
 

 

 

 

 

 

 

 

 

Copyright 

by 

Ioannis Malagaris 

2019 

 

 

  



The Capstone Committee for Ioannis Malagaris Certifies that this is 

the approved version of the following capstone: 

 

 

Assessing the Effect of “Time of Birth” on Nasopharyngeal 

Microbial Load in Infants 

 

 

Committee: 

 

Kristofer Jennings, PhD, Supervisor 

Heidi Spratt, PhD 

Janak A. Patel, MD 

 

 

 

 



Assessing the effect of “time of birth” on nasopharyngeal 

microbial load in infants 

 

by 

Ioannis Malagaris, MSc 

 

 

Capstone 

Presented to the Faculty of the Graduate School of  

The University of Texas Medical Branch 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Master of Public Health 
 

 

The University of Texas Medical Branch 

July 2019 

  



Dedication 

 

For Fifaki and my beautiful caring wife, Effie.



iv 

Acknowledgements 

 

I would like to express my sincere gratitude to the people who helped me to 

complete this project. Foremost, I would like to express my gratitude to my 

supervisor and committee chair, Dr. Kristofer Jennings, for the endless hours he 

invested mentoring me and reviewing the material I produced working on this 

project. 

I would also like to thank my Capstone committee members, Dr. Heidi Spratt 

and Dr. Janak A. Patel, for improving this thesis with their insightful comments.  

Furthermore, I extend my appreciation to Dr. Cara Pennel, Director of Public 

Health Graduate Program and Dr. Kristen M. Peek Director of Population Health 

Sciences Program, for their support and the solutions they provided to any problem 

presented during my studies.  

Finally, I feel obliged to make special mention of my former PhD mentor, 

Dr. David N. Herndon who encouraged me to pursuit a degree in biostatistics and 

provided the required funding for my studies. 

The data used herein were collected through an NICHD grant funded 

project: R01 DC005841-06A1 “Pathogenesis of virus-induced acute otitis media”, 

Principal Investigator, Tasnee Chonmaitree, MD.  



v 

Assessing the effect of “time of birth” on nasopharyngeal 

microbial load in infants 

 

Publication No._____________ 

 

 

Ioannis Malagaris, MPH 

The University of Texas Medical Branch, 2019 

 

Supervisor:  Kristofer Jennings 

 

Abstract 

 

Acute otitis media (AOM) is one of the most common childhood infections 

and its pathogenesis involves complex interactions between bacteria and viruses. 

Bacteria and viruses contributing to the AOM are collectively known as 

otopathogens. The objective of the capstone is to assess the effect of “month of 

birth” (MOB) on the microbial load of the most abundant otopathogen, Moraxella 

Catarrhalis. This is a retrospective analysis of data collected between 2009 – 2014 

as part of a longitudinal study to determine risk factors for AOM. Subjects were 

recruited near birth and followed up to 1 year of age. For measurement of 

nasopharyngeal microbial abundance, approximately seven specimens were 

taken per subject. The total number of patients and specimens in the dataset are 



vi 

139 and 948 respectively. The outcome variable was the log-transformed relative 

abundance of Moraxella genera. Its relationship with MOB was modeled using 

generalized additive mixed effects models (GAMM) controlling for age, month of 

specimen collection and other covariates while blocking on subject to control for 

repeated measures. Model selection was based on Bayesian Information Criterion 

(BIC). MOB showed a statistically significant non-linear relationship with Moraxella 

microbial abundance (p < 0.001). Increasing age and birth order were positively 

associated with the outcome (p < 0.001 and p = 0.03 respectively). The effect of 

MOB displayed a cyclic seasonal nature. This finding suggests that the timing of 

birth affects the average Moraxella microbial abundance in the first year of life. Our 

data demonstrate that MOB can be used to identify high risk populations for AOM. 

Further investigation on the underlying mechanisms mediating this complex 

relationship may aid in broadening the clinical understanding of AOM disease 

process.   
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Chapter 1 Introduction 

Acute otitis media (AOM) is one of the most common childhood infections, 

the leading cause of doctor’s visits by children and the most common cause of 

surgery and antibiotics consumption of this population in most countries(Kathleen 

A. Daly et al., 2010). In the first year of life, 62% of infants contract AOM, while 

70% of two-year old children have experienced the disease at least once(Schilder, 

Lok, & Rovers, 2004). Better understanding of associated risk factors for AOM is 

required in the effort of reducing public health burden.  

AOM is a polymicrobial disease and its pathogenesis involves complex 

interactions between bacteria and viruses(Chonmaitree, Jennings, et al., 2017). 

The prevalence of otopathogen genera (Haemophilus, Streptococcus, and 

Moraxella) is positively associated with frequencies of upper respiratory tract 

infections (URI), and the otopahogens’ presence seems to be a necessary 

condition for AOM during viral infection(Chonmaitree, Jennings, et al., 2017).  

Several disease-dependent mechanisms have been proposed relating 

seasonality or month of birth with risk of disease(Boland, Shahn, Madigan, 

Hripcsak, & Tatonetti, 2015). Recent studies have linked timing of birth with several 

disorders(Boland et al., 2015) and overall lifespan(Doblhammer & Vaupel, 2001). 

It has been shown that otopathogens’ microbiome load is not constant but varies 

throughout the year(Teo et al., 2015). This seasonal pattern may be attributed to 

several factors that also vary with season (temperature, humidity, outdoor 

exposure). Moreover, the type and the likelihood of exposure to certain respiratory 
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viruses throughout the year may partly determine otopathogens’ microbiome load. 

Time of birth determines the environment that a newborn is exposed to during the 

first months of life and likely affects otopathogen colonization.  

The aim of this study is to assess the effect of “month of birth” (MOB) on the 

microbiome load during the first year of age. This will be a retrospective analysis 

of data collected between 2009 – 2014 as part of a longitudinal study to assess 

the prevalence and risk factors for upper respiratory tract infection (URI) and 

AOM(Chonmaitree, Trujillo, Jennings, & Alvarez-fernandez, 2017). The 

nasopharyngeal specimens were collected from each subject in monthly (30 days) 

intervals for the first 6 months of life and at least once during the second half, or 

approximately at 9 months of age. In total, 948 nasopharyngeal specimens were 

collected from 139 study subjects (~ 7 specimens per subject). Given the nature 

of the available data, mixture outcomes with repeated observations per subject, 

this analysis has several challenges.  

The effect of MOB on microbiome load cannot be assessed validly without 

considering several potential longitudinal confounders: in particular, age and 

calendar month the sample was controlled for. During the first year of life, factors 

such as the state of the immune system of the newborn and the degree of its 

exposure to external environment vary as function of age; therefore, age is 

probably associated with microbiome load. Furthermore, it is expected that 

seasonal, yearly cyclic trends of genera to be evident. It follows that the calendar 

month that a sample was taken should also be associated with microbiome load.   
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An important aspect of this discussion has to do with the fact that MOB is a 

function of age and time of the sample. For example, a sample taken in July, from 

a 6-month-old patient completely determines the MOB of the patient, namely, 

January. As a result, the true effect of MOB cannot be determined while ignoring 

age and calendar month of sample measurement and due to linear dependence, 

inclusion of all three variables in multiple regression analysis is not possible (due 

to nearly complete collinearity). However, in our dataset, due to repeated 

measurements per subject during the first year of life, a significant proportion of 

the sample space of possible combinations of the three variables is recorded, and 

proper statistical analysis can be applied to test our hypothesis. 

The statistical analysis in this thesis incorporates random effects to account 

for the repeated measurements, adjust for any trends of microbiome load during 

study period (2009 – 2014), test for within subject correlation of residuals, and 

accounts for the appropriate correlation structure if necessary. 
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Chapter 2 Methods 

DATA DESCRIPTION 

This is a retrospective observational study and the aim of this section is to 

describe the nature of dataset used for the analysis. The data were collected 

between 2009 – 2014 as part of a longitudinal study to assess the prevalence and 

risk factors for URI and AOM(Chonmaitree, Trujillo, et al., 2017). Detailed 

documentation of the dataset is presented in the original clinical study of this cohort 

(Chonmaitree, Trujillo, et al., 2017). Subjects were infants recruited near birth and 

followed up to first diagnosis of AOM or up to 1 year of age. For measurement of 

nasopharyngeal microbial abundance, an average of seven specimens were taken 

per subject. Study personnel made home visits to collect Nasopharyngeal (NP) 

specimen swabs. The total number of patients and specimens in the dataset are 

139 and 971 respectively(Chonmaitree, Jennings, et al., 2017). Descriptive 

statistics of subjects and the distribution of sample collection timing is presented 

on Table 1 (Chonmaitree, Jennings, et al., 2017). 
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Table 1: Characteristics of subjects and specimens1.  

 

The relative populations of the most abundant microbiota genera detected 

in the specimens are presented in 

                                                 

1 Adapted from (Chonmaitree, Jennings, et al., 2017) 
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Error! Reference source not found. Pathogens such as bacteria and viruses 

contributing to the AOM are collectively known as otopathogens. The response 

variable, Moraxella Catarrhalis, is most abundant species among otopathogens 

with relative abundance of 9.7%. 
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Table 2: Relative abundance of microbiota in specimens2 

 

SPECIMEN ANALYSIS 

DNA extraction/ amplification and sequencing, and sequence analysis are 

described in (Chonmaitree, Jennings, et al., 2017). Briefly, PowerMicrobiome 

DNA/RNA Isolation kit was used for DNA extraction from the Nasopharyngeal 

specimens. PCR was used for DNA amplification, and the MiSeq platform was 

used for DNA sequencing. Analysis of subsequences was performed in order to 

                                                 

2 Adapted from (Chonmaitree, Jennings, et al., 2017) 
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identify the type of bacteria in the sample, using CLC Genomics Workbench 8.0.1 

Microbial Genomics Module. 

STATISTICAL ANALYSIS PLAN 

The final sample include in the current analysis is a subset of the dataset 

described in the previous section. To increase signal-to-noise ratio only 

nasopharyngeal specimens having more than 1000 bacterial counts were included 

in the analysis. Characteristics of the final sample are presented in Tables 3 and 

4 in the Results Chapter. 

 The dependent variable in this analysis was the log-transformed relative 

abundance of Moraxella genus. To this end, the relative abundance of Moraxella 

genus in each sample was computed by dividing Moraxella counts by total counts 

per sample. To avoid undetermined values (like LOGe0) the relative abundance 

was computed by adding 1 to the absolute Moraxella counts before division by the 

total sample counts. The same procedure was followed in the original clinical study 

of this cohort (Chonmaitree, Jennings, et al., 2017) The outcome was also 

modeled with logistic regression and the results were similar. However, binomial 

models occasionally suffered from instability (model convergence failure) and 

produced unreliable results. These issues were resolved by modeling the log-

transformed relative abundance of Moraxella genus. All statistical analyses were 

performed using R(R Core Team, 2018). 
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Due to repeated measurement within subject, the effect of MOB on 

microbiome load was assessed using linear mixed effects models and generalized 

additive mixed models (to assess potential non-linear relationships). Models will 

include random intercept for subject and the possibility of inclusion of random 

effects for slope were explored. Linear mixed effects models were examined first 

using the “nlme” package(Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2018) 

in R. In the first model, the only fixed effect is the MOB. The two main suspected 

confounding variables age and sample-calendar-month were added sequentially, 

and the changes in the estimated effect of MOB and its precision were assessed. 

The results are reported on Table 6. The original clinical study of this cohort 

(Chonmaitree, Trujillo, et al., 2017) reports the effect of several environmental 

factors on upper respiratory tract infections (URI) in infants up to 6 months old. The 

identified factors were number of siblings in the home, exclusive breastfeeding for 

at least six months, length of breastfeeding, day care attendance and being born 

after February 2010, To obtain greater precision of the effect of MOB on the relative 

abundance of Moraxella genus several covariates were added to obtain the full 

model. The additional covariates were birth weight, gestational age, type of 

feeding, birth order, length of exclusive breast feeding, time to formula feeding and 

cigarette smoke exposure. Calendar year of sample measurement were also 

included in the analysis to account for any differences in microbiome load due to 

year (study period 2009 – 2014). The results are shown on Table 8. Stepwise 

model selection using Akaike information criterion (AIC) was used to obtain the 

final linear model. The results are reported on table. AIC was preferred over more 
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strict criteria for two reasons. First, the objective at this stage of the analysis was 

not to build a predictive model but to obtain higher precision of MOB effect. 

Second, the effects of the variables obtained from the linear model was also 

assessed in the next steps of the analysis where non-linear relationships were 

examined.  

Evidence of temporal serial correlation was assessed empirically by 

calculating the within subject residual correlation using the Autoregressive 

Correlation (ACF) function. Improvement in model fit by inclusion of correlation 

structure was assessed with the Bayesian information criterion (BIC). 

To assess whether a non-linear relationship exists between the outcome 

and MOB, generalized additive mixed models (GAMM) were employed using the 

“mgcv” package(Wood, 2019) in R. Smoothing spline functions were applied on 

the main predictor, MOB, the two main covariates, age and sample-calendar-

month and the transformed variables were used in the analysis. To allow for 

greater resolution, before the transformation the three variables were expressed 

in day units with range from 1 to 365. The time origin for MOB and sample-calendar 

month will be January 1st and date of birth for age. The results are reported on 

Table 9. The non-linear association between MOB and the outcome was further 

investigated by attempting to decompose the aggregate relationship into distinct 

elements of seasonal nature which may be amenable to clinical interpretation. To 

this end, several sinusoidal functions- varying in period -having as phase argument 

the variable MOB were fitted to the outcome, while including in the model all the 
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statistically significant covariates identified in the previous model. The sinusoidal 

functions were of the form: 

a ⋅ sin (2𝜋𝑓 ⋅
𝑡

365
) + 𝑏 ⋅ cos⁡(2𝜋𝑓 ⋅

𝑡

365
) 

where “f” is the frequency of the seasonal component (1 over period), “t” is the time 

of birth in days and “a” and “b” are the coefficients determined by the model. The 

results are reported on Table 10. 
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Chapter 3 Results 

DESCRIPTIVE STATISTICS 

Data were collected from a total of 139 subjects. Subjects’ characteristics 

are shown on Table 3. Subjects were predominantly male (60%) and white (86%) 

and of Hispanic origin (55%). During the study period, 77% of subject lived in a 

smoke-free environment. Formula exclusive feeding was more prevalent (45%) 

than exclusive breast feeding (14%) or mixed feeding (41%).  
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Table 3: Subjects’ characteristics 

Number of Patients 139 
Male: Female 83:56 

Race   
White 119 

African American 18 

Asian 2 

Hispanic: Non-Hispanic 77:62 

Breast Feeding   
Exclusive for 6 months 19 

Exclusive for 3 months 7 

Exclusive Formula 62 

Mixed feeding 57 

Cigarette smoke exposure (% yes) 23 

Birth Weight (kg) 3.3 (0.5) 

Birth Order (relative to siblings)   
1 62 

2 41 

3 21 

4 10 

5 4 

7 1 

Gestational Age (months)   
36 6 

37 22 

38 34 

39 38 

40 31 

41 8 

 

Out of 139 subjects, 62 (45%) had no siblings at the study period while 15 

(10%) had a within family birth order of four or more. Weight at birth was on 

average 3.3±0.5 kg and followed approximately a bell-shaped distribution (Figure 

1). 
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Figure 1: Subjects’ weight distribution in grams at birth (N = 139) 

 

The gestational age also followed bell-like distribution with central tendency 

at the 39th week (Figure 2). 
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Figure 2: Subjects’ gestational age distribution 

N = 139 

 

Out of 139 subjects, a total of 971 specimens were collected between 

August 2008 and January 2014. Specimens which yielded less than 1000 readings 

in sequencing analysis were excluded because of sample quality concerns. The 

final number of specimens included in this analysis was 947. Specimen collection 

characteristics are displayed on Table 4 
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Table 4: Specimen collection characteristics 

Number of specimens 947 
Date range of collection 2009 - 2014 

Age (months) at collection   

1 126 

2 133 

3 144 

4 137 

5 141 

6 137 

7 - 12 129 

Calendar Year of collection   

2009 49 

2010 122 

2011 36 

2012 450 

2013 288 

2014 2 

Season of collection (quarterly) 
 

1st 291 

2nd 243 

3nd 188 

4th 225 

Within patient number of specimens   

4 7 

5 11 

6 35 

7 51 

8 22 

9 12 

13 1 

 

The bulk of specimens (86%) were collected from subjects aged 6 months 

or less. The first 6 months of age were almost uniform equally sampled (Figure 

3). The second half of the first life of year is represented by 129 specimens (14%) 

of which the majority was obtained from 9 months old subjects (n = 87). 
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Figure 3: Number of specimens collected per age group 

N = 947 

 

The distribution of specimen sampling among seasons is displayed on 

Table 4 (quarters of a year), and Figure 4 (months). All months were almost 

uniformly sampled, therefore there is no risk of bias due to uneven sampling. 
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Figure 4: Total number of specimens collected per calendar month 

N = 947 

 

The specimens were collected between August 2009 and January 2014. 

The majority of collection took place at calendar years 2012 and 2013 (Figure 5).  
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Figure 5: Specimen collection per calendar year  

N = 947 

 

According to study design(Chonmaitree, Jennings, et al., 2017), specimens 

were to be collected from each subject in monthly (30 days) intervals for the first 6 

months of life and ideally at least once during the second half, or approximately at 

9 months of age. The median number of specimens per subject was 7 (n = 51), 

with most subjects contributing 6 to 8 specimens. The groups of patients -based 

on number of specimens per subject- and their frequency are shown on Figure 6. 
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Figure 6: Specimen collection characteristics 

N= 139 

 

The main variable of interest of this analysis is the MOB and its sufficient 

representation in the sample is important. Moreover, to discern the effect of MOB 

given the potentially confounding effect of 1) subject’s age and 2) calendar month 

at specimen collection, a significant proportion of the sample space of possible 

combinations of the three variables should be represented in the dataset. Given 

the sample size of 139, each MOB would be ideally represented by 11-12 subjects. 
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The distribution of MOB in the dataset is shown on Error! Reference source not f

ound.. 

 

Table 5: Number of births by calendar month from 2009 to 2014 

Month Count 

Jan 8 

Feb 12 

Mar 13 

Apr 12 

May 2 

Jun 7 

Jul 10 

Aug 15 

Sep 19 

Oct 11 

Nov 19 

Dec 11 

N = 139 

 

Except for May, all MOB are sufficiently represented in the data. The two 

subjects born in May contributed together 14 specimens covering an appreciated 

proportion of the sample space. Finally, instead of MOB, the day of the year at 

birth (1 to 365) was used in the analysis, therefore the uneven sampling is not 

expected to meaningfully affect the results. 
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DATA ANALYSIS 

The effect of MOB on the microbial abundance of Moraxella genus 

(logarithm of relative abundance), was initially modeled using mixed effects linear 

regression while controlling on subset level due to repeated observations within 

subjects. In the first model, the only fixed effect is the MOB. The two main 

suspected confounding variables age and sample-calendar-month were added 

sequentially, and the changes in the estimated effect of MOB and its precision 

were assessed. According to the initial models, there is a statistically significant 

relationship of MOB with the outcome and the result remained significant after 

accounting for the potential confounding effect of the variables age and the 

calendar month of specimen collection. The results are summarized on Table 6. 

Table 6: Assessing potential confounding 

Terms Coefficient SE t-value p-value 

MOB only 0.10 0.04 2.7 0.008 

MOB + age 0.11 0.04 2.7 0.007 

MOB + age + sampling month 0.10 0.04 2.7 0.009 

Effect of MOB assessed by sequentially adding age and month of specimen collection to 
the initial linear mixed model. 

 

In addition to MOB, age was also statistically significant variable. The 

positive association with the outcome indicates higher relative abundance of 

Moraxella with increasing age during the first year of life. On the other hand, the 

variable month of specimen collection was associated with the outcome when both 

MOB and age are included in the model. The results are shown on Table 7. 
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Table 7: Linear model including both potential confounders 

Terms  Coefficient SE t-value p-value 

MOB  0.1 0.04 2.7 0.009 

Age  0.21 0.03 6.6 < 0.001 

Month of sampling -0.02 0.02 1.1 0.3 

Linear Mixed effects model including the variables MOB, age and calendar month of 
specimen collection. 

 

To obtain higher precision of the effect of MOB on the outcome additional 

variables were also included in the analysis. The covariates included in the full 

model were birth weight, gestational age, type of feeding, birth order, length of 

exclusive breast feeding, time to formula feeding and cigarette smoke exposure 

and calendar year of specimen collection. An interaction term between MOB and 

age was also included. From the full model, the final linear model was obtained 

using stepwise model selection using AIC criterion. The variable that remained in 

the final linear model were MOB, age, birth order, length of exclusive breast 

feeding and calendar year of specimen collection. Model summary is shown on 

Table 8. 

Table 8: Final linear model 

Terms Coefficient SE t-value p-value 

MOB 0.1 0.04 2.7 0.009 

Age 0.23 0.03 6.9 < 0.001 

Birth order 0.28 0.12 2.4 0.017 

Exclusive breast-feeding length -0.08 0.04 -1.8 0.07 

Specimen collection year -0.2 0.12 -1.6 0.1 

Final linear mixed effects model obtained by applying stepwise model selection. 

 

Plots of model residuals against MOB and covariates indicated a potentially 

non-linear relationship of MOB and calendar year at specimen collection with the 

outcome. The plot of the residuals of the final linear model against the MOB is 
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shown in Figure 7. In Figure 8 we observe that the mean deviation from the model 

is different for each month of birth which is an indication that the linear model is 

not adequate to describe the functional relationship of the outcome with the 

variable MOB. 

 
Figure 7: Residuals of final linear mixed effects model against MOB 
 

The non-linear relationships were examined using Generalized Additive 

mixed models(Wood, 2019) (GAMM). The variables considered at this stage of the 

analysis were the ones of the final linear model; namely, MOB, age, birth order, 

length of exclusive breast feeding and calendar year of specimen collection. Due 

to special interest in the variable month of specimen collection and the interaction 

of age with MOB, the effect of these terms was also considered even though they 

were found not statistically significant according to the linear model.  
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More specifically, to examine non-linear relationships with the outcome 

smoothing spline functions were applied on the continuous variables 1) MOB, 2) 

age, calendar 3) month and 4) year of specimen collection and the transformed 

variables were used in the analysis. The non-linear interaction of age with MOB 

was modeled as a tensor product smooth function of the two variables. BIC was 

used as model selection criterion. Details of the GAMM model are presented on 

Table 9.  statistically significant positive linear relationships (p < 0.05) were 

detected between the outcome and the variables 1) age and 2) birth order. 

Moreover, there was a statistically significant non-linear effect of the variables 1) 

calendar year and 2) MOB. The month at specimen collection was not statistically 

significant when either age or MOB or both were in the model. Similarly, as was 

the case in the final linear model, the interaction of age with MOB was not 

statistically significant. 

Table 9: Summary of final GAMM 

Linear terms Coefficient SE t-value p-value 

Birth Order 0.26 0.11 2.3 0.02 

Age  0.29 0.04 7.0 < 0.001 

Non-Linear terms   F-value p-value 

Month of Birth (MOB) 
  4.9 < 0.001 

Calendar Year     4.7 0.001 

Summary of final Generalized  Additive Mixed Model. 

 

The relationship of the outcome with the year of specimen collection is 

displayed on Figure 8. The statistically significant association may be due to 

multiple factors that may change within a five-year period as well as the expected 

cycles of the relative abundance of microbiota in the environment.  
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Figure 8: Non-Linear relationship of Moraxella relative abundance with year 
of specimen collection 

The dashed lines indicate the standard error of the predicted mean. The vertical axis is the 
standardized log-relative abundance or Moraxella microbial abundance with the average 
mean across the whole time period (horizontal axis) corresponding to zero. 

 

The statistically significant non-linear association between MOB and the 

outcome which was detected by the GAM model was further investigated by 

attempting to decompose the aggregate relationship into distinct elements of 

seasonal nature which may be amenable to clinical interpretation. To this end, 

several sinusoidal functions- varying in period -having as phase argument the 

variable MOB were fitted to the outcome, while including in the model all the 

statistically significant covariates identified in the previous model. Three 

statistically significant sinusoidal functions of MOB were detected. The results are 

summarized on Table 10. 
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Table 10:  Summary of final model 

Linear terms Coefficient SE t-value p-value 

Birth Order 0.23 0.11 2.1 0.03 

Age  0.31 0.04 8.3 < 0.001 

Sinusoid - 12 months cycle 0.88 0.19 4.5 < 0.001 

Sinusoid - 6 months cycle 0.5 0.18 2.8 0.005 

Sinusoid - 4 months cycle 0.47 0.17 2.7 0.006 

Non-Linear terms    p-value 

Calendar Year 
   0.001 

 

The variation of the Moraxella microbial abundance due to the distinct 

seasonal elements of MOB, as well as the aggregate effect, is depicted on Figure 

9 and Figure 10. The first element has 12 months period with peak intensity in 

end of November, the second has 6 months period with peak intensities in April 

and October and the third has 4 months period with peak intensities in March, July 

and November. The composite effect displays global maximum and minimum 

intensities at November and May respectively and a relative maximum in March. 
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Figure 9: Variation of Moraxella microbial abundance due to distinct 
seasonal elements of MOB 

A) 12-month period. B) 6-month period. C) 4-month period. D) Composite effect. The 
shaded region indicates the 95% confidence interval of the predicted mean across a 
calendar year. 
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Figure 10: Aggregate effect of MOB on Moraxella microbial abundance  

The aggregate effect is illustrated by the bold black line and the shaded region corresponds 
to the 95% confidents intervals estimated by the final GAMM model. The superimposed 
colored curves correspond to the distinct seasonal elements shown on Figure 9. 
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Chapter 4 Discussion 

In this study we showed that there is a complex association between the 

relative abundance of Moraxella genera with MOB in infants during the first year 

of life. Time of birth determines the environment that a newborn is exposed to 

during the first months of life and likely affects otopathogen colonization.  

Moreover, the type and likelihood of exposure to certain respiratory viruses 

throughout the year may partly determine otopathogens’ microbiome load. Better 

understanding of associated risk factors for AOM is required in the effort of 

reducing its public health burden. 

Prior studies have shown that URI and AOM are mainly associated with 

daycare attendance(Ladomenou, Kafatos, Tselentis, & Galanakis, 2010; Lok, 

Anteunis, Meesters, Chenault, & Haggard, 2012), having siblings(K A Daly et al., 

1999; Ladomenou et al., 2010; Lok et al., 2012) and (absence of) exclusive 

breastfeeding for at least 6 months(Ladomenou et al., 2010). In accordance to 

these studies, the original clinical study of this cohort(Chonmaitree, Trujillo, et al., 

2017) reports the effect of several environmental factors on URI in infants up to 6 

months old. The identified factors were number of siblings in the home, 

breastfeeding, day care attendance and being born after February 2010 (which is 

probably associated with the change of vaccination practice of using 13-valent 

protein-conjugate pneumococcal vaccine instead of 7-valent).  The association of 

MOB with Moraxella genera microbial abundance, the most abundant 

otopathogen(Chonmaitree, Jennings, et al., 2017), that was shown in the original 
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study, indicates that the timing of birth may be used to identify high risk population 

for AOM. To our knowledge ours is the first study to assess the association 

between seasonality in birth and abundance of Moraxella, one of the most 

predominant pathogens in infants with AOM. 

The main finding of this study is that there is a statistically significant non-

linear association of the MOB with the relative abundance of Moraxella genera 

(Table 9) and this association remained significant when the effect of subjects’ 

age and calendar month of specimen collection were accounted for (data not 

shown). The effect of MOB displayed a cyclic seasonal nature (Table 10, Figure 

9). Specifically, specimens collected during the first year of life from subjects born 

in November had on average the highest relative abundance of Moraxella while 

those collected from subjects born in May had the lowest (Figure 10). Moreover, 

another local maximum was detected for subjects born in March. These results are 

consistent with the study of Daly et al. that showed association between recurring 

otitis media in infants and season of birth, albeit not accounting for specific 

pathogens; in that study infants born during fall were found to be 2.6 times more 

likely to present consecutive episodes of AOM compared to infants born in 

spring(K A Daly et al., 1999). 

Among the secondary results of this analysis are the statistically significant 

associations of subject’s age, birth order and calendar year of specimen collection 

with Moraxella microbial abundance. Within the range of 0 to 12 months, 

increasing age is linearly associated with (higher) log-transformed relative 

abundance of Moraxella microbial abundance. Older subjects have more time to 
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interact with the environment relative to younger subjects and therefore greater 

chance to encounter endogenous sources of infection. The positive linear 

association of birth order with higher Moraxella microbial abundance has also a 

reasonable casual path. Subjects living in the same environment with older siblings 

are more likely to carry higher microbial abundance and diverse profile of 

microbiota due to contamination by their older siblings. The non-linear relationship 

of Moraxella microbial abundance with calendar year of specimen collection shows 

an overall downward trend which is in accordance with the reduced risk for 

subjects born after February 2010 reported in (Chonmaitree, Trujillo, et al., 2017). 

This relationship is depicted on Figure 8. It is likely that the plateau shown for the 

time interval around the year 2011 is an artefact of the lower recruitment rate at 

this year. 

There are certain limitations to this study; because the original cohort study 

focused on AOM, many subjects completed the study upon the first incidence of 

AOM or at 6 months of age (Figure 3). The smaller sample size for 6-12 months 

of age may have affected the analysis, specifically the interaction between age 

and MOB. While in this study we adjusted for known factors related to otopathogen 

microbial abundance, there are other potential mechanisms for explaining 

seasonality that we could not account for. Such factors would be environmental 

pollution levels, temperature or climate and seasonal variation in viral infection 

loads. Finally, while it is unknown whether the environmental exposure during the 

first months of birth may affect an infant’s long-term risk for AOM infection, results 

from this study cannot be generalized beyond the first year of life. 
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Acute otitis media is one of the leading causes of pediatric doctor visits and 

antibiotic consumption and poses a significant public health burden. We have 

shown that month of birth is associated with microbial lode of Moraxella 

Catarrhalis, the most predominant bacterial infection in infant AOM cases. Early 

recognition of infants at higher risk of AOM can assist clinicians in decision making 

and providing prompt treatment to avoid complications. 
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