00
	0.03
	0.04
	0.00

	33
	 
	60+
	-0.055
	-0.005
	0.194
	-0.098
	0.00
	0.00
	0.04
	0.02

	34
	> HS
	20-39
	-0.099
	0.313
	0.110
	0.090
	0.00
	0.04
	0.01
	0.01

	35
	 
	40-59
	-0.067
	0.003
	0.158
	-0.011
	0.00
	0.00
	0.03
	0.00

	36
	 
	60+
	0.001
	-0.056
	0.348
	0.040
	0.00
	0.00
	0.13
	0.00
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	Row Coordinates
	% Contribution to Row Inertia

	
	
	Dim1
	Dim2
	Dim3
	Dim4
	Dim1
	Dim2
	Dim3
	Dim4

	
	Educ
	Age
	
	
	
	
	
	
	
	

	MexAm Males
	 
	 
	 
	 

	37
	< HS
	20-39
	0.419
	0.241
	-0.120
	0.089
	0.09
	0.03
	0.02
	0.02

	38
	 
	40-59
	0.369
	-0.013
	-0.131
	-0.083
	0.08
	0.00
	0.02
	0.01

	39
	 
	60+
	0.281
	-0.104
	-0.074
	-0.104
	0.05
	0.01
	0.01
	0.03

	40
	   HS
	20-39
	0.296
	0.185
	-0.064
	0.061
	0.04
	0.02
	0.00
	0.01

	41
	 
	40-59
	0.193
	-0.023
	-0.145
	-0.111
	0.02
	0.00
	0.02
	0.02

	42
	 
	60+
	0.203
	-0.111
	-0.030
	-0.137
	0.03
	0.01
	0.00
	0.04

	43
	> HS
	20-39
	0.184
	0.204
	-0.053
	0.239
	0.02
	0.02
	0.00
	0.11

	44
	 
	40-59
	0.174
	-0.084
	-0.089
	-0.076
	0.02
	0.00
	0.01
	0.01

	45
	 
	60+
	0.166
	-0.176
	-0.082
	-0.059
	0.02
	0.02
	0.01
	0.01

	MexAm Females
	 
	 
	 
	 

	46
	< HS
	20-39
	0.378
	0.043
	-0.055
	0.060
	0.07
	0.00
	0.00
	0.01

	47
	 
	40-59
	0.275
	-0.029
	0.054
	0.009
	0.05
	0.00
	0.00
	0.00

	48
	 
	60+
	0.252
	-0.079
	-0.008
	-0.044
	0.04
	0.00
	0.00
	0.00

	49
	   HS
	20-39
	0.157
	0.124
	-0.108
	0.054
	0.01
	0.01
	0.01
	0.01

	50
	 
	40-59
	0.205
	-0.064
	0.048
	0.050
	0.02
	0.00
	0.00
	0.01

	51
	 
	60+
	0.234
	-0.132
	0.104
	0.064
	0.03
	0.01
	0.01
	0.01

	52
	> HS
	20-39
	0.230
	0.135
	0.027
	0.175
	0.03
	0.01
	0.00
	0.06

	53
	 
	40-59
	0.166
	-0.107
	-0.022
	-0.058
	0.02
	0.01
	0.00
	0.01

	54
	 
	60+
	0.202
	-0.245
	0.140
	0.017
	0.02
	0.03
	0.02
	0.00


Discussion and Conclusions

This study was carried out to examine the effect of different data transformations in conjunction with various multivariate techniques in the study of dietary patterns.  Initial analyses on the raw FFQ data allowed for the identification and interpretation of magnitude effects on patterning.  Subsequent analyses using various transformations demonstrated that magnitude can be controlled in data so that pattern (differences in food types) can be explored.  The similarity of results across the various multivariate techniques suggests that, with the use of the same data transformations, the specific analytical method chosen to represent pattern should not substantially affect what patterns are derived.  In contrast the use or non-use of specific transformations prior to analysis will affect results.  

In this study row-level magnitude strongly affected dietary patterns.  Using the raw FFQ food groups, the first PC and cluster analyses both showed that the primary pattern being detected in the data was defined by differences in the amount of food and/or food diversity and not necessarily differences in the types of foods.  The effect of row magnitude is often controlled in the study of dietary patterns by adjusting food group variables for total energy intake (Newby & Tucker, 2004).  However, as the NHANES FFQ does not ask portion-size questions, an estimate of total energy intake cannot be extracted from the questionnaire.  Instead, variables in this study were transformed to percent of total frequency, and comparisons of the pattern solutions to indices of total food intake demonstrated that this transformation sufficiently controlled row-level magnitude in the data.  

Referring to cluster analysis in this study, a Z-score transformation was used to further transform these variables so that column-level magnitude could also be controlled (recall that this implicitly occurs with PCA).  The use of the Z-score transformation appeared to produce clusters that more closely agreed with both the PCA and CA solutions.  The use of a column-level transformation may be particularly important, especially when a distance measure such as Euclidean distance is chosen as the measure of similarity since magnitude and pattern can be confounded (Cronbach & Gleser, 1953).  However, it has been suggested that Z-score transformations on food variables prior to clustering may dilute differences in overall dietary exposure.  Wirfalt and colleagues compared clustering solutions from standardized (Z-score) and un-standardized food group variables (Wirfalt et al., 2000).  The two solutions produced similar clusters, (both identified 6 clusters that included ‘healthy’ and ‘non-healthy’ clusters), but the authors concluded that the un-standardized solution produced more discrimination in dietary exposure, partly because nutrient differences were greater across clusters using un-standardized variables.  Using discriminant analysis, the authors showed that the Z-score transformed variables contributed greater significance to predicted clusters (31 variables were significant compared to 18 from the un-standardized variables).  They point out that this was not surprising, as discriminant analysis is based on correlations and thus standardizes the variables.  However, they suggest that a problem with using a Z-score transformation in the study of dietary patterns is that, after transformation, equal weight is given to foods regardless of how much the food actually contributes to over-all frequency/caloric intake.  So that clustering on standardized variables may amplify ‘odd’ exposures (separating out extreme percentages of food items) that may truly contribute very little to overall dietary patterns.  Therefore, the authors concluded that standardization may not always be an appropriate choice, particularly if a study has a hypothesis directly related to macronutrient density (foods that provide calories).  To be consistent with techniques that are based on correlation however, standardization of the variables prior to clustering is needed.     

Principal component analysis and k-means cluster analysis were chosen for this methodological investigation because they are both commonly reported multivariate reduction techniques that have been used for dietary patterning (Newby & Tucker, 2004).  Moreover, choosing a linear combination technique (PCA) and a grouping technique (clustering) allowed for the demonstration of magnitude effects and data transformations in both types of multivariate methods.  Both of these techniques have unique qualities and some drawbacks for investigators to take into consideration when choosing a method.  Factor methods use a correlation or covariance matrix and thus implicitly standardize the input variables.  However, the spatial solutions represent patterns as varying along several factors and not mutually exclusive groups.  Therefore, the derived pattern scores for any single factor do not directly correspond to an individual’s over-all pattern because an individual’s over-all dietary pattern is a combination of his/her scores on all of the factors derived from the analysis (Newby & Tucker, 2004).  Conversely, when all meaningful factors are used in the same analysis, a model derived from a spatial solution may fit a person’s profile better, as group membership, which occurs with clustering, is cross-cutting.     

Because clustering assigns individuals to mutually exclusive groups, this method has been described as an empirically efficient and/or interpretable representation of diet for use in subsequent analyses (Newby et al., 2004a; Newby & Tucker, 2004).  Moreover, within-cluster averages of the input variables that are derived directly from the analysis allow for straightforward comparisons between clusters.  However, k-means clustering with Euclidean distance may be sensitive to outliers, and the small cluster derived with particularly large intakes of meal replacements in this study demonstrates this concern with clustering, as did the lack of stability in group membership with successive changes in cluster numbers.  Although k-means clustering is a fairly stable method of partitioning in simulations where the true number of clusters is known (Milligan & Cooper, 1987). Euclidean distance does not inherently standardize input variables and  confounds magnitude and pattern (Cronbach & Gleser, 1953).  In contrast, PCA with a correlation matrix will remove magnitude effects from the variables being analyzed.  However, even PCA is sensitive to magnitude bias if the column variables are being analyzed and magnitude effects occur in the rows.  

Despite the growing use of dietary patterns, few studies have compared data reduction techniques in a single data set.  Two studies were identified that compared PCA factoring to cluster analysis on a single set of food group variables (Costacou et al., 2003; Newby et al., 2004b).  Costacou and colleagues (2003) compared 17 food group variables from a semi-quantitative FFQ using PCA and hierarchical clustering.  In this study, variables were transformed to the means of the residuals of each variable from regression models that controlled for energy and gender in order to account for row magnitude effects, but column standardization was not used for clustering.  A 4-factor solution from PCA and a 3-group solution from clustering appeared to be the best fits for the data.  Agreement was observed between the PCA and clustering solutions, particularly for foods that contributed most strongly to the first and second factors in PCA.  However the third and fourth factors derived from PCA were not appreciably related to the cluster solution.  Newby and colleagues (2004) compared 6 factors derived from PCA and 5 groups derived from k-means cluster analysis with Euclidean distance on 40 food variables (transformed to ‘percent of total energy intake’) by comparing how patterns derived from each of the methods were associated with plasma lipids.  They found no significant differences between factors and clusters in terms of associations with plasma lipids.  

In this study correspondence analysis was used to determine whether the data transformations used in PCA and clustering sufficiently removed magnitude effects from patterns.  However, CA may also offer some benefits for the study of dietary patterns.  First, CA can spatially represent row and column variables in the same geographic space so that relationships can be explored, not only among column and/or row variables, but also between them.  For example, in the PCA and clustered patterns, age was significantly related to dietary patterns and beverages contributed strongly to the derived patterns.  However, it was not apparent using PCA or cluster analysis, that beverages influenced age differences in pattern more strongly than other food groups, as was demonstrated using CA.  Second, CA can be applied to a wide variety of data including nominal, ordinal, interval, and ratio scale variables and thus may be a more appropriate technique for use with input variables that are count data or other types of non-normally distributed data.    

In summary dietary patterns are becoming increasingly popular in the field of nutrition epidemiology because of the limitations of single-nutrient studies.  Despite this popularity, few studies are available that focus on methodological issues related to patterning.  The current study focused on the issue related to magnitude and separation of magnitude from pattern using various data transformation techniques.  The study demonstrated that, with magnitude controlled through the use of data transformations, multivariate reduction techniques will provide similar results in a single data set.  

Other methodological issues related to dietary patterns have not been discussed in this chapter.  For instance, the aggregation of foods into food groups prior to patterning (aggregated to 48 variables in this study) is subjective, and there is no standard that is currently followed.  Moreover, the number of food group variables to use to derive patterns is also a choice made by the investigator, and may affect results (Newby & Tucker, 2004).  More methodological explorations of dietary patterns are needed in order to move the field forward and discern techniques most appropriate for deriving dietary patterns and for studying diet’s effect on health.

Chapter 4: Food Classification Schemes for Use in Dietary Pattern Analysis

Introduction


Dietary pattern analysis is a useful method to study effects of diet on health.  Studying dietary patterns, rather than single nutrients and/or foods, allows for the over-all effect of co-occuring dietary components to be examined simultaneously.  The use of this method has grown out of concern that single nutrient or single food-type studies cannot adequately represent diet’s effect on health.  For instance, nutrients co-occur in foods, nutrients often share interacting physiologic effects in the body (e.g. Vitamin C enhances non-heme iron absorption), and foods are often eaten in characteristic patterns that are highly correlated with other lifestyle and environmental factors such as smoking and physical activity.  Therefore, exploring the effect of over-all dietary pattern rather than attempting to separate out the complexities of the human diet may better represent nutritional intake and thus be more representative of the effect of diet in health studies.  

A common strategy used to summarize over-all dietary patterns is to use multivariate scaling methods such as factor analysis or cluster analysis to group foods or individuals into meaningful patterns of eating.  These multivariate approaches, often referred to as data reduction techniques, use measures of similarity (e.g. Pearson correlation or Euclidean distance) to aggregate variables and group data into a smaller set of meaningful dimensions or groups based on these similarities.  This reduced set of dimensions/groups can then be used in subsequent analyses to represent nutritional intake patterns.  Despite the growing use of these methods to incorporate dietary patterns into studies of diet’s effect on health, many methodological issues that arise when attempting to estimate dietary patterns have not been adequately studied.   

One such methodological issue concerns the classification of dietary data into food types and/or food groups prior to data reduction.  Because food survey data often consists of hundreds of questions and response variables, investigators often collapse these variables into a more manageable number of responses prior to using a multivariate scaling method.  Food grouping schemes are not entirely consistent across studies, and there is no current standard to determine what food types should be aggregated or the number of food groups that should be used.  Arguably, the aggregation of food types may vary depending on the health outcome being studied.  For instance, if an investigator is studying antioxidant effects on aging, then he/she may choose to have greater separation of fruit and vegetable variables so that variance across these foods high in antioxidants can be more clearly identified.  Conversely, if a study is focusing on health behaviors, and eating fruits and vegetables regardless of type is more important than the specific types being eaten, then the investigator may choose to do more collapsing of fruit and vegetable categories.  It has not been clearly defined, however, how different aggregations affect derived patterns.  

There is some evidence that the number of variables used to collapse the foods into groups prior to dietary patterning may affect the derived patterns and the subsequent ability of these patterns to predict health.  In a review of dietary patterns, publications using multivariate analyses to derive dietary patterns ranged from 11 to 74 food group variables, with most studies using 30-50 food group variables (Kant, 2004).  McCann and colleagues (2001) compared dietary patterns derived from 3 different food classification schemes using data from the Western New York Diet study, which was a series of case-studies that focused on diet and various types of cancers.  They found that, as the number of input variables used in principal components analysis (PCA) decreased, the total variance explained in the model increased.  However, while the dietary patterns appeared fairly similar across PCA solutions, the ability of these patterns to predict risk of endometrial cancer declined as the number of input variables decreased.  Their findings implied that less aggregated food groups (more input variables) may be desirable when attempting to associate diet with health.  It is not clear, however, if these findings would generalize to other samples and for different health outcomes.  

Objective

The goal of this chapter is to examine the effect of various food grouping schemes prior to data reduction on derived dietary patterns and to explore the subsequent associations of the dietary patterns with systolic blood pressure (SBP) and hypertension.  Specifically, the analysis examines differences across 3 food grouping schemes: 106, 48, and 30 food group variables, using food frequency questionnaire (FFQ) data from the National Health and Nutrition Examination Survey (NHANES).  Principal components analysis (PCA) was used to derive patterns, and factor scores from the three food grouping schemes were directly compared to explore the effect of varying the number and/or types of food groups in the ability of dietary patterns to predict SPB and hypertension.
Hypertension, or high blood pressure, increases the risk of cardiovascular disease and is closely linked to type 2 diabetes.  Like other chronic conditions, hypertension appears to be caused by a combination of risk factors including age, sex, race/ethnicity, and certain lifestyle characteristics such as body weight, diet, alcohol, smoking, and physical activity (Joint National Committee on Prevention, 1997).  Therefore, analyses will focus on the relationship between diet and blood pressure but will adjust for other demographic and lifestyle correlates of hypertension.  
Methods

Study Sample 

The National Health and Nutrition Examination Survey is a nationally representative cross-sectional survey that is conducted by the National Center for Health Statistics (NCHS).  Most recent NHANES surveys are collected and released in two-year intervals.  For this analysis, data from the 2003-2004 and 2005-2006 survey cycles were combined.  

Analyses focused on US adults over the age of 20, as dietary patterns of children and adolescents may be substantially different from adults.  Of the NHANES participants who were 20 years of age and older and who completed the household interview and the medical exam (n=9,515), pregnant (n = 544) and lactating (n = 75) women were excluded because dietary intake in these women may not be representative of usual intakes of healthy adult women.  Individuals who did not complete the food frequency questionnaire were also excluded (n = 3,077).  Analysis focused on the three main race/ethnic groups of the NHANES sample, and thus persons who reported their race/ethnicity as anything other than non-Hispanic white, non-Hispanic black, or Mexican-American were excluded (n = 367).  The final sample included 5,452 individuals age 20 and older, who completed the household interview and the medical exam, who were not pregnant or lactating, and who also completed the food frequency questionnaire.  

Materials and Measures 

Food Frequency Questionnaire

The 151-item FFQ was developed from the National Cancer Institute’s Diet History Questionnaire (DHQ), which is a widely used FFQ in nutritional epidemiology.  The FFQ data do not estimate nutrient or caloric intakes, as portion size questions were not included.  Instead, the FFQ was designed to supplement the NHANES 24-hour recall data by providing longer-term estimates of food intakes to better approximate usual intake.  Respondents were asked to report frequency of intake of foods and beverages over the previous 12-month period. (e.g. Over the past 12-month period, how often did you eat apples?)  Optional responses ranged from ‘never’ to ‘2+ times per day’ for food-item questions and from ‘never’ to ‘6+ times per day’ for beverage questions.  All responses were then re-coded into daily frequency.  Twelve of the items on the survey asked respondents to report season-specific intakes.  Seasonal foods included two responses, seasonal frequency and non-seasonal frequency.   Total frequency for these questions was derived by summing seasonal frequency (weighted by .25), and non-seasonal frequency (weighted by .75).    

Certain questions included sub-questions regarding various fat, sugar, and/or caffeine content of foods and beverages.  For instance, one question asks “Over the past 12 months, how often did you eat sour cream”.  A follow-up question then asks, “How often was the sour cream that you ate low-fat or fat-free”.  Optional responses to the follow-up question were: almost never or never, ¼ of the time, ½ of the time, ¾ of the time, and almost always or always.  On survey questions that included this type of sub-question, a second frequency/variable was created so that each respondent has a frequency for the original food/beverage and a separate frequency for the altered product.  For instance, if a respondent said they ate sour cream ‘1 time per week’ (daily frequency =.14), and it was reduced fat approximately half the time, then this individual was assigned a frequency of .07 for ‘sour cream’ and .07 for ‘low-fat sour cream’.  After variables were created for each proportion sub-question, there were a total of 201 food variables per survey respondent on the FFQ.

Food Grouping Schemes

Three food grouping schemes were used to aggregate the original 201 responses.  First, 106 food group variables were created using the following rationale:  (1.) In most instances, foods were grouped based on the similarity of nutritional content and/or culinary usage, which is consistent with recent dietary pattern research (Carrera et al., 2007; Fung et al., 2004; Newby et al., 2003).  For instance, fruits that share nutritional qualities, such as oranges, grapefruit, and lemons, were grouped as ‘citrus fruit’. (2.) Some foods that share some nutritional quality but have distinct macronutrient content from processing/cooking (i.e. French fries vs. other potatoes) were left as individual variables.  

Second, detailed food groups were further collapsed into 48 food groups primarily based on the two-step rationale stated previously.  For this grouping scheme, however, foods that contribute negligible amount to total caloric intake were grouped with nutritional similar counterparts:  (i.e. ketchup was grouped with tomatoes, pickles were grouped with ‘other vegetables’, and diet soda was grouped with regular soda).  Additionally, foods with low frequency of consumption that do not necessarily group with other foods based on nutritional content (i.e. non-dairy creamer) were grouped as miscellaneous.  

For the third grouping scheme, the 48 food group variables were further collapsed into 30 food group variables.  Foods that were originally held separate from nutritional-similar counterparts were collapsed to form a broader food group (e.g. French fries grouped with ‘starchy vegetables’, regular and low-fat milk were combined as ‘liquid milk’).  Table 4.1 describes the 3 food grouping schemes.  For each food group category, bolded items represent individual variables, while un-bolded text was used for further description of the variables.  

Table 4.1:  Three Food Grouping Schemes for 201 Responses from the NHANES FFQ
	106 Food Items
	48 Food Items
	30 Food Items

	Liquid Milk: milk, 2% fluid milks, Lowfat Liquid Milk: 1%, Liquid Skim
	 Liquid Milk, Lowfat Liquid Milk
	Liquid Milk

	Cheese, Cottage Cheese, Reduced Fat Cheeses, Yogurt, Pudding
	Cheese, Other Dairy
	Other Dairy

	Icecream, Lowfat Frozen Desserts: Frozen Yogurt, Lowfat Icecream
	 Frozen Desserts
	Frozen Desserts

	Liquid Oils, Salad dressings
	 Oils and Dressings
	Oils and dressings

	Butter, Margarine, Mayonnaise, Other Added Fats: Cream Cheese, Sour Cream, Other Reduced-Fat Added Fats: Lowfat Cream Cheeses and Sour Cream, Gravies
	Butter, Margarine, Other Fats
	Other Fats

	Citrus Fruit Juice, Other 100% Fruit Juice: apple, grape, other
	Citrus Fruit Juice, Other 100% Fruit Juices
	100% Fruit Juices

	Citrus Fruit: Oranges and Grapefruit, Bananas, Melons, Berries, Grapes, Pineapple, Peaches, Dried Fruit, Other Fruit
	Citrus Fruit, Bananas, Melon and Berries, Other Fruit
	Fruit

	Carrots, Sweet Potatoes, Greens: cooked or raw, Leaf Lettuce Varieties
	Orange Vegetables, Dark Green Leafy Vegetables
	Colorful Vegetables

	Tomatoes: fresh, Tomato Juice, Salsa, Catsup
	Tomatoes
	Tomatoes

	Cruciferous Vegetables: Broccoli, Cauliflower, Cabbage, Peas, Corn, Green Beans, Lettuce, Cucumber, Squash, Onions, Peppers, Pickles, Coleslaw, Other Vegetables
	Cruciferous Vegetables, Other Vegetables
	Other Vegetables

	Fried Potatoes, Other Potatoes: baked, mashed, boiled, potato salad
	Fried Potatoes, Other Potatoes
	Starchy Vegetables

	Beans, Nuts and Seeds, Nut Butters: Peanut butter and other nut butters, Soymilk, Soy
	Beans, Nuts and Seeds, Soy
	Meat Alternatives

	Lowfat White Meat: Turkey and Chicken, No Skin, Not Fried, Highfat White Meat: Chicken with Skin or Fried, Chicken Casseroles
	White Meat
	White Meat

	Eggs: Whole, Egg salad, Reduced Fat Eggs: Egg substitute, Egg Whites
	Eggs
	Eggs

	Reduced Fat Red Meat: beef/lean cuts and lean hamburger Red Meat: hamburger, beef cuts, beef mixes, roast Reduced Fat Processed Meats: lowfat hot dogs, ham, sausage, and lean bacon Deli Meats: deli roast beef, cold cuts, deli white meats Ham, Other Processed Meats: regular fat hot dogs, bacon, and sausage  
	Red Meat, Processed Meats
	Red and Processed Meats

	Fried Fish, Other Fish and Seafood
	Fish and Seafood 
	Fish and Seafood

	Organ Meats: liver and liverwurst
	Organ Meats
	Organ Meats

	Pastas, Pizza: with or without meat
	Pastas, Pizza
	Pastas and Pizza

	Table 4.1:  Three Food Grouping Schemes Continued….

	106 Food Items
	48 Food Items
	30 Food Items

	Biscuits, Bagels, Crackers, Pancakes, White Breads, Other Refined Grains: rice/other grains refined
	Refined bread and bread products
	White Bread and Bread Products

	Dark Breads, Whole Grains: rice/other grains whole
	Whole Grain bread and bread products    
	Dark Bread and Bread Products

	Hot Cereals: Oatmeal, Other hot cereal
	Hot Cereals
	Hot Cereals

	Ready to Eat (RTE) Cereals
	RTE Cereals 
	RTE Cereals

	Corn Tortillas, Wheat Tortillas, Cornbread
	Tortillas and Tacos, Cornbread
	Tortillas, Tacos, and Cornbread

	Soups, Chili
	Soups
	Soups

	Popcorn, Other Salty Snacks: pretzels, tortilla and potato chips
	Salty Snacks
	Salty Snacks

	Sweets: cakes, cookies, donuts, brownies, danishes, pop-tarts Muffins, Pies and Cobbler, Granola Bars, Syrups, Jams/Jellies and Honey, Other Candy, Chocolate
	Sweets, Candy
	Sweets and Candy

	Muffins
	 
	 

	Coffee, Tea
	Coffee and Tea
	Coffee and Tea

	Regular Fruitades, Diet Fruitades, Regular Soft Drinks, Diet Soft Drinks
	Fruitades, Soft Drinks
	Sugary Beverages

	Alcohol
	Alcohol
	Alcohol

	Meal Replacement Drinks, Non-Dairy Creamer, Other Miscellaneous: artificial sweeteners, rice milk, other milk – not soy or cow
	Meal Replacements, Miscellaneous
	Miscellaneous


Systolic Blood Pressure and Hypertension

Systolic and diastolic blood pressure was measured by trained personnel during the MEC exam using a standardized protocol with blood pressure measurements taken after resting quietly in a seated position for 5 minutes.  Three and sometimes four measurements were taken for each participant.  The repeated blood pressure measurements were averaged to yield a single estimate for systolic and diastolic blood pressure.  This project focused on systolic blood pressure (SBP), used in its continuous form in prediction models.  Diastolic blood pressure was used in the classification/categorization of hypertension.   

Hypertension was based on criteria established by the Joint National Committee on Prevention, Detections, Evaluations, and Treatment of High Blood Pressure.  Individuals were defined as having hypertension if they had at least one of the following: 1) Systolic blood pressure ≥ 140 mm Hg, 2) Diastolic blood pressure ≥ 90 mm Hg, or 3) Current use of prescribed anti-hypertensive medication (Joint National Committee on Prevention, 1997).          

Race/Ethnicity

Data on race/ethnicity was collected in two separate questions, one focusing on racial identification and the other focusing on Hispanic ethnicity.  These two questions were recoded and combined into a single variable, separating those who identify as Hispanic from those who do not.  Individuals were categorized into the following race/ethnic groups: Non-Hispanic Whites, Non-Hispanic Blacks, Mexican-Americans, and Other.  This study focused only on the three main ethnic groups, and the small group of ‘others’ (which represents all Hispanics who are not Mexican-American and all non-Hispanics who do not racially identify as white or black) was omitted. 

Education

Level of education represented the highest level of school that was completed.  Throughout the analysis, education was categorized as less than high school, high school, greater than high school to attempt to capture milestones in the education process that most strongly affect SES.  In the US, average years of schooling is 12.05 years (based on the year 2000) (Barro & Lee, 2000).  Therefore, 3 categories for education will be created to distinctively separate those with average education levels from those below and those above average.

Physical Activity

During the home interview respondents were asked about participation in nine leisure-time physical activities (LTPA):  walking, jogging/running, bicycling, swimming, aerobic dancing, other dancing, calisthenics, garden or yard work, weight lifting, and any other leisure time physical activities that they participated in over the past one month period.  Each physical activity was assigned an intensity rating on a responses to survey questions asking whether the activity caused either ‘light sweating or a slight to moderate increase in breathing or heart-rate’ (moderate intensity) or ‘heavy sweating or large increases in breathing or heart-rate (vigorous activity).  

LTPA survey responses were divided into three categories based on frequency and intensity.  The following categories were used:  (1) No LTPA:  those who answered ‘no’ to all LTPA questions, (2) Irregular LTPA:  < 20 times per month of moderate intensity or < 12 times per month of vigorous intensity, and (3) Regular LTPA ≥ 20 times per month of moderate intensity or ≥ 12 times per month of vigorous intensity.  

Body Mass Index

Standing height and weight were collected by trained Mobile Examination Center (MEC) staff, using standard protocols for each measurement.  BMI, a measure of body weight scaled according to height, is the most common measure of body composition used in health literature and is known to correlate with chronic disease risk (Whitney E.N. & Rolfes, 1999).  Body mass index (BMI) was computed for each participant in NHANES using the following formula:




BMI = Weight (kg) / Standing Height (m2)  

The Center for Disease Control established cut-points for BMI were used in descriptive tables to show the sample distribution of body weight in the following categories: Under or Normal Weight (BMI < 25), Overweight (BMI 25-29.99), Obese (BMI 30 or greater).  In regression models, BMI was used in its continuous form.      

Total Caloric and Sodium Intake   

During the MEC examination, respondents completed a 24-hour dietary recall through an interviewer-guided automated interviewing system.  Participants were prompted to recall everything consumed over the past 24-hour period.  Details of foods and beverages, including brand names, condiments added, portion sizes, cooking method, location of consumption, and time of day were collected.  Another 24-hour recall was collected via telephone follow-up using similar standardization methods as the MEC-based interview.  For the present study, total calories from the two recalls were averaged for each respondent to yield estimates of daily intake.  Agreement between the two recalls (r = .51 P < 0.0001 for calories), indicated good or adequate test-retest reliability for the combined estimate of caloric intake (Reliability = 0.68).  Similarly, the two estimates of sodium intake were averaged.  Agreement between the two recall estimates (r = .38 P < 0.0001 for sodium, Reliability = 0.55) indicated fair reliability.  The average of two measures provides an estimate that better approximates usual intake and improves reliability of a single measure.  

Smoking

Because smoking status is correlated with other health behaviors such as diet and exercise that may be associated with blood pressure, effects across smoking status were also examined.  Individuals were categorized into the following groups based on smoking status:  1) Never – respondent has not smoked 100+ cigarettes in his/her lifetime. 2) Former –respondent has smoked 100+ cigarettes in his/her lifetime but was not smoking at the time of the interview 3) Current – respondents who reported currently smoking of any frequency/duration. 

Other Demographic Measures

Age and gender are both strongly associated with nutritional intake, and current Dietary Reference Intakes are categorized based on these two demographic subgroups (Insitute of Medicine.Food and Nutrition Board, 2004).  Therefore, dietary patterns were also compared by age and gender.  Age in years was calculated from self-reported birth date.  All participants who were 90 years or older were recorded as ‘90’ to protect the personal identity of this small group of people.  For the following analyses, a 3-category variable was created for comparison of dietary patterns by age: 20-39 years, 40-59 years, and 60+ years.  

Analysis

The overall analytic approach to this study was to derive three separate sets of dietary pattern solutions using principal components analysis (PCA) with the three different food grouping schemes (106 food group variables, 48 food group variables and 30 food group variables).  Factor scores from each of the 3 solutions were compared for similarity, and then used in three separate sets of regression analyses to examine the multivariate-adjusted association between current diet and systolic blood pressure and current diet and hypertension.  Because some people report more, diverse foods and some fewer foods with less diversity, subjects’ reported number of foods in each food group was divided by the total number of foods consumed.  Thus, transformed data represented a percent of total frequency in place of the original raw frequency.  Although ‘percent of total frequency’ has not been used in published work, ‘percent of total calories’ has been used to control individual-level magnitude in data where total caloric intake is known (Carrera et al., 2007; Lin et al., 2003).  

NHANES was carried out using a complex multistage sampling design that over-sampled young children, older persons, non-Hispanic blacks, and Mexican Americans.  Because the NHANES sampling design yields unequal probability of selection for participation, weighted survey procedures were carried using SAS version 9.1 for all descriptive statistics and regression analyses.

Dietary Patterns

Dietary patterns were derived with principal components analysis (PCA) using the PROC FACTOR procedure in SAS.  PCA is a multivariate scaling method that provides a spatial summary of pattern by producing linear combinations (called factors) of the original input variables.  When PCA is carried out on a set of food group variables, foods that are eaten or not eaten by the same people are grouped together, and the number of variables can be represented with a fewer number of factors to capture meaningful patterns in the data.  The number of factors needed to adequately account for variance in the data was determined by examining factors with eigenvalues ≥ 1.0 and also using a scree plot of the eigenvalues (Cattell, 1966).  For each set of retained factors, dietary patterns were named based on foods that contributed relatively strong positive correlations (factor loadings ≥ .30) to the patterns.  

Factor scores were calculated for each of the retained un-rotated factors from the 3 PCA solutions.  Therefore, following PCA on the 3 sets of food group variables, each respondent had a factor score for every retained factor from each of the 3 PCA solutions.  In order to assess similarity of the derived patterns, correlations across the factor scores from the 3 PCA solutions were compared.  

Regression Analysis

In order to further compare the methodological effects of different food grouping schemes, factor scores from the 3 PCA solutions were used to represent dietary patterns in multiple regression models that tested diet’s association to SBP.  Because a single factor pattern does not completely classify an individual’s dietary behavior, and because un-rotated factor scores from PCA are uncorrelated, factor scores from each retained factor were included in the same regression model so that over-all diet could be better represented.  A similar set of models used logistic regression to predict the odds of hypertension.    

Models were adjusted for the following lifestyle and demographic characteristics that may be associated with blood pressure:  age, sex, race/ethnicity, education, physical activity over the past month, and total caloric intake, total sodium intake, body mass index, and smoking.  Systolic blood pressure models were also adjusted for the use of anti-hypertensive medications (yes/no).  Because these lifestyle and demographic characteristics are also correlates of dietary patterns, collinearity diagnostics were performed in regression models using criteria suggested by Belsey, Kuh, and Welsch (Belsey et al., 1980). 

Results      

Over two-thirds of the weighted sample was non-Hispanic white, and greater than half had more than high school education.  Average SBP in the sample was 123.6 mm Hg (95% CI: 122.6-124.6), average DBP was 71.2 mm Hg (95% CI: 70.6-71.7), and 33.8% (95% CI 31.2-36.6%) had hypertension.  Approximately one third of respondents participated in no leisure time physical activities, and 41% reported regular leisure-time physical activity (Table 4.2).  Body mass index percentages in this NHANES sub-sample closely resembled current published BMI estimates from the entire NHANES survey sample (National Center for Health Statistics (NCHS), 2007).  Mean caloric intake of respondents was 2136 (95% CI: 2100-2171) kilocalories per day: 2538 (95% CI: 2490 - 2585) for males and 1786 (95% CI: 1754 - 1818) for females, which is also consistent with published estimates from the entire sample (Briefel & Johnson, 2004; Wright et al., 2003).    
Dietary Patterns 

Principal component analysis identified four meaningful dimensions in each of the three food grouping schemes.  Derived factor patterns were fairly similar between solutions, but the amount of variance explained by the model increased as the number of input variables decreased.  Eigenvalues and proportion of explained variance for the first 10 eigenvectors from the 3 solutions are presented in Table 4.3.  For each solution, a large number of factors had eigenvalues ≥ 1.0.  For the 106 variable solution, the first 34 factors had eigenvalues ≥ 1.0.  For the 48 and 30 variable solutions, the first 14 and 10 factors respectively had eigenvalues ≥ 1.0.  However, as the scree plots demonstrate

Table 4.2:  NHANES 2003-2006 Sample Characteristics

	 
	Frequency   
	Weighted Percents

	
	(n = 5,452)
	

	Race/Ethnicity
	
	

	    Non-Hispanic White
	3,326
	79.6

	    Non-Hispanic Black
	1,143
	12.3

	    Mexican-American
	983
	8.1

	
	(0 missing)
	

	Gender
	
	

	    Male
	2685
	46.9

	
	(0 missing)
	

	Age
	
	

	    20-39
	1583
	35.6

	    40-59
	1755
	38.2

	    60 and over
	2114
	26.2

	
	(0 missing)
	

	Education
	
	

	<  High school
	1339
	15.5

	    High school
	1439
	27.6

	>  High school
	2669
	57.0

	
	(5 missing)
	

	Physical Activity
	
	

	    No LTPA
	2098
	31.9

	    Irregular LTPA
	1379
	27.0

	    Regular LTPA
	1975
	41.1

	
	(0 missing)
	

	Body Mass Index
	
	

	    Under/Normal Weight
	1628
	32.9

	    Overweight
	1858
	33.1

	    Obese
	1880
	34.0

	 
	(86 missing)
	 


 (Figures 4.1-4.3), most of the variance appears to be captured in the first four factors of each solution.  For the 48 food group solution, the ratio of adjacent eigenvalues showed a consecutive decline (Table 4.3).  For the other two solutions, explained variance was not consecutively lowered by each dimension.  However, for all solutions, there was no clear ‘L’ bend in the scree plot past 4 factors.  Therefore, the first 4 factors were used for subsequent analyses and comparisons.  Overall variance in the solutions that was explained by factors with eigenvalues ≥ 1.0 did not change appreciably between solutions.  Percent of variance explained by eigenvalues ≥ 1.0 was 51% for 106 food groups (34 factors), 48% for 48 food groups (14 factors) and 52% for 30 food groups (10 factors).  However, variance explained by the first 4 factors increased as the number of input variables decreased: 13.7% (14.6/106) for 106), 21.8% (10.5/48) for 48, and 27.9% (8.4/30) for 30 food group variables.    

In order to examine content in the retained factors, factor loadings and factor scores for the first four factors were compared across the three PCA solutions.  The resulting factors for each of the three solutions were highly correlated (refer to Table 4.4).  For instance, factor 1 from the 106 food group solution correlated 0.94 with the first factor from 48 food groups, and the 48 food group solution correlated 0.92 with the solution using 30 foods (the correlation between factor 1 from 106 and 30 foods was 0.95).  Correlations were all relatively high, but agreement was highest between adjacent food categorization schemes (106 & 48, and between 48 & 30), and correlations between solutions also decreased successively for factors 1 through 4.  This suggests that, particularly for the factors explaining the most variance in the data (the first 2 factors), little information was lost as food groups were aggregated for these main factors. 
A comparison of factor loadings from the three solutions for the first through fourth factors is available in the appendix.  There was extremely high consistency in substance as well between the PCA solutions for the first through the fourth factors (detailed factor loadings in appendix).  Food groups that made strong contributions to the factor patterns stayed relatively consistent as the number of food group variables was reduced.  Factor 1 represented higher intakes of fruits and vegetables and lower intakes of fried potatoes, red and processed meats, refined grains, and soft drinks.  Factor 2 represented higher intakes of meats, pastas/pizza, and fried potatoes and lower intakes of coffee and candy.  
Table 4.3:  Eigenvalues and Proportion of Variance Explained for the First 10 Factors from 3 PCA Solutions using 3 Different Food Grouping Schemes
	 
	Eigenvalues
	Eigen Ratio
	Proportion Variance
	Cumulative

	106 Food Groups

	1
	5.349
	1.557
	0.051
	0.051

	2
	3.435
	1.062
	0.032
	0.083

	3
	3.234
	1.268
	0.031
	0.113

	4
	2.550
	1.203
	0.024
	0.137

	5
	2.119
	1.062
	0.020
	0.157

	6
	1.994
	1.038
	0.019
	0.176

	7
	1.921
	1.137
	0.018
	0.194

	8
	1.690
	1.056
	0.016
	0.210

	9
	1.599
	1.010
	0.015
	0.225

	10
	1.584
	(----)
	0.015
	0.240

	48 Food Groups

	1
	3.626
	1.279
	0.076
	0.076

	2
	2.834
	1.270
	0.059
	0.135

	3
	2.232
	1.267
	0.047
	0.181

	4
	1.762
	1.169
	0.037
	0.218

	5
	1.508
	1.034
	0.031
	0.249

	6
	1.458
	1.069
	0.030
	0.280

	7
	1.365
	1.056
	0.028
	0.308

	8
	1.293
	1.044
	0.027
	0.335

	9
	1.238
	1.031
	0.026
	0.361

	10
	1.201
	(----)
	0.025
	0.386

	30 Food Groups

	1
	2.671
	1.079
	0.089
	0.089

	2
	2.475
	1.492
	0.083
	0.172

	3
	1.659
	1.056
	0.055
	0.227

	4
	1.572
	1.173
	0.052
	0.279

	5
	1.340
	1.075
	0.045
	0.324

	6
	1.247
	1.009
	0.042
	0.365

	7
	1.235
	1.082
	0.041
	0.407

	8
	1.142
	1.049
	0.038
	0.445

	9
	1.088
	1.050
	0.036
	0.481

	10
	1.036
	(----)
	0.035
	0.516


Figure 4.1:  Scree Plot of Eigenvalues from PCA using 106 Food Group Variables
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Figure 4.2:  Scree Plot of Eigenvalues from PCA using 48 Food Group Variables
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Figure 4.3:  Scree Plot of Eigenvalues from PCA using 30 Food Group Variables
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Table 4.4:  Correlations between Factor Scores from the 3 PCA Solutions: 106 Food Groups, 48 Food Groups, and 30 Food Groups
	Pearson Correlations between Factor Scores **

	 
	 
	48
	30

	Factor 1
	106
	0.943
	0.919

	 
	48
	1
	0.949

	Factor 2
	106
	0.797
	0.805

	 
	48
	1
	0.967

	Factor 3 
	106
	(-) .759
	(-) .668

	 
	48
	1
	0.859

	Factor 4
	106
	0.637
	0.449

	 
	48
	1
	0.838

	**All Pearson Correlations (p < .0001)


Factor 3 explained variance primarily in traditional Mexican-American foods, either contributing strongly positive to the factor (106 food groups) or contributing correlating strongly negative to the factor (48 and 30 food groups).  Factor 4 showed less agreement across solutions compared to the other factors.    Food groups that had strong negative or positive loadings when 106 food groups were used (e.g. cheese, dark green leafy veggies, and corn bread) were no longer strong contributors to the factors derived from 48 or 30 food groups.  Conversely, coffee and tea to did not make strong contributions to pattern when disaggregated, but when collapsed into a single food group, coffee/tea strongly contributed to factor 4.  

In order to further test the similarity between the derived factor solutions, factor scores from each solution were used to represent diet in multivariate analyses testing nutritional associations with SBP and hypertension.  Regression analyses demonstrated that the relationships between diet and blood pressure were quite consistent across solutions, with the second dietary pattern (high intakes of meats, fried potatoes, and pastas) showing a strong significant positive association with SBP and hypertension.  Tables 4.5 and 4.6 present the bi-variable associations between the blood pressure outcome variables and the covariates used in the regression models.  Average SBP varied significantly across all demographic and lifestyle groups.  The prevalence of hypertension also varied significantly across demographic and lifestyle groups with the exception of gender (Table 4.5).  Correlations between SBP and dietary pattern scores were fairly stable across food grouping schemes after controlling for age and sex, but all correlations were relatively weak (Table 4.6).   

Table 4.5:  Average Systolic Blood Pressure and Prevalence of Hypertension across Demographic and Health Behavior Subgroups in the United States: NHANES 2003-3006 (n = 5,452)
	
	Mean
	95% CI
	HTN (%)
	95% CI

	Age
	
	
	
	

	   20-39
	114.8**
	(114.0-115.6)
	7.8a
	(6.23-9.66)

	   40-59
	123.9
	(122.4-125.3)
	38.5
	(34.7-42.5)

	   60+
	135.1
	(133.7-136.5)
	53.7
	(49.6-57.8)

	
	
	
	
	

	Sex
	
	
	
	

	   Male
	124.9*
	(123.6-126.1)
	34.6
	(31.3-37.9)

	   Female
	122.4
	(121.3-123.6)
	33.2
	(30.3-36.1)

	
	
	
	
	

	Race/Ethnicity
	
	
	
	

	   NH White
	123.5*
	(122.5-124.6)
	34.3a
	(31.3-37.3)

	   NH Black
	126.4
	(124.4-128.5)
	39.8
	(35.6-44.2)

	   Mexican American
	119.8
	(117.7-122.0)
	20.2
	(15.5-25.9)

	
	
	
	
	

	Education
	
	
	
	

	< High School
	127.0**
	(125.3-128.7)
	43.4a
	(38.7-48.3)

	   High School
	124.6
	(123.0-126.2)
	36.9
	(33.4-40.6)

	> High School
	122.1
	(121.1-123.2)
	29.7
	(26.7-32.9)

	
	
	
	
	

	Physical Activity
	
	
	
	

	   No LTPA
	127.0**
	(125.7-128.4)
	44.1a
	(40.8-47.5)

	   Irregular LTPA
	122.9
	(121.5-124.2)
	32.1
	(28.4-36.1)

	   LTPA >= 5x / wk
	121.4
	(120.3-122.5)
	27.0
	(24.2-30.1)

	
	
	
	
	

	Body Mass Index
	
	
	
	

	   Normal
	119.1**
	(117.9-120.3)
	20.5a
	(17.6-23.8)

	   Overweight
	124.6
	(123.3-125.8)
	34.7
	(31.4-38.1)

	   Obese
	126.8
	(125.4-128.2)
	45.7
	(41.8-49.6)

	
	
	
	
	

	Smoking
	
	
	
	

	   Never
	123.2**
	(122.0-124.5)
	32.4a
	(29.2-35.7)

	   Former
	126.8
	(125.2-128.4)
	45.2
	(41.6-48.9)

	   Current
	121.1
	(119.7-122.4)
	25.6
	(21.9-29.6)

	
	
	
	
	

	Medication
	
	
	
	

	   Antihypertensives
	134.8**
	(133.3-136.4)
	(----)
	(----)

	   No antihypertensives
	119.6
	(118.6-120.5)
	(----)
	(----)

	ANOVA ** p < .0001, *p < .05

	ChiSq        a  p < .0001, b p < .05


Table 4.6:  Correlations between Systolic Blood Pressure and Dietary Pattern Scores from the 3 Food Grouping Schemes using NHANES FFQ data (n = 5,452)
	
	106 Food Groups
	48 Food Groups
	30 Food Groups

	
	r
	p-value
	r
	p-value
	r
	p-value

	Pattern 1
	
	
	
	
	
	

	   Simple
	0.05
	< 0.0001
	 0.09
	<0 .0001
	 0.06
	< 0.0001

	   Adjusted**
	-0.07
	   0.0003
	-0.06
	  0.0007
	-0.06
	  0.001

	Pattern 2
	
	
	
	
	
	

	   Simple
	- 0.04
	0.01
	- 0.11
	< 0.0001
	- 0.11
	< 0.0001

	   Adjusted**
	0.08
	< 0.0001
	  0.07
	0.0001
	  0.07
	< 0.0001

	Pattern 3 
	
	
	
	
	
	

	   Simple
	- 0.11
	< 0.0001
	  0.02
	0.09
	0.03
	0.03

	   Adjusted**
	0.03
	 0.036
	  0.01
	  0.462
	0.02
	0.068

	Pattern 4
	
	
	
	
	
	

	   Simple
	0.14
	< 0.0001
	- 0.002
	0.91
	- 0.06
	< 0.0001

	   Adjusted**
	0.05
	0.011
	0.04
	  0.006
	   0.01
	0.778

	** Adjusted for Age and Sex
	
	
	
	


Table 4.7 presents results from the multivariate models that were used to test associations with SBP.  Approximately 26% of total variance in SBP was explained by each model.  Higher intakes of fruit and vegetables (pattern 1) was negatively associated with SBP, while pattern 2, which was characterized by higher intakes of meats, fried potatoes, and pasta, was positively associated with SBP.  The relationship between these two patterns and SBP did not substantially change across PCA solutions, suggesting that aggregation of foods did not alter the meaningful associations.  However, the ability of the patterns to predict blood pressure was most apparent in the least aggregated food grouping scheme, where estimates carried the greatest statistical significance.  Overall variance explained by diet was minimal.  Multiple R2 for models was 26% with and 25% without the dietary pattern variables included. 
In adjusted models, non-Hispanic blacks and males had significantly higher SBP compared to their demographic counterparts.  Additionally, age and BMI were both strongly positively related to SBP.  Other demographic and lifestyle variables including physical activity, level of education, and smoking that were significantly associated with SBP in simple bi-variate comparisons were no longer related to SBP in the multivariate models.  Partial R2 showed that age contributed most to the overall variance in the model (Table 4.7).  Collinearity diagnostics did not demonstrate substantial inter-correlation problems among the independent variables in any of the models (highest Condition  Index = 25.6).  
A similar set of models was carried out using logistic regression to test the odds of hypertension.  Odds ratios were consistent with findings from linear regression models.  The second dietary pattern was associated with higher odds of having hypertension, and this association was not appreciably altered across the three food grouping schemes.  

Table 4.7:  Comparison of the 3 Food Grouping Schemes in the Multivariate Adjusted Association between Systolic Blood Pressure and Dietary Patterns using Multiple Linear Regression 

	 
	106 Input Variables

Model 1
	48 Input Variables

Model 2
	30 Input Variables 

Model 3

	 
	Beta
	p-value
	Beta
	p-value
	Beta
	p-value

	Dietary Pattern
	 
	
	 
	 
	
	

	   Pattern 1
	- 0.91
	0.005
	- 0.79
	0.019
	- 0.86
	0.012

	   Pattern 2 
	1.20
	< 0.0001
	0.97
	0.002
	0.97
	0.003

	   Pattern 3
	0.17
	0.681
	0.46
	0.250
	0.83
	0.014

	   Pattern 4
	0.53
	0.192
	0.40
	0.244
	- 0.13
	0.671

	
	
	
	
	
	
	

	Age
	0.44
	< 0.0001
	0.45
	<0.0001
	0.45
	< 0.0001

	
	
	
	
	
	
	

	Female
	- 2.20
	0.005
	- 2.37
	0.0030
	- 2.48
	0.0020

	
	 
	
	 
	 
	
	

	Race/ethnicity
	
	
	
	
	
	

	   NH White
	(ref)
	
	(ref)
	 
	(ref)
	

	   NH Black
	2.08
	0.033
	2.67
	0.003
	2.66
	0.003

	   Mexican American
	0.11
	0.930
	0.16
	0.891
	0.96
	0.418

	
	 
	
	 
	 
	
	

	Education
	
	
	
	
	
	

	< High School
	0.40
	0.598
	0.71
	0.33
	0.84
	0.225

	   High School
	- 0.13
	0.813
	0.07
	0.897
	0.09
	0.869

	> High School
	(ref)
	
	(ref)
	 
	(ref)
	

	
	
	
	
	
	
	

	Physical Activity
	 
	
	 
	 
	
	

	   No LTPA
	0.72
	0.365
	0.96
	0.229
	1.03
	0.200

	   Irregular LTPA
	0.18
	0.750
	0.27
	0.645
	0.34
	0.564

	   LTPA >= 5x /wk
	(ref)
	
	(ref)
	 
	(ref)
	

	
	
	
	
	
	
	

	Total Kcal
	0.00
	0.131
	0.00
	0.125
	0.00
	0.111

	
	
	
	
	
	
	

	Total Sodium
	- 0.00
	0.587
	- 0.00
	0.583
	- 0.00
	0.531

	
	
	
	
	
	
	

	HTN Medication
	5.88
	< 0.0001
	5.87
	< 0.0001
	5.86
	< 0.0001

	
	
	
	
	
	
	

	Body Mass Index
	0.28
	< 0.0001
	0.28
	< 0.0001
	0.28
	< 0.0001

	
	
	
	
	
	
	

	Smoke
	 
	
	 
	
	 
	

	    Never
	(ref)
	
	(ref)
	
	(ref)
	

	    Former
	- 0.78
	0.348
	- 0.78
	0.358
	- 0.81
	0.347

	    Current
	- 0.08
	0.908
	0.08
	0.917
	0.06
	0.937

	Multiple R2**
	0.26
	0.26
	0.26

	**Partial R2 for Significant Parameters: Patterns 1-4 Combined: 1%, Age: 11%, Sex: 1%, Race/ethnicity: 1%, Education: .6%, HTN Medication: 2.4%, BMI: 1%  


Table 4.8:  Multivariate Adjusted Comparison of the 3 Food Grouping Schemes: Testing the Odds of Hypertension across Dietary Patterns using NHANES FFQ Data
	 
	101 Input Variables

Model 1
	48 Input Variables

Model 2 
	30 Input Variables

Model 3

	 
	Odds Ratio
	95% CI
	Odds Ratio
	95% CI
	Odds Ratio
	95% CI

	Dietary Pattern
	 
	
	 
	 
	
	

	   Pattern 1
	0.92
	(0.82-1.03)
	0.9
	(0.80-1.02)
	0.93
	(0.83-1.05)

	   Pattern 2 
	1.13
	(1.02-1.26)
	1.14
	(1.03-1.27)
	1.17
	(1.05-1.30)

	   Pattern 3
	1.06
	(0.92-1.23)
	0.94
	(0.81-1.10)
	0.91
	(0.80-1.04)

	   Pattern 4
	0.95
	(0.85-1.06)
	0.96
	(0.85-1.09)
	0.97
	(0.86-1.09)

	
	
	
	
	
	
	

	Age
	1.09
	(1.08-1.10)
	1.09
	(1.08-1.10)
	1.09
	(1.08-1.10)

	
	
	
	
	
	
	

	Female
	0.78
	(0.63-0.98)
	0.79
	(0.63-0.99)
	0.78
	(0.63-0.98)

	
	 
	
	 
	 
	
	

	Race/ethnicity
	
	
	
	
	
	

	   NH White
	(ref)
	
	(ref)
	 
	(ref)
	

	   NH Black
	1.72
	(1.30-2.28)
	1.74
	(1.33-2.28)
	1.71
	(1.33-2.20)

	   Mexican American
	0.81
	(0.53-1.23)
	0.73
	(0.47-1.12)
	0.73
	(0.49-1.08)

	
	 
	
	 
	 
	
	

	Education
	
	
	
	
	
	

	< High School
	1.14
	(0.90-1.43)
	1.12
	(0.88-1.41)
	1.12
	(0.88-1.42)

	   High School
	1.13
	(0.91-1.39)
	1.13
	(0.91-1.40)
	1.13
	(0.91-1.39)

	> High School
	(ref)
	
	(ref)
	 
	(ref)
	

	
	 
	
	 
	 
	
	

	Physical Activity
	
	
	
	
	
	

	   No LTPA
	1.21
	(0.94-1.57)
	1.20
	(0.93-1.54)
	1.20
	(0.93-1.54)

	   Irregular LTPA
	1.17
	(0.93-1.45)
	1.16
	(0.93-1.44)
	1.16
	(0.93-1.44)

	   LTPA >= 5x / wk
	(ref)
	
	(ref)
	 
	(ref)
	

	
	
	
	
	
	
	

	Total Kcal
	1.00
	(1.00-1.00)
	1.00
	(1.00-1.00)
	1.00
	(1.00-1.00)

	
	
	
	
	
	
	

	Total Sodium
	1.00
	(1.00-1.00)
	1.00
	(1.00-1.00)
	1.00
	(1.00-1.00)

	
	
	
	
	
	
	

	Body Mass Index
	1.09
	(1.07-1.11)
	1.09
	(1.07-1.11)
	1.09
	(1.07-1.11)

	
	 
	
	 
	
	 
	

	Smoke
	
	
	
	
	
	

	    Never
	(ref)
	
	(ref)
	
	(ref)
	

	    Former
	0.99
	(0.81-1.21)
	0.98
	(0.81-1.20)
	0.98
	(0.81-1.20)

	    Current
	1.05
	(0.76-1.43)
	1.03
	(0.75-1.40)
	1.03
	(0.75-1.40)

	Multiple R2
	0.30
	0.30
	0.30 


Discussion and Conclusions

This study was carried out to test the effect of different food grouping schemes on derived dietary patterns and the subsequent ability of these patterns to predict blood pressure.  Four factors were retained from each of the solutions.  Although correlations among factors scores from the three solutions were strong, correlations tended to drop slightly with each retained factor and were reduced to a moderate level by the fourth factor.  However, factors 1 and 2, which represent the primary variance in the dietary data, were very consistent across PCA solutions, showing that little information was lost when food groups were aggregated.  

With regard to the PCA solutions, total amount of explained variance by four factors increased as the number of input variables decreased.  This is consistent with previous findings from McCann and colleagues (2001).  This apparent increase may simply be an artifact of dividing by a smaller denominator, as variance explained refers to the sum of the relevant eigenvalues divided by the number of variables.  It may also be possible that the variance in the original set of 106 food groups is decreased when foods are aggregated.  This would explain why a model with more aggregated food groups would explain a greater amount of total variance.  The question is, however, does this reduction affect the ability of the dietary patterns to predict health?  In the present study, the results demonstrated that one dietary pattern (Pattern 2) was consistently associated with SBP and hypertension in adjusted models, and the association remained significant in all PCA solutions.  However, significance of the association was strongest in the less aggregated food grouping scheme, which is consistent with the prediction of endometrial cancer risk, where investigators found that the more detailed dietary data better predicted health than the more aggregated food groups (McCann et al., 2001).  

One possible disadvantage of aggregating food group variables is that detailed food groups may be confounded together.  Foods that would not singly contribute strongly to a pattern may more strongly contribute once they are aggregated.  For example, intake of processed meats contributed strongly to factor 2 when 48 food groups were used.  However, when 106 food groups were used, the more detailed processed meat categories did not load as strongly even though they were all positively correlated with the pattern.         

In terms of nutritional intake’s effect on blood pressure, the findings from the present study demonstrated that a dietary pattern consisting of higher intakes of meats, fried potatoes, and other starchy vegetables (pattern 2) was associated with higher SBP and hypertension.  In addition, the pattern containing more fruit and vegetables (pattern 1) was inversely related to SBP.   A well known clinical trial that was designed to test the effects of dietary patterns on blood pressure, the Dietary Approaches to Stopping Hypertension (DASH), found that a diet containing more fruit, vegetables, and low-fat dairy and less total cholesterol and saturated fat lowered diastolic and systolic blood pressure in adults (Svetkey et al., 1999).  The present findings are consistent with the DASH trials, as fruit and vegetables appeared protective, while higher intake of the meat pattern, which would correspond to higher intake of saturated fat and cholesterol, was positively associated with blood pressure.  The DASH trials also demonstrated that sodium restriction in addition to the DASH dietary pattern further reduced both systolic and diastolic blood pressure (Vollmer et al., 2001).  In the present study, dietary sodium estimated from the average of two 24-hour recalls was unrelated to SBP and hypertension.  However, dietary intake varies from day to day, and 2 recalls may not adequately represent usual/habitual dietary intake (Willett, 1998).  Additionally, measurement error may contribute to the lack of association.  For instance, underreporting of intake is known to be a critical problem in nutrition epidemiology, particularly among certain population subgroups such as obese individuals (Livingstone & Black, 2003).  Therefore, a lack of association, at least in part, may be due to the weakness of the estimate that increases the likelihood of a type 1 error.    

In summary, dietary patterning methods have been criticized for the great amount of subjectivity that must be applied to the data in order to derive patterns.  One area of subjectivity is the classification of food groups prior to summarizing dietary data into patterns, and there are few methodological focuses on this topic.  The present study was carried out to test the effect of various food grouping schemes on derived dietary patterns and the subsequent ability of these patterns to predict blood pressure.  The findings suggest that patterns remain fairly stable as the number of food groups is decreased, and that associations between the derived patterns and blood pressure remain fairly consistent across food grouping schemes although some predictability of diet may be lost with aggregation.      

Chapter 5:  Race/Ethnic Disparity in Diabetes: An Application of Dietary Pattern Research 

Race/ethnic disparity in the prevalence of diabetes is a critical public health issue.  Diabetes is the leading cause of blindness and end-stage renal disease and a major risk factor in the development of cardiovascular diseases.  In the US, non-Hispanic blacks and Mexican-Americans have approximately double the prevalence of diabetes compared to non-Hispanic whites (14.6%, 13.5%, and 7.8% respectively from the 1999-2000 NHANES) (Cowie et al., 2006).  Additionally, T2D, which accounts for 90-95% of all cases of diabetes, appears to be increasing across all population groups in this country, but the increase is most rapid among minority race/ethnic groups (McBean et al., 2004).  

Race/ethnic disparity in T2D is not well understood.  However, research suggests that multiple risk factors such as socioeconomic status, body weight, and diabetes-related health behaviors vary by race/ethnic group and thus work together to produce differences in diabetes.  Among these factors, nutritional exposure may influence diabetes incidence.  However, the nutritional contribution to these disparities has not been well researched.  In studies that have explored the effects of nutrition, dietary measures do not appear to appreciably explain the race/ethnic differences in prevalence or incidence.  However, these studies have used either dietary measures that do not reflect habitual intakes (e.g. dietary measures based on a single 24-hour recall) (Robbins et al., 2000) or have used single nutrients or other single properties of the diet (e.g. Total Fat intake, Total caloric intake) rather than using a measure of dietary exposure that would account for the over-all healthfulness of nutritional intake (Brancati et al., 2000; Robbins et al., 2000).


In nutritional epidemiology, the use of multivariate dietary pattern models is a useful way to describe dietary habits and to relate diet to health.  These methods use data reduction techniques such as factor or cluster analysis to summarize dietary intake data.  Studying the pattern of food intake allows for the examination of the combined effect of food exposures.  Studies that have used summary indices of dietary intake to examine diet’s association with diabetes and have consistently demonstrated that diets characterized by higher intakes of red and processed meats, refined grains, and fat are associated with a greater risk of T2D (Fung et al., 2004; Hodge et al., 2007; Kerver et al., 2003; van Dam et al., 2002).  These summary indices may be better indicators of habitual dietary patterns and higher caloric intake over longer periods of time.  However, it is unclear whether differences in nutritional exposure across race/ethnic groups may contribute to the race/ethnic gaps in diabetes prevalence.             

Socioeconomic inequality is known to have an influence on race/ethnic disparities in diabetes (Brancati et al., 1996; Crimmins et al., 2004; Hayward et al., 2000; Robbins et al., 2000).  A person’s education and income level affects exposure to key lifestyle and environmental factors including diet (Guo et al., 2004; Kant et al., 2007).  Therefore, diet may be related to race/ethnic disparities primarily through a socioeconomic pathway.  If this is true, then accounting for nutrition exposure may provide little additional explanation of health disparities after statistical control for socioeconomic status (SES) measures.  However, if meaningful differences in diet exist across race/ethnic groups, independent of SES, then accounting for diet may provide additional explanation of health disparities.  Comparing diets of blacks and whites, Peter Bahr (2007) used data from the California Dietary Practices Survey (CDPS) to demonstrate that differences in dietary intake remained after accounting for education and household income, and the differences appeared to favor whites in terms of healthfulness of the diet (Bahr, 2007).  This suggests that diet may provide additional explanation of race/ethnic gaps in health that are not accounted for with measures of SES.  

Objectives

The primary goal of this research was to explore the association between risk of diabetes and race/ethnicity and to test diet’s contribution to race/ethnic disparities in diabetes with the use of dietary patterns to quantify over-all nutrition exposure.  Data from a representative US sample (National Health and Nutrition Examination Survey NHANES) was used to test race/ethnic differences in hemoglobin A1C, a marker of blood glucose control, across three major US race/ethnic groups: non-Hispanic whites, non-Hispanic blacks, and Mexican-Americans.  Dietary patterns and the following other social and lifestyle characteristics were tested as possible mediators of race/ethnic differences in A1C level: age, gender, education, poverty-to-income ratio, body mass index, physical activity, smoking, and family history of diabetes.  Individuals diagnosed with diabetes were excluded because the process of diagnosis and management of T2D may change diet.  This study focuses on individuals without a prior diagnosis of diabetes, to test whether diet is a risk factor for hyperglycemia and T2D.   

In order to first articulate the relationships among diet, race/ethnicity, and SES, differences in dietary patterns were explored across race/ethnicity and education level.  One specific objective was to understand whether accounting for educational differences across race/ethnic groups would explain race/ethnic differences in diet or whether substantial differences in diet would remain after accounting for education that may possibly help explain race/ethnic gaps in diabetes.  

 Methods

Study Sample 

The National Health and Nutrition Examination Survey is a cross-sectional survey that is conducted by the National Center for Health Statistics (NCHS).  NHANES is the only US representative sample that combines a full medical evaluation with extensive data collection of diet and nutrition-related factors by collecting both a food frequency questionnaire and two 24-recalls from each participant.  Most recent NHANES surveys are collected and released in two-year intervals.  For this analysis, data from the 2003-2004 and 2005-2006 survey cycles were combined.  

Of the NHANES participants who were 20 years of age and older and who completed the household interview and the medical exam (n=9,515), pregnant (n = 544) and lactating (n = 75) women were excluded, as lifestyle correlates of diabetes in these women may not be representative of adult women.  In order to limit the sample to those who provided a sufficient amount of dietary information, individuals who did not complete the food frequency questionnaire also were excluded (n = 3,077).  Analysis focused on the three main race/ethnic groups of the NHANES sample, and thus persons who reported their race/ethnicity as anything other than non-Hispanic white, non-Hispanic black, or Mexican-American were excluded (n = 367).  Finally, individuals who reported that they had diabetes (meaning they answered ‘yes’ to the question “Has a doctor ever told you that you have diabetes?”) (n = 589) and those who did not have the primary outcome measure, A1C, were excluded (n = 146).  Thus, the final sample included 4,717 individuals aged 20 years and older, who completed the household interview and the medical exam, were not pregnant or lactating, who completed the food frequency questionnaire, had a reliable A1C, and who did not report a diagnosis of diabetes.  

Materials and Measures 
Diabetes 

Hemoglobin A1C (A1C), is a measure of the glucose saturation of hemoglobin and is an estimate of average blood glucose levels over the previous 2 to 3 month period (Rohlfing et al., 2002).  Although the measure has long been recognized as a strong correlate of both fasting plasma glucose concentrations and of health outcomes related to diabetes, the measure has traditionally only been used as a marker of glucose control to monitor and guide therapies for diabetics rather than a diagnostic tool.  However, the International Expert Committee on diabetes has recently recommended that A1C be considered as a diagnostic measure for diabetes because of the following benefits that A1C testing offers compared to traditional diagnosis using fasting plasma glucose: 1) A1C is considered a better measure of long-term exposure and aligns more closely with risk for complications from diabetes, 2)  There is less biologic variability – less day-to-day variability--It is less affected by problems such as illness or stress, and 3) Individuals do not have to be in a fasting state at the time the measure is taken, and a single sample is needed rather than a series of timed samples (The International Expert Committee (IEC), 2009).  

The IEC recommends that an A1C cut-point of 6.5% or higher be considered diagnostic for diabetes.  In addition, they recommend that A1C levels of 6.0 – 6.5% should be considered ‘at-risk’ and prevention strategies should be implemented at this level.  These recommendations are based on the A1C levels at which risk for complications begins and then subsequently increases (The International Expert Committee (IEC), 2009).  

For this study, A1C was used in its continuous form.  The IEC recommended A1C levels were used to define undiagnosed diabetes: 1) Undiagnosed Diabetes = A1C ≥ 6.5%, 2) No Diabetes = A1C < 6.5%.  

Race/Ethnicity

Data on race/ethnicity were collected in two separate questions, one focusing on racial identification and the other focusing on Hispanic ethnicity.  These two questions were recoded and combined into a single variable, separating those who identify as Hispanic from those who do not.  Individuals were categorized into the following race/ethnic groups: Non-Hispanic Whites, Non-Hispanic Blacks, Mexican-Americans, and Other.  This study focused only on the three main ethnic groups, and the small group of ‘others’ (which represents all Hispanics who are not Mexican-American and all non-Hispanics who do not racially identify as white or black) were omitted. 

Measures of Socioeconomic Status: Education and Poverty-to-Income Ratio

Level of education was represented by the highest level of school that was completed.  Throughout the analysis, education was used as a categorical variable.  Because each year of education does not contribute equally to a person’s SES (Galobardes et al., 2006), education was categorized as less than high school, high school, greater than high school to attempt to capture milestones in the education process that most strongly affect SES.  In the US, average years of schooling is 12.05 years (based on the year 2000) (Barro & Lee, 2000).  Therefore, 3 categories for education will be created to distinctively separate those with average education levels from those below and those above average.

A poverty-to-income ratio (PIR) was computed by taking the mid-point of the family income range (combined family income over past 12 months) and dividing by the applicable annual poverty threshold from the Census Bureau.  The poverty threshold takes into account the family size and is updated annually to account for inflation with the Consumer Price Index.  Poverty-to-income ratio was treated as a continuous measure for most analyses.  For descriptive statistics, PIR was categorized into the following categories:  < 1.30, 1.30-3.50, and > 3.50.  This lower cut-point was chosen based on the eligibility cut-point for food stamps, which is < 130% of the poverty threshold (United States Department of Agriculture, 2008).    

Dietary Intake

Nutritional exposure was assessed using a 151-item FFQ that was developed from the National Cancer Institute’s Diet History Questionnaire (DHQ), which is a widely used FFQ in nutritional epidemiology.  The FFQ data do not estimate nutrient or caloric intakes since portion size questions were not included.  Instead, the FFQ was designed to supplement the NHANES 24-hour recall data by providing longer-term estimates of food intakes to better approximate usual intake.  Respondents were asked to report frequency of intake of foods and beverages over the previous 12-month period. (e.g. Over the past 12-month period, how often did you eat apples?)  Optional responses ranged from ‘never’ to ‘2+ times per day’ for food-item questions and from ‘never’ to ‘6+ times per day’ for beverage questions.  All responses were then re-coded into daily frequency.  Certain questions from the original 151 asked respondents to provide additional information on follow-up questions.  Accounting for all responses, there were a total of 201 food responses (daily frequency of intake) per individual.

Because the FFQ data do not allow for estimation of nutrient or caloric intakes, the 24-hour recall data were used to provide an estimate of total daily calories.  During the Mobile Examination Center (MEC) examination, respondents completed a 24-hour dietary recall through an interviewer-guided automated interviewing system.  Participants were prompted to recall everything consumed over the past 24-hour period.  Details of foods and beverages, including brand names, condiments added, portion sizes, cooking method, location of consumption, and time of day were collected.  Another 24-hour recall was collected via telephone follow-up using similar standardization methods as the MEC-based interview.  For the present study, total calories from the two recalls were averaged for each respondent to yield a 2-day average estimate of daily caloric intake (Agreement between total calories from the two recalls: r = .51 p < .0001 so that reliability of the average = 0.68).

Leisure Time Physical Activity

During the home interview, respondents were asked about participation in nine leisure-time physical activities (LTPA):  walking, jogging/running, bicycling, swimming, aerobic dancing, other dancing, calisthenics, garden or yard work, weight lifting.  In addition to these questions, respondents were asked to report any other leisure time physical activities that they participated in over the past one month period.  Each physical activity was assigned an intensity rating (either moderate or vigorous activity) based on a responses to survey questions asking whether the activity caused either ‘light sweating or a slight to moderate increase in breathing or heart-rate (moderate)’ or ‘heavy sweating or large increases in breathing or heart-rate (vigorous).  

LTPA survey responses were divided into three categories based on frequency and intensity.  The following categories were used:  (1) No LTPA:  those who answered ‘no’ to all LTPA questions, (2) Irregular LTPA:  < 20 times per month of moderate intensity or < 12 times per month of vigorous intensity, and (3) Regular LTPA ≥ 20 times per month of moderate intensity or ≥ 12 times per month of vigorous intensity.  

Smoking

Because smoking status is correlated with other health behaviors such as diet and exercise that are associated with diabetes, effects across smoking status were also examined.  Individuals were categorized into the following groups based on smoking status:  1) Never – respondent has not smoked 100+ cigarettes in his/her lifetime. 2) Former –respondent has smoked 100+ cigarettes in his/her lifetime but was not smoking at the time of the interview 3) Current – respondents who reported currently smoking of any frequency/duration. 

Body Mass Index

Body measurements were collected by trained MEC staff, using standard protocols for each measurement.  BMI, a measure of body weight scaled according to height, is the most common measure of body composition used in health literature and is known to correlate with chronic disease risk (Whitney E.N. & Rolfes, 1999).  Body mass index (BMI) was computed for each participant in NHANES using the following formula:




BMI = Weight (kg) / Standing Height (m2)  

The Center for Disease Control established cut-points for BMI were used in descriptive tables to show the sample distribution of BMI in the following categories: Under or Normal Weight (BMI < 25), Overweight (BMI 25-29.99), Obese (BMI ≥ 30).  In regression models, BMI was used in its continuous form.    

Family History 

Positive family history of T2D is associated with risk (Dallo & Weller, 2003; Harrison et al., 2003).  Family history may reflect both lifestyle/environmental and genetic factors and may help explain race/ethnic differences in T2D.  Respondents were asked to report whether a living or deceased first degree relative including father, mother, sisters or brothers, had ever been told by a health professional that they had diabetes.  Respondents who answered yes to this question were coded as having positive family history of diabetes.  Data were not available on the actual number of parents or siblings with diabetes.          

Other Demographic Measures

Diet and other lifestyle correlates of diabetes vary by age and sex.  Therefore, effects were also examined between men and women.  Age was considered in all analyses as an explanatory factor related to diabetes risk.  Age in years was calculated from self-reported birth date.  All participants who were 90 years or greater were recorded as ‘90’ to protect the personal identity of this small group of people.  For most analyses, a 3-category variable was created: 20-39 years, 40-59 years, and 60+ years, but age was also used in its continuous form in some cases.  

Analysis 
The overall analytic approach to this study was three-fold: first, to derive dietary patterns from the FFQ data using Principal Components Analysis (PCA).  Second, to explore race/ethnic differences in dietary patterns and to understand the effects of SES while controlling for age, and gender.  This step was included to attempt to clearly articulate the relationships between race/ethnicity, SES, and diet before using these three demographic and lifestyle characteristics together in multivariate models predicting diabetes.  Third, the analysis sought to examine possible explanatory factors for race/ethnic disparities in A1C to understand whether health behaviors (particularly diet) could provide meaningful explanation of race/ethnic disparity, after adjustment for age, sex, and SES (education and PIR).  As BMI and family history of diabetes risk factors for diabetes and may vary by race/ethnic group, these factors were also explored.  
Dietary Patterns

In order to explore the effect of over-all nutritional intake, dietary patterns were derived using Principal Component Analysis (PCA) to summarize the FFQ data into linear combinations (factors) of food groups that described the primary variance in the data.  Factor scores were then assigned to each respondent for each meaningful dietary pattern (factor) that resulted from the PCA.  Solutions were retained with both un-rotated factors and rotated factors using a Varimax rotation.  Rotation is included in many analyses using PCA for dietary patterns (Kant, 2004).  Varimax rotation orthogonally rotates the factor solution to maximize interpretability of the factor loadings without altering the statistical explanatory power of the factors.  Both un-rotated and rotated factors were retained to compare results across the two solutions.         

FFQ responses were first collapsed into a manageable number of variables (48 food variables) to use in PCA, using the following rationale:  (1.)  Foods were grouped based on the similarity of nutritional content and/or culinary usage, consistent with recent dietary pattern research (Carrera et al., 2007; Fung et al., 2004; Newby et al., 2003).  For instance, fruits that share nutritional qualities, such as oranges, grapefruit, and lemons, were grouped as ‘citrus fruit’.  (2.)  Some foods that share some nutritional quality but have distinct macronutrient content from processing/cooking (i.e. French fries vs. other potatoes) were left as individual variables.  (3.)  Foods with low frequency of consumption that do not necessarily group with other foods based on nutritional content (i.e. non-dairy creamer and artificial sweeteners) were grouped as miscellaneous.  Table 5.1 describes the 48 food groups used to derive dietary patterns with PCA.  To remove magnitude bias from the data (e.g. some people report eating more food than others), each food group frequency was divided by the individual’s total frequency.  Thus, responses were transformed to represent a percent of total frequency of foods named.   
Race/ethnicity, SES, and Dietary Patterns

In order to explore race/ethnic differences in dietary patterns, multiple linear regression was used to test the age- and sex- adjusted differences in dietary patterns across racial/ethnic group.  The objective of this analysis was to learn whether SES would explain meaningful differences in dietary patterns across race/ethnic groups or whether differences would exist after control for SES that may help explain race/ethnic differences in health.  To carry out this objective, two regression models were used for each dietary pattern.  The first model included race/ethnic group, age, and sex.  Education was then added to the second model to test the mediating role of SES in the relationships between dietary patterns and race/ethnicity.  To avoid collinearity of PIR and education, these SES variables were used in separate models.  Therefore, a similar set of models was repeated using PIR as the measure of SES. 

Illustration 5.1: Multiple Regression Models Predicting Dietary Patterns

                                  Dietary Pattern = Race/Ethnicity + Sex + Education

                                  Dietary Pattern = Race/Ethnicity + Sex + PIR
Table 5.1:  Food Grouping Scheme for 201 Responses from the NHANES Food Frequency Questionnaire 2003-2006: Aggregated to 48 Food Groups
	Food Group Name
	Description

	1.  Milk
	Whole, 2% fluid milks

	2.  Low fat Milk
	1% and Skim fluid milks

	3.  Cheese
	Cheese, cottage cheese

	4.  Other Dairy
	Yogurt, pudding

	5.  Frozen Desserts
	Frozen Yogurt, Ice cream

	6.  Butter
	Regular and Reduced-fat Butter

	7.  Margarine
	Regular and Reduced-fat Margarine

	8.  Oils and Dressings
	Oils, Salad dressings, Mayo spreads

	9.  Other Fats
	Gravies, Cream Cheese, Sour Cream

	10.  Citrus Fruit
	Citrus fruits

	11.  Melon and Berries
	Melons and berries

	12.  Bananas
	Bananas

	13.  Other Fruit
	Apples, pears, pineapples, dried fruit, grapes, peaches/plums/nectarines

	14.  Citrus Juice
	Orange juice, grapefruit juice

	15.  Other Fruit Juice
	Other 100% Fruit juice

	16.  Orange Vegetables
	Carrots, sweet potatoes, winter squash

	17.  Dark Green Leafy Vegetables
	Cooked and raw greens, leaf lettuce varieties

	18.  Tomatoes
	Tomatoes and tomato products including sauces, ketchup, salsas, and juice

	19.  Cruciferous Vegetables
	Broccoli, Cauliflower, Cabbage, coleslaw

	20.  Other Vegetables
	Green beans, corn, peas, mixed vegetables, squash, peppers, onions, cucumbers, pickles, iceberg lettuce

	21.  Fried Potatoes
	French fries, hash browns, other fried potatoes

	22.  Other Starchy Vegetables
	Other potatoes (baked, boiled, mashed, potato salad), other starchy tubers

	23.  Beans
	Beans: dried or cooked

	24.  Nuts and Seeds
	Nut butters, nuts and seeds 

	25.  Soy
	Soy milk, soy beans/nuts, tofu

	26.  Eggs
	Whole eggs, egg whites, egg salads

	27.  White Meat
	Chicken, Turkey – all cooking methods

	28.  Red Meat
	Beef and Pork – all cooking methods

	29.  Processed Meat
	Hot dogs, Deli meats/Cold Cuts, Bacon, Sausage, Ham

	30.  Fish and Seafood 
	Fish, Smoked fish, shellfish, sushi

	31.  Organ Meats
	Liver and other organ meats

	32.  Pastas
	Pasta and pasta dishes

	33.   Refined bread and bread products
	White bread, biscuits, pancakes/waffles, crackers, stuffings/dumplings, English muffins, dinner rolls/buns

	34.  Whole Grain bread and bread products    
	Dark bread varieties and whole grain products

	35.  Hot Cereals
	Oatmeal and other hot cereals

	36.  Cold RTE Cereals 
	RTE cold cereals

	37.  Tortillas, Tacos, Cornbread
	Tortillas, tacos, and cornbread

	

	Table 5.1:  Food Grouping Scheme Continued…..

	38.  Soups
	Broth, cream, tomato, and bean based soups

	39.  Pizza
	Pizza with and without meat toppings

	40.  Salty Snacks
	Chips, popcorn, pretzels

	41.  Sweets
	Cakes, cookies, pies, donuts, muffins, granola bars

	42.  Candy
	Sugar, Jams/Jellies, Honey, Syrups, Chocolate candy, other candy

	43.  Sodas
	Regular and Diet soft drinks

	44.  Coffee and Tea
	Coffee and Tea

	45.  Fruitades 
	Fruit drinks (not 100% juice), sports drinks, sugar-sweetened non-carbonated beverages

	46.  Meal Replacements
	Meal Replacement drinks and bars

	47.  Alcohol
	Beer, Wine, Liquor, Mixed Drinks

	48.  Miscellaneous
	Artificial sweeteners, creamer, rice milk


 Diabetes and Race/ethnicity
In order to examine possible mediators of race/ethnic disparities in A1C, a series of nested regression models was used.  Two sets of models were conducted: one using A1C as a continuous outcome and the other using logistic models with undiagnosed diabetes (A1C ≥ 6.5%) as the outcome.  First, age and sex adjusted race/ethnic differences in A1C and diabetes were tested.  Second, education was added to the model to demonstrate the effect of SES on the outcome and on mediating the race/ethnic association.  Third, health behaviors (dietary patterns, physical activity, and smoking) were added to the model, BMI to the fourth, and finally family history of diabetes to the fifth.  Models were then repeated using PIR as the measure of SES.  In addition, these relationships were explored using a similar set of models with the rotated factor patterns to represent dietary pattern. 

Illustration 5.2:  Multiple Regression Models Predicting A1C 

Model 1:  YA1C = Race/Ethn + Age + Sex 

Model 2:  YA1C = Race/Ethn + Age + Sex + Educ

Model 3:  YA1C = Race/Ethn + Age + Sex + Educ + Health Behaviors 

Model 4:  YA1C = Race/Ethn + Age + Sex + Educ + Health Behaviors + BMI

Model 5:  YA1C = Race/Ethn + Age + Sex + Educ + Health Behaviors + BMI + Fam His of DM
NHANES was carried out using a complex multistage sampling design that over-sampled young children, older persons, non-Hispanic blacks, and Mexican Americans.  Because the NHANES sampling design yields unequal probability of selection for participation, weighted survey procedures were carried out using SURVEY procedures in SAS version 9.1 for all descriptive statistics and regression analyses.
Results
Distributions of demographic and lifestyle characteristics across race/ethnic group demonstrated disparities for non-Hispanic blacks and Mexican-Americans in the sample (Table 5.2).  BMI distributions were similar to current estimates taken from the complete 1999-2000 NHANES sample and show the higher prevalence of obesity among blacks and Mexican-Americans.  With respect to SES measures, the associations between education and/or PIR and race/ethnicity demonstrate the over-representation of blacks and Mexican-Americans compared to whites at lower SES levels.  Proportionally more whites compared to the other two groups participate in regular LTPA.  Family history of diabetes is more prevalent among blacks and Mexican-Americans compared to whites.  As expected, average A1C was higher (simple ANOVA P < .0001) among non-Hispanic blacks ( EQ \O(x,¯) = 5.47, 95% CI 5.43-5.51) and  EQ Mexican-Americans ( EQ \O(x,¯)  = 5.40, 95% CI 5.33-5.46) compared to non-Hispanic whites ( EQ \O(x,¯)  = 5.30, 5.27-5.33).  Only 1.99% (95% CI: 1.56-2.55%) of the sample had undiagnosed diabetes based on A1C levels ≥ 6.5% and  1.77%, 3.01%, and 2.8% for whites, blacks, and Mexican-Americans respectively (P < 0.233).  
Principal components analysis was conducted on the 48 food group variables to derive dietary patterns.  Although the first 15 factors had eigenvalues ≥ 1, Table 5.3 and the Scree plot in Figure 5.1 demonstrate that the majority of the variance among the food group variables was described by the first four factors.  Therefore, a 4-factor solution was used to describe the main dietary patterns in the sample.  Dietary patterns were named based on food groups that contributed strong positive correlations to the factor.  Factor loadings are presented in Table 5.4.  Food groups that contributed strongly to the factor (+/- 0.30) have been highlighted.  

Table 5.2:  Weighted Demographic and Lifestyle Characteristics of the Sample by Race/Ethnic Group 

	
	NH White
	NH Black
	Mex-Am

	
	(n = 2958) 
	(n = 936)
	(n = 823)

	
	%
	%
	%

	Age** 
	
	
	

	     20-39
	34.6
	45.2
	60.9

	     40-59
	39.0
	39.7
	27.9

	     60+
	26.4
	15.2
	11.2

	
	
	
	

	Sex 
	
	
	

	     Male
	47.1
	43.9
	48.8

	
	
	

	Education**
	
	

	   < HS
	10.1
	26.5
	43.8

	      HS
	27.7
	25.3
	25.9

	   > HS
	62.3
	48.3
	30.3

	
	
	
	

	PIR**
	
	
	

	   < 1.3
	13.9
	30.2
	33.7

	      1.3 - 3.5
	35.0
	42.3
	44.5

	   > 3.5
	51.1
	27.5
	21.8

	
	
	

	Physical Activity*
	
	

	     No LTPA
	28.3
	39.3
	40.4

	     Irregular LTPA
	28.1
	22.6
	26.4

	     Regular LTPA
	43.6
	38.1
	33.2

	
	
	
	

	BMI**
	
	
	

	     Normal Weight
	36.4
	24.6
	31.3

	     Overweight
	34.0
	29.5
	35.7

	     Obese
	29.7
	45.9
	33.1

	
	
	

	Smoking**
	
	

	    Never
	48.8
	60.5
	62.7

	    Former
	25.5
	14.3
	16.2

	    Current
	25.8
	25.2
	21.2

	
	
	
	

	Family History*
	40.4
	49.0
	53.2

	
	
	
	

	Undiagnosed DM
	1.8
	3.0
	2.8

	
	 EQ \O(x,¯) 
	 EQ \O(x,¯) 
	 EQ \O(x,¯) 

	A1C Levelsa
	5.30
	5.47
	5.40

	**p < .0001
	
	
	

	 *p < .05
	
	
	

	   n = 4,717
	
	
	


Factor one, the Fruit and Vegetables pattern, was strongly positively correlated with fruit and vegetable intake and strongly negatively correlated with intakes of red and processed meats, fried potatoes, refined grains, pizza, snacks, and soft drinks.  Factor two, the Meat and Potatoes pattern, was characterized by higher intakes of red, processed, and white meats, potatoes, pastas, tomatoes, tortillas and tacos, and lower intakes of coffee/tea and candy.  Factor three, the Dark Breads pattern, was positively associated with intakes of dark breads and whole grains, and strongly negatively correlated with traditional Mexican foods: beans, tortillas/tacos, soups, and tomatoes.  Factor four, the Cereal and Fruit pattern, was characterized by higher intakes of milk, fruit juice, ready-to-eat cereals, and meal replacement drinks and lower intakes of oils/dressings and vegetables.

In order to understand how diet varied by race/ethnic, race/ethnic distributions were examined across tertiles of the four dietary patterns (Table 5.5).  Largest group differences were evident comparing Mexican-Americans to the other two race/ethnic groups.  Mexican-Americans had proportionally more individuals with the highest tertile of intake for the Fruits and Vegetables pattern and the Meats/Potatoes pattern, and lowest intake of the Dark Breads pattern.   

Linear regression was used to test the age- and sex- adjusted association between race/ethnicity and factor scores from the four dietary patterns.  Compared to whites, Mexican-Americans had higher intakes of the Fruit and Vegetable pattern (Factor 1) as well as the Meats and Potatoes  pattern (Factor 2) and much lower intakes of the Dark Breads pattern (Factor 3) (Table 5.6).  Blacks had higher intakes of the Meats and Potatoes and the Cereal and Fruit pattern compared to whites.  Compared to the youngest age group (20-39 years), older individuals had higher intakes of the Fruit and Vegetable pattern and lower intakes of the Meats and Potatoes pattern.      

Table 5.3:  Eigenvalues of Factors 1-10 from Principal Components Analysis on FFQ Food Group Variables from NHANES 2003-2006 
	 
	Eigenvalue
	Difference
	Ratio of Adj. EVs
	Proportion
	Cumulative

	1
	3.687
	0.827
	1.289
	0.077
	0.077

	2
	2.860
	0.622
	1.278
	0.060
	0.136

	3
	2.238
	0.466
	1.263
	0.047
	0.183

	4
	1.771
	0.262
	1.174
	0.037
	0.220

	5
	1.509
	0.030
	1.020
	0.031
	0.251

	6
	1.479
	0.128
	1.095
	0.031
	0.282

	7
	1.351
	0.061
	1.047
	0.028
	0.310

	8
	1.290
	0.041
	1.033
	0.027
	0.337

	9
	1.249
	0.065
	1.054
	0.026
	0.363

	10
	1.185
	0.038
	(----)
	0.025
	0.388


Figure 5.1:  Scree plot of Eigenvalues from PCA of FFQ Food Group Variables from NHANES 2003-2006 
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Table 5.4:  Un-Rotated Factor Loadings of the First 4 Factors from PCA of FFQ Food Group Variables from NHANES 2003-2006 
	 
	Pattern1
	Pattern 2
	Pattern 3 
	Pattern 4

	Milk
	-0.118
	-0.155
	-0.238
	0.368

	Lowfat Milk
	0.183
	-0.101
	0.267
	-0.012

	Cheese
	-0.231
	0.225
	0.257
	-0.217

	Other Dairy
	0.237
	0.052
	0.209
	0.073

	Frozen Desserts
	-0.045
	0.041
	0.243
	0.149

	Butter
	-0.133
	-0.142
	0.141
	-0.124

	Margarine
	-0.125
	-0.179
	0.227
	-0.027

	Oils and Dressings
	0.099
	0.239
	-0.060
	-0.431

	Other Fats
	-0.190
	0.202
	0.070
	-0.109

	Citrus Juice
	0.174
	0.029
	0.001
	0.436

	Other Fruit Juice
	0.098
	0.080
	-0.073
	0.409

	Bananas
	0.437
	0.028
	0.057
	0.312

	Citrus
	0.381
	0.148
	0.029
	0.203

	Melons and Berries
	0.345
	0.151
	0.090
	0.166

	Other Fruit
	0.618
	0.175
	0.083
	0.218

	Orange Veggies
	0.478
	0.180
	0.215
	-0.053

	Dark Green Leafies
	0.528
	0.234
	0.103
	-0.246

	Tomatoes
	0.062
	0.414
	-0.482
	-0.088

	Cruciferous Veggies
	0.433
	0.266
	0.123
	-0.109

	Other Veggies
	0.417
	0.365
	0.000
	-0.315

	Fried Potatoes
	-0.489
	0.323
	0.006
	0.011

	Other Potato
	-0.155
	0.160
	0.251
	0.011

	Beans
	0.147
	0.290
	-0.622
	-0.012

	Nuts and Seeds
	0.175
	-0.018
	0.290
	-0.096

	Soy
	0.186
	0.002
	0.095
	-0.061

	White Meat
	0.041
	0.338
	0.131
	-0.109

	Eggs
	-0.078
	0.082
	0.004
	-0.215

	Red Meat
	-0.482
	0.422
	0.035
	-0.037

	Processed Meat
	-0.416
	0.318
	0.158
	-0.031

	Fish
	0.110
	0.249
	0.153
	-0.063

	Liver
	-0.002
	0.117
	0.031
	0.083

	Pastas
	-0.286
	0.354
	0.156
	0.075

	White Breads
	-0.386
	0.191
	0.114
	0.052

	Dark Breads
	0.242
	-0.026
	0.336
	-0.024

	Hot Cereals
	0.245
	0.008
	0.107
	0.200

	RTE Cereals
	-0.162
	0.046
	-0.001
	0.392

	Tortillas and Tacos
	0.044
	0.329
	-0.674
	-0.001

	Soups
	0.084
	0.270
	-0.359
	-0.023

	Pizza
	-0.368
	0.227
	0.147
	0.096

	Snacks
	-0.338
	0.227
	0.156
	-0.004

	Sweets
	-0.165
	0.002
	0.242
	0.160

	Candy
	-0.229
	-0.427
	-0.119
	0.069

	Sodas
	-0.432
	0.172
	0.005
	0.081

	Coffee and Tea
	-0.010
	-0.664
	-0.092
	-0.291

	Fruitades
	-0.121
	0.109
	-0.040
	0.336

	Meal Replacements
	0.034
	-0.035
	-0.016
	0.106

	Alcohol
	-0.098
	-0.032
	0.020
	-0.138

	Misc
	-0.012
	-0.518
	-0.216
	-0.182


With respect to gender, females had higher intakes of the Fruit and Vegetable pattern and the dark breads pattern and lower intakes of the Cereal and Fruit pattern. 
To explore the extent to which the race/ethnic differences in diet could be explained by SES, the effects of education and PIR were then examined.  Results showed that SES was strongly associated with 3 of the dietary patterns but only weakly attenuated race/ethnic differences.  Table 5.6 presents regression coefficients from linear models testing race/ethnic differences in diet before and after control of education.  Compared to those with more than high school education, those with less education had lower intake of the Fruit and Vegetables pattern and the Dark Breads pattern and higher intake of the Breakfast pattern.  Models using PIR were consistent with those in Table 5.5 using education.  Poverty-to-income ratio was positively associated with Fruit and Vegetables and Dark breads and negatively associated with the Cereal and Fruit pattern, but PIR only weakly attenuated race/ethnic differences across any of the patterns.  This suggests that race/ethnicity and SES (measured as either education or PIR) have independent associations with dietary patterns and that SES does not explain race/ethnic differences in diet.

In order to provide a visual representation of the relationships between dietary pattern, race/ethnicity, and education, Figures 5.2-5.5 plot the adjusted un-rotated factor scores by race/ethnic group and education level from the regression models.  As the plots demonstrate, strong race/ethnic differences in diet remained for all four dietary patterns after controlling for education.  Patterns 1 (Fruit and Vegetable) and 4 (Cereals and Fruit) were strongly associated with both education level and race/ethnicity, but for each pattern, the relationships with education level were consistent across race/ethnic groups and no interacting effects were identified.   

Table 5.5:  Demographic Distributions across Tertiles of Dietary Patterns from Un-Rotated PCA: NHANES 2003-2006             
	 
	Un-rotated Factors

	
	Pattern1
Fruit and Vegetable
	Pattern2
Meats and Ref Grains
	Pattern3
Dark Breads
	Pattern4
Cereals and Fruit

	
	T1
	T2
	T3
	T1
	T2
	T3
	T1
	T2
	T3
	T1
	T2
	T3

	Race/Ethnicity
	
	
	
	 
	
	
	 
	
	
	 
	
	

	   NH Whites
	37.32*
	43.29
	19.39
	37.51**
	44.27
	18.22
	23.36**
	48.79
	27.86
	40.42**
	43.05
	16.53

	   NH Blacks
	42.77
	37.98
	19.24
	23.91
	44.22
	31.88
	28.3
	50.54
	21.16
	22.23
	38.86
	38.91

	   Mex Am
	29.68
	44.91
	25.41
	16.29
	33.63
	50.08
	73.67
	22.18
	4.15
	28.24
	47.02
	24.74

	Sex
	
	
	
	 
	
	
	 
	
	
	 
	
	

	   Males
	29.73**
	44.83
	25.44
	34.6*
	45.44
	19.96
	25.78*
	46.86
	27.36
	39.95*
	41.45
	18.59

	   Females
	45.92
	40.54
	13.55
	33.8
	41.08
	25.12
	30.58
	46.76
	22.66
	34.39
	44.53
	21.08

	Age
	
	
	
	 
	
	
	 
	
	
	 
	
	

	   20-39
	53.53**
	34.15
	12.32
	20.82**
	42.9
	36.28
	29.89
	45.35
	24.76
	33.05**
	42.72
	24.23

	   40-59
	33.9
	44.7
	21.41
	38.84
	43.92
	17.24
	29.06
	47.2
	23.74
	42.66
	41.8
	15.54

	   60+
	17.02
	53.61
	29.37
	48.15
	43.35
	8.5
	23.41
	48.54
	28.05
	35.67
	44.93
	19.4

	Education
	
	
	
	 
	
	
	 
	
	
	 
	
	

	< HS
	41.12**
	43.06
	15.82
	35.06*
	36.93
	28.01
	45.70**
	38.83
	15.47
	26.15**
	44.76
	29.09

	   HS
	47.87
	38.31
	13.82
	34.2
	44.72
	21.08
	28.88
	47.93
	23.19
	31.99
	46.55
	21.47

	> HS
	31.39
	44.91
	23.69
	34.02
	44.42
	21.56
	23.17
	48.34
	28.49
	42.71
	40.7
	16.58

	ChiSq Test of Independence  **p < 0.0001, *p < 0.05
	
	
	
	
	
	
	
	


Table 5.6:  Multivariate Adjusted Association between Race/ethnicity and Dietary Patterns: Differences in Dietary Patterns, Controlling for Race/Ethnicity, Age, Gender, and Education

	 
	Pattern 1
Fruit and Vegetable
	Pattern 2
Meat and Refined Grains
	Pattern 3
Dark Breads
	Pattern 4
Convenience Breakfast

	 
	Model 1 
	Model 2
	Model 1
	Model 2
	Model 1
	Model 2
	Model 1
	Model 2

	
	(n = 4717)
	(n = 4715)
	(n = 4717)
	(n = 4715)
	(n = 4717)
	(n = 4715)
	(n = 4717)
	(n = 4715)

	
	beta (P-value)
	beta (P-value)
	beta (P-value)
	beta (P-value)
	beta (P-value)
	beta (P-value)
	beta (P-value)
	beta (P-value)

	Race/ethnicity
	 
	
	 
	
	 
	
	 
	

	   NH White
	(----)
	(----)
	(----)
	(----)
	(----)
	(----)
	(----)
	(----)

	   NH Black
	0.01   ( 0.807)
	0.08  (0.16)
	0.32  (<0.0001)
	0.33  (<0.0001)
	-0.09    (0.007)
	-0.04   (0.20)
	0.68  (<0.0001)
	0.63  (<0.0001)

	   MexAm
	0.39  (< 0.0001)
	0.53  (<0.0001)
	0.59  (<0.0001)
	0.61  (<0.0001)
	-1.43  (<0.0001)
	-1.33 (<0.0001)
	0.23  (0.0003)
	0.11  (0.06)

	Age
	 
	
	 
	
	 
	
	 
	

	   20-39
	(----)
	(----)
	(----)
	(----)
	(----)
	(----)
	(----)
	(----)

	   40-59
	0.44  (< 0.0001)
	0.43  (<0.0001)
	-0.47  (<0.0001)
	-0.47  (<0.0001)
	-0.08   (0.02)
	-0.08   (0.01)
	-0.26  (<0.0001)
	-0.26   (<0.0001)

	   60+
	0.78  (<0.0001)
	0.84  (<0.0001)
	-0.69  (<0.0001)
	-0.69  (<0.0001)
	 0.01   (0.87)
	 0.04   (0.18)
	-0.08  (0.16)
	-0.13   (0.02)

	Sex
	 
	
	 
	
	 
	
	 
	

	   Female
	0.39  (< 0.0001)
	0.38  (<0.0001)
	-0.06  (0.08)
	-0.06  (0.08)
	0.12    (<0.0001)
	 0.11  (<0.0001)
	-0.14  (0.0004)
	-0.13   (0.0008)

	Education
	 
	
	 
	
	 
	
	 
	

	< High School
	 
	-0.40  (<0.0001)
	 
	-0.05  (0.32)
	 
	-0.29  (<0.0001)
	 
	0.34  (<0.0001)

	   High School
	 
	-0.39  (<0.0001)
	 
	-0.02  (0.61)
	 
	-0.10  (0.005)
	 
	0.19   (<0.0001)

	> High School
	 
	(----)
	 
	(----)
	 
	(----)
	 
	(----)

	
	 
	
	 
	
	 
	
	 
	

	Multiple R2
	0.14
	0.18
	0.13
	0.14
	0.22
	0.24
	0.07
	0.09


Figures 5.2-5.5:  Average Dietary Pattern Scores by Race/Ethnicity and Education:  NHANES 2003-2006 
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To explore race/ethnic differences in A1C, a series of nested linear regression models were used to demonstrate the mediating effects of risk factors, starting with the age- and sex- adjusted differences in A1C by race/ethnicity, and followed by the risk factors (Table 5.7).  Once all variables were added to the model (Model 5), 23% of the variance in A1C was explained.  However, the race/ethnic differences in A1C were only weakly attenuated by the addition of possible explanatory variables.  Compared to whites, blacks and Mexican-Americans had significantly higher A1C levels.  Model 2 shows the effect of education level on these differences.  Compared to individuals with greater than high school education, those with less education had significantly higher A1C levels.  Education partially attenuated race/ethnic differences, showing that A1C is higher among black and Mexican-Americans at least partially due to the underlying socioeconomic disparities.    

In order to test the effect of health behaviors diet (using the un-rotated factor scores), physical activity, and smoking were added to the next model.  With the exception of the third pattern, dietary patterns were not related to A1C.  Higher intake of the third pattern, characterized by higher intake of dark breads and lower intake of traditional Mexican foods, the Dark Breads/Traditional Mexican pattern, was associated with lower A1C levels (P < .05).  Smoking status was not related to A1C levels in the multivariate models.  Compared to those with the highest level of LTPA, A1C levels were significantly higher for those with no LTPA and irregular LTPA.  Comparing the regression with and without the health behavior variables (Model 2 vs. Model 3), there was very little attenuation of race/ethnic differences in A1C.  This shows that the addition of the lifestyle variables did not help explain race/ethnic differences in diabetes risk in this analysis.  

Body mass index was added to the next model to test its effect on the race/ethnic differences in A1C and also to test its influence on the lifestyle variables.  As expected, BMI showed a strong positive association with A1C.  Race/ethnic differences in A1C were attenuated somewhat by the addition of BMI to the models, suggesting that the race/ethnic differences in A1C levels are also partially explained by higher BMI among blacks and Mexican-Americans.  Surprisingly, the relationships between A1C and the Dark breads pattern and A1C and LTPA were not appreciably changed by the addition of BMI to the model, which suggests that these two lifestyle variables have meaningful association with A1C levels, independent of body size.  The final model included family history of diabetes, but family history also only negligibly affected race/ethnic differences in A1C level.      

Logistic regression was also used in a similar set of nested models to test the covariates of blood glucose in the prediction of undiagnosed diabetes (Table 5.8).  Based on an A1C level of ≥ 6.5%, 1.99% (n = 131) of the sample had undiagnosed diabetes.    Due to the small percentage with undiagnosed diabetes in the sample, statistical power of the models was low as evidenced by the wide confidence intervals in Table 5.8.  However, odds ratios for the models were consistent with results using A1C as the dependent variable.  Blacks and Mexican-Americans had approximately two times the prevalence of undiagnosed diabetes compared to whites.  The addition of all covariates reduced the odds by 33% for blacks and 25% for Mexican-Americans, but large differences in diabetes remained unexplained.  

Results from analyses using PIR as the measure of SES were all consistent with the findings from models using education.  Therefore, only education results were presented in tables.  

Table 5.7:  Adjusted Association between A1C and Race/Ethnicity using Un-rotated Factor Scores for Dietary Patterns
	 
	Model 1
	Model 2
	Model 3
	Model 4
	Model 5

	 
	(n = 4.717)
	(n = 4,712)
	(n = 4,484)
	(n = 4.425)
	(n = 4,330)

	 
	b-coeff
	p-value
	b-coeff
	p-value
	b-coeff
	p-value
	b-coeff
	p-value
	b-coeff
	p-value

	Race/ethnicity
	
	
	
	
	
	
	
	
	

	NH White
	(----)
	
	(----)
	
	(----)
	
	(----)
	
	(----)
	

	NH Black
	0.22
	< 0.0001
	0.21
	< 0.0001
	0.21
	< 0.0001
	0.16
	< 0.0001
	0.15
	< 0.0001

	Mexican American
	0.20
	< 0.0001
	0.17
	< 0.0001
	0.14
	0.001
	0.13
	0.001
	0.12
	0.003

	Age
	0.01
	< 0.0001
	0.01
	< 0.0001
	0.01
	< 0.0001
	0.01
	< 0.0001
	0.01
	< 0.0001

	Sex
	
	
	
	
	
	
	
	
	
	

	Female
	-0.06
	0.0003
	-0.06
	0.000
	-0.04
	0.023
	-0.04
	0.033
	-0.05
	0.014

	Education
	
	
	
	
	
	
	
	
	
	

	< High School
	
	
	0.07
	0.009
	0.04
	0.168
	0.03
	0.227
	0.03
	0.241

	   High School
	
	
	0.06
	0.001
	0.04
	0.046
	0.02
	0.235
	0.02
	0.213

	> High School
	
	
	(----)
	
	(----)
	
	(----)
	
	(----)
	

	Dietary Pattern
	
	
	
	
	
	
	
	
	

	Pattern 1
	
	
	
	
	-0.01
	0.278
	0.00
	0.624
	0.00
	0.694

	Pattern 2 
	
	
	
	
	0.00
	0.809
	0.00
	0.930
	0.00
	0.789

	Pattern 3
	
	
	
	
	-0.03
	0.005
	-0.03
	0.006
	-0.03
	0.005

	Pattern 4
	
	
	
	
	0.01
	0.152
	0.01
	0.070
	0.01
	0.056

	Physical Activity
	
	
	
	
	
	
	
	
	

	No LTPA
	
	
	
	
	0.04
	0.004
	0.02
	0.166
	0.02
	0.152

	Irregular LTPA
	
	
	
	0.05
	0.022
	0.03
	0.124
	0.03
	0.120

	LTPA >= 5x per wk
	
	
	
	(----)
	
	(----)
	
	(----)
	

	Total Kcal
	
	
	
	
	
	
	0
	0.142
	0
	0.151

	Smoking
	
	
	
	
	
	
	
	
	
	

	    Never
	
	
	
	
	(----)
	
	(----)
	
	(----)
	

	    Former
	
	
	
	
	0.01
	0.585
	0.01
	0.710
	0.01
	0.760

	    Current
	
	
	
	
	0.02
	0.390
	0.04
	0.107
	0.04
	0.146

	BMI
	
	
	
	
	
	
	
	
	
	

	Normal/UnderWt
	
	
	
	
	
	(----)
	
	(----)
	

	Overweight
	
	
	
	
	
	
	0.06
	0.002
	0.05
	0.003

	Obese
	
	
	
	
	
	
	0.26
	< 0.0001
	0.25
	< 0.0001

	Family History
	
	
	
	
	
	
	
	0.08
	< 0.0001

	Multiple R2
	0.16
	0.16
	0.17
	0.22
	0.23


Table 5.8:  Multivariate Adjusted Odds of Undiagnosed Diabetes in NHANES 2003-2006
	Dependent Variable:  Undiagnosed Diabetes y/n 

	 
	Model 1
(n = 4717)
	Model 2
(n = 4712)
	Model 3
(n = 4484)
	Model 4
(n = 4425)
	Model 5
(n = 4330)

	 
	OR
	CI
	OR
	CI
	OR
	CI
	OR
	CI
	OR
	CI

	Race/ethnicity
	
	
	
	
	
	
	
	
	
	 

	NH White
	(----)
	
	(----)
	
	(----)
	
	(----)
	
	(----)
	 

	NH Black
	2.01
	(1.05,3.87)
	1.80
	(0.95, 3.40)
	1.69
	(0.84, 3.39)
	1.33
	(0.64, 2.79)
	1.35
	(0.64, 2.87)

	Mexican American
	2.31
	(1.29, 4.13)
	1.90
	(1.08, 3.33)
	1.70
	(0.75, 3.89)
	1.74
	(0.80, 3.81)
	1.73
	(0.79, 3.78)

	Age
	
	
	
	
	
	
	
	
	
	 

	20-39
	(----)
	
	(----)
	
	(----)
	
	(----)
	
	(----)
	 

	40-59
	4.35
	(1.91, 9.94)
	4.43
	(1.94, 10.11)
	4.77
	(1.97, 11.58)
	4.53
	(1.85, 11.10)
	4.36
	(1.73, 10.98)

	60+
	8.47
	(3.82, 18.77)
	7.82
	(3.48, 17.58)
	9.66
	(3.42, 27.31)
	9.64
	(3.40, 27.37)
	9.38
	(3.32, 26.46)

	Sex
	
	
	
	
	
	
	
	
	
	 

	Female
	0.61
	(0.36, 1.04)
	0.61
	(0.36, 1.04)
	0.59
	(0.34, 1.01)
	0.57
	(0.32, 1.00)
	0.61
	(0.34, 1.11)

	Education
	
	
	
	
	
	
	
	
	
	 

	< High School
	
	
	1.85
	(1.02, 3.36)
	1.30
	(0.65, 2.59)
	1.42
	(0.73, 2.77)
	1.34
	(0.68, 2.64)

	   High School
	
	
	1.45
	(0.78, 2.69)
	1.12
	(0.59, 2.12)
	1.04
	(0.52, 2.08)
	0.96
	(0.50, 1.83)

	> High School
	
	
	(----)
	
	(----)
	
	(----)
	
	(----)
	 

	Dietary Pattern
	
	
	
	
	
	
	
	
	
	 

	Pattern 1
	
	
	
	
	0.84
	(0.63, 1.13)
	0.87
	(0.63, 1.18)
	0.85
	(0.62, 1.18)

	Pattern 2 
	
	
	
	
	1.22
	(0.90, 1.66)
	1.18
	(0.85, 1.63)
	1.17
	(0.84, 1.63)

	Pattern 3
	
	
	
	
	0.93
	(0.72, 1.19)
	0.93
	(0.71, 1.21)
	0.9
	(0.69, 1.16)

	Pattern 4
	
	
	
	
	1.19
	(0.93, 1.51)
	1.23
	(0.96, 1.56)
	1.27
	(1.00, 1.61)

	Physical Activity
	
	
	
	
	
	
	
	
	
	 

	No LTPA
	
	
	
	
	2.00
	(1.11, 3.61)
	1.82
	(1.00, 3.31)
	1.79
	(0.97, 3.30)

	Irregular LTPA
	
	
	
	
	0.89
	(0.44, 1.80)
	0.75
	(0.36, 1.55)
	0.69
	(0.32, 1.45)

	LTPA >= 5x per wk
	
	
	
	
	(----)
	
	(----)
	
	(----)
	 

	Total Kcal
	
	
	
	
	1.00
	(1.00, 1.00)
	1
	(1.00, 1.00)
	1
	(1.00, 1.00)

	Smoking
	
	
	
	
	
	
	
	
	
	 

	    Never
	
	
	
	
	(----)
	
	(----)
	
	(----)
	 

	    Former
	
	
	
	
	1.30
	(0.70, 2.40)
	1.29
	(0.70, 2.35)
	1.34
	(0.73, 2.48)

	    Current
	
	
	
	
	1.06
	(0.53, 2.11)
	1.11
	(0.55, 2.21)
	1.01
	(0.52, 1.96)

	BMI
	
	
	
	
	
	
	
	
	
	 

	Normal/UnderWt
	
	
	
	
	
	
	(----)
	
	(----)
	 

	Overweight
	
	
	
	
	
	
	1.71
	(0.70, 2.35)
	1.63
	(0.73, 2.48)

	Obese
	
	
	
	
	
	
	7.26
	(3.63, 14.53)
	6.89
	(3.48, 13.64)

	Family History
	
	
	
	
	
	
	
	
	1.09
	(0.63, 1.87)

	Hosmer-Lemshow ChiSq
	15.18 (p = 0.056)
	25.9 (p=0.001)
	10.84 (p = 0.211)
	8.98 (p = 0.343)
	13.24 (p = 0.104)


Rotation of PCA factors is commonly used to increase clarity of the patterns.  In order to examine how the above results may have been different using rotated factor scores, analyses were repeated using dietary patterns retained from PCA with Varimax rotation.  Table 5.9 demonstrates that factor patterns in the rotated solution were similar to the original patterns [correlations between the un-rotated PCA factors and rotated factors were as follows: r = 0.74 for PCA factor 1 and rotated factor 1, r = 0.70 for PCA factor 2 and rotated factor 2, r = -0.86 for the third factors, and r = 0.98 for the fourth], but the rotated solution provided some clarity of difference across patterns.  For instance, variation in dairy consumption across the factors was more evident in the rotated solution.  In addition, Pattern 2 in the rotated solution (Meats and Potatoes) was more notably represented by higher intake of meats, potatoes, and refined grains, and vegetable categories that initially loaded high on this pattern were no longer strong contributors.  Comparing the third pattern of the rotated solution to the third pattern in the un-rotated solution, the pattern still represented intake of Traditional Mexican foods and dark breads.  However, factor loadings were flipped so that the pattern represented higher intake of traditional Mexican foods and lower intake of dark breads.  Table 5.10 demonstrates that race/ethnic distributions across this pattern were also altered, as more than 2/3 of Mexican-Americans had highest tertile intake of the third pattern.  In addition, non-Hispanic blacks had proportionally more individuals with highest tertile intake of the Meats and Potatoes pattern.  
Using rotated factor scores to represent dietary patterns in multivariate models of A1C (Table 5.11), the third dietary pattern was still significantly associated with A1C.  As expected, the direction of association for this pattern was positive (b = 0.03, p = 0.03) rather than negative, as the factor loadings for this pattern were flipped in rotation.  Both dietary pattern solutions explained 2% of the variance in A1C in models including only dietary patterns or in addition to other covariates, which demonstrated consistent explanatory power between the rotated and un-rotated factor solutions.       
Table 5.9:  Rotate Factor Loadings of the First 4 Factors from PCA of FFQ Food Group Variables from NHANES 2003-2006

	
 

	Factor1
	Factor2
	Factor3
	Factor4

	Milk
	-0.3225
	-0.06365
	0.09092
	0.33695

	Lowfat Milk
	0.19375
	-0.10149
	-0.25919
	0.01612

	Cheese
	0.27475
	-0.03495
	-0.13192
	0.11722

	Other Dairy
	0.08157
	0.35615
	-0.11946
	-0.26312

	Frozen Desserts
	0.06023
	0.15353
	-0.20237
	0.12954

	Butter
	-0.09398
	0.01193
	-0.19785
	-0.15736

	Margarine
	-0.08828
	0.02153
	-0.29591
	-0.06458

	Oils and Dressings
	0.24186
	0.03146
	0.20893
	-0.39111

	Other Fats
	0.00739
	0.2684
	0.02684
	-0.14462

	Citrus Juice
	0.33668
	-0.09838
	0.07703
	0.28276

	Other Fruit Juice
	0.07268
	-0.03165
	0.00429
	0.46304

	Bananas
	0.0172
	0.02462
	0.08702
	0.42419

	Citrus
	0.31115
	-0.19435
	-0.00785
	0.39705

	Melons and Berries
	0.5459
	-0.20771
	0.06909
	0.34738

	Other Fruit
	0.34191
	-0.05904
	0.02446
	0.23738

	Orange Veggies
	0.54236
	-0.11041
	-0.0392
	0.04878

	Dark Green Leafies
	0.5936
	-0.16422
	0.10105
	-0.12423

	Tomatoes
	0.07713
	0.08704
	0.63217
	-0.04673

	Cruciferous Veggies
	0.52427
	-0.05827
	0.08107
	-0.01052

	Other Veggies
	0.54713
	-0.04402
	0.24785
	-0.20876

	Fried Potatoes
	-0.19861
	0.53483
	0.10157
	-0.08595

	Other Potato
	0.06485
	0.29032
	-0.15294
	-0.02652

	Beans
	0.00884
	-0.08827
	0.69495
	0.04612

	Nuts and Seeds
	0.25341
	-0.04173
	-0.23275
	-0.06566

	Soy
	0.18773
	-0.09196
	-0.05658
	-0.02301

	White Meat
	0.27263
	0.23882
	0.06748
	-0.09315

	Eggs
	0.02057
	0.07985
	0.04276
	-0.22457

	Red Meat
	-0.12398
	0.60314
	0.13009
	-0.12977

	Processed Meat
	-0.07877
	0.52905
	-0.02004
	-0.11574

	Fish
	0.28039
	0.14656
	0.00913
	-0.03647

	Liver
	0.05727
	0.10375
	0.02601
	0.08262

	Pastas
	0.01802
	0.48666
	0.00633
	0.01628

	White Breads
	-0.15254
	0.41771
	-0.04828
	-0.03071

	Dark Breads
	0.30535
	-0.06475
	-0.27346
	0.01745

	Hot Cereals
	0.19628
	-0.08714
	-0.07411
	0.24424

	RTE Cereals
	-0.16211
	0.18335
	-0.01922
	0.34943

	Tortillas and Tacos
	-0.07104
	-0.01168
	0.74687
	0.03721

	Soups
	0.05915
	0.01965
	0.453
	0.01346

	Pizza
	-0.11492
	0.44761
	-0.05886
	0.01613

	Snacks
	-0.07266
	0.41949
	-0.0573
	-0.07578

	Sweets
	-0.05078
	0.20184
	-0.23446
	0.11327

	Candy
	-0.44711
	-0.18621
	-0.13994
	0.01087

	Sodas
	-0.24558
	0.40236
	0.02933
	-0.00926

	Coffee and Tea
	-0.33442
	-0.52654
	-0.2343
	-0.29972

	Fruitades
	-0.10607
	0.18232
	0.05361
	0.306

	Meal Replacements
	-0.01653
	-0.03735
	-0.00687
	0.11049

	Alcohol
	-0.05881
	0.02749
	-0.03475
	-0.15756

	Misc
	-0.32935
	-0.44904
	-0.06236
	-0.18614


Table 5.10:  Demographic Distributions across Tertiles of Dietary Patterns from Rotated PCA:  NHANES 2003-2006 

	 
	Rotated Factors

	
	Pattern1
Fruits and Vegetables
	Pattern2
Meats and Ref Grains
	Pattern3
Traditional Mexican
	Pattern4
Cereals and Fruit

	
	T1
	T2
	T3
	T1
	T2
	T3
	T1
	T2
	T3
	T1
	T2
	T3

	Race/Ethnicity
	
	
	
	 
	
	
	 
	
	
	 
	
	

	   NH Whites
	32.36
	44.5
	23.14
	32.18**
	42.6
	25.22
	39.80**
	48.04
	12.16
	40.66**
	44.02
	15.32

	   NH Blacks
	32.99
	44.93
	22.07
	18.68
	43.14
	38.17
	25.04
	56.08
	18.88
	23
	39.85
	37.15

	   Mex Am
	38.14
	42.43
	19.43
	30.4
	46.86
	22.74
	3.14
	24.38
	72.48
	26.56
	47.49
	25.95

	Sex
	
	
	
	 
	
	
	 
	
	
	 
	
	

	   Males
	38.58**
	44.42
	17
	25.10**
	43.29
	31.61
	33.58*
	46.9
	19.52
	36.99
	44.03
	18.99

	   Females
	27.89
	44.35
	27.76
	35.25
	42.76
	21.99
	36.48
	47.14
	16.38
	37.93
	43.65
	18.42

	Age
	
	
	
	 
	
	
	 
	
	
	 
	
	

	   20-39
	36.43**
	45
	18.56
	15.37**
	39.95
	44.67
	27.47**
	46.41
	26.11
	35.31**
	43.8
	20.89

	   40-59
	33.55
	42.75
	23.7
	35.14
	44.55
	20.32
	35.03
	50.32
	14.65
	42.87
	41.76
	15.38

	   60+
	26.26
	46
	27.75
	47.11
	45.4
	7.49
	47.43
	42.75
	9.82
	32.33
	47.19
	20.48

	Education
	
	
	
	 
	
	
	 
	
	
	 
	
	

	< HS
	45.5**
	40.45
	14.05
	30.83*
	43.29
	25.88
	27.40**
	41.18
	31.42
	27.15**
	44.99
	27.85

	   HS
	38.9
	46.18
	14.92
	25.66
	42.54
	31.8
	36.94
	43.95
	19.11
	35.06
	45.26
	19.68

	> HS
	26.91
	44.57
	28.52
	32.65
	43.19
	24.16
	36.19
	49.97
	13.84
	41.26
	42.84
	15.9

	ChiSq Test of Independence  **p < 0.0001, *p < 0.05
	
	
	
	
	
	
	
	


Table 5.11:  Adjusted Association between A1C and Race/Ethnicity using Rotated Factor Scores for Dietary Patterns

	 
	Model 1
	Model 2
	Model 3
	Model 4
	Model 5

	 
	(n = 4.717)
	(n = 4,712)
	(n = 4,484)
	(n = 4.425)
	(n = 4,330)

	 
	b-coeff
	p-value
	b-coeff
	p-value
	b-coeff
	p-value
	b-coeff
	p-value
	b-coeff
	p-value

	Race/ethnicity
	
	
	
	
	
	
	
	
	

	NH White
	(----)
	
	(----)
	
	(----)
	
	(----)
	
	(----)
	

	NH Black
	0.22
	< 0.0001
	0.21
	< 0.0001
	0.21
	< 0.0001
	0.16
	< 0.0001
	0.15
	< 0.0001

	Mexican American
	0.20
	< 0.0001
	0.17
	< 0.0001
	0.14
	0.001
	0.13
	0.001
	0.12
	0.003

	Age
	0.01
	< 0.0001
	0.01
	< 0.0001
	0.01
	< 0.0001
	0.01
	< 0.0001
	0.01
	< 0.0001

	Sex
	
	
	
	
	
	
	
	
	
	

	Female
	-0.06
	0.0003
	-0.06
	0.0004
	-0.04
	0.023
	-0.04
	0.033
	-0.05
	0.014

	Education
	
	
	
	
	
	
	
	
	
	

	< High School
	
	
	0.07
	0.009
	0.04
	0.168
	0.03
	0.227
	0.03
	0.241

	   High School
	
	
	0.06
	0.001
	0.04
	0.046
	0.02
	0.235
	0.02
	0.213

	> High School
	
	
	(----)
	
	(----)
	
	(----)
	
	
	

	Dietary Pattern
	
	
	
	
	
	
	
	
	

	Pattern 1
	
	
	
	
	-0.02
	0.011
	-0.02
	0.059
	-0.02
	0.060

	Pattern 2 
	
	
	
	
	0.00
	0.919
	0.00
	0.598
	0.00
	0.593

	Pattern 3
	
	
	
	
	0.03
	0.029
	0.02
	0.040
	0.03
	0.030

	Pattern 4
	
	
	
	
	0.01
	0.210
	0.01
	0.076
	0.01
	0.055

	Physical Activity
	
	
	
	
	
	
	
	
	

	No LTPA
	
	
	
	
	0.04
	0.004
	0.02
	0.166
	0.02
	0.152

	Irregular LTPA
	
	
	
	0.05
	0.022
	0.03
	0.124
	0.03
	0.120

	LTPA >= 5x per wk
	
	
	
	(----)
	
	(----)
	
	
	

	Total Kcal
	
	
	
	
	
	
	0.00
	0.142
	0.00
	0.151

	Smoking
	
	
	
	
	
	
	
	
	
	

	    Never
	
	
	
	
	(----)
	
	(----)
	
	
	

	    Former
	
	
	
	
	0.01
	0.585
	0.01
	0.710
	0.01
	0.760

	    Current
	
	
	
	
	0.02
	0.390
	0.04
	0.107
	0.04
	0.146

	BMI
	
	
	
	
	
	
	
	
	
	

	Normal/UnderWt
	
	
	
	
	
	(----)
	
	
	

	Overweight
	
	
	
	
	
	
	0.06
	0.002
	0.05
	0.0031

	Obese
	
	
	
	
	
	
	0.26
	< 0.0001
	0.25
	< 0.0001

	Family History
	
	
	
	
	
	
	
	0.08
	< 0.0001

	Multiple R2
	0.16
	0.16
	0.17
	0.22
	0.23


Discussion and Conclusions

General Findings 

This project was carried out to explore the role of diet and other lifestyle/environmental characteristics in the race/ethnic disparities in diabetes.  Results were fairly consistent with previous literature, finding that while a portion of diabetes differences across race/ethnic groups is explained by factors such as BMI, family history of diabetes, and SES, these disparities are still largely unexplained.  Health behaviors only weakly attenuated the race/ethnic disparities in A1C.  

With respect to dietary patterns only the Dark Breads pattern, characterized by higher intake of dark breads and lower intake of traditional Mexican foods (or lower intake of dark breads and higher intake of traditional Mexican using rotated factors), was significantly correlated with A1C in multivariate models.  Perhaps a higher intake from whole grains influences this association.  Fiber and whole grains have been previously shown to negatively correlate with risk of diabetes independent of energy intake and other risk factors (Liu et al., 2000; Schulze et al., 2004).  High fiber and low glycemic index foods (e.g. whole grains) are thought to be protective against chronic inflammation, which may decrease cellular response to insulin and also been associated with a decreased risk of T2D (Schulze et al., 2004; Schulze et al., 2005). 
Dietary patterns were retained from both un-rotated and rotated PCA solutions to compare results according to rotation.  The findings demonstrated that diet’s association with A1C was fairly consistent between solutions.  Rotation produced patterns that were more similar to those reported in previous literature, clearly separating intake of fruits and vegetables, often characterized as a ‘prudent pattern’ (higher intakes of fruits and vegetables) from intake of meats, potatoes, and refined grains, often described as a ‘western’ dietary pattern (Kant, 2004).  However, future research is needed to investigate whether the current finding that PCA solutions produced similar results according to rotation/no rotation would be consistent using other health outcomes and in other study samples.    
Based on fasting plasma glucose (FPG), prevalence estimates from the 1999-2000 NHANES reported that 2.8% of the US population has undiagnosed diabetes (Cowie et al., 2006).  In this study based on A1C diagnosis criteria, 1.99% of the sample had undiagnosed diabetes.  It is not surprising that the number of cases identified by A1C level is lower compared to fasting plasma glucose.  This issue was addressed by the International Expert Committee that recommended the A1C cut-point of 6.5%.  They state that this level was chosen, knowing that it would emphasize specificity rather than sensitivity, because there is low risk of diabetes complications below an A1C level of 6.5%, whether an individual is diagnosed or not.  However, to address those who are ‘at risk’, the committee recommends preventive measures be started for individuals with A1C of 6.0% or higher (The International Expert Committee (IEC), 2009).   

Unexplained Race/Ethnic Disparities in Diabetes 

Considering the unaccounted for portion of the diabetes gaps across race/ethnic groups, there are at least a few hypotheses that may help explain why the differences remain, namely 1) biologic/genetic variations unaccounted for by ‘family history of diabetes’, 2) underlying socioeconomic variation unaccounted for by education and/or PIR, 3) measurement error in dietary measurement 


Biologic differences across race/ethnic groups may account for unexplained differences in diabetes.  In the near future, advances in human genome research may allow for efficient investigation of this hypothesis.  However, although there are at least 11 gene regions that appear to be associated with T2D, the contribution of genetics to over-all risk is thought to be low for T2D compared to many other genetic-related diseases (Frayling, 2007).  


In this study SES was represented in most models by education level divided into 3 categories, which may be a gross under-representation of SES effects on diabetes.  Therefore, unexplained portions of race/ethnic differences in A1C may still be due to socioeconomic influence.  The findings from this study are consistent with a previous paper that found that after adjustment for SES (Duncan Index divided into 3 categories, or dichotomized education level) and other risk factors, African-Americans continued to have more than 2 times the odds of diabetes compared to whites (Brancati et al., 1996).  The authors concluded that African-Americans have a “strong, independent risk factor for diabetes” with “increased susceptibility” to the disease.  In a follow-up editorial, Kaufman and colleagues voiced concern about the author’s conclusions, based on the fact that residual confounding was a likely limitation in the study (Kaufman et al., 1997).  Using simulation data, Kaufman demonstrated that the categorization of both SES and BMI increased the likelihood of a type 1 error because it does not fully represent the effect of the continuous version of the variable.  In the present study, poverty-to-income ratio used in its continuous form showed similar associations with A1C as well as similar effects on the race/ethnic differences in A1C compared to the education categories.  Still, caution is warranted in concluding that SES effects have been adequately controlled in this study.  Other possibly important aspects of socioeconomic conditions, such as neighborhood characteristics, childhood SES, and economic assets were not included.             


Perhaps measurement error in the FFQ affected the inability to detect strong associations with diabetes and differences in diabetes across race/ethnic groups.  Food frequency questionnaires are thought to have lower validity compared to some other dietary measurement tools, and absolute validity of FFQ is virtually impossible to measure (Gibson, 2005).  Therefore, measurement error in the dietary assessment used in this study may have affected the ability to detect associations with diabetes and/or mediation effects of race/ethnic disparities.  Comparison of the validity of the DHQ (the questionnaire from which the NHANES FFQ was modified) to two other widely used FFQ demonstrated similar performance.  However, correlations of nutrient intakes with estimates from 4 averaged 24-hour recalls over a 1-year period demonstrate the difficulties with agreement between FFQ and other dietary survey instruments (Range of  correlations: 0.36 to 0.81) (Subar et al., 2001).  Conversely, 4 24-hour recalls may not be a sufficient number of recalls to represent usual intake as is measured by the FFQ (Willett, 1998), and thus low correlations between these two survey types would not be surprising.  This highlights the difficulties of validating food frequency questionnaires.

Dietary Patterns, Race/ethnicity, and Socioeconomic Status 
Race/ethnicity and socioeconomic status are both considered social determinants of health, and both of these factors may influence differences in health behaviors that in turn affect health.  Often, race/ethnicity, SES, and health behaviors are tested in models as determinants of health outcomes with no articulation as to the relationships between the variables.  However, gaining a better understanding of the relationships between these variables has public health implications.  For instance, this study demonstrated that dietary patterns had significant relationships with both SES and race/ethnicity.  Therefore, interventions aiming to change diet behaviors should consider both socioeconomic and cultural/ethnic influence as means to better target interventions.

In conclusion disparities in T2D exist for non-Hispanic blacks and Mexican-Americans compared to non-Hispanic whites.  Differences across race/ethnic groups in body size and socioeconomic status contribute to these disparities.  However, a large portion of the differences in prevalence remain unaccounted for.  Although dietary patterns varied significantly by race/ethnicity after adjustment for education or PIR, diet measures along with other health behaviors did not appreciably mediate the relationship between race/ethnicity and diabetes.  However, limitations of the measures such as a 3-category single measure of SES and measurement error in the FFQ may have affected the ability for meaningful association with diabetes to be detected.  

Chapter 6:  Summary of Projects and Future Directions

Major Findings of Projects 1, 2, and 3

For this work I focused on the study of dietary patterns and the use of the exploratory approach to dietary patterning in epidemiologic research.  The first and second analyses were carried out to learn and describe methodologies related to dietary patterning with data reduction techniques.  In the first, various multivariate reduction techniques and data transformations were used to identify and discuss important factors that must be addressed to derive meaningful dietary patterns.  In this study, I demonstrated the problem of magnitude effects in FFQ data when deriving patterns.  A prominent source of variance in dietary data is due to quantity differences among people that are not necessarily quality differences.  If data are not transformed to account for these magnitude effects, then derived patterns will reflect primarily differences in quantity.  In many studies, this type of magnitude is controlled by transforming data so that variables/food groups are represented by calories as a percentage of the individual’s total caloric intake or by the residual method as described by Willett (1998).  In this study, however, the NHANES FFQ was not designed to provide estimates of caloric intake and therefore transformation based on calories was not possible.  Instead, data were transformed so that each raw food group frequency was represented as a percentage of the individual’s total frequency, and this transformation accomplished the same control for row-level magnitude as a caloric adjustment would have.  Project 1 demonstrated that with similar transformations and standardization, data reduction techniques will provide similar dietary patterns.  

Project 2 assessed whether the number of food groups used in data reduction techniques would affect the resulting patterns.  Patterns that were derived using 106, 48, and 30 food group variables were strikingly similar, and the patterns’ subsequent ability to correlate with systolic blood pressure only slightly weakened as food groups were collapsed.  The number of food groups used in current literature varies, and 30-50 food groups is common (Kant, 2004).  This amount of food groups allows for sufficient detail of the diet with a manageable number of variables.  Therefore, the food grouping scheme using 48 food groups was carried into the third project.    

For the third project I applied the use of dietary patterns by examining diet’s contribution to race/ethnic disparities in diabetes.  Significant differences in dietary patterns were evident across race/ethnic group that were not explained simply by underlying socioeconomic disparities.  However, dietary patterns did not appear to contribute to variation in risk for diabetes across race/ethnic groups.  Socioeconomic status, measured as education or PIR, and BMI appeared to have the largest effects on the race/ethnic differences in A1C.  However, limitations of the measures and study design could have weakened the ability to detect correlates of diabetes and explanatory factors for the race/ethnic disparities in A1C.    
Limitations

Overall Study Limitations

As discussed in previous chapters measurement error is a major concern with food frequency questionnaires.  Measurement error in all dietary assessment instruments increase standard deviations of estimates.  As a result, nutrition effects are attenuated, and the likelihood of a type II error is increased (Willett, 1998).  Therefore, the lack of strong effects from dietary patterns may be, at least in part, due to measurement error in the FFQ.  Likewise, estimates of total calories and total sodium intakes were obtained from the average of 2 24-hour recalls.  Using a limited number of averaged 24-hour recalls will also increase the likelihood of null findings due to higher standard deviations (Willett, 1998).  In spite of the difficulties with measuring dietary exposure, the projects found that a dietary pattern of higher intakes of meats and refined grains was positively associated with systolic blood pressure and a pattern characterized by higher intakes of dark breads was negatively associated with A1C levels.  Because measurement error tends to attenuate effects, true effects are, most likely, truly stronger than the observed effects.   
Limitations of Dietary Patterns

Although dietary patterns offer possible benefits to the measure of dietary effects on health, there are some limitations to these methods.  First, there is a great deal of unavoidable subjectivity that is used when patterns are derived.  The investigator chooses how to group foods prior to patterning, the analytic method to employ, and criteria by which to interpret patterns and subsequently use them to relate to health.  With respect to some of this subjectivity, the results from this study demonstrated that, with careful use of data transformations to prepare the data for patterning, results will be similar across analytic methods and various aggregations of input variables.  Still, investigators should be aware of the apparent subjectivity and clearly plan and describe methods he/she chooses.

The exploratory approach to dietary patterns using factoring or clustering is a data-driven approach that makes no prior assumptions about diet’s associations with health.  Therefore, the derived patterns are developed simply by variance in intakes across individuals and not necessarily on meaningful variance that will predict health.  Correspondence analysis (CA), described in Chapter 3, may be a useful method for improving the identification of health-associated variance.  With CA row-level information (e.g. BMI categories) can be added to the analysis so that the spatial model reflects health information as well as diet.  However, since this method requires contingency table format, analyses with more than a few variables can become quite cumbersome.  Reduced rank regression is a similar technique that has been described using continuous variables, where patterns can be derived based on both response (biomarkers of health) and predictor (diet) variables (Hoffman et al., 2004).
Future Directions
Dietary patterning is becoming a common method used to summarize effects of overall nutritional exposure.  More methodological focuses are needed to clarify issues related to patterning such as the subjectivity applied to the analytic methods and the handling of dietary survey data prior to patterning.  In addition, comparisons to single-nutrient studies are needed to articulate whether dietary patterns truly increase the ability to detect diet/disease associations.    

Another methodological issue that needs to be addressed is whether dietary patterns should be derived separately for certain demographic subgroups.  As diets vary by age, sex, and race/ethnicity, should patterns be derived for these groups separately?  For instance, in the projects presented here, three major US race/ethnic groups were included in the derivations of dietary patterns.  It is not known, however, how this might affect the patterns and their ability to relate to health.  Using correspondence analysis in the first project, inertia (variance) in the first dimension was primarily due to race/ethnic differences in diet, so race/ethnicity certainly contributed a great amount of variance to the derived patterns.  Therefore, removing the race/ethnic variation (by deriving patterns separately by race/ethnicity) may considerably change the patterns and more clearly represent diet.  However, this topic needs to be addressed further.

The use of rotation in factor analysis/PCA is another methodological issue that needs clarification.  In most studies that have used this spatial technique, patterns were rotated (typically using Varimax orthogonal rotation) to increase the interpretability of the factors (Hodge et al., 2007; Kerver et al., 2003; Montonen et al., 2005).  In the present study, rotation altered the association between A1C and dietary patterns, so that no significant associations were found.  More research is needed to understand how rotation affects the ability of PCA solutions to associate with health.
Appendix

 Table A1:  Factor 1 Comparison of Factor Loadings from 3 PCA Solutions on 3 Food Grouping Schemes – Appended to Chapter 4
	Factor 1 Comparison

	106 Food Groups 
	Factor Loadings
	48 Food Groups
	Factor Loadings
	30 Food Groups
	Factor Loadings

	Liquid Milk
	-0.14139
	Liquid Milk
	-0.11797
	Liquid Milk
	-0.0284

	Lowfat Liquid Milk
	0.08755
	Lowfat Liquid Milk
	0.16716
	
	 

	Liquid Skim Milk
	0.13789
	 
	 
	 
	 

	Cheese
	-0.32072
	Cheese
	-0.229
	Other Dairy
	-0.04765

	Cottage Cheese
	0.18305
	
	 
	
	 

	Lowfat Cheeses
	0.1666
	
	 
	
	 

	Yogurt
	0.26675
	Other Dairy
	0.22807
	
	 

	Pudding
	-0.02119
	 
	 
	 
	 

	Icecream
	-0.2116
	Frozen Desserts
	-0.05485
	Frozen Desserts
	-0.10049

	RF Frozen Desserts
	0.16745
	 
	 
	 
	 

	Oils
	0.01264
	Oils and Dressings
	0.10295
	Oils and Dressings
	0.19259

	Dressing
	0.34457
	 
	 
	 
	 

	Butter
	-0.15592
	Butter
	-0.1458
	Other Added Fats
	-0.28517

	Margarine
	-0.13975
	Margarine
	-0.13266
	
	 

	Mayo
	-0.20226
	Other Added Fats
	-0.1712
	
	 

	Other Added Fats
	-0.10872
	
	 
	
	 

	RF Added Fats
	0.14311
	
	 
	
	 

	Gravies
	-0.19413
	 
	 
	 
	 

	Citrus Fruit Juice
	0.10132
	Citrus Fruit Juice
	0.15446
	100% Fruit Juices
	0.14473

	Other Fruit Juice
	0.08055
	Other Fruit Juice
	0.0981
	 
	 

	Citrus Fruit
	0.33176
	Citrus Fruit
	0.38099
	Fruit
	0.60459

	Bananas
	0.35338
	Bananas
	0.42415
	
	

	Melons
	0.26951
	Melons and Berries
	0.35622
	
	

	Berries
	0.29313
	
	
	
	

	Grapes
	0.29433
	Other Fruit
	0.61547
	
	

	Pineapple
	0.16165
	
	
	
	

	Peaches
	0.26469
	
	
	
	

	Dried Fruit
	0.3201
	
	
	
	

	Other Fruit
	0.50632
	 
	 
	 
	 

	Carrots
	0.43322
	Orange Veggies
	0.48374
	Colorful Vegetables
	0.64611

	Sweet Potatoes
	0.20151
	
	
	
	

	Greens
	0.39942
	Dark Green Leafies
	0.53509
	
	

	Dark Green Leafies
	0.46993
	 
	 
	 
	 

	Tomatoes
	0.38325
	Tomatoes
	0.08409
	Tomatoes
	0.23738

	Tomato Juice
	0.09666
	
	 
	
	 

	Salsa
	0.14127
	
	 
	
	 

	Catsup
	-0.32722
	 
	 
	 
	 

	Cruciferous Veggies
	0.42053
	Cruciferous Veggies
	0.44884
	Other Vegetables
	0.53138

	Peas
	0.16249
	Other Veggies
	0.43239
	
	

	Corn
	-0.03834
	
	
	
	

	Green Beans
	0.17519
	
	
	
	

	Lettuce
	0.14101
	
	
	
	

	Cucumber
	0.37809
	
	
	
	

	Squash
	0.34414
	
	
	
	

	Onions
	0.25212
	
	
	
	

	Peppers
	0.25
	
	
	
	

	Pickles
	-0.07818
	
	
	
	

	Coleslaw
	0.19094
	
	
	
	

	Other Veggie
	0.33028
	 
	 
	 
	 

	Fried Potatoes
	-0.44563
	Fried Potatoes
	-0.47308
	Starchy Vegetables
	-0.37501

	Other Potatoes
	-0.14222
	Other Potatoes
	-0.15351
	 
	 

	Table A1:  Factor 1 Comparison of Factor Loadings Continued…

	Beans
	0.13498
	Beans
	0.15485
	Meat Alternatives
	0.35842

	Nuts and Seeds
	0.20955
	Nuts and Seeds
	0.15392
	
	

	Nut Butters
	-0.00068
	
	 
	
	

	Soymilk
	0.11474
	Soy
	0.17361
	
	

	Soy
	0.15547
	 
	 
	 
	 

	White Meat: Lowfat
	0.19858
	White Meat
	0.04244
	White Meat
	0.09006

	White Meat: Regular
	-0.05281
	 
	 
	 
	 

	Eggs
	-0.15258
	Eggs
	-0.08861
	Eggs
	-0.04759

	Eggs: Lowfat
	0.12107
	 
	 
	 
	 

	Red Meat: Lowfat
	-0.22466
	Red Meats
	-0.46875
	Red/Processed Meats
	-0.45287

	Red Meat: Regular
	-0.42022
	
	
	
	

	Processed Meats: RF 
	0.04368
	Processed Meats
	-0.39266
	
	

	Deli Meats
	-0.25137
	
	
	
	

	Ham
	-0.31641
	
	
	
	

	Proc Meats:  Reg
	-0.41674
	 
	 
	 
	 

	Fried Fish 
	-0.1488
	Fish and Seafood
	0.11753
	Fish and Seafood
	0.15393

	Other Fish/Seafood
	0.17509
	 
	 
	 
	 

	Organ Meats
	-0.00771
	Organ Meats
	-0.00343
	Organ Meats
	0.00668

	Pastas
	-0.23471
	Pastas
	-0.26742
	Pastas and Pizza
	-0.3486

	Pizza
	-0.31127
	Pizza
	-0.36935
	 
	 

	Biscuits
	-0.21378
	Refined Breads
	-0.37154
	Refined Breads
	-0.39704

	Bagels
	0.05629
	
	
	
	

	Crackers
	0.00392
	
	
	
	

	Pancakes
	0.04513
	
	
	
	

	White Bread
	-0.44446
	
	
	
	

	Other Refined Grains
	-0.00882
	 
	 
	 
	 

	Dark Breads
	0.06676
	Dark Breads
	0.21844
	Dark Breads
	0.21115

	Other Whole Grains
	0.24579
	 
	 
	 
	 

	Hot Cereals
	0.19599
	Hot Cereals
	0.2463
	Hot Cereals
	0.23276

	RTE Cereals
	-0.17035
	RTE Cereals
	-0.15436
	RTE Cereals
	-0.17871

	Corn Tortillas
	0.08502
	Tortillas/Tacos
	0.05844
	Tortillas/Tacos
	0.19904

	Wheat Tortillas
	-0.0391
	
	 
	
	 

	Cornbread
	-0.10289
	 
	 
	 
	 

	Soups
	0.11464
	Soups
	0.08072
	Soups
	0.17334

	Chili
	0.02998
	 
	 
	 
	 

	Popcorn
	-0.05817
	Salty Snacks
	-0.33425
	Salty Snacks
	-0.32797

	Other Salty Snacks
	-0.31031
	 
	 
	 
	 

	Sweets
	-0.2091
	Sweets
	-0.17684
	Sweets and Candy
	-0.37385

	Muffins
	-0.07291
	
	 
	
	

	Pie
	-0.12909
	
	 
	
	

	Granola Bars
	0.05645
	
	 
	
	

	Syrup
	-0.16834
	Candy
	-0.25069
	
	

	Jams and Honey
	-0.06598
	
	 
	
	

	Other Candy
	-0.20661
	
	 
	
	

	Chocolate
	-0.17628
	 
	 
	 
	 

	Coffee
	-0.03948
	Coffee and Tea
	-0.01911
	Coffee and Tea
	-0.07089

	Tea
	0.02193
	 
	 
	 
	 

	Fruitades: Regular
	-0.17596
	Fruitades
	-0.11042
	Sugary Beverages
	-0.38431

	Fruitades: Diet
	0.06918
	
	 
	
	

	Soft Drinks: Regular
	-0.03029
	Soft Drinks
	-0.42038
	
	

	Soft Drinks: Diet
	-0.41469
	 
	 
	 
	 

	Alcohol
	-0.08546
	Alcohol
	-0.10518
	Alcohol
	-0.08378

	Meal Replacements
	0.01652
	Meal Replacements
	0.02753
	Misc
	 

	Creamer
	-0.05566
	Misc
	-0.02334
	
	-0.04158

	Misc
	0.04953
	 
	 
	 
	 


Table A2:  Factor 2 Comparison of Factor Loadings from 3 PCA Solutions, Chapter 4
	Factor 2 Comparison

	106 Food Groups 
	Factor Loadings
	48 Food Groups
	Factor Loadings
	30 Food Groups
	Factor Loadings

	Liquid Milk
	-0.22349
	Liquid Milk
	-0.17543
	Liquid Milk
	-0.25941

	Lowfat Liquid Milk
	-0.03327
	Lowfat Liquid Milk
	-0.08877
	
	 

	Liquid Skim Milk
	-0.04116
	 
	 
	 
	 

	Cheese
	0.18335
	Cheese
	0.2398
	Other Dairy
	0.24671

	Cottage Cheese
	0.04379
	
	 
	
	 

	Lowfat Cheeses
	0.08707
	
	 
	
	 

	Yogurt
	0.04337
	Other Dairy
	0.05348
	
	 

	Pudding
	0.09605
	 
	 
	 
	 

	Icecream
	0.09945
	Frozen Desserts
	0.04333
	Frozen Desserts
	0.06714

	RF Frozen Desserts
	0.08232
	 
	 
	 
	 

	Oils
	-0.01792
	Oils and Dressings
	0.22168
	Oils and Dressings
	0.23058

	Dressing
	0.18376
	 
	 
	 
	 

	Butter
	-0.05741
	Butter
	-0.13638
	Other Added Fats
	-0.08448

	Margarine
	-0.03655
	Margarine
	-0.16906
	
	 

	Mayo
	0.10995
	Other Added Fats
	0.20784
	
	 

	Other Added Fats
	0.07374
	
	 
	
	 

	RF Other Fats
	0.07532
	
	 
	
	 

	Gravies
	0.19822
	 
	 
	 
	 

	Citrus Fruit Juice
	0
	Citrus Fruit Juice
	0.01615
	100% Fruit Juices
	0.0349

	Other Fruit Juice
	0.04758
	Other Fruit Juice
	0.07087
	 
	 

	Citrus Fruit
	0.1272
	Citrus Fruit
	0.1395
	Fruit
	0.03444

	Bananas
	-0.00422
	Bananas
	0.00049
	
	 

	Melons
	0.13113
	Melons and Berries
	0.14644
	
	 

	Berries
	0.1539
	
	 
	
	 

	Grapes
	0.14913
	Other Fruit
	0.15056
	
	 

	Pineapple
	0.13068
	
	 
	
	 

	Peaches
	0.11855
	
	 
	
	 

	Dried Fruit
	0.0356
	
	 
	
	 

	Other Fruit
	0.10404
	 
	 
	 
	 

	Carrots
	0.19484
	Orange Veggies
	0.18258
	Colorful Vegetables
	0.19222

	Sweet Potatoes
	0.19996
	
	 
	
	 

	Greens
	0.20707
	Dark Green Leafies
	0.23102
	
	 

	Dark Green Leafies
	0.14308
	 
	 
	 
	 

	Tomatoes
	0.12184
	Tomatoes
	0.39121
	Tomatoes
	0.36796

	Tomato Juice
	-0.00563
	
	 
	
	

	Salsa
	-0.03162
	
	 
	
	

	Catsup
	0.25647
	 
	 
	 
	 

	Cruciferous Veggies
	0.28401
	Cruciferous Veggies
	0.26832
	Other Veggies
	0.317

	Peas
	0.27005
	Other Veggies
	0.36531
	
	

	Corn
	0.34962
	
	 
	
	

	Green Beans
	0.31359
	
	 
	
	

	Lettuce
	0.14054
	
	 
	
	

	Cucumber
	0.14983
	
	 
	
	

	Squash
	0.10288
	
	 
	
	

	Onions
	0.13347
	
	 
	
	

	Peppers
	0.0775
	
	 
	
	

	Pickles
	0.19443
	
	 
	
	

	Coleslaw
	0.18217
	
	 
	
	

	Other Veggie
	0.17896
	 
	 
	 
	 

	Fried Potatoes
	0.29932
	Fried Potatoes
	0.33311
	Starchy Veggies
	0.3698

	Other Potatoes
	0.30011
	Other Potatoes
	0.17404
	 
	 

	

	Table A2:  Factor 2 Comparison of Factor Loadings Continued…

	Beans
	-0.01212
	Beans
	0.27083
	Meat Alternatives
	0.12217

	Nuts and Seeds
	0.06254
	Nuts and Seeds
	-0.01959
	
	 

	Nut Butters
	0.02228
	
	 
	
	 

	Soymilk
	-0.02335
	Soy
	0.00936
	
	 

	Soy
	0.04022
	 
	 
	 
	 

	White Meat: Lowfat
	0.24004
	White Meat
	0.34607
	White Meat
	0.36339

	White Meat: Regular
	0.31368
	 
	 
	 
	 

	Eggs
	0.04933
	Eggs
	0.08058
	Eggs
	0.11911

	Eggs: Lowfat
	0.03688
	 
	 
	 
	 

	Red Meat: Lowfat
	0.23561
	Red Meats
	0.43893
	Red/Processed Meats
	0.49375

	Red Meat: Regular
	0.40409
	
	 
	
	

	Proc Meats:  Lowfat
	0.1566
	Processed Meats
	0.31859
	
	

	Deli Meats
	0.28148
	
	
	
	

	Ham
	0.2637
	
	
	
	

	Processed Meats: Regular
	0.22516
	 
	 
	 
	 

	Fried Fish/Seafood
	0.2175
	Fish and Seafood
	0.26793
	Fish and Seafood
	0.27466

	Other Fish/Seafood
	0.22382
	 
	 
	 
	 

	Organ Meats
	0.1454
	Organ Meats
	0.12258
	Organ Meats
	0.11666

	Pastas
	0.38581
	Pastas
	0.36913
	Pastas and Pizza
	0.43421

	Pizza
	0.24247
	Pizza
	0.25658
	 
	 

	Biscuits
	0.1744
	Refined Breads
	0.19361
	Refined Breads
	0.2787

	Bagels
	0.06896
	
	 
	
	 

	Crackers
	0.05938
	
	 
	
	 

	Pancakes
	0.07108
	
	 
	
	 

	White Bread
	0.14238
	
	 
	
	 

	Other Refined Grains
	0.13464
	 
	 
	 
	 

	Dark Breads
	0.05986
	Dark Breads
	-0.03149
	Dark Breads
	-0.02783

	Other Whole Grains
	-0.0244
	 
	 
	 
	 

	Hot Cereals
	0.06013
	Hot Cereals
	0.0036
	Hot Cereals
	-0.01522

	RTE Cereals
	0.02899
	RTE Cereals
	0.03469
	RTE Cereals
	0.05592

	Corn Tortillas
	-0.04277
	Tortillas/Tacos
	0.30499
	Tortillas/Tacos
	0.25392

	Wheat Tortillas
	-0.02642
	
	
	
	 

	Cornbread
	0.19201
	 
	 
	 
	 

	Soups
	0.1253
	Soups
	0.2546
	Soups
	0.23221

	Chili
	0.0233
	 
	 
	 
	 

	Popcorn
	0.15276
	Salty Snacks
	0.24439
	Salty Snacks
	0.31611

	Other Salty Snacks
	0.23902
	 
	 
	 
	 

	Sweets
	0.05522
	Sweets
	0.02068
	Sweets and Candy
	-0.29463

	Muffins
	0.05524
	
	 
	
	 

	Pie
	0.21537
	
	 
	
	 

	Granola Bars
	0.11577
	
	 
	
	 

	Syrup
	0.18696
	Candy
	-0.39464
	
	 

	Jams and Honey
	-0.0029
	
	 
	
	 

	Other Candy
	-0.40479
	
	 
	
	 

	Chocolate
	0.05623
	 
	 
	 
	 

	Coffee
	-0.52214
	Coffee and Tea
	-0.65233
	Coffee and Tea
	-0.66206

	Tea
	-0.18115
	 
	 
	 
	 

	Fruitades: Regular
	0.07411
	Fruitades
	0.09299
	Sugary Beverages
	0.25935

	Fruitades: Diet
	-0.01903
	
	 
	
	 

	Soft Drinks: Regular
	0.01916
	Soft Drinks
	0.18046
	
	

	Soft Drinks: Diet
	0.15074
	 
	 
	 
	 

	Alcohol
	-0.05592
	Alcohol
	-0.02019
	Alcohol
	0.00607

	Meal Replacements
	-0.04282
	Meal Replacements
	-0.03825
	Misc
	 

	Creamer
	-0.51773
	Misc
	-0.52295
	
	-0.54275

	Misc
	-0.30255
	 
	 
	 
	 


Table A3: Factor 3 Comparison of Factor Loadings from 3 PCA Solutions on 3 Schemes, Chapter 4 
	Factor 3 Comparison

	106 Food Groups 
	Factor Loadings
	48 Food Groups
	Factor Loadings
	30 Food Groups
	Factor Loadings

	Liquid Milk
	0.08773
	Liquid Milk
	-0.23263
	Liquid Milk
	0.18452

	Lowfat Liquid Milk
	-0.11481
	Lowfat Liquid Milk
	0.2666
	
	 

	Liquid Skim Milk
	-0.1909
	 
	 
	 
	 

	Cheese
	0.03339
	Cheese
	0.23747
	Other Dairy
	0.24765

	Cottage Cheese
	-0.14571
	
	 
	
	 

	Lowfat Cheeses
	-0.13524
	
	 
	
	 

	Yogurt
	-0.10426
	Other Dairy
	0.21375
	
	 

	Pudding
	-0.13848
	 
	 
	 
	 

	Icecream
	-0.13888
	Frozen Desserts
	0.23995
	Frozen Desserts
	0.25553

	Lowfat Frozen Desserts
	-0.13798
	 
	 
	 
	 

	Oils
	0.40214
	Oils and Dressings
	-0.03616
	Oils and Dressings
	-0.07855

	Dressing
	-0.17848
	 
	 
	 
	 

	Butter
	-0.16632
	Butter
	0.14736
	Other Added Fats
	0.21926

	Margarine
	-0.27984
	Margarine
	0.22491
	
	 

	Mayo
	-0.10542
	Other Added Fats
	0.08204
	
	 

	Other Fats
	0.09636
	
	 
	
	 

	Reduced Fat Other Fats
	-0.05157
	
	 
	
	 

	Gravies
	-0.01003
	 
	 
	 
	 

	Citrus Fruit Juice
	-0.03841
	Citrus Fruit Juice
	-0.00595
	100% Fruit Juices
	0.1222

	Other Fruit Juice
	0.04052
	Other Fruit Juice
	-0.07665
	 
	 

	Citrus Fruit
	0.05191
	Citrus Fruit
	0.02299
	Fruit
	0.22901

	Bananas
	-0.05992
	Bananas
	0.04729
	
	 

	Melons
	0.01985
	Melons and Berries
	0.09427
	
	 

	Berries
	-0.041
	Other Fruit
	0.08259
	
	 

	Grapes
	-0.04991
	
	
	
	 

	Pineapple
	-0.02737
	
	 
	
	 

	Peaches
	-0.02492
	
	 
	
	 

	Dried Fruit
	-0.16694
	
	 
	
	 

	Other Fruit
	0.06505
	 
	 
	 
	 

	Carrots
	-0.07697
	Orange Veggies
	0.21449
	Colorful Vegetables
	0.25592

	Sweet Potatoes
	-0.12237
	
	 
	
	 

	Greens
	0.07536
	Dark Green Leafies
	0.10912
	
	 

	Dark Green Leafies
	-0.07328
	 
	 
	 
	 

	Tomatoes
	0.27516
	Tomatoes
	-0.51321
	Tomatoes
	-0.53897

	Tomato Juice
	0.03487
	
	 
	
	

	Salsa
	0.69324
	
	 
	
	

	Catsup
	0.06506
	 
	 
	 
	 

	Cruciferous Veggies
	-0.00808
	Cruciferous Veggies
	0.12117
	Other Vegetables
	0.0062

	Peas
	-0.13028
	Other Veggies
	-0.0131
	
	 

	Corn
	0.02854
	
	 
	
	 

	Green Beans
	-0.09817
	
	 
	
	 

	Lettuce
	-0.06028
	
	 
	
	 

	Cucumber
	0.05247
	
	 
	
	 

	Squash
	0.07166
	
	 
	
	 

	Onions
	0.35006
	
	 
	
	 

	Peppers
	0.34427
	
	 
	
	 

	Pickles
	-0.04305
	
	 
	
	 

	Coleslaw
	0.01793
	
	 
	
	 

	Other Veggie
	-0.00867
	 
	 
	 
	 

	Fried Potatoes
	0.14508
	Fried Potatoes
	-0.02717
	Starchy Vegetables
	0.05246

	Other Potatoes
	-0.19065
	Other Potatoes
	0.249
	 
	 

	TableA3: Factor 3 Comparison of Factor Loadings continued…

	Beans
	0.62816
	Beans
	-0.62988
	Meat Alternatives
	-0.123

	Nuts and Seeds
	-0.14726
	Nuts and Seeds
	0.28716
	
	 

	Nut Butters
	-0.2344
	
	
	
	 

	Soymilk
	-0.0482
	Soy
	0.10023
	
	 

	Soy
	-0.02379
	 
	 
	 
	 

	White Meat: Lowfat
	0.00308
	White Meat
	0.13015
	White Meat
	0.1665

	White Meat: Regular
	0.07165
	 
	 
	 
	 

	Eggs
	0.08412
	Eggs
	-0.01568
	Eggs
	-0.04932

	Eggs: Lowfat
	-0.02659
	 
	 
	 
	 

	Red Meat: Lowfat
	0.00289
	Red Meats
	0.02269
	Red/Processed Meats
	-0.019

	Red Meat: Regular
	0.18256
	
	 
	
	 

	Processed Meats: RF 
	-0.12396
	Processed Meats
	0.13931
	
	 

	Deli Meats
	-0.00749
	
	 
	
	 

	Ham
	-0.0272
	
	 
	
	 

	Processed Meats: Reg
	0.05594
	 
	 
	 
	 

	Fried Fish and Seafood
	0.01032
	Fish and Seafood
	0.16369
	Fish and Seafood
	0.20083

	Other Fish and Seafood
	-0.00855
	 
	 
	 
	 

	Organ Meats
	-0.01752
	Organ Meats
	0.02632
	Organ Meats
	0.02352

	Pastas
	0.02252
	Pastas
	0.1498
	Pastas and Pizza
	0.09759

	Pizza
	-0.00144
	Pizza
	0.13748
	 
	 

	Biscuits
	0.05941
	Refined Breads
	0.12597
	Refined Breads
	0.02296

	Bagels
	-0.09256
	
	 
	
	 

	Crackers
	-0.2401
	
	 
	
	 

	Pancakes
	0.03996
	
	 
	
	 

	White Bread
	-0.03977
	
	 
	
	 

	Other Refined Grains
	0.24931
	 
	 
	 
	 

	Dark Breads
	-0.23561
	Dark Breads
	0.33043
	Dark Breads
	0.41465

	Other Whole Grains
	-0.15782
	 
	 
	 
	 

	Hot Cereals
	-0.09969
	Hot Cereals
	0.10306
	Hot Cereals
	0.242

	RTE Cereals
	0.00401
	RTE Cereals
	-0.01098
	RTE Cereals
	0.13502

	Corn Tortillas
	0.67776
	Tortillas/Tacos
	-0.67104
	Tortillas/Tacos
	-0.63442

	Wheat Tortillas
	0.3178
	
	
	
	

	Cornbread
	-0.01852
	 
	 
	 
	 

	Soups
	0.02926
	Soups
	-0.35101
	Soups
	-0.41543

	Chili
	0.4237
	 
	 
	 
	 

	Popcorn
	-0.07103
	Salty Snacks
	 
	Salty Snacks
	0.02625

	Other Salty Snacks
	0.02362
	 
	 
	 
	 

	Sweets
	-0.22512
	Sweets
	0.13725
	Sweets and Candy
	-0.04718

	Muffins
	0.05728
	
	 
	
	 

	Pie
	-0.12582
	
	 
	
	 

	Granola Bars
	-0.09
	
	 
	
	 

	Syrup
	-0.02645
	Candy
	0.2438
	
	 

	Jams and Honey
	-0.25959
	
	 
	
	 

	Other Candy
	0.05403
	
	-0.09579
	
	 

	Chocolate
	-0.14723
	 
	 
	 
	 

	Coffee
	-0.1473
	Coffee and Tea
	-0.06781
	Coffee and Tea
	-0.14903

	Tea
	-0.11378
	 
	 
	 
	 

	Fruitades: Regular
	0.08219
	Fruitades
	-0.0531
	Sugary Beverages
	-0.05139

	Fruitades: Diet
	-0.02793
	
	 
	
	 

	Soft Drinks: Regular
	-0.08512
	Soft Drinks
	-0.01091
	
	 

	Soft Drinks: Diet
	0.16546
	 
	 
	 
	 

	Alcohol
	0.00557
	Alcohol
	0.01537
	Alcohol
	-0.01965

	Meal Replacements
	-0.01585
	Meal Replacements
	-0.00571
	Misc
	 

	Creamer
	-0.00221
	Misc
	-0.20948
	
	-0.26305

	Misc
	-0.0591
	 
	 
	 
	 


Table A4:  Factor 4 Comparison of Factor Loadings from 3 PCA Solutions on 3 Food Grouping Schemes, Chapter 4  
	Factor 4 Comparison

	106 Food Groups 
	 Loadings
	48 Food Groups
	Loadings
	30 Food Groups
	Loadings

	Liquid Milk
	0.20568
	Liquid Milk
	0.37018
	Liquid Milk
	0.56254

	Lowfat Liquid Milk
	-0.06777
	Lowfat Liquid Milk
	-0.00687
	
	

	Liquid Skim Milk
	-0.0679
	 
	 
	 
	 

	Cheese
	-0.3614
	Cheese
	-0.19782
	Other Dairy
	-0.11255

	Cottage Cheese
	-0.05043
	
	
	
	 

	Lowfat Cheeses
	-0.18267
	
	 
	
	 

	Yogurt
	-0.07187
	Other Dairy
	0.07276
	
	 

	Pudding
	0.1082
	 
	 
	 
	 

	Icecream
	0.0599
	Frozen Desserts
	0.15519
	Frozen Desserts
	0.03758

	Lowfat Frozen Desserts
	0.03257
	 
	 
	 
	 

	Oils
	0.01838
	Oils and Dressings
	-0.41962
	Oils and Dressings
	-0.39976

	Dressing
	-0.512
	 
	 
	 
	 

	Butter
	-0.04113
	Butter
	-0.11923
	Other Added Fats
	-0.28964

	Margarine
	0.04237
	Margarine
	-0.05014
	
	 

	Mayo
	-0.13098
	Other Added Fats
	-0.10662
	
	 

	Other Fats
	-0.12745
	
	 
	
	 

	Reduced Fat Other Fats
	-0.11324
	
	 
	
	 

	Gravies
	0.17209
	 
	 
	 
	 

	Citrus Fruit Juice
	0.24646
	Citrus Fruit Juice
	0.44492
	100% Fruit Juices
	0.43978

	Other Fruit Juice
	0.32324
	Other Fruit Juice
	0.41349
	 
	 

	Citrus Fruit
	0.20194
	Citrus Fruit
	0.19665
	Fruit
	0.20455

	Bananas
	0.24304
	Bananas
	0.31696
	
	 

	Melons
	0.17086
	Melons and Berries
	0.16186
	
	 

	Berries
	0.10789
	Other Fruit
	0.21974
	
	 

	Grapes
	0.13701
	
	
	
	 

	Pineapple
	0.20835
	
	 
	
	 

	Peaches
	0.27114
	
	 
	
	 

	Dried Fruit
	0.08506
	
	 
	
	 

	Other Fruit
	0.22658
	 
	 
	 
	 

	Carrots
	-0.06205
	Orange Veggies
	-0.05654
	Colorful Vegetables
	-0.14931

	Sweet Potatoes
	0.20973
	
	 
	
	 

	Greens
	0.09132
	Dark Green Leafies
	-0.2247
	
	 

	Dark Green Leafies
	-0.37338
	 
	 
	 
	 

	Tomatoes
	-0.25581
	Tomatoes
	-0.08436
	Tomatoes
	0.1462

	Tomato Juice
	0.12529
	
	 
	
	 

	Salsa
	-0.08185
	
	 
	
	 

	Catsup
	-0.11203
	 
	 
	 
	 

	Cruciferous Veggies
	-0.00143
	Cruciferous Veggies
	-0.11042
	Other Vegetables
	-0.23354

	Peas
	0.11214
	Other Veggies
	-0.3039
	
	 

	Corn
	0.06864
	
	 
	
	 

	Green Beans
	0.0431
	
	 
	
	 

	Lettuce
	-0.35467
	
	 
	
	 

	Cucumber
	-0.20891
	
	 
	
	 

	Squash
	0.01771
	
	 
	
	 

	Onions
	-0.15681
	
	 
	
	 

	Peppers
	-0.22143
	
	 
	
	 

	Pickles
	-0.18726
	
	 
	
	 

	Coleslaw
	0.15447
	
	 
	
	 

	Other Veggie
	0.01059
	 
	 
	 
	 

	Fried Potatoes
	-0.15472
	Fried Potatoes
	0.00782
	Starchy Vegetables
	-0.04016

	Other Potatoes
	0.00801
	Other Potatoes
	0.00331
	 
	 

	
	
	
	
	
	

	Table A4:  Factor 4 Comparison of Factor Loadings Continued…

	Beans
	0.09061
	Beans
	-0.02429
	Meat Alternatives
	0.02497

	Nuts and Seeds
	-0.1477
	Nuts and Seeds
	-0.10438
	
	 

	Nut Butters
	0.0392
	
	 
	
	 

	Soymilk
	-0.03347
	Soy
	-0.05481
	
	 

	Soy
	-0.02403
	 
	 
	 
	 

	White Meat: Lowfat
	-0.08236
	White Meat
	-0.10222
	White Meat
	-0.17768

	White Meat: Regular
	-0.06181
	 
	 
	 
	 

	Eggs
	-0.04782
	Eggs
	-0.20379
	Eggs
	-0.23948

	Eggs: Lowfat
	-0.03204
	 
	 
	 
	 

	Red Meat: Lowfat
	-0.1071
	Red Meats
	-0.03272
	Red/Processed Meats
	-0.12802

	Red Meat: Regular
	-0.00612
	
	 
	
	 

	Processed Meats: RF 
	0.07452
	Processed Meats
	-0.02537
	
	 

	Deli Meats
	-0.0366
	
	 
	
	 

	Ham
	0.02196
	
	 
	
	 

	Processed Meats: RF
	0.06578
	 
	 
	 
	 

	Fried Fish and Seafood
	0.21112
	Fish and Seafood
	-0.05166
	Fish and Seafood
	-0.11718

	Other Fish and Seafood
	-0.05348
	 
	 
	 
	 

	Organ Meats
	0.23797
	Organ Meats
	0.08853
	Organ Meats
	-0.00647

	Pastas
	0.00342
	Pastas
	0.09691
	Pastas and Pizza
	0.08902

	Pizza
	-0.15987
	Pizza
	0.10066
	 
	 

	Biscuits
	0.23573
	Refined Breads
	0.04856
	Refined Breads
	-0.04947

	Bagels
	-0.09739
	
	 
	
	 

	Crackers
	0.021
	
	 
	
	 

	Pancakes
	0.17378
	
	 
	
	 

	White Bread
	0.01618
	
	 
	
	 

	Other Refined Grains
	0.0451
	 
	 
	 
	 

	Dark Breads
	-0.1212
	Dark Breads
	-0.01642
	Dark Breads
	0.02508

	Other Whole Grains
	0.0068
	 
	 
	 
	 

	Hot Cereals
	0.26106
	Hot Cereals
	0.20422
	Hot Cereals
	0.11637

	RTE Cereals
	0.11575
	RTE Cereals
	0.4159
	RTE Cereals
	0.52743

	Corn Tortillas
	0.08082
	Tortillas/Tacos
	-0.00823
	Tortillas/Tacos
	0.20615

	Wheat Tortillas
	-0.06376
	
	 
	
	 

	Cornbread
	0.30297
	 
	 
	 
	 

	Soups
	0.03913
	Soups
	-0.03236
	Soups
	0.12425

	Chili
	0.02851
	 
	 
	 
	 

	Popcorn
	-0.06275
	Salty Snacks
	-0.01819
	Salty Snacks
	-0.04268

	Other Salty Snacks
	-0.1818
	 
	 
	 
	 

	Sweets
	0.06743
	Sweets
	0.14628
	Sweets and Candy
	0.00114

	Muffins
	0.14229
	
	 
	
	 

	Pie
	0.25041
	
	 
	
	 

	Granola Bars
	-0.08323
	
	 
	
	 

	Syrup
	0.12393
	Candy
	0.06805
	
	 

	Jams and Honey
	0.13312
	
	 
	
	 

	Other Candy
	0.13296
	
	 
	
	 

	Chocolate
	-0.12229
	 
	 
	 
	 

	Coffee
	-0.10957
	Coffee and Tea
	-0.30271
	Coffee and Tea
	-0.3132

	Tea
	-0.00181
	 
	 
	 
	 

	Fruitades: Regular
	0.14823
	Fruitades
	0.31655
	Sugary Beverages
	0.23322

	Fruitades: Diet
	0.00194
	
	
	
	 

	Soft Drinks: Regular
	-0.23938
	Soft Drinks
	0.08287
	
	 

	Soft Drinks: Diet
	0.0275
	 
	 
	 
	 

	Alcohol
	-0.17093
	Alcohol
	-0.11696
	Alcohol
	-0.07711

	Meal Replacements
	0.0325
	Meal Replacements
	0.11692
	Misc
	-0.14709

	Creamer
	-0.0141
	Misc
	-0.188
	
	

	Misc
	-0.09022
	 
	 
	 
	 


Table A5:  Mean Reported Food Group Frequencies by Demographic Group: Correspondence Analysis Contingency Table – Appended to Chapter 3 
	 
	 
	 
	Milk
	Lowfat Milk
	Yog
	Chees
	Frozen Dess
	Butter
	Marg
	Oils Dress
	Other Fats
	Citrus Juice
	Other Juice
	Banan
	Citrus
	Melons Berries

	White Males
	Education
	Age
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	1
	< HS
	20-39
	1.57
	0.07
	0.60
	0.11
	0.16
	0.48
	0.30
	0.46
	0.15
	0.18
	0.19
	0.06
	0.31
	0.41

	2
	 
	40-59
	1.36
	0.24
	0.36
	0.09
	0.15
	0.54
	0.42
	0.67
	0.15
	0.42
	0.29
	0.04
	0.39
	0.46

	3
	 
	60+
	1.07
	0.34
	0.29
	0.12
	0.23
	0.59
	0.66
	0.71
	0.17
	0.18
	0.39
	0.06
	0.41
	0.65

	4
	   HS
	20-39
	1.13
	0.18
	0.64
	0.12
	0.16
	0.42
	0.36
	0.74
	0.17
	0.22
	0.18
	0.06
	0.40
	0.57

	5
	 
	40-59
	1.00
	0.33
	0.39
	0.09
	0.18
	0.55
	0.52
	0.66
	0.16
	0.08
	0.23
	0.05
	0.22
	0.44

	6
	 
	60+
	0.85
	0.58
	0.34
	0.12
	0.27
	0.44
	0.66
	0.76
	0.17
	0.08
	0.37
	0.09
	0.38
	0.71

	7
	> HS
	20-39
	0.65
	0.42
	0.54
	0.16
	0.14
	0.29
	0.22
	0.67
	0.17
	0.12
	0.20
	0.05
	0.43
	0.43

	8
	 
	40-59
	0.69
	0.40
	0.51
	0.17
	0.16
	0.42
	0.41
	0.82
	0.17
	0.11
	0.23
	0.07
	0.30
	0.53

	9
	 
	60+
	0.77
	0.51
	0.36
	0.11
	0.22
	0.41
	0.49
	0.76
	0.16
	0.10
	0.40
	0.08
	0.51
	0.69

	White Females
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	10
	< HS
	20-39
	0.94
	0.22
	0.51
	0.23
	0.17
	0.55
	0.50
	0.64
	0.31
	0.23
	0.15
	0.07
	0.45
	0.30

	11
	 
	40-59
	0.91
	0.44
	0.43
	0.23
	0.11
	0.54
	0.59
	0.72
	0.18
	0.22
	0.29
	0.06
	0.24
	0.69

	12
	 
	60+
	0.78
	0.32
	0.31
	0.17
	0.23
	0.61
	0.77
	0.76
	0.18
	0.14
	0.36
	0.10
	0.41
	0.74

	13
	   HS
	20-39
	0.87
	0.33
	0.51
	0.14
	0.19
	0.35
	0.39
	0.59
	0.20
	0.14
	0.14
	0.05
	0.19
	0.36

	14
	 
	40-59
	0.99
	0.21
	0.42
	0.15
	0.16
	0.47
	0.57
	0.68
	0.21
	0.12
	0.23
	0.07
	0.21
	0.49

	15
	 
	60+
	0.65
	0.55
	0.31
	0.18
	0.22
	0.44
	0.73
	0.82
	0.19
	0.09
	0.41
	0.07
	0.42
	0.82

	16
	> HS
	20-39
	0.51
	0.51
	0.60
	0.22
	0.15
	0.28
	0.28
	0.70
	0.16
	0.12
	0.18
	0.06
	0.23
	0.52

	17
	 
	40-59
	0.52
	0.52
	0.49
	0.23
	0.16
	0.43
	0.35
	0.82
	0.15
	0.09
	0.25
	0.08
	0.25
	0.76

	18
	 
	60+
	0.57
	0.65
	0.39
	0.22
	0.20
	0.49
	0.62
	0.91
	0.17
	0.11
	0.38
	0.11
	0.46
	1.02

	Black Males
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	

	19
	< HS
	20-39
	0.76
	0.01
	0.41
	0.06
	0.13
	0.37
	0.48
	0.74
	0.17
	0.57
	0.21
	0.11
	0.51
	0.56

	20
	 
	40-59
	0.87
	0.05
	0.19
	0.09
	0.22
	0.37
	0.37
	0.67
	0.18
	0.18
	0.24
	0.12
	0.40
	0.76

	21
	 
	60+
	0.56
	0.03
	0.13
	0.05
	0.21
	0.36
	0.32
	0.68
	0.17
	0.10
	0.42
	0.07
	0.49
	0.76

	22
	   HS
	20-39
	0.77
	0.03
	0.32
	0.03
	0.15
	0.30
	0.32
	0.65
	0.17
	0.34
	0.14
	0.05
	0.46
	0.34

	23
	 
	40-59
	0.43
	0.04
	0.24
	0.04
	0.13
	0.24
	0.33
	0.71
	0.13
	0.35
	0.31
	0.13
	0.40
	0.81

	24
	 
	60+
	0.75
	0.12
	0.13
	0.07
	0.14
	0.14
	0.44
	0.74
	0.15
	0.16
	0.33
	0.10
	0.44
	0.77

	25
	> HS
	20-39
	0.53
	0.05
	0.41
	0.08
	0.14
	0.29
	0.38
	0.70
	0.16
	0.40
	0.17
	0.07
	0.54
	0.46

	26
	 
	40-59
	0.50
	0.10
	0.27
	0.08
	0.11
	0.25
	0.34
	0.60
	0.11
	0.21
	0.25
	0.07
	0.45
	0.51

	27
	 
	60+
	0.65
	0.17
	0.21
	0.07
	0.27
	0.34
	0.50
	0.85
	0.20
	0.26
	0.40
	0.09
	0.54
	0.78

	Black Females
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	

	28
	< HS
	20-39
	0.71
	0.01
	0.36
	0.17
	0.22
	0.61
	0.64
	0.57
	0.27
	0.39
	0.17
	0.11
	1.02
	0.73

	29
	 
	40-59
	0.59
	0.01
	0.20
	0.18
	0.17
	0.41
	0.50
	0.74
	0.19
	0.33
	0.23
	0.13
	0.84
	0.68

	30
	 
	60+
	0.70
	0.09
	0.24
	0.18
	0.25
	0.41
	0.62
	0.71
	0.22
	0.52
	0.50
	0.15
	0.75
	1.01

	31
	   HS
	20-39
	0.69
	0.03
	0.35
	0.16
	0.22
	0.34
	0.41
	0.52
	0.17
	0.58
	0.25
	0.12
	0.40
	0.79

	32
	 
	40-59
	0.74
	0.08
	0.35
	0.18
	0.30
	0.45
	0.54
	0.69
	0.29
	0.56
	0.39
	0.12
	0.80
	1.14

	33
	 
	60+
	0.52
	0.06
	0.19
	0.11
	0.17
	0.23
	0.57
	0.57
	0.16
	0.32
	0.41
	0.13
	0.50
	0.86

	34
	> HS
	20-39
	0.59
	0.09
	0.37
	0.15
	0.14
	0.31
	0.39
	0.73
	0.12
	0.27
	0.17
	0.08
	0.52
	0.54

	35
	 
	40-59
	0.46
	0.17
	0.31
	0.18
	0.19
	0.34
	0.51
	0.69
	0.13
	0.23
	0.28
	0.11
	0.43
	0.86

	36
	 
	60+
	0.49
	0.18
	0.29
	0.16
	0.23
	0.30
	0.55
	0.86
	0.12
	0.36
	0.44
	0.14
	0.60
	1.19


Table A5:  Continued… 
	 
	 
	 
	Milk
	Lowfat Milk
	Yog
	Chees
	Frozen Dess
	Butter
	Marg
	Oils Dress
	Other Fats
	Citrus Juice
	Other Juice
	Banan
	Citrus
	Melons Berries

	MexAm Males
	Education
	Age
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	37
	< HS
	20-39
	0.82
	0.04
	0.28
	0.16
	0.16
	0.13
	0.13
	0.91
	0.19
	0.39
	0.32
	0.12
	0.39
	0.84

	38
	 
	40-59
	1.18
	0.14
	0.22
	0.13
	0.12
	0.18
	0.15
	0.77
	0.13
	0.29
	0.42
	0.12
	0.42
	1.00

	39
	 
	60+
	1.35
	0.16
	0.25
	0.10
	0.14
	0.31
	0.42
	0.85
	0.18
	0.16
	0.51
	0.18
	0.55
	1.01

	40
	   HS
	20-39
	0.80
	0.08
	0.22
	0.08
	0.10
	0.20
	0.15
	0.70
	0.17
	0.29
	0.30
	0.11
	0.52
	0.60

	41
	 
	40-59
	0.82
	0.14
	0.28
	0.03
	0.10
	0.15
	0.45
	0.92
	0.09
	0.14
	0.28
	0.06
	0.19
	0.51

	42
	 
	60+
	1.10
	0.02
	0.27
	0.09
	0.17
	0.42
	0.48
	0.97
	0.13
	0.10
	0.34
	0.19
	0.56
	0.85

	43
	> HS
	20-39
	0.77
	0.26
	0.45
	0.16
	0.15
	0.11
	0.19
	0.78
	0.14
	0.18
	0.24
	0.11
	0.55
	0.60

	44
	 
	40-59
	0.90
	0.20
	0.32
	0.06
	0.13
	0.17
	0.20
	0.81
	0.18
	0.28
	0.38
	0.10
	0.34
	0.80

	45
	 
	60+
	0.62
	0.20
	0.28
	0.09
	0.13
	0.32
	0.44
	1.11
	0.14
	0.10
	0.35
	0.12
	0.21
	0.84

	MexAm Females
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	46
	< HS
	20-39
	1.02
	0.08
	0.27
	0.22
	0.16
	0.21
	0.21
	0.82
	0.26
	0.22
	0.31
	0.11
	0.35
	0.92

	47
	 
	40-59
	1.24
	0.18
	0.32
	0.16
	0.16
	0.19
	0.32
	0.83
	0.20
	0.29
	0.45
	0.15
	0.57
	1.33

	48
	 
	60+
	1.26
	0.14
	0.31
	0.13
	0.10
	0.28
	0.42
	0.93
	0.22
	0.17
	0.45
	0.13
	0.46
	0.84

	49
	   HS
	20-39
	1.04
	0.13
	0.42
	0.14
	0.12
	0.14
	0.23
	0.75
	0.17
	0.21
	0.18
	0.10
	0.32
	0.57

	50
	 
	40-59
	0.69
	0.30
	0.35
	0.26
	0.13
	0.35
	0.35
	0.94
	0.22
	0.20
	0.31
	0.20
	0.50
	1.06

	51
	 
	60+
	0.90
	0.22
	0.36
	0.26
	0.21
	0.42
	0.38
	0.99
	0.21
	0.22
	0.41
	0.23
	0.52
	1.13

	52
	> HS
	20-39
	0.96
	0.21
	0.51
	0.22
	0.16
	0.22
	0.26
	0.94
	0.17
	0.26
	0.23
	0.12
	0.54
	0.92

	53
	 
	40-59
	1.00
	0.27
	0.38
	0.18
	0.10
	0.26
	0.26
	0.94
	0.17
	0.33
	0.28
	0.14
	0.62
	0.81

	54
	 
	60+
	0.76
	0.15
	0.23
	0.17
	0.13
	0.28
	0.41
	0.89
	0.07
	0.04
	0.55
	0.16
	0.42
	1.10

	Row Sum
	 
	 
	44.39
	11.09
	18.73
	7.54
	9.15
	18.69
	22.50
	41.16
	9.38
	12.71
	16.49
	5.52
	24.29
	39.87


Table A5:  Continued… 
	 
	 
	 
	Frui
	Orng
	Green 
	Tom
	Cruc 
	Veg
	Fries
	OthPot
	Beans
	Nuts    
	Soy
	WhtM
	Egg
	RdMt

	White Males
	Edu
	Age
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	1
	< HS
	20-39
	0.06
	0.10
	0.13
	0.47
	0.13
	1.42
	0.21
	0.18
	0.04
	0.21
	0.01
	0.22
	0.20
	0.64

	2
	 
	40-59
	0.05
	0.14
	0.19
	0.59
	0.17
	1.32
	0.20
	0.29
	0.06
	0.20
	0.00
	0.28
	0.27
	0.49

	3
	 
	60+
	0.04
	0.14
	0.18
	0.48
	0.20
	1.40
	0.14
	0.31
	0.11
	0.32
	0.00
	0.20
	0.30
	0.46

	4
	   HS
	20-39
	0.06
	0.08
	0.17
	0.69
	0.15
	1.21
	0.29
	0.27
	0.04
	0.26
	0.02
	0.32
	0.20
	0.60

	5
	 
	40-59
	0.04
	0.11
	0.20
	0.55
	0.20
	1.40
	0.22
	0.29
	0.06
	0.29
	0.00
	0.29
	0.22
	0.59

	6
	 
	60+
	0.06
	0.20
	0.24
	0.52
	0.25
	1.52
	0.12
	0.32
	0.07
	0.44
	0.01
	0.23
	0.23
	0.41

	7
	> HS
	20-39
	0.06
	0.14
	0.27
	0.62
	0.19
	1.26
	0.22
	0.20
	0.07
	0.27
	0.06
	0.32
	0.23
	0.49

	8
	 
	40-59
	0.05
	0.18
	0.31
	0.58
	0.25
	1.46
	0.17
	0.21
	0.08
	0.35
	0.04
	0.33
	0.24
	0.47

	9
	 
	60+
	0.07
	0.22
	0.29
	0.53
	0.26
	1.59
	0.11
	0.27
	0.07
	0.40
	0.02
	0.24
	0.24
	0.36

	White Females
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	10
	< HS
	20-39
	0.06
	0.12
	0.20
	0.67
	0.24
	1.36
	0.23
	0.26
	0.05
	0.15
	0.01
	0.75
	0.19
	0.75

	11
	 
	40-59
	0.05
	0.19
	0.18
	0.63
	0.23
	1.60
	0.17
	0.30
	0.08
	0.22
	0.04
	0.28
	0.16
	0.46

	12
	 
	60+
	0.09
	0.19
	0.26
	0.53
	0.27
	1.70
	0.10
	0.30
	0.07
	0.28
	0.03
	0.29
	0.22
	0.36

	13
	   HS
	20-39
	0.05
	0.12
	0.16
	0.44
	0.16
	1.33
	0.21
	0.24
	0.06
	0.23
	0.01
	0.30
	0.19
	0.45

	14
	 
	40-59
	0.04
	0.16
	0.22
	0.48
	0.20
	1.53
	0.17
	0.29
	0.07
	0.23
	0.01
	0.34
	0.21
	0.46

	15
	 
	60+
	0.07
	0.22
	0.28
	0.41
	0.27
	1.64
	0.08
	0.29
	0.06
	0.33
	0.05
	0.29
	0.17
	0.33

	16
	> HS
	20-39
	0.07
	0.18
	0.37
	0.49
	0.21
	1.47
	0.16
	0.19
	0.08
	0.27
	0.12
	0.35
	0.18
	0.33

	17
	 
	40-59
	0.08
	0.24
	0.42
	0.53
	0.28
	1.67
	0.10
	0.21
	0.08
	0.34
	0.09
	0.39
	0.22
	0.38

	18
	 
	60+
	0.10
	0.31
	0.43
	0.46
	0.34
	1.93
	0.06
	0.25
	0.07
	0.45
	0.06
	0.31
	0.23
	0.30

	Black Males
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	

	19
	< HS
	20-39
	0.05
	0.13
	0.27
	0.54
	0.28
	1.21
	0.28
	0.19
	0.07
	0.27
	0.02
	0.42
	0.24
	0.57

	20
	 
	40-59
	0.08
	0.14
	0.32
	0.48
	0.41
	1.73
	0.18
	0.20
	0.09
	0.24
	0.01
	0.47
	0.26
	0.71

	21
	 
	60+
	0.10
	0.16
	0.36
	0.47
	0.19
	1.21
	0.09
	0.15
	0.07
	0.18
	0.08
	0.32
	0.33
	0.41

	22
	   HS
	20-39
	0.03
	0.10
	0.20
	0.54
	0.16
	1.16
	0.28
	0.22
	0.07
	0.25
	0.00
	0.47
	0.21
	0.69

	23
	 
	40-59
	0.11
	0.15
	0.22
	0.44
	0.16
	1.26
	0.11
	0.14
	0.06
	0.17
	0.07
	0.49
	0.28
	0.38

	24
	 
	60+
	0.08
	0.20
	0.34
	0.45
	0.24
	1.34
	0.12
	0.12
	0.04
	0.27
	0.00
	0.27
	0.27
	0.29

	25
	> HS
	20-39
	0.04
	0.15
	0.19
	0.50
	0.17
	1.16
	0.23
	0.14
	0.07
	0.16
	0.04
	0.52
	0.28
	0.52

	26
	 
	40-59
	0.05
	0.16
	0.32
	0.44
	0.20
	1.35
	0.11
	0.15
	0.09
	0.29
	0.03
	0.48
	0.27
	0.33

	27
	 
	60+
	0.05
	0.20
	0.42
	0.66
	0.29
	1.68
	0.16
	0.32
	0.12
	0.28
	0.04
	0.40
	0.29
	0.45

	Black Females
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	

	28
	< HS
	20-39
	0.05
	0.08
	0.27
	0.46
	0.31
	1.38
	0.18
	0.18
	0.07
	0.21
	0.06
	0.40
	0.27
	0.54

	29
	 
	40-59
	0.07
	0.14
	0.44
	0.39
	0.26
	1.42
	0.17
	0.13
	0.08
	0.28
	0.02
	0.52
	0.21
	0.49

	30
	 
	60+
	0.11
	0.24
	0.35
	0.61
	0.26
	1.70
	0.12
	0.25
	0.12
	0.31
	0.00
	0.44
	0.24
	0.53

	31
	   HS
	20-39
	0.09
	0.18
	0.39
	0.51
	0.42
	1.68
	0.20
	0.22
	0.03
	0.22
	0.02
	0.43
	0.28
	0.70

	32
	 
	40-59
	0.09
	0.28
	0.50
	0.68
	0.37
	1.77
	0.18
	0.25
	0.10
	0.17
	0.08
	0.65
	0.22
	0.56

	33
	 
	60+
	0.11
	0.16
	0.34
	0.40
	0.35
	1.76
	0.13
	0.19
	0.04
	0.22
	0.01
	0.31
	0.19
	0.34

	34
	> HS
	20-39
	0.06
	0.13
	0.28
	0.41
	0.24
	1.39
	0.23
	0.12
	0.06
	0.17
	0.05
	0.52
	0.21
	0.38

	35
	 
	40-59
	0.10
	0.18
	0.42
	0.41
	0.30
	1.70
	0.13
	0.13
	0.07
	0.28
	0.07
	0.49
	0.23
	0.39

	36
	 
	60+
	0.10
	0.29
	0.54
	0.40
	0.37
	1.86
	0.06
	0.18
	0.07
	0.44
	0.03
	0.45
	0.22
	0.21


Table A5:  Continued… 
	 
	 
	 
	Other Fruit
	Orng Veg
	Green Leafy
	Tomat
	Cruc Veg
	Other Veg
	Fried Pot
	Other Pot
	Beans
	Nuts    Seeds
	Soy
	White Meat
	Eggs
	Red Meat

	MexAm Males
	Education
	Age
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	37
	< HS
	20-39
	0.10
	0.13
	0.21
	1.14
	0.24
	1.44
	0.20
	0.17
	0.42
	0.17
	0.01
	0.36
	0.23
	0.67

	38
	 
	40-59
	0.10
	0.15
	0.25
	1.13
	0.26
	1.50
	0.17
	0.16
	0.62
	0.16
	0.00
	0.35
	0.24
	0.53

	39
	 
	60+
	0.07
	0.15
	0.26
	1.14
	0.25
	2.06
	0.15
	0.17
	0.52
	0.21
	0.02
	0.30
	0.32
	0.48

	40
	   HS
	20-39
	0.08
	0.13
	0.22
	1.17
	0.23
	1.52
	0.13
	0.16
	0.32
	0.13
	0.03
	0.31
	0.25
	0.55

	41
	 
	40-59
	0.06
	0.18
	0.26
	0.88
	0.12
	1.64
	0.17
	0.18
	0.29
	0.13
	0.01
	0.23
	0.37
	0.55

	42
	 
	60+
	0.06
	0.23
	0.44
	1.05
	0.28
	2.23
	0.21
	0.15
	0.31
	0.22
	0.00
	0.34
	0.34
	0.59

	43
	> HS
	20-39
	0.06
	0.21
	0.28
	0.95
	0.33
	1.55
	0.22
	0.17
	0.29
	0.16
	0.11
	0.52
	0.28
	0.56

	44
	 
	40-59
	0.06
	0.22
	0.41
	1.04
	0.27
	1.64
	0.19
	0.14
	0.24
	0.26
	0.04
	0.34
	0.23
	0.57

	45
	 
	60+
	0.03
	0.21
	0.40
	1.00
	0.27
	2.06
	0.20
	0.20
	0.36
	0.19
	0.04
	0.27
	0.33
	0.50

	MexAm Females
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	46
	< HS
	20-39
	0.09
	0.16
	0.29
	1.05
	0.30
	1.73
	0.14
	0.18
	0.38
	0.17
	0.02
	0.33
	0.18
	0.50

	47
	 
	40-59
	0.17
	0.23
	0.57
	1.06
	0.49
	2.06
	0.13
	0.15
	0.41
	0.27
	0.00
	0.48
	0.19
	0.43

	48
	 
	60+
	0.07
	0.22
	0.47
	1.10
	0.37
	1.98
	0.21
	0.21
	0.46
	0.19
	0.01
	0.38
	0.29
	0.45

	49
	   HS
	20-39
	0.06
	0.17
	0.24
	0.85
	0.21
	1.55
	0.22
	0.12
	0.22
	0.17
	0.00
	0.31
	0.23
	0.45

	50
	 
	40-59
	0.12
	0.22
	0.52
	1.11
	0.26
	1.72
	0.13
	0.17
	0.32
	0.12
	0.00
	0.47
	0.20
	0.42

	51
	 
	60+
	0.13
	0.37
	0.45
	0.99
	0.37
	2.71
	0.16
	0.17
	0.28
	0.40
	0.02
	0.32
	0.26
	0.46

	52
	> HS
	20-39
	0.11
	0.30
	0.34
	1.16
	0.31
	1.91
	0.17
	0.16
	0.34
	0.23
	0.05
	0.44
	0.28
	0.50

	53
	 
	40-59
	0.06
	0.15
	0.53
	0.92
	0.18
	2.06
	0.16
	0.18
	0.29
	0.27
	0.01
	0.38
	0.32
	0.45

	54
	 
	60+
	0.09
	0.30
	0.47
	0.85
	0.26
	2.54
	0.11
	0.12
	0.38
	0.30
	0.03
	0.36
	0.22
	0.27

	Row Sum
	 
	 
	3.99
	9.82
	17.30
	37.06
	13.97
	87.45
	8.99
	10.92
	9.05
	13.34
	1.63
	20.25
	13.14
	25.74


Table A5:  Continued… 
	 
	 
	 
	Proc
	Fish
	Liver
	Pasta
	WhtBrd
	DrkBr
	HtCrl
	RTE 
	Tort
	Soups
	Pizza
	Sncks
	Swts
	Candy

	White Males
	Educ
	Age
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	1
	< HS
	20-39
	0.75
	0.12
	0.00
	0.27
	1.19
	0.38
	0.02
	0.18
	0.12
	0.06
	0.11
	0.49
	0.36
	1.33

	2
	 
	40-59
	0.72
	0.13
	0.01
	0.24
	1.06
	0.34
	0.05
	0.08
	0.11
	0.12
	0.07
	0.35
	0.52
	1.42

	3
	 
	60+
	0.72
	0.11
	0.02
	0.15
	1.07
	0.67
	0.12
	0.09
	0.09
	0.11
	0.04
	0.23
	0.72
	1.51

	4
	   HS
	20-39
	0.89
	0.22
	0.01
	0.30
	0.94
	0.53
	0.03
	0.11
	0.13
	0.10
	0.13
	0.41
	0.41
	1.33

	5
	 
	40-59
	0.76
	0.14
	0.01
	0.23
	0.96
	0.51
	0.05
	0.09
	0.10
	0.08
	0.07
	0.43
	0.55
	1.35

	6
	 
	60+
	0.56
	0.14
	0.01
	0.15
	0.95
	0.70
	0.12
	0.07
	0.07
	0.08
	0.04
	0.28
	0.63
	1.38

	7
	> HS
	20-39
	0.67
	0.22
	0.01
	0.31
	0.88
	0.54
	0.04
	0.14
	0.14
	0.09
	0.12
	0.39
	0.50
	0.94

	8
	 
	40-59
	0.61
	0.19
	0.01
	0.20
	0.81
	0.66
	0.06
	0.05
	0.10
	0.10
	0.08
	0.40
	0.49
	1.40

	9
	 
	60+
	0.54
	0.14
	0.01
	0.15
	0.81
	0.70
	0.10
	0.06
	0.07
	0.12
	0.04
	0.23
	0.55
	1.06

	White Females
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	10
	< HS
	20-39
	0.49
	0.16
	0.02
	0.28
	1.03
	0.34
	0.04
	0.09
	0.22
	0.13
	0.15
	0.34
	0.48
	1.47

	11
	 
	40-59
	0.66
	0.16
	0.01
	0.22
	1.07
	0.35
	0.09
	0.12
	0.15
	0.07
	0.05
	0.33
	0.47
	1.73

	12
	 
	60+
	0.66
	0.13
	0.01
	0.19
	0.98
	0.64
	0.13
	0.09
	0.11
	0.11
	0.04
	0.27
	0.60
	1.23

	13
	   HS
	20-39
	0.48
	0.10
	0.00
	0.24
	0.78
	0.31
	0.04
	0.11
	0.09
	0.08
	0.09
	0.39
	0.40
	1.35

	14
	 
	40-59
	0.53
	0.15
	0.01
	0.24
	0.83
	0.43
	0.07
	0.07
	0.09
	0.10
	0.07
	0.35
	0.39
	1.36

	15
	 
	60+
	0.46
	0.14
	0.01
	0.14
	0.83
	0.67
	0.12
	0.06
	0.06
	0.09
	0.04
	0.24
	0.54
	1.00

	16
	> HS
	20-39
	0.43
	0.21
	0.00
	0.25
	0.64
	0.51
	0.04
	0.11
	0.11
	0.07
	0.09
	0.36
	0.39
	1.00

	17
	 
	40-59
	0.41
	0.17
	0.01
	0.19
	0.65
	0.58
	0.06
	0.05
	0.09
	0.08
	0.07
	0.35
	0.43
	1.05

	18
	 
	60+
	0.39
	0.18
	0.01
	0.14
	0.70
	0.75
	0.11
	0.06
	0.07
	0.10
	0.03
	0.19
	0.53
	0.94

	Black Males
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	

	19
	< HS
	20-39
	0.90
	0.30
	0.01
	0.27
	1.07
	0.53
	0.09
	0.19
	0.17
	0.07
	0.10
	0.52
	0.53
	1.23

	20
	 
	40-59
	1.57
	0.31
	0.08
	0.32
	1.26
	0.47
	0.10
	0.13
	0.16
	0.11
	0.08
	0.37
	0.67
	1.39

	21
	 
	60+
	0.90
	0.19
	0.03
	0.14
	1.09
	0.38
	0.16
	0.07
	0.16
	0.09
	0.03
	0.20
	0.53
	1.34

	22
	   HS
	20-39
	0.84
	0.14
	0.01
	0.32
	0.99
	0.29
	0.08
	0.20
	0.16
	0.08
	0.09
	0.44
	0.38
	1.17

	23
	 
	40-59
	0.82
	0.24
	0.02
	0.15
	0.82
	0.50
	0.13
	0.09
	0.07
	0.08
	0.05
	0.28
	0.38
	1.27

	24
	 
	60+
	0.76
	0.13
	0.02
	0.10
	0.74
	0.66
	0.13
	0.04
	0.10
	0.07
	0.01
	0.18
	0.42
	1.66

	25
	> HS
	20-39
	0.73
	0.25
	0.02
	0.26
	0.95
	0.47
	0.09
	0.12
	0.16
	0.07
	0.09
	0.36
	0.64
	1.14

	26
	 
	40-59
	0.64
	0.21
	0.02
	0.18
	0.74
	0.52
	0.13
	0.06
	0.11
	0.08
	0.05
	0.29
	0.45
	1.09

	27
	 
	60+
	0.88
	0.25
	0.02
	0.14
	1.11
	0.64
	0.14
	0.07
	0.17
	0.13
	0.03
	0.25
	0.47
	1.42

	Black Females
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	

	28
	< HS
	20-39
	0.83
	0.30
	0.04
	0.37
	1.01
	0.33
	0.10
	0.11
	0.15
	0.14
	0.08
	0.49
	0.68
	1.62

	29
	 
	40-59
	1.00
	0.17
	0.02
	0.26
	1.04
	0.30
	0.14
	0.14
	0.14
	0.08
	0.06
	0.45
	0.46
	1.58

	30
	 
	60+
	0.74
	0.22
	0.02
	0.25
	1.08
	0.49
	0.19
	0.09
	0.25
	0.11
	0.05
	0.20
	0.51
	1.18

	31
	   HS
	20-39
	0.89
	0.26
	0.01
	0.40
	1.02
	0.32
	0.13
	0.28
	0.16
	0.07
	0.10
	0.60
	0.62
	1.46

	32
	 
	40-59
	0.93
	0.41
	0.05
	0.30
	1.03
	0.40
	0.11
	0.12
	0.18
	0.11
	0.13
	0.40
	0.80
	1.43

	33
	 
	60+
	0.59
	0.14
	0.01
	0.21
	0.90
	0.50
	0.12
	0.06
	0.13
	0.08
	0.03
	0.22
	0.48
	1.14

	34
	> HS
	20-39
	0.65
	0.25
	0.01
	0.26
	0.81
	0.33
	0.07
	0.17
	0.12
	0.05
	0.06
	0.35
	0.39
	0.99

	35
	 
	40-59
	0.59
	0.30
	0.02
	0.18
	0.75
	0.40
	0.11
	0.06
	0.14
	0.06
	0.05
	0.40
	0.47
	1.30

	36
	 
	60+
	0.52
	0.21
	0.02
	0.13
	0.65
	0.64
	0.19
	0.03
	0.13
	0.06
	0.02
	0.24
	0.33
	1.03


Tabe A5:  Continued… 

	
	 
	 
	Proc
	Fish
	Liver
	Pasta
	WhtBrd
	DrkBr
	HtCrl
	RTE 
	Tort
	Soups
	Pizza
	Sncks
	Swts
	Candy

	MexAm Males
	Education
	Age
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	37
	< HS
	20-39
	0.72
	0.22
	0.02
	0.24
	0.72
	0.29
	0.04
	0.13
	1.14
	0.33
	0.08
	0.38
	0.49
	0.79

	38
	 
	40-59
	0.61
	0.13
	0.02
	0.15
	0.71
	0.36
	0.07
	0.06
	0.98
	0.30
	0.05
	0.29
	0.36
	1.62

	39
	 
	60+
	0.59
	0.16
	0.02
	0.12
	0.81
	0.35
	0.13
	0.10
	0.93
	0.25
	0.03
	0.25
	0.61
	1.73

	40
	   HS
	20-39
	0.67
	0.21
	0.03
	0.29
	0.63
	0.38
	0.02
	0.16
	0.63
	0.23
	0.06
	0.26
	0.33
	0.93

	41
	 
	40-59
	0.60
	0.17
	0.01
	0.19
	0.79
	0.37
	0.09
	0.10
	0.76
	0.16
	0.04
	0.28
	0.39
	1.13

	42
	 
	60+
	0.72
	0.13
	0.01
	0.14
	0.80
	0.43
	0.10
	0.05
	0.70
	0.36
	0.04
	0.38
	0.56
	1.04

	43
	> HS
	20-39
	0.66
	0.28
	0.00
	0.21
	0.77
	0.50
	0.04
	0.15
	0.62
	0.21
	0.06
	0.56
	0.55
	0.78

	44
	 
	40-59
	0.74
	0.16
	0.01
	0.19
	0.69
	0.41
	0.06
	0.05
	0.63
	0.27
	0.05
	0.30
	0.38
	1.40

	45
	 
	60+
	0.80
	0.17
	0.00
	0.15
	0.84
	0.35
	0.10
	0.03
	0.58
	0.28
	0.03
	0.30
	0.49
	0.98

	MexAm Females
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 

	46
	< HS
	20-39
	0.53
	0.16
	0.01
	0.27
	0.63
	0.32
	0.04
	0.13
	0.89
	0.23
	0.07
	0.26
	0.45
	0.95

	47
	 
	40-59
	0.71
	0.20
	0.02
	0.21
	0.75
	0.41
	0.12
	0.08
	0.77
	0.24
	0.04
	0.26
	0.45
	1.16

	48
	 
	60+
	0.52
	0.13
	0.02
	0.19
	0.88
	0.50
	0.17
	0.08
	0.70
	0.21
	0.03
	0.23
	0.55
	1.36

	49
	   HS
	20-39
	0.51
	0.10
	0.00
	0.23
	0.76
	0.41
	0.05
	0.16
	0.49
	0.21
	0.06
	0.35
	0.35
	1.31

	50
	 
	40-59
	0.39
	0.21
	0.01
	0.20
	0.72
	0.50
	0.11
	0.07
	0.61
	0.20
	0.04
	0.39
	0.41
	1.40

	51
	 
	60+
	0.61
	0.20
	0.02
	0.15
	0.78
	0.53
	0.19
	0.02
	0.68
	0.42
	0.02
	0.35
	0.45
	1.07

	52
	> HS
	20-39
	0.59
	0.27
	0.01
	0.27
	0.81
	0.45
	0.11
	0.17
	0.64
	0.22
	0.06
	0.47
	0.47
	1.38

	53
	 
	40-59
	0.50
	0.17
	0.00
	0.18
	0.70
	0.40
	0.11
	0.11
	0.48
	0.25
	0.06
	0.37
	0.38
	1.47

	54
	 
	60+
	0.38
	0.18
	0.01
	0.16
	0.51
	0.73
	0.16
	0.02
	0.46
	0.14
	0.02
	0.24
	0.33
	1.04

	Row Sum
	 
	 
	36.37
	10.32
	0.80
	11.67
	46.51
	25.46
	5.18
	5.32
	17.24
	7.76
	3.27
	18.19
	26.17
	67.81


Table A5:  Continued… 

	 
	 
	 
	Sodas
	Coffee   
	FrAdes
	Meal      
	Alcohol
	Misc.
	Sum

	White Males
	Education
	Age
	 
	 
	 
	 
	 
	 
	 

	1
	< HS
	20-39
	1.62
	1.88
	0.71
	0.02
	0.80
	0.44
	19.94

	2
	 
	40-59
	0.91
	2.64
	0.24
	0.01
	0.22
	1.47
	20.53

	3
	 
	60+
	0.38
	2.71
	0.24
	0.11
	0.25
	0.96
	20.40

	4
	   HS
	20-39
	1.05
	2.05
	0.44
	0.14
	0.42
	0.70
	20.08

	5
	 
	40-59
	0.84
	2.73
	0.22
	0.03
	0.35
	1.16
	20.03

	6
	 
	60+
	0.36
	2.58
	0.18
	0.04
	0.40
	1.08
	20.26

	7
	> HS
	20-39
	0.63
	1.39
	0.20
	0.16
	0.43
	0.60
	17.28

	8
	 
	40-59
	0.66
	2.53
	0.14
	0.06
	0.44
	1.12
	19.82

	9
	 
	60+
	0.28
	2.51
	0.18
	0.05
	0.46
	1.00
	19.28

	White Females
	 
	 
	 
	 
	 
	 
	 
	 
	 

	10
	< HS
	20-39
	1.06
	1.48
	0.36
	0.23
	0.13
	1.05
	19.86

	11
	 
	40-59
	0.75
	3.26
	0.35
	0.01
	0.14
	1.69
	21.92

	12
	 
	60+
	0.37
	2.58
	0.20
	0.08
	0.13
	1.39
	20.47

	13
	   HS
	20-39
	1.03
	1.94
	0.32
	0.08
	0.08
	0.86
	17.14

	14
	 
	40-59
	0.64
	2.29
	0.31
	0.11
	0.15
	1.44
	19.01

	15
	 
	60+
	0.26
	2.59
	0.18
	0.06
	0.15
	0.84
	18.88

	16
	> HS
	20-39
	0.57
	1.59
	0.24
	0.09
	0.27
	0.77
	16.74

	17
	 
	40-59
	0.52
	2.42
	0.20
	0.07
	0.22
	1.32
	19.08

	18
	 
	60+
	0.25
	2.47
	0.19
	0.07
	0.22
	0.97
	19.95

	Black Males
	 
	 
	 
	 
	 
	 
	 
	 
	 

	19
	< HS
	20-39
	0.63
	0.53
	1.01
	0.22
	0.36
	0.74
	19.09

	20
	 
	40-59
	0.69
	1.56
	0.85
	0.10
	0.53
	1.13
	21.87

	21
	 
	60+
	0.45
	1.14
	0.34
	0.09
	0.39
	0.92
	17.12

	22
	   HS
	20-39
	0.82
	0.97
	0.82
	0.03
	0.54
	0.42
	17.25

	23
	 
	40-59
	0.62
	1.34
	0.49
	0.10
	0.28
	0.63
	16.69

	24
	 
	60+
	0.25
	2.19
	0.27
	0.08
	0.25
	1.12
	17.70

	25
	> HS
	20-39
	0.70
	0.94
	0.86
	0.14
	0.37
	0.41
	17.31

	26
	 
	40-59
	0.39
	1.15
	0.44
	0.10
	0.27
	0.85
	15.90

	27
	 
	60+
	0.45
	1.67
	0.44
	0.03
	0.27
	1.21
	20.47

	Black Females
	 
	 
	 
	 
	 
	 
	 
	 
	 

	28
	< HS
	20-39
	1.00
	1.11
	0.78
	0.09
	0.37
	0.79
	20.79

	29
	 
	40-59
	0.88
	1.21
	0.75
	0.01
	0.19
	0.91
	19.61

	30
	 
	60+
	0.51
	1.43
	0.55
	0.12
	0.17
	1.13
	20.94

	31
	   HS
	20-39
	0.62
	0.93
	0.89
	0.07
	0.11
	0.22
	19.55

	32
	 
	40-59
	0.72
	1.60
	1.04
	0.14
	0.32
	0.86
	23.61

	33
	 
	60+
	0.49
	1.53
	0.52
	0.02
	0.07
	0.98
	17.56

	34
	> HS
	20-39
	0.61
	0.62
	0.80
	0.11
	0.18
	0.32
	15.87

	35
	 
	40-59
	0.52
	1.42
	0.56
	0.08
	0.15
	1.31
	18.67

	36
	 
	60+
	0.31
	1.15
	0.48
	0.10
	0.05
	0.99
	18.40

	MexAm Males
	 
	 
	 
	 
	 
	 
	 
	 
	 

	37
	< HS
	20-39
	0.70
	0.65
	0.37
	0.20
	0.26
	0.52
	18.67

	38
	 
	40-59
	0.53
	1.61
	0.38
	0.08
	0.27
	1.42
	20.89

	39
	 
	60+
	0.43
	2.22
	0.37
	0.08
	0.17
	1.53
	23.14

	40
	   HS
	20-39
	0.56
	0.70
	0.34
	0.10
	0.14
	0.56
	16.80

	41
	 
	40-59
	0.63
	1.60
	0.53
	0.18
	0.27
	1.75
	19.25

	42
	 
	60+
	0.38
	2.47
	0.56
	0.05
	0.15
	1.87
	23.05

	43
	> HS
	20-39
	0.84
	0.64
	0.40
	0.13
	0.15
	0.46
	18.40

	44
	 
	40-59
	0.52
	1.98
	0.31
	0.04
	0.32
	1.75
	20.76

	45
	 
	60+
	0.58
	2.28
	0.10
	0.01
	0.31
	1.64
	21.02

	MexAm Females
	 
	 
	 
	 
	 
	 
	 
	 
	 

	46
	< HS
	20-39
	0.42
	0.94
	0.23
	0.05
	0.03
	0.92
	18.19

	47
	 
	40-59
	0.57
	1.70
	0.39
	0.05
	0.09
	1.12
	22.37

	48
	 
	60+
	0.38
	1.79
	0.40
	0.11
	0.03
	1.38
	21.90

	49
	   HS
	20-39
	0.61
	1.00
	0.51
	0.04
	0.10
	0.67
	17.22

	50
	 
	40-59
	0.43
	1.68
	0.51
	0.06
	0.06
	1.29
	20.95

	51
	 
	60+
	0.23
	1.94
	0.27
	0.08
	0.07
	1.06
	22.66

	52
	> HS
	20-39
	0.41
	0.75
	0.48
	0.09
	0.14
	0.49
	20.30

	53
	 
	40-59
	0.46
	1.76
	0.34
	0.11
	0.14
	2.23
	21.94

	54
	 
	60+
	0.15
	2.33
	0.30
	0.05
	0.08
	1.09
	20.06

	Row Sum
	 
	 
	31.63
	92.19
	23.58
	4.52
	12.94
	55.56
	1056.65
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References
Alberti, K. G. M. M., Zimmet, P., & Shaw, J. (2007). Internation Diabetes Federation: a consensus of type 2 diabetes prevention. Diabetic Medicine, 24, 451-463.

American Diabetes Association (ADA) (2010). Standards for Medical Care in Diabetes - 2010. Diabetes Care, 29, S4-S29.

Bahr, P. R. (2007). Race and nutrition: an investigation of Black-White differences in health-related nutritional behaviours. Sociology of Health and Illness, 29, 831-856.

Barro, R. J. & Lee, J. W. (2000). Educational attainment in the adult population aged 15 and over. The World Bank [On-line]. Available: http://go.worldbank.org/8BQASOPK40
Belsey, D. A., Kuh, E., & Welsch, R. E. (1980). Regression Diagnostics. New York: John Wiley & Sons, Inc.

Beulens, J. W. J., Stolk, R. P., van der Schouw, Y. T., Grobbee, D. E., Hendriks, H. F. J., & Bots, M. L. (2005). Alcohol consumption and risk of type 2 diabetes among older women. Diabetes Care, 28, 2933-2938.

Brancati, F. L., Kao, W. H. L., & Folsom, A. R. (2000). Incident type 2 diabetes mellitus in African American and White adults:  The Atherosclerosis risk in communities study. Journal of the American Medical Association, 283, 2253-2259.

Brancati, F. L., Whelton, P. K., Kuller, L. H., & Klag, M. J. (1996). Diabetes Mellitus, Race, and Socioeconomic Status. Annals of Epidemiology, 6, 67-73.

Briefel, R. R. & Johnson, C. L. (2004). Secular Trends in Dietary Intak in the United States. Annual Review in Nutrition, 23, 401-431.

Carrera, P. M., Gio, X., & Tucker, K. L. (2007). A study of dietary pattern in the Mexican-American population and their association with obesity. Journal of the American Dietetic Association, 107, 1735-1742.

Cattell, R. (1966). Scree Test for the Number of Factors. Multivariate Behavioral Research, 1, 245-276.

Cohen, M. L. (2000). Changing patterns of infectious disease. Nature, 406, 762-767.

Colditz, G. A., Willett, W. C., Rotnitzky, A., & Manson, J. E. (1995). Weight gain as a risk factor for clinical diabetees mellitus in women. Annals of Internal Medicine, 122, 481-486.

Costacou, T., Bamia, C., Ferrari, P., Riboli, E., Trichopoulus, D., & Trichopoulou, A. (2003). Tracing the Mediterranian diet through principal components and cluster analyses in the Greek population. European Journal of Clinical Nutrition, 57, 1378-1385.

Cowie, C. C., Harris, M. L., Silerman, R. E., Johnson, E. W., & Rust, K. F. (1993). Effect of multiple risk factors on differences between blacks and whites in the revalence of non-insulin-dependent diabetes mellitus in the United States. American Journal of Epidemiology, 137, 719-732.

Cowie, C. C., Rust, K. F., Byrd-Holt, D. D., Eberhardt, M. S., Flegal, K. M., Engelgau, M. M. et al. (2006). Prevalence of diabetes and impaired fasting glucose in adults in the U.S. population: National Health And Nutrition Examination Survey 1999-2002. Diabetes Care, 29, 1263-1268.

Crimmins, E. M., Hayward, M. D., & Seeman, T. E. (2004). Race/Ethnicity, Socioeconomic Status, and Health. In N.B.Anderson, R. A. Bulatao, & B. Cohen (Eds.), Critical Perspectives on Racial and Ethnic Differences in Health in Late Life (pp. 310-352). Washington, D.C.: National Academies Press.

Cronbach, L. J. & Gleser, G. C. (1953). Assessing Similarity Between Profiles. The Psychological Bulletin, 50, 456-473.

Cruickshank, J. K., Mbanya, J. C., Wilks, R., Balkau, B., McFarlane-Anderson, N., & Forrester, T. (2001). Sick Genes, Sick Individuals, or Sick Populations with Chronic Diseases? The Emergence of Diabetes and High Blood Pressure in African-Origin Populations. International Journal of Epidemiology, 30, 111-117.

Dallo, R. J. & Weller, S. C. (2003). Effectiveness of diabetes mellitus screening recommendations. Proceedings of the National Academy of Sciences, 100, 10574-10579.

Day, N. E., McKeown, N., Wong, M. Y., Welch, A., & Bingham, S. (2001). Epidemiological assessment of diet: a comparison of a 7-day diary with a food frequency questionnaire using urinary markers of nitrogen, potassium, and sodium. International Journal of Epidemiology, 30, 309-317.

Donaldson, M. S. (2004). Nutrition and cancer:  A review of the evidence for an anti-cancer diet. Nutrition Journal, 3, 1-21.

Farmer, M. M. & Ferraro, K. F. (2005). Are racial disparities in health connditional on socioeconomic status? Social Science and Medicine, 60, 191-204.

Forshee, R. A. & Storey, M. L. (2006). Demographics, not beverage consumption, is associated with diet quality. International Journal of Food Sciences and Nutrition, 57, 494-511.

Frayling, T. M. (2007). Genome-wide association studies provide new insights into type 2 diabetes aetiology. Nature Reviews Genetics, 8, 657-662.

French, S. A., Story, M., & Jeffery, R. W. (2001). Environmental influences on eating and physical activity. Annual Reviews in Public Health, 22, 309-335.

Fung, T. T., Schulze, M. B., Manson, J. E., Willett, W. C., & Hu, F. B. (2004). Dietary patterns, Meat intake, and the risk of type 2 diabetes in women. Archives of Internal Medicine, 164, 2235-2240.

Galobardes, B., Shaw, M., Lawlor, D. A., Smith, G. D., & Lynch, J. (2006). Indicators of Socioeconomic Position. In J.M.Oakes & J. S. Kaufman (Eds.), Methods in Social Epidemiology (pp. 47-85). San Francisco, CA: John Wiley & Sons, Inc.

Gibson, R. S. (2005). Principles of Nutritional Assessment. (Second ed.) New York, NY: Oxford University Press.

Greenacre, M. J. (1984). Theory and Application of Correspondence Analysis. New York: Academic Press.

Gregg, E. W., Cadwell, B. L., Cheng, Y. J., Cowie, C. C., Williams, D. E., Geiss, L. S. et al. (2004). Trends in the prevalence and ratio of diagnosed to undiagnosed diabetes according to obesity levels in the U.S. Diabetes Care, 27, 2806-2812.

Guo, X., Warden, B. A., Paeratakul, S., & Gray, G. A. (2004). Healthy Eating Index and obesity. European Journal of Clinical Nutrition, 58, 1580-1586.

Hadaegh, F., Zabetian, A., Harati, H., & Azizi, F. (2007). The prospective association of general and central obesity variables with incident type 2 diabetes in adults, Tehran lipid and glucose study. Diabetes Research and Clinical Practice, 76, 449-454.

Harris, M. L. (1991). Epidemiological Correlates of NIDDM in Hispanics, Whites, and Blacks in the US Population. Diabetes Care, 14, 639-648.

Harrison, T. A., Hindorff, L. A., Wines, R. C. M., Bowen, D. J., McGrath, B. B., & Edwards, K. L. (2003). Family history of diabetes as a potential public helath tool. American Journal of Preventive Medicine, 24, 152-159.

Hayward, M. D., Miles, T. P., Crimmins, E. M., & Yang, Y. (2000). The significance of socioeconomic status in explaining the racial gap in chronic health conditions. American Sociological Review, 65, 910-930.

Hodge, A. M., English, D. R., O'Dea, K., & Giles, G. G. (2006). Alchohol intake, consumption pattern, and beverage type, and the risk of type 2 diabetes. Diabetic Medicine, 23, 697.

Hodge, A. M., English, D. R., O'Dea, K., & Giles, G. G. (2007). Dietary Patterns and diabetes incidence in the Melbourne collaborative cohort study. American Journal of Epidemiology, 165, 603-610.

Hoffman, K. S. M. B., Schienkiewitz, A., Nothlings, U., & Boeing, H. (2004). Application of a new statistical method to derive dietary patterns in nutritional epidemiology. American Journal of Epidemiology, 159, 935-944.

Hu, F. B. (2002a). Dietary pattern analysis: a new direction in nutritional epidemiology. [Review] [58 refs]. Current Opinion in Lipidology, 13, 3-9.

Hu, F. B. (2002b). Dietary pattern analysis: a new direction in nutritional epidemiology. [Review] [58 refs]. Current Opinion in Lipidology, 13, 3-9.

Hu, F. B., Manson, J. E., & Willett, W. C. (2001a). Types of Dietary fat and risk of coronary heart disease: a critical review. Journal of the American College of Nutrition, 20, 5-19.

Hu, F. B., van Dam, R. M., & Liu, S. (2001b). Diet and risk of type 2 diabetes: the role of types of fat and carbohydrate. Diabetologia, 44, 805-817.

Huerta, M. G., Roemmich, J. N., Kington, M. L., Bovbjerg, V. E., Weltman, A. L., Holmes, V. F. et al. (2005). Magnesium deficiency is associated with insulin resistance in obese children. Diabetes Care, 28, 1175-1181.

Insitute of Medicine.Food and Nutrition Board (2004). Dietary Reference Intakes: Recommended Intakes for Individuals. http://www.iom.edu/Object.File/Master/21/372/0.pdf [On-line]. Available: http://www.iom.edu/Object.File/Master/21/372/0.pdf
Joint National Committee on Prevention, D. E. a. T. o. H. B. P. (1997). The Sixth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC VI). Archives of Internal Medicine, 157, 2413-2446.

Kant, A. K. (1996). Indexes of overall diet quality: a review. [Review] [69 refs]. Journal of the American Dietetic Association, 96, 785-791.

Kant, A. K. (2004). Dietary patterns and health outcomes. [Review] [105 refs]. Journal of the American Dietetic Association, 104, 615-635.

Kant, A. K. & Graubard, B. I. (2005). A comparison of three dietary pattern indexes for predicting biomarkers of diet and disease. Journal of the American College of Nutrition, 24, 294-303.

Kant, A. K., Graubard, B. I., & Kumanyika, S. K. (2007). Trends in black-white differentials in dietary intakes of U.S. adults, 1971-2002.[see comment]. American Journal of Preventive Medicine, 32, 264-272.

Karlsen, S. & Nazroo, J. Y. (2006). Measuring and Analyzing "Race", Racism, and Racial Discrimination. In J.M.Oakes & J. S. Kaufman (Eds.), Methods in Social Epidemiology (pp. 86-111). San Francisco, CA: John Wiley & Sons Inc.

Kaufman, J. S., Durazo-Arvizu, R. A., & McGee, D. L. (1997). Letter to the Editor. Annals of Epidemiology, 7, 76-77.

Kerver, J. M., Yang, E. J., Bianchi, L., & Song, W. O. (2003). Dietary patterns associated with risk factors for cardiovascular disease in healthy US adults. American Journal of Clinical Nutrition, 78, 1103-1110.

Lau, C., Faerch, K., Glumer, C., Tetens, I., Pedersen, O., Carstensen, B. et al. (2005). Dietary glycemic index, glycemic load, fiber, simple sugars, and insulin resistance. Diabetes Care, 28, 1397-1403.

Liese, A. D., Schulz, M., Fang, F., Wolever, T., D'Agostino, R. B., Sparks, K. C. et al. (2005). Dietary glycemic index and glycemic load, carbohydrate and fiber intake, and measures of insulin sensitivity, secretion, and adiposity in the insulin resistance atherosclerosis study. Diabetes Care, 28, 2832-2838.

Lin, H., Bermudez, O. I., & Tucker, K. L. (2003). Dietary patterns of Hispanic elders are associated with acculturation and obesity. Journal of Nutrition, 133, 3651-3657.

Liu, S., Manson, J. E., Stampfer, M. J., Hu, F. B., Giovannucci, E., Colditz, G. A. et al. (2000). A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. American Journal of Public Health, 90, 1409-1414.

Livingstone, M. B. E. & Black, A. E. (2003). Markers of the validity of reported energy intake. Journal of Nutrition, 133, 895S-920S.

Lopez-Ridaura, R., Willett, W. C., Rimm, E. B., Liu, S., Stampfer, M. J., Manson, J. E. et al. (2004). Magnesium intake and risk of type 2 diabetes in men and women. Diabetes Care, 27, 140.

Mackenzie, T., Brooks, B., & O'Connor, G. (2006). Beverage intake, diabetes, and glucose control of adults in America. Annals of Epidemiology, 16, 688-691.

McBean, A. M., Li, S., Gilbertson, D. T., & Collins, A. J. (2004). Differences in diabetes prevalence, incidence, and mortality among the elderly of four racial/ethnic groups: whites, blacks, hispanics, and asians. Diabetes Care, 27, 2317-2324.

McCann, S. E., Marshall, J. R., Brasure, J. R., Graham, S., & Freudenheim, J. L. (2001). Analysis of patterns of food intake in nutrition epidemiology: food classification in principal components analysis and the subsequent impact on esitmates for endometrial cancer. Public Health Nutrition, 4, 989-997.

Meisinger, C., Doring, A., Thorand, B., Heier, M., & Lowel, H. (2006). Body fat distribution and risk of type 2 diabetes in the general population:  are there differences between men and women?  The MONICA/KORA Augsburg Cohort Study. American Journal of Clinical Nutrition, 84, 483-489.

Meyer, K. A., Kushi, L. H., Jacobs, D. R., Slavin, J., Sellers, T. A., & Folsom, A. R. (2000). Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. American Journal of Clinical Nutrition, 71, 921-930.

Milligan, G. W. & Cooper, M. (1985). An examination of procedures for determining the number of clusters in a data set. Psychometrika, 50, 159-179.

Milligan, G. W. & Cooper, M. C. (1987). Methodology Review: Clustering Methods. Applied Psychological Measurement, 11, 329-354.

Moeller, S. M., Reedy, J., Millen, A. E., Dixon, L. B., Newby, P. K., Tucker, K. L. et al. (2007). Dietary patterns: challenges and opportunities in dietary patterns research an Experimental Biology workshop, April 1, 2006. Journal of the American Dietetic Association, 107, 1233-1239.

Montonen, J., Knekt, P., Harkanen, T., Jarvinen, R., Heliovaara, M., Aromaa, A. et al. (2005). Dietary patterns and the incidence of type 2 diabetes. American Journal of Epidemiology, 161, 219-227.

Nagaya, T., Yoshida, H., Takahashi, H., & Kawai, M. (2005). Increases in body mass index, even within non-obese levels, raise the risk for type 2 diabetes mellitus: a follow-up study in a Japanese population. Diabetic Medicine, 22, 1107-1111.

National Center for Health Statistics. (2006). Analytic and Reporting Guidelines: The National Health and Nutrition Examination Survey (NHANES).  Hyattsville, Maryland, Center for Disease Control and Prevention. 12-28-2009. 
Ref Type: Generic

National Center for Health Statistics (NCHS). (2007). Health, United States, 2007: with chartbook on trends in the health of Americans.  Hyattsville, MD. 
Ref Type: Pamphlet

Newby, P. K., Muller, D., Hallfrisch, J., Qiao, N., Andres, R., & Tucker, K. L. (2003). Dietary patterns and changes in body mass index and waist circumference in adults. American Journal of Clinical Nutrition, 77, 1417-1425.

Newby, P. K., Muller, D., & Tucker, K. L. (2004b). Associations of empirically derived eating patterns with plasma lipid biomarkers: a comparison of factor and cluster analysis methods. American Journal of Clinical Nutrition, 80, 759-767.

Newby, P. K., Muller, D., & Tucker, K. L. (2004a). Associations of empirically derived eating patterns with plasma lipid biomarkers: a comparison of factor and cluster analysis methods. American Journal of Clinical Nutrition, 80, 759-767.

Newby, P. K. & Tucker, K. L. (2004). Empirically derived eating patterns using factor or cluster analysis: a review. [Review] [129 refs]. Nutrition Reviews, 62, 177-203.

Newby, P. K., Weismayer, C., Akesson, A., Tucker, K. L., & Wolk, A. (2006). Longitudinal changes in food patterns predict changes in weight and body mass index and the effects are greatest in obese women. Journal of Nutrition, 136, 2580-2587.

Park, S., Murphy, S. P., Wilkens, L. R., Yamamoto, J. F., Sharma, S., Hankin, J. H. et al. (2005). Dietary patterns using the food guide pyramid groups are associated with sociodemograhic and lifestyle factors:  the multiethnic cohort study. Journal of Nutrition, 135, 843-849.

Poulsen, P., Ohm Kyvik, K., Vaag, A., & Beck-Nielson, H. (1999). Heretbility of Type II (non-insulin dependant) diabetes mellitus and abnormal glucose tolerance - a population based twin study. Diabetologia, 42, 139-145.

Reddy, K. S. & Katan, M. B. (2004). Diet, nutrition, and prevention of hypertension and cardiovascular diseases. Public Health Nutrition, 7, 167-186.

Robbins, J. M., Vaccarino, V., Zhang, H., & Kasl, S. V. (2000). Excess type 2 diabetes in African-American wome and men aged 40-74 and socioecomomic status: evidence from the Third National Health and Nutrition Examination Survey. Journal of Epidemiology & Community Health, 54, 839-845.

Rohlfing, C. L., Wiedmeyer, H. M., Little, R. R., England, J. D., Tennill, A., & Goldstein, D. E. (2002). Defining the relationship between plasma glucose and HbA1C. Diabetes Care, 25, 275-278.

Rumawas, M. E., McKeown, N. M., Rogers, G., Meigs, J. B., Wilson, P. W. F., & Jacques, P. F. (2006). Magnesium intake is related to improved insulin homeostasis in the framingham offspring cohort. Journal of the American College of Nutrition, 25, 486-492.

Salmeron, J., Hu, F. B., Manson, J. E., Stampfer, M. J., Colditz, G. A., Rimm, E. B. et al. (2001). Dietary fat intake and risk of type 2 diabetes in women. American Journal of Clinical Nutrition, 73, 1019-1026.

Schienkiewitz, A., Schulz, M., Hoffman, K., Kroke, A., & Boeing, H. (2006). Body mass index history and risk of type 2 diabetes: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Postdam Study. American Journal of Clinical Nutrition, 84, 427-433.

Schulze, M. B., Hoffman, K., Manson, J. E., Willett, W. C., Meigs, J. B., Weikert, C. et al. (2005). Dietary pattern, inflammation, and incidence of type 2 diabets in women. American Journal of Clinical Nutrition, 82, 675-684.

Schulze, M. B., Liu, S., Rimm, E. B., Manson, J. E., Willett, W. C., & Hu, F. B. (2004). Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle-aged women. American Journal of Clinical Nutrition, 80, 348-356.

Shatenstein, B. & Ghadirian, P. (1998). Influences on diet, health behaviors, and their outcome in select ethnocultural and religious groups. Nutrition, 14, 223-230.

Song, Y., Manson, J. E., Buring, J. E., & Liu, S. (2004). Dietary magnesium intake in relation to plasma insulin levels and risk of type 2 diabetes in women. Diabetes Care, 27, 59-65.

Subar, A. F., Dodd, K. W., Guenther, P. M., Kipnis, V., Midthune, D., McDowell, M. et al. (2006). The Food Propensity Questionnaire: concept, development, and validation for use as a covariate in a model to estimate usual food intake. Journal of the American Dietetic Association, 106, 1556-1563.

Subar, A. F., Thompson, F. E., Kipnis, V., Midthune, D., Hurwitz, P., McNutt, S. et al. (2001). Comparative validation of the Block, Willett, and National Cancer Institute Food Frequency Questionnaires: The Eating at America's Table Study. American Journal of Epidemiology, 154, 1089-1099.

Svetkey, L. P., Simon-Morton, D., Vollmer, W. M., Appel, L. J., Conlin, P. R., Ryan, D. H. et al. (1999). Effects of Dietary Patterns on Blood Pressure: Subgroup analysis of the Dietary Approaches to Stop Hypertension (DASH) randomized clinical trial. Archives of Internal Medicine, 159, 285-293.

The International Expert Committee (IEC) (2009). International Expert Committee Report on the Role of the A!C Assay in the Diagnosis of Diabetes. Diabetes Care, 32, 1327-1334.

United States Department of Agriculture. (2008). Food Stamp Program Eligibility. United States Department of Agriculture (USDA): Food and Nutrition Service . 
Ref Type: Internet Communication

van Dam, R. M., Rimm, E. B., Willett, W. C., Stampfer, M. J., & Hu, F. B. (2002). Dietary patterns and risk for type 2 diabetes mellitus in U.S. men.[summary for patients in Ann Intern Med. 2002 Feb 5;136(3):I30; PMID: 11928740]. Annals of Internal Medicine, 136, 201-209.

Vollmer, W. M., Sacks, F. M., Ard, J., Appel, L. J., Bray, G. A., Simon-Morton, D. et al. (2001). Effects of Diet and Sodium Intake on Blood Pressure: Subgroup analysis of the DASH-Sodium Trial. Annals of Internal Medicine, 135, 1019-1028.

Weller, S. C. & Romney, A. K. (1990). Quantitative Applications in the Social Sciences: Metric Scaling - Correspondence Analysis. [Series 7 Number 075]. Newbury Park London, SAGE Publications. 
Ref Type: Serial (Book,Monograph)

Whitney E.N. & Rolfes, S. R. (1999). Understanding Nutrition. (Eighth ed.) Belmont, CA: Wadsworth Publishing Company.

Willett, W. C. (1998). Nutritional Epidemiology. Second. Oxford, New York, Oxford University Press. 
Ref Type: Serial (Book,Monograph)

Williams, D. R., Lavizzo-Mourey, R., & Warren, R. C. (1994). The concept of race and health status in America. Public Health Reports, 109, 26-41.

Wirfalt, A. K., Mattisson, I., Gullberg, B., & Berglund, G. (2000). Food patterns defined by cluster analysis and their utility as dietary exposure variables: a report from the Malmo Diet and Cancer Study. Public Health Nutrition, 3, 159-173.

Wright, J. D., Wang, C. Y., Kennedy-Stephenson, J., & Ervin, R. B. (2003). Dietary Intake of Ten Key Nutrients for Public Health, United States: 1999-2000. Advanced Data, 1-4.

Zimmet, P. (1982). Type 2 (non-insulin dependent) diabetes - an epidemiological overview. Diabetologia, 22, 399-411.

Zimmet, P. (1992). Kelly West Lecture 1991: Challenges in diabetes epidemiology - from west to the rest. Diabetes Care, 15, 232-248.




Vita
Anita Carol Nash was born on July 22, 1980 in Liberal, KS to Lyle and Juanell Seitter.  After completing high school in Kansas, she moved to Lubbock, TX where she earned a Bachelor and a Master of Science in Food and Nutrition from Texas Tech University.  She married Michael C. Nash in July, 2000.  Since that time, she and Michael have become proud parents of three beautiful daughters, Bayli, Kelsey, and Jenna Nash.   

Shortly after completing her Master’s degree, Anita became a Registered Dietitian and moved to Galveston, TX, where she gained experience working as a Pediatric Clinical Nutritionist for the University of Texas Medical Branch Children’s Hospital.  Her responsibilities included medical nutrition therapy in both the inpatient and outpatient settings, with particular focus on end-stage renal disease and childhood obesity.  Along with UTMB pediatricians and in conjunction with the Galveston YMCA, Anita assisted in the development of a pediatric weight management program for Galveston children and their families.  During her years at the Children’s hospital, she also had the opportunity to gain teaching experience by providing occasional nutrition lectures to Pediatric medical residents.  

Anita moved with her family to Waco, TX in the Spring of 2008.  During the dissertation phase of her doctoral studies, she taught nutrition courses at Baylor University to undergraduate students pursuing degrees in nutrition, biology, nursing, and other allied health fields.                       

Education

B.S., December, 2002, Texas Tech University, Lubbock, Texas

M.S., May 2004, Texas Tech University, Lubbock, Texas

Publications

Stimpson, J.P., Nash, A.C., Ju, H., and Eschbach, K. (2007)  Neighborhood deprivation is associated with lower levels of serum carotenoids among adults participating in the Third National Health and Nutrition Examination Survey.  Journal of the American Dietetic Association, 107, 1895-1902.

Long, J.D., Armstrong, M.L., Amos, E., Shriver, B., Roman-Shriver, C., Feng, D., Harrison, L., Luker, S., Nash, A.C., and Blevins, M. (2006). Pilot using WWW to prevent diabetes in adolescents.  Clinical Nursing Research, 15, 67-79.  

Nash, A.C., Shriver, B., Roman-Shriver, C., and Amos, E. (2004)  Evaluation of medical records and completion of a participant survey for Hispanic type 2 diabetics in rural west Texas. Texas Journal of Rural Health, XXII, 13-19.
PAGE  

