Copyright by

Casey L. C. Schroeder 2016

The Dissertation Committee for Casey Lee Cody Schroeder Certifies that this is the approved version of the following dissertation:

## Rickettsia prowazekii and its 'Junk DNA':

 The Identification and Characterization of Small RNAs

[^0]
# Rickettsia prowazekii and its 'Junk DNA': <br> The Identification and Characterization of Small RNAs 

## by

Casey Lee Cody Schroeder, MS, MLS(ASCP), SM, SLS

## Dissertation

Presented to the Faculty of the Graduate School of The University of Texas Medical Branch in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

The University of Texas Medical Branch
October, 2016

## Dedication

I dedicate this dissertation to my daughter, who has the fortunate pleasure of possessing half of her mother's genes. Sorry about the other half.

Explore. Dream. Discover.

For I learned far more in the woods than I did inside a building.
Nature is calling. Answer it.

## Acknowledgments

I would like to acknowledge those that were instrumental:
-To the Flying Spaghetti Monster: For your noodly appendage has touched and guided my results. Without the logical conjecture based on overwhelming observable evidence, the conclusions in this dissertation would not have been possible.
-The Universe: For had you not expanded 13.8 billion years ago and created the Earth 4.5 billion years ago, none of this research would have been physically possible. The continued spewing of chemically-rich star guts atomically binds this research to the universe and biologically to the Earth. For that, I am eternally grateful.
-Dissertation Committee: My sympathies for forcing you to sit through, what probably felt like never-ending, biannual dissertation committee meetings with me. If it is any solace, they have ended.......... hopefully. Specifically, Dr. Fofanov, you're fired. Dr. Minnick, enjoy fly fishing with the grizzly bears. Dr. Valbuena, sweet job in California. Dr. Walker, live long and prosper. Dr. Sahni, I know, it's about time.
-Evolution: For you are the greatest show on Earth!
-Space: For Douglas Adams said it best, you are big. Really big. Vastly, hugely, mind-bogglingly big. Thanks for that.
-Homo neanderthalensis: Hell of a thing 40,000 years ago. On behalf of all Homo sapiens, sorry it did not work out. If it is any consolation, your demise allowed Homo sapiens to discover science and the scientific method. Without that, this dissertation would have never been accomplished.
-Rickettsia prowazekii: It is truly unfortunate that I was required to sacrifice some of your living descendants. I am greatly saddened by their loss. Nevertheless, their contributions to this work and to rickettsiology in general will not be forgotten.
-Don't Panic! So long, and thanks for all the fish!
-Oh, and SCIENCE RULES!

# Rickettsia prowazekii and its 'Junk DNA': The Identification and Characterization of Small RNAs 

Publication No. $\qquad$

Casey L. C. Schroeder, MS, PhD, MLS(ASCP), SM, SLS<br>The University of Texas Medical Branch, 2016

Supervisor: Sanjeev K. Sahni, PhD

As the etiologic agents of Rocky Mountain spotted fever and epidemic typhus, Rickettsia are obligate intracellular Gram-negative pathogenic bacteria. Genomic sequencing determined that $\sim 24 \%$ of the Rickettsia prowazekii genome was noncoding DNA due to genomic reduction. Regions of bacterial noncoding DNA were found to encode important post-transcriptional regulators of bacterial virulence and growth called bacterial small RNAs (sRNAs). These sRNAs are classified as either trans-acting, whose biogenesis is predominantly linked to intergenic regions, or cis-acting, encoded on the antisense strand of an open reading frame (ORF). Despite being present in a majority of other bacteria, the existence and function of sRNAs are unknown in Rickettsia. In order to explore the possibility of rickettsial sRNAs, a combination of bioinformatics and in vitro techniques was employed. The first objective identified over 1,700 sRNAs using the SIPHT analysis tool to analyze 16 different strains representing 13 rickettsial species. Strong $\sigma 70$ promoters and Rho-independent terminators were detected in their respective positions for all candidate sRNAs predicted in $R$. prowazekii, R. typhi, R. conorii, and $R$. rickettsii. Next generation sequencing (NGS) performed at 3h and 24h on R. prowazekii-
infected human microvascular endothelial cells (HMECs) validated the expression of 26 sRNA candidates. Six selected candidates were further confirmed using RT-PCR. The second objective analyzed the NGS data and found the expression of an additional 35 trans- and 23 cis-acting novel sRNAs in addition to well-conserved kingdom-wide sRNAs ( $6.5 \mathrm{~S}, 4.5 \mathrm{~S}$, RNaseP_bact_a, $\alpha-\operatorname{tmRNA}$ ). Three novel sRNAs and the conserved sRNAs were confirmed using either Northern blot analysis or RT-PCR. Transcriptional start sites were determined using RLM-RACE and secondary structure predicted for five novel sRNAs and 6S RNA. The third objective examined comparison of sRNA expression between HMECs and AAE2 (arthropod host cells), and found that using qRTPCR, four sRNAs that showed significantly higher levels of expression at 24 h . Also, a closer examination of $R p$ _sR60 found an interaction with H375_0420, in which both sRNA and target were found to be significantly decreased at 3 h and 24 h in HMECs. During AAE2 infection, both of these targets were found to be consistently expressed at $0.5 \mathrm{~h}, 3 \mathrm{~h}$, and 24 h . Together, these results establish the presence and expression of sRNAs in R. prowazekii during host cell infection and suggest potential functional roles for these important post-transcriptional regulators in rickettsial biology and pathogenesis.

## TABLE OF CONTENTS

List of Tables ..... x
List of Figures ..... xi
List of Abbreviations ..... xii
Chapter 1 Introduction to Rickettsia and Bacterial Small RNAs ..... 1
Introduction ..... 1
Rickettsioses .....  2
Rickettsial Transmission and Arthropod Vectors ..... 4
Genomics ..... 5
Bacterial Small RNAs ..... 9
Chapter 2 Methodology ..... 17
Rickettsia Species and Strains ..... 17
Prediction of sRNAs ..... 17
Promoter prediction ..... 18
Target prediction ..... 18
Cell Culture and Rickettsial Infection ..... 20
RNA isolation ..... 21
RNA Sequencing ..... 22
Reverse Transcriptase PCR ..... 23
Northern Blotting ..... 25
RNA Ligase-Mediated Rapid Amplification of cDNA Ends (RLM-RACE). ..... 25
Electrophoretic Mobility Shift Assay (EMSA) ..... 26
Chapter 3 Prediction of Small RNAs in the Genus Rickettsia ..... 33
Introduction ..... 33
Results ..... 34
Discussion ..... 42
Chapter 4 Identification and Validation of Novel Candidate sRNAs within $R$. prowazekii strain Breinl ..... 64
Introduction ..... 64
Results ..... 65
Discussion ..... 72
Chapter 5 Define the expression profile of novel sRNAs between the virulent strains of $R$. prowazekii and their mechanistic role during host-pathogen and vector- pathogen interactions ..... 91
Introduction ..... 91
Results ..... 92
Discussion ..... 98
Chapter 6 Summary ..... 112
Appendix Additional Files ..... 117
Bibliography ..... 220
Vita. ..... 231

## List of Tables

TABLE 1. RICKETTSIAL GENOMES AND ASSOCIATED PLASMIDS ..... 16
Table 2. Rickettsial species ..... 28
Table 3. PCR Primers. ..... 29
Table 4. RLM-RACE PRIMERS FOR TRANSCRIPTION START SITE, ..... 30
Table 5. Northern blot primers. ..... 31
TAbLE 6. EMSA PRIMERS. ..... 32
TABLE 7. sRNA PREDICTIONS CATEGORIZED BY NUCLEOTIDE SIZE. ..... 52
TABLE 8. sRNA COMPARISON ..... 53
Table 9. sRNA target predictions ..... 54
Table 10. sRNA target categorization ..... 55
Table 11. sRNA predicted promoter locations ..... 56
Table 12. Identified transcription start sites determined by rlM-RACE and associated promoter motifs ..... 89
Table 13. Prediction of target genes using TargetrNa 2 and Intarna. ..... 90

## List of Figures

Figure 1. Rickettsia conoril in host cells. ${ }^{1}$ ..... 13
Figure 2. Transmission cycle for the natural maintenance of spotted fever group Rickettsia. ${ }^{1}$ ..... 14
Figure 3. Transmission cycle of Rickettsia prowazekil ${ }^{1}$ ..... 15
Figure 4. sRNA promoter frequencies. ..... 57
Figure 5. Alignment of R. rickettsil strain Sheila Smith sRNA candidate \#71 ..... 58
Figure 6. Alignment of R. rickettsil strain Iowa sRNA candidate \#118. ..... 59
Figure 7. Expression profiles for 6S RNA, RNaseP_bact_A, and A-tmRNA ..... 60
Figure 8. 6S RNA (SSRS) expression during host cell infection. ..... 61
Figure 9. Genomic location of R. prowazekil strain Breinl sRNAs. ..... 62
Figure 10. Expression of R. prowazekil strain Breinl candidate sRNAs during host cell infection. ..... 63
Figure 11. Identified novel trans-acting candidate sRNAs. ..... 83
Figure 12. Identified novel cis-acting candidate sRNAs. ..... 84
Figure 13. Northern blot analysis. ..... 85
Figure 14. RT-PCR analysis ..... 86
Figure 15. sRNA promoter frequencies. ..... 87
Figure 16. Predicted secondary structure of r. prowazekil 6S RNA. ..... 88
Figure 17. Rp_sR60 EMSA with Coprarna predicted targets. ..... 104
Figure 18. Rp_sR60 and H375_0420 expression using AAE2 model of infection ..... 105
Figure 19. Rp_sR60 and H375_0420 expression using HMEC model of infection. ..... 106
Figure 20. Rp_sR76 expression using HMEC and AAE2 Models of infection. ..... 107
Figure 21. Rp_sR83 expression using HMEC and AAE2 Models of infection. ..... 108
FIGURE 22. Rp_sR86 EXPRESSION Using HMEC AND AAE2 MODELS OF INFECTION. ..... 109
Figure 23. Rp_sR159 expression using HMEC and AAE2 models of infection ..... 110
Figure 24. Rp_sR60 interaction with H375_0420 ..... 111

## List of Abbreviations

| AAE2 | Amblyomma americanum tick cell line |
| :--- | :--- |
| BLAST | Basic Local Alignment Search Tool |
| BPROM | Bacterial Promoter Program |
| BSL | Biosafety Level |
| CTP | Carboxyl Terminal Protease |
| DNA | Deoxyribonucleic Acid |
| HGT | Horizontal Gene Transfer |
| HMEC | Human Microvascular Endothelial Cells |
| IGR | Intergenic Regions |
| MEV | Mean Expression Value |
| NGS | Next Generation Sequencing |
| ORF | Open Reading Frame |
| PCR | Polymerase Chain Reaction |
| qRT-PCR | Real-time, Reverse-Transcriptase Polymerase Chain Reaction |
| RLM-RACE | RNA Ligase Mediated Rapid Amplification of cDNA Ends |
| RNA | Ribonucleic Acid |
| RNA-seq | Next Generation RNA Sequencing |
| Rp_sR | Rickettsia prowazekii small RNAs |
| RT-PCR | Reverse-Transcriptase Polymerase Chain Reaction |
| SIPHT | sRNA Identification Protocol using High throughput Technology |
| sRNA | Small, Noncoding RNAs |
| T3SS | Type 3 Secretion System |
| T4SS | Type 4 Secretion System |

## Chapter 1 Introduction to Rickettsia and Bacterial Small RNAs ${ }^{1}$

## Introduction

The Genus Rickettsia includes Gram-negative bacilli that belong to the class $\alpha$ proteobacteria. Relatively small AT-rich genomes, fastidious growth requirements, natural transmission through arthropod vectors, and a tropism for endothelial cells in mammalian hosts define these obligate intracellular pathogens (Figure 1) (Blanc et al., 2007; Darby et al., 2007; Fuxelius et al., 2007). Although rickettsiae are traditionally divided into antigenically distinct groups, namely spotted fever and typhus, recent phylogenetic evidence now categorizes the genus into four main groups: ancestral, typhus, transitional, and spotted fever (Gillespie et al., 2008). The ancestral group consists of Rickettsia bellii and R. canadensis. The typhus group, responsible for epidemic typhus and endemic typhus, includes only two species: R. prowazekii and $R$. typhi. The most diverse group in terms of vectors and disease is the transitional group, comprised of three species: R. australis, R. akari, and R. felis. Nevertheless, the spotted fever group includes the largest species diversification with at least 15 species, including R. rickettsii and R. conorii (Table 1). There are several other rickettsial species that have yet to be fully characterized, such as R. asiatica, R. hoogstraalii, and R. argasii (Fujita et al., 2006; Lafri et al., 2015).

[^1]
## Rickettsioses

Rickettsial diseases, such as Rocky Mountain spotted fever (RMSF) and epidemic typhus, have had a significant impact on nearly all facets of society and historical events. RMSF was first described in 1896 by Major Marshall Wood, U.S. Army Medical Corps, in Boise, Idaho, U.S.A. (Thorner et al., 1998). At that time, RMSF was colloquially referred to as "blue disease" or "black measles" (Woodward, 1973). Later in 1906, Howard Ricketts demonstrated tick transmission of bacilli and pathology resembling RMSF in guinea pigs (Bechah et al., 2008b). The disease, broadly distributed in the United States despite its name, has a geographic range as far north as Canada and as far south as Argentina. The greatest incidence of spotted fever rickettsioses in the United States occurs in a zone that stretches north-south between northern Missouri and southern Arkansas and east-west between mid-Oklahoma and the east coast (Drexler et al., 2016). RMSF and other spotted fever rickettsioses are notifiable diseases in every state of the United States except Hawaii and Alaska (Drexler et al., 2016). If left untreated, RMSF may have a case fatality rate between 20-25\% (Smadel, 1959; Childs and Paddock, 2002). Even in the post-antibiotic era, the case fatality rate hovers around $1-2 \%$ (Openshaw et al., 2010). Delayed diagnosis worsens the clinical course of RMSF as it increases the chances of complications and fatal outcome. The key to successful treatment is early administration of appropriate antibiotics (Thorner et al., 1998; Drexler et al., 2016). To date, 2012 has had the highest reported incidence of spotted fever rickettsioses in the United States with approximately 4,500 cases (Drexler et al., 2016).

As RMSF is considered to be the most severe spotted fever rickettsiosis, the same holds true for epidemic typhus from the typhus group. Historically, epidemic typhus was
dubbed the "scourge of the armies", as it was a common infectious disease during wars, famine, and within impoverished areas (Raoult et al., 2006; Zhang et al., 2006; Badiaga and Brouqui, 2012). Caused by R. prowazekii, epidemic typhus played a significant role in decimating the strength of Napoleon's Grand Army of 1812 (Raoult et al., 2004). During World War II, outbreaks of epidemic typhus were common in military camps, Nazi concentration camps, and battle torn cities. Antibodies for R. prowazekii were found in two homeless individuals in Houston, Texas, U.S.A in 2008. However, these individuals were not exhibiting signs or symptoms of epidemic typhus at the time of serological testing (Reeves et al., 2008). More recently, outbreaks have occurred in Burundi and Russia (Badiaga and Brouqui, 2012). While there is a controversy on whether epidemic typhus originated in the "Americas" or in Europe, today the disease is found worldwide in conjunction with Pediculus humanus corporis (human body louse) (Bechah et al., 2008a). In the pre-antibiotic era, the mortality rate for epidemic typhus reached as high as $60 \%$. However, after the development of antibiotics, the mortality rate dropped to as low as $4 \%$. Nevertheless, as the disease is prevalent in conditions of famine, war, population displacement, and malnutrition, the mortality rate can still reach as high as $50 \%$ (Bechah et al., 2008a). Interestingly, only R. prowazekii has the ability to sustain subclinical latent infections in convalescent persons, who can later develop recrudescent typhus, also known as Brill-Zinsser disease. This form of epidemic typhus is generally a milder disease (Bechah et al., 2008a; Sahni et al., 2013). Currently, there are no licensed vaccines for $R$. prowazekii or other rickettsial diseases in the United States or elsewhere.

## Rickettsial Transmission and Arthropod Vectors

Association with arthropods is responsible for natural transmission of human rickettsioses through infected vectors. In the case of Rickettsia species, these vectors include ticks, cat fleas, rat fleas, mites, and human body lice. The spotted fever group Rickettsia and R. australis are transmitted through ticks (Figure 2), while the remaining transitional group Rickettsia and typhus group Rickettsia are primarily transmitted through non-tick vectors. Humans are considered to be "dead-end hosts", as they are not essential to the rickettsial lifecycle, with the notable exception of $R$. prowazekii. In addition, the geographic ranges of rickettsial diseases are limited only by their natural vector's range (Azad and Beard, 1998).

Rickettsia-free ticks acquire spotted fever group Rickettsia when the tick takes a sufficient blood meal from a rickettsemic host (Socolovschi et al., 2009). Co-feeding is another situation in which ticks acquire Rickettsia. This can occur when an infected tick feeds on a host in close vicinity to Rickettsia-free ticks. Although the host may not yet be rickettsemic, the Rickettsia-free ticks may acquire the pathogen from tissue being fed upon by the infected tick (Philip, 1959). Rickettsia have been shown to be passaged by transovarial (to offspring ticks) and transstadial (from one arthropod growth stage to the next) transmission, which ensures their natural maintenance without the need of an intermediate host (Sahni et al., 2013).

The method of transmission is different for Rickettsia species transmitted through louse and flea vectors. R. prowazekii (epidemic typhus) is transmitted through Pediculus humanus corporis (human body louse; Figure 3), while R. typhi (endemic or murine typhus) is transmitted through Xenopsylla cheopis (Oriental rat flea). Although, the
human body louse is the known primary vector of $R$. prowazekii, there have been reports of its occurrence in Hylomma ticks in Ehiopia and Amblyomma imitator ticks from Mexico, and the ectoparasites of Glaucomys volans volans (eastern flying squirrel) (Philip et al., 1966; Bozeman et al., 1975; Medina-Sanchez et al., 2005). Despite the vector, these rickettsiae are not transmitted directly during ingestion of the blood meal from the host, unlike tick-borne rickettsiae. Instead, as the arthropod vector defecates during the course of taking its blood meal, the host scratches the bite wound and accidently introduces Rickettsia-contaminated feces into the wound, leading to infection (Azad and Beard, 1998). While transovarial passage for flea-borne Rickettsia (R. typhi and R.felis) has been shown, Rickettsia-infected lice die within 2-weeks (Farhang-Azad et al., 1985; Azad et al., 1992). Therefore, rapid transmission is essential for the survival of $R$. prowazekii, which lends a possible explanation for recrudescent typhus; i.e., the patients with Brill-Zinsser disease may serve as potential host reservoirs for epidemic typhus.

## Genomics

In 1998, the chromosome of $R$. prowazekii strain Madrid E became the first rickettsial genome to be fully sequenced and published (Andersson et al., 1998). An examination of the genome revealed a pattern consistent with reductive evolution as Rickettsia continue to purge unnecessary and redundant genes to adapt to the obligately intracellular lifestyle. Many of the genes required by free-living bacteria are absent in Rickettsia, such as the biosynthetic pathways. Further, nearly 150 nucleus-encoded mitochondrial proteins are homologous to proteins found in $R$. prowazekii, with
significant similarity in transport mechanisms and ATP production associated with the TCA cycle and respiratory chain complexes. Once encoded in the mitochondrial ancestor genome, nucleus-encoded mitochondrial proteins help to control mitochondrial functions, but are now encoded in the nuclear DNA.

Data suggest that the origin of aerobic respiration may have evolved from an ancestor of Rickettsia, which possibly diverged approximately 1.5 to 2 billion years ago (Andersson et al., 1998), followed by transition of a free-living Rickettsiales ancestor to the obligately intracellular lifestyle between 775-525 million years ago (Merhej and Raoult, 2011). Rickettsiales' association with arthropods did not occur until the Cambrian explosion, in which arthropods first evolved approximately 542 to 500 million years ago. The genus known today as Rickettsia did not appear until the evolution of the rickettsial hydra group 150 million years ago. A rapid radiation of rickettsial groups occurred 50 million years ago bringing about the ancestors to the rickettsial groups known today (Weinert et al., 2009b).

The genus Rickettsia has a genome size ranging from 1.11 Mb to 2.1 Mb (Table 1). The genomes of spotted fever group Rickettsia range from 1.27 to 2.1 Mb , while typhus group is approximately 1.11 Mb . Ancestral group Rickettsia and transitional group Rickettsia genomes range from 1.15 to 1.53 Mb and 1.23 to 1.59 Mb , respectively (Merhej et al., 2014). Surprisingly, rickettsial genomes are rather AT-rich with GC contents ranging from $28.9 \%$ in typhus group to $33.3 \%$ in the spotted fever group. Typhus group rickettsiae have the least number of annotated open reading frames (ORFs) and proteins encoded in their genomes, 865 to 999 and 829 to 950 , respectively. In the course of switching from a free-living to an obligately intracellular bacterium, data
suggest that Rickettsia have lost about 2,135 genes due to reductive evolution (Georgiades et al., 2011; Georgiades and Raoult, 2011; Merhej and Raoult, 2011). Interestingly, Rickettsia have a high percentage of non-coding DNA when compared to other bacteria. Rickettisa prowazekii and $R$. conorii contain $24 \%$ and $19 \%$ non-coding DNA, respectively, yet Chlamydia trachomatis, another obligate intracellular bacterium, contains only $10 \%$ non-coding DNA (Andersson et al., 1998; Holste et al., 2000; Rogozin et al., 2002). Carsonella ruddii, an endosymbiont of psyllids, encodes for the smallest known genome with 182 ORFs and $97.3 \%$ coding density (Nakabachi et al., 2006).

Due to the obligately intracellular lifestyle of rickettsiae, mobile genetic elements were long considered to be uncommon. Today, at least 11 Rickettsia species have been found to contain plasmids with diversity among the number carried by different species/strains (El Karkouri et al., 2016). These 11 species, representing the transitional group (R. australis and R. felis) and the spotted fever group (R. africae, R. amblyommii, R. helvetica, R. massiliae, R. monacensis, R. peacockii, R. raoultii, and R. rhipicephali) harbor at least 20 known rickettsial plasmids (Table 1). It is important to consider, however, that nine spotted fever group, one transitional group, and two typhus group Rickettsia species have no detectable plasmid. These species include R. akari, R. conorii, R. japonica, R. montanensis, R. parkeri, R. philipii, R. rickettsii, R. sibirica, R. slovaca, R. prowazekii, R. typhi, and R. canadensis (El Karkouri et al., 2016). The first rickettsial plasmid, pRF, was discovered after the sequencing of the R. felis genome. Although two plasmids, pRF and $\mathrm{pRF} \delta$, were initially described, $\mathrm{pRF} \delta$ is mostly likely an artifact of the genome assembly for a number of reasons that include the absence of required
maintenance genes and failure to amplify in other strains (Gillespie et al., 2007). However, the 62.8 kb pRF plasmid contains 68 ORFs encoded within its sequence. Upon sequencing the REIS genome, four novel plasmids (pREIS1 through pREIS4) were identified (Gillespie et al., 2012). In addition to the plasmids, the REIS genome was found to be overrun with more than 650 transposons, mobile genetic elements, and amplified genetic elements. This suggests that rickettsial genes associated with the intracellular lifestyle were acquired via gene transfer (Gillespie et al., 2012). Interestingly, analysis of plasmid gene content, exhibiting $16 \%$ to $59 \%$ gene degradation, suggests that rickettsial plasmids are also undergoing reductive evolution similar to that seen on chromosomes (El Karkouri et al., 2016).

Rickettsial plasmids and mobile genetic elements highlight the importance of horizontal gene transfer (HGT). Although first described in the 1940s, HGT is a critical evolutionary mechanism that ensures continued adaptation to new environments by conjugation, transformation, or transduction (Sahni et al., 2013; Soucy et al., 2015). Previous research into rickettsial evolution placed only scant emphasis on rickettsial HGT due to its intracellular lifestyle. Nevertheless, a focus on HGT and its role in rickettsial evolution after genome sequencing has continuously demonstrated mobile genetic elements (Ogata et al., 2006; Gillespie et al., 2007; Weinert et al., 2009a; Merhej et al., 2011; Merhej and Raoult, 2011; Gillespie et al., 2012; El Karkouri et al., 2016). To determine the origin of rickettsial plasmids, an examination of 260 plasmid genes was conducted. Vertical transmission of the last common plasmid ancestor, labeled pRICO, was partially responsible for the current set of rickettsial plasmids. The plasmids, despite undergoing gene loss resulting in reductive evolution, were successful in gaining new
genes via HGT and by numerous duplication events. Although plasmids gained genes from HGT, the degradation of genes probably resulted in permanent plasmid loss noted in several rickettsial species (El Karkouri et al., 2016). Evidence of such HGT has been demonstrated by the observation of pili between two rickettsial bacteria, R. felis and $R$. bellii. For R. felis, two pili were observed by transmission electron microscopy on the surface of the bacteria. These include pili that are conjugative in nature and establish direct contact with other bacteria and short hair-like pili that are most likely involved in bacterial attachment to host cells (Ogata et al., 2005). A tra gene cluster conserved in the R. bellii genome sequence supports its ability to form pili. Tra genes are composed of an F-like and a Ti-like region (Ogata et al., 2006). The F-like region encodes 12 conjugative transfer proteins, which correspond to the Type IV Secretion System (T4SS) core proteins and auxiliary proteins (Lawley et al., 2003). The Ti-like region encodes the TraA ORF, responsible for the activity of nickase and helicase in initiating DNA transfer, and TraD , which has an unknown function.

## Bacterial Small RNAs ${ }^{2,3}$

Small noncoding RNAs (sRNAs) were first identified and described in the 1960s, but remained largely ignored until recently when they were recognized as important posttranscriptional regulators in both eukaryotic and prokaryotic organisms (Wassarman, 2007). Bacteria, especially intracellular species, are required to quickly adapt to ever changing and often hostile environments. Small RNAs allow for a rapid response and fine-tuning to environmental changes such as decreasing pH , increasing reactive oxygen species, poor nutrient contents, temperature, and any immune responses (Oliva et al.,
2015). These sRNAs have been found in a number of pathogenic bacteria belonging to family Enterobacteriaceae, Pseudomonas aeruginosa, Listeria monocytogenes, Streptococcus pyogenes, Clostridium perfringens, and Staphylococcus aureus (Papenfort and Vanderpool, 2015). For example, Helicobacter pylori, the causative agent of chronic active, chronic persistent, and atrophic gastritis in adults and children, and implicated in a majority of duodenal and gastric ulcers, carries a repertoire of at least one anti-sense transcriptional start site on approximately $46 \%$ of its open-reading frames, $28 \%$ of tRNAs, and the 5 ' leader sequences for both 16 S rRNA and 23 S rRNA (Sharma et al., 2010).

Barring a few exceptions, sRNAs are transcripts typically 50 to 500 nucleotides in length and do not code for proteins (Xiao et al., 2009; Gottesman and Storz, 2011; Stazic and Voss, 2016). Unlike riboswitches, sRNAs are independent transcripts under the control of sigma promoters and Rho-independent terminators (Otaka et al., 2011). Despite being longer, these sRNAs are considered to be analogous to eukaryotic sRNAs in the context of certain functional implications. Post-transcriptional sRNA-mediated regulatory mechanisms are broadly categorized into sRNA-protein and sRNA-mRNA interactions (Waters and Storz, 2009; Wagner and Romby, 2015). Interactions with the protein-coding transcripts are further categorized into two groups, namely, trans-acting and cis-acting (Liu and Camilli, 2010; Gottesman and Storz, 2011).

By definition, cis-acting sRNAs are encoded on the anti-sense strand and generally display perfect nucleotide complementarity with the target sequence in the open reading frame. Due to this condition, the sRNA interacts with the mRNA transcript autonomously (Caldelari et al., 2013). Generally, cis-acting sRNAs are located within
the untranslated regions (UTRs) of an ORF. Upon RNA duplex formation, the sRNA can alter the secondary structure of the mRNA transcript, thus preventing ribosome entry or termination. Also, the RNA duplex may prevent the ribosome from binding to the ribosome binding site (Oliva et al., 2015). Either scenario would decrease translation of the transcript and ultimately the expression. Conversely, a rearrangement in secondary structure may increase stability of the mRNA and/or free the ribosome binding site. These actions would eventually increase the expression of the protein. Cis-acting sRNAs are found in both Gram-positive and Gram-negative organisms. The degree to which sRNA density is found within these organisms varies greatly (Raghavan et al., 2012). Many cis-acting sRNAs lack a functional characterization making them a fascinating interest in bacterial genomics (Oliva et al., 2015).

Trans-acting sRNAs, on the other hand, are encoded within the intergenic regions, act on targets elsewhere in the genome, and possess short segments of partial nucleotide complementary to their target genes (Waters and Storz, 2009; Wagner and Romby, 2015; Stazic and Voss, 2016). Accordingly, they require a known RNA chaperone, namely Hfq, encoded by nearly $50 \%$ of all bacterial species to facilitate their binding interactions with an mRNA transcript (Waters and Storz, 2009; Papenfort and Vanderpool, 2015). However, this also means that $50 \%$ of bacterial species are not known to encode an Hfq protein; instead, they presumably use another RNA chaperone. In organisms such as Listeria monocytogenes, most trans-acting small RNAs function independently of Hfq chaperone activity (Nielsen et al., 2011). Alternative proteins that function as RNA chaperones have been proposed in Helicobacter pylori and Mycobacterium tuberculosis. For H. pylori, the protein HP1334 stably binds to HPnc6910 sRNA, whereas GroEL1 in
M. tuberculosis has been shown to bind both dsDNA and ssDNA, suggesting a potential chaperone function (Basu et al., 2009; Rieder et al., 2012). The genus Rickettsia is not known to encode an Hfq protein, nor has an alternative chaperone been described.

Historically, the majority of intergenic regions has traditionally been considered 'junk DNA' or defunct genes resulting from reductive evolution. The existence of sRNAs and their role in transcriptome regulation in Rickettsia spp. and other obligately intracellular bacteria remain largely unknown. The central hypothesis of this work is that since genomic reduction, the main driving force shaping rickettsial genomes, results in maintaining only a minimal set of genes required for survival and the obligately intracellular life style. The Rickettsia genome encodes small RNAs required for regulation of its transcriptome, and differentially expresses these sRNAs leading to altered virulence and adaptation depending on the host niche.


Figure 1. Rickettsia conorii in host cells. ${ }^{1}$
Confocal laser scanning microscopy image of Vero cells infected with Rickettsia conorii expressing kusabira orange. DAPI (4', $6^{\prime}$-diamindino-2-phylindole) was used for fluorescent staining (blue) of host cell nuclei.


Figure 2. Transmission cycle for the natural maintenance of spotted fever group Rickettsia. ${ }^{1}$


Figure 3. Transmission cycle of Rickettsia prowazekii ${ }^{I}$

Table 1. Rickettsial genomes and associated plasmids.

| Rickettsial Group | Species | Strain | Genome <br> Size (bp) | GC\% | CDS | Plasmid |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ancestral Group |  |  |  |  |  |  |
|  | R. bellii |  |  |  |  |  |
|  |  | RML 369-C | 1,552,076 | 31.6 | 1429 | - |
|  |  | OSU 85-389 | 1,528,980 | 31.6 | 1476 | - |
|  | R. canadensis | McKiel | 1,159,772 | 31.1 | 1093 | - |
| Typhus Group |  |  |  |  |  |  |
|  | R. prowazekii |  |  |  |  |  |
|  |  | Madrid E | 1,111,523 | 29 | 835 | - |
|  |  | Rp22 | 1,111,612 | 29 | 952 | - |
|  |  | Breinl | 1,109,301 | 29 | 920 | - |
|  | R. typhi | Wilmington | 1,111,496 | 28.9 | 838 | - |
| Transitional Group |  |  |  |  |  |  |
|  | R. akari <br> R. australis | Hartford | 1,231,060 | 32.3 | 1259 | - |
|  |  | Cutlack | 1,323,280 | 32.3 | 1261 | pRau |
|  |  | Phillips | 1,320,570 | 32.2 | 1715 | - |
|  | R. felis | URRWXCal2 | 1,485,147 | 32.5 | 1512 | pRfe <br> pRfell |
| Spotted Fever Group |  |  |  |  |  |  |
|  | Candensis R. amblyommii |  | 1,448,020 | 32.4 | 1821 | pRam18 |
|  |  |  |  |  |  | pRam23 |
|  |  |  |  |  |  | pRam32 |
|  | R. africae | ESF-5 | 1,278,540 | 32.4 | 1041 | pRaf |
|  | R. conorii | Malish 7 | 1,268,755 | 32.4 | 1374 | - |
|  | R. helvetica | C9P9 | 1,369,827 | 32.2 | 1739 | pRhe |
|  | R. honei | RB | 1,268,760 | 32.4 | 1614 | - |
|  | R. japonica | YH | 1,279,890 | 32.4 | 971 | - |
|  | R. massiliae |  |  |  |  |  |
|  |  | MTU5 | 1,376,180 | 32.5 | 980 | pRma |
|  |  | AZT80 | 1,278,720 | 32.6 | 1207 | pRmaB |
|  | R. monacensis | IrR/Munich | 1,353,450 | 32.4 | 1460 | IrR/Munich |
|  | R. parkeri | Portsmouth | 1,300,386 | 32.4 | 1318 | - |
|  | R. peacockii | Rustic | 1,288,492 | 32.6 | 947 | pRpe |
|  | R. raoultii |  |  |  |  | pRra1 |
|  |  |  |  |  |  | pRra2 |
|  |  |  |  |  |  | pRra3 |
|  | R. rhipicephali |  |  |  |  |  |
|  |  | 3-7-female6-CWPP | 1,305,470 | 32.4 | 1266 | pRrh |
|  |  | HJ\#5 | 1,448,630 | 32.3 | 1255 | - |
|  |  | Ect | 1,266,920 | 32.6 | 1563 | - |
|  | R. rickettsii |  |  |  |  |  |
|  |  | Sheila Smith | 1,257,710 | 32.5 | 1345 | - |
|  |  | Iowa | 1,268,201 | 32.4 | 1384 | - |
|  |  | R | 1,257,005 | 32.5 | 1334 | - |
|  |  | Brazil | 1,255,681 | 32.5 | 1332 | - |
|  | R. sibirica |  |  |  |  |  |
|  |  | mongolitimonae | 1,252,340 | 32.4 | 1616 | - |
|  |  | sibirica BJ-90 | 1,254,730 | 32.5 | 1588 | - |
|  | R. slovaca |  |  |  |  |  |
|  |  | 13-B | 1,275,090 | 32.5 | 1112 | - |
|  |  | D-CWPP | 1,275,720 | 32.5 | 1347 | - |
|  | REIS |  | 2,096,878 | 33 | 2117 | pReis1 |
|  |  |  |  |  |  | pReis2 |
|  |  |  |  |  |  | pReis3 |
|  |  |  |  |  |  | pReis4 |

## Chapter 2 Methodology

## Rickettsia Species and Strains

For this study, available genome sequences of 16 rickettsial strains, encompassing 13 species belonging to the genus Rickettsia were used. Included species represent all four, namely ancestral, typhus, transitional, and spotted fever, rickettsial groups (Table 2). Further, four known rickettsial plasmids were also analyzed (Table 2).

## Prediction of sRNAs

I used the web-based program SIPHT available from the University of Wisconsin at Madison (http://newbio.cs.wisc.edu/sRNA/index.php) for predicting sRNAs in rickettsial genomes (Livny et al., 2008). This program predicts sRNAs within the intergenic regions of bacterial genomes by searching for Rho-independent terminators downstream of conserved sequences, followed by an analysis of conservation with other species, potential transcription factor binding sites, the spacing between flanking genes, and homology with known sRNAs (Livny et al., 2008). The specific parameters used for all searches were as follows. The maximum expected value for BLAST (BLAST E) was changed from the default setting of 5e-3 to a more stringent value of $5 \mathrm{e}-15$ in order to eliminate the possibility of false positives. The minimum score for BLAST (BLAST S) and minimum percent identity (BLAST \% identity) were set at the default 0 . The maximum BLAST high-scoring segment pairs (HSP) length was set at 1000. The maximum Rho-independent terminator criteria were 86, -10 , and -6 for TransTerm, FindTerm, and RNAMotif, respectively. The minimum predicted locus length was 30 ,
while the maximum predicted locus length was 550 . These scores take into account the generally defined 50 to 500 -nucleotide length of bacterial sRNAs (Gottesman and Storz, 2011). The minimum distance, by default, for both the locus start site to ORF start site and for the locus start site to ORF end site was -65 . However, the minimum distance set by default from the locus end site to ORF start site was -20 . The minimum distance from the locus end site to ORF stop site was left at 35 . Lastly, the minimum distance from the transcription factor-binding site to the ORF start site was 0 . This value allows for all possible candidate sRNAs to be included in the final report. To ensure consistency, all of these parameters were set as the default analytical criteria for the program.

## Promoter prediction

For bacterial promoter predictions, the web-based software BPROM was used. This program searches for bacterial $\sigma^{70}$-family promoter -10 box and -35 box, transcription start site, and other transcription factor binding sites in a given genomic sequence with a reported accuracy and specificity of $80 \%$ (Solovyey and Salamov, 2010). Each promoter prediction was conducted using 150 base pairs upstream of the predicted sRNA start site. Nucleotide frequency plots were created using the -10 box and -35 box predictions. The web based program WebLogo3 from the University of California at Berkeley was used to generate the sequence logos (Crooks et al., 2004).

## TARGET PREDICTION

Target genes for each candidate sRNA were predicted using independent web based programs, TargetRNA2, IntaRNA, and/or CopraRNA (Busch et al., 2008; Tjaden,

2008; Wright et al., 2014). TargetRNA2 searches a genome's annotated features for a statistically significant base pair-binding potential to the queried nucleotide input. The individual base pair model was used throughout target predictions. The program calculates a hybridization score followed by a statistical significance of each potential RNA interaction (Tjaden, 2008). The following parameters were used for each prediction. For statistical significance, the P -value was set at $\leq 0.05$. The program searched 80 nucleotides before the start codon and 20 nucleotides after the start codon. The seed length was 7 consecutive nucleotides and corresponds to the average seed length (6 to 8 nucleotides) for trans-acting sRNAs (Gottesman and Storz, 2011). The filter size, which corresponds to how the program filters out non-target mRNAs, was set at the default value of 400 .

Conversely, IntaRNA assesses the query sRNA nucleotide sequence with the selected genome and calculates a combined energy score from the free energy hybridization and interaction sites. This program has less customizable features than TargetRNA2. For these predictions, the parameters were set to default with a minimum number of 7 base pairs in the seed region. For statistical significance, the P -value was set at $\leq 0.05$. Any targets with a $P$-value $>0.05$ were discarded from the analysis.

Last, CopraRNA assesses potential targets at the genomic level by integrating phylogenetic information and regulatory networks through a functional enrichment and network analysis. As with the other two programs, default settings were primarily employed as these settings have been optimized to efficiently predict sRNA targets. However, the target region under interrogation was adjusted from a default of 200 nucleotides upstream and 100 nucleotides downstream of the start codon to 200
nucleotides upstream and downstream of the start codon. Targets that were annotated to have a significant interaction ( $\mathrm{p}<0.05$ ) in the sRNA-mRNA seed region were retained for further analysis.

## Cell Culture and Rickettsial Infection

Human dermal microvascular endothelial cells (HMECs) were cultured in MCDB131 medium supplemented with L-glutamine ( $10 \mathrm{mmol} \mathrm{L}^{-1}$ ), epidermal growth factor (10 $\mathrm{ng} \mathrm{mL}^{-1}$ ), hydrocortisone ( $1 \mathrm{mg} \mathrm{mL}^{-1}$ ), and $10 \%$ heat-inactivated fetal bovine serum and grown at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$ until approximately 80 to $90 \%$ confluency (Rydkina et al., 2010). The use of human cell lines in my study was exempt by the University of Texas Medical Branch (UTMB) Institutional Review Board (IRB), but approved by the UTMB Institutional Biosafety Committee (IBC). Amblyomma americanum tick cells (AAE2) were grown in L-15B complete medium ( pH 7.5 ) at $34^{\circ} \mathrm{C}$ to $\sim 90 \%$ confluence. Approximately 24 h prior to infection, the medium in each flask was replaced with L-15B infection medium ( pH 7.5 ) containing 25 mM sodium bicarbonate and HEPES (Munderloh and Kurtti, 1989). Stocks of R. prowazekii strain Breinl were prepared by infecting Vero cells in culture, followed by purification of rickettsiae by differential centrifugation. The titers of infectious stocks were estimated by using a combination of quantitative PCR using primer pair $R p 877 \mathrm{p}-R p 1258 \mathrm{n}$ for citrate synthase gene (gltA) and plaque assay (Roux et al., 1997; Rydkina et al., 2010). HMECs were infected with approximately $6 \times 10^{4}$ pfu of rickettsiae per $\mathrm{cm}^{2}$ of culture surface area under BSL-3 conditions to achieve an MOI of 5:1 (an average of five or six intracellular rickettsiae per cell and infection of a majority [ $>80 \%$ ] of cells (Rydkina et al., 2005; Rydkina et al., 2007; Rydkina et al., 2010). To allow for efficient rickettsial adhesion
and invasion, the cells were incubated for 15 minutes with gentle rocking with an initial infectious inoculum containing $R$. prowazekii in culture medium, prior to replacement with fresh medium. Infected cells were then incubated at $37^{\circ} \mathrm{C}$ with $5 \% \mathrm{CO}_{2}$ until processing for the isolation of DNA and RNA.

## RNA ISOLATION

Depending on the downstream application, total RNA was isolated using several methods and at different time points. For Aim \#1, total RNA was isolated at 1.5, 3, 6, 12, 24, 48, and 72 h post-infection using Tri-Reagent ${ }^{\circledR}$ (Molecular Research Center). RNA was extracted using the Direct-zol ${ }^{\text {TM }}$ RNA MiniPrep kit (Zymo Research). Column DNaseI treatment (Zymo Research) was performed on all RNA samples to eliminate contaminating genomic DNA. For Aim \#2, HMECs infected with R. prowazekii as described above were processed for total RNA isolation using Tri-Reagent (Molecular Research Center) at 3 and 24 h post-infection. Total RNA was extracted using the TriReagent ${ }^{\circledR}$ phenol:chloroform method as described by the manufacturer. The RNA samples were treated with DNaseI (Zymo Research) and subjected to the MICROBEnrich Kit (Ambion). The RNAs from the previous step was further purified to eliminate DNaseI protein via precipitation with $100 \% \mathrm{v} / \mathrm{v}$ ethanol prior to the determination of concentration in final preparations. All RNA concentrations were determined using a MultiSkan GO Microplate Spectrophotometer (ThermoScientific).

## RNA SEQUENCING

In order to sequence the rickettsial transcriptome, HMECs were infected with $R$. prowazekii strain Breinl, and total RNA was isolated at 3 and 24 h post-infection using Tri-Reagent (Molecular Research Center). Samples were treated with DNaseI (Zymo Research) to eliminate contaminating genomic DNA and subjected to the Dynabeads ${ }^{\circledR}$ Oligo $(\mathrm{dT})_{25}$ (ThermoFisher Scientific) to remove interfering eukaryotic mRNAs. Ribosomal RNA was then removed using the Ribo-Zero kit (Epicentre). RNA was quantified using the MultiSkan Go (ThermoScientific) and analyzed using the Agilent 2100 Bioanalyzer (Agilent Technologies). For each experimental condition, two independent cDNA libraries were created and sequenced on the HiSeq 1500 (Illumina) located in the Next Generation Sequencing Core, University of Texas Medical Branch at Galveston. Enriched RNA used for cDNA synthesis was not size selected, and strandspecific sequencing was performed. Each library consisted of 50 bp long subsequences (reads) in a FASTQ format. Each read was assessed for its quality. Any base with a PHRED score of 15 or below was excluded. The first 14 bases of the read were trimmed and the remaining 36 bases were used for analysis. All reads mapping to human genome version GRCh38/hg38 were excluded from the analysis. The remaining rickettsial transcripts were then mapped to R. prowazekii strain Breinl genome (NC_020993) allowing up to two base mismatches using Bowtie2 (Langmead and Salzberg, 2012). For each prediction, the average read coverage for each nucleotide was normalized to the length of the predicted sRNA. The same was computed for 50 nucleotides up- and downstream of each prediction. The Mean Expression Value (MEV) was calculated by computing the ratio between the predicted sRNA and the flanking 50 nucleotides
(Raghavan et al., 2011; Warrier et al., 2014). An MEV cutoff value of $\geq 1.5$ was used throughout this work.

For Aim \#3, HMECs and AAE2 samples were divided, and one pool respectively underwent Terminator 5'-Phosphate-Dependent Exonuclease (TEX) (Epicentre) treatment in order to eliminate processed RNAs that have a 5 ' monophosphate. Specifically following the manufacturer's directions, the remaining RNA includes unprocessed, full-length transcripts. Independent cDNA libraries were created using the TruSeq RNA Sample Prep Kit (Illumina) as per manufacturer's directions for each of the non-size-selected RNA samples. Strand-specific sequencing was carried out on an Illumina HiSeq 1500 instrument at my institutional next generation sequencing Core facility. The sequencing libraries comprised 100 bp long reads in a FASTQ format. The quality of each read was assessed, and any base with a PHRED score of 15 or below was excluded from the analysis. The first 14 bases of each read were trimmed, and the remaining 86 bp long reads were then mapped onto the $R$. prowazekii Breinl genome (NC_020993) allowing up to four base mismatches using Bowtie2 (Langmead and Salzberg, 2012). Reads that did not map to the R. prowazekii Breinl genome or that mapped more than once to the genome were discarded from analysis.

## Reverse Transcriptase PCR

One microgram ( $1 \mu \mathrm{~g}$ ) of DNase I-treated total RNA was reverse transcribed using SuperScript ${ }^{\circledR}$ VILO cDNA Synthesis Kit (Life Technologies) with random hexamers following the manufacturer's instructions. Quantitative RT-PCR was performed on StepOnePlus ${ }^{\text {TM }}$ Real-Time PCR System (Applied Biosystems) using
primers designed by Primer Express 3.0 .1 (Applied Biosystems). For the TaqMan ${ }^{\circledR}$ Assay, each $20 \mu \mathrm{~L}$ reaction contained 1X TaqMan ${ }^{\circledR}$ Universal PCR Master Mix (Life Technologies), 250 nM forward primer, 250 nM reverse primer, 250 nM TaqMan probe, and $1.1 \mathrm{ng} / \mu \mathrm{L}$ of cDNA. Cycler conditions were: stage 1 at $50^{\circ} \mathrm{C}$ for 2 minutes, stage 2 at $95^{\circ} \mathrm{C}$ for 10 minutes, stage $3\left(40\right.$ cycles) at $95^{\circ} \mathrm{C}$ for 15 seconds and $60^{\circ} \mathrm{C}$ for 60 seconds. Each TaqMan ${ }^{\circledR}$ technical replicate was performed in triplicate using five biological replicates. Primers are listed in Table 3.

Reverse transcriptase PCRs were performed using a Phusion ${ }^{\circledR}$ High-Fidelity PCR Kit (New England BioLabs) in Aim \#1. Each $20 \mu \mathrm{~L}$ reaction contained a final concentration of 1 X Phusion HF Buffer, $0.2 \mu \mathrm{M} \mathrm{dNTPs}, 0.5 \mu \mathrm{M}$ forward primer, $0.5 \mu \mathrm{M}$ reverse primer, 100 ng cDNA template, and 0.4 units of Phusion DNA polymerase. Thermal cycler conditions were: stage 1 at $98^{\circ} \mathrm{C}$ for 30 seconds, stage $2(35$ cycles) at $98^{\circ} \mathrm{C}$ for 15 seconds, $60^{\circ} \mathrm{C}$ for 30 seconds, and $72^{\circ} \mathrm{C}$ for 30 seconds, and stage 3 at $72^{\circ} \mathrm{C}$ for 10 minutes. Samples were separated on a $2 \%$ agarose gel, stained with ethidium bromide, and imaged on ChemiDoc MP imaging system (Bio-Rad). Primers are listed in Table 3.

For Aims \#2 and \#3, reverse transcriptase PCRs were performed using GoTaq ${ }^{\circledR}$ Green Master Mix Kit (Promega) in order to optimize work flow. Each $25 \mu \mathrm{~L}$ reaction contained a final concentration of $1 \mathrm{X} \mathrm{GoTaq}{ }^{\circledR}$ Master Mix (contains DNA polymerase and dNTPs), $0.5 \mu \mathrm{M}$ forward primer, $0.5 \mu \mathrm{M}$ reverse primer, and 100 ng cDNA template. Thermal cycler conditions were: stage 1 at $95^{\circ} \mathrm{C}$ for 5 minutes, stage 2 ( 35 cycles) at $95^{\circ} \mathrm{C}$ for 30 seconds, $60^{\circ} \mathrm{C}$ for 30 seconds, and $72^{\circ} \mathrm{C}$ for 30 seconds, and stage 3 at $72^{\circ} \mathrm{C}$ for 10
minutes. Samples were separated on a $1.5 \%$ agarose gel, stained with ethidium bromide, and imaged on ChemiDoc MP imaging system (Bio-Rad). Primers are listed in Table 5.

## Northern Blotting

Northern blot analysis was carried out using the NorthernMax kit (Ambion) following the manufacturer's instructions. Enriched bacterial RNA ( $15 \mu \mathrm{~g}$ per lane) was loaded onto a $1.5 \%$ agarose-formaldehyde gel, separated by electrophoresis at 90 V , and then transferred onto a Zeta-Probe Blotting Membrane (Bio-Rad). Membranes were cross-linked using a UV Stratalinker 1800 (Stratagene). A PCR template with a T7 promoter on the anti-sense strand for the sRNA under investigation was created using GoTaq ${ }^{\circledR}$ Green DNA Polymerase (Promega). With the PCR template, strand-specific, [ $\alpha$ ${ }^{32}$ P]UTP-labeled RNA probes were synthesized through in vitro transcription with the MAXIscript ${ }^{\circledR}$ kit (Ambion) (Table 5). Each RNA probe was treated with DNase for 15 minutes at $37^{\circ} \mathrm{C}$ as per manufacturer's directions to remove the original PCR template. Unincorporated nucleotides were removed using Illustra MicroSpin G-25 Columns (GE Healthcare). Membranes were hybridized overnight at $50^{\circ} \mathrm{C}$ to $65^{\circ} \mathrm{C}$ depending on the probe sequence, washed thoroughly using standard Northern wash solutions, and then exposed to autoradiography film.

## RNA Ligase-Mediated Rapid Amplification of cDNA Ends (RLM-RACE)

The 5 , sRNA sequence was determined using FirstChoice ${ }^{\circledR}$ RLM-RACE kit (Ambion) according to the manufacturer's instruction manual. Ten micrograms of

DNase-treated, enriched RNA was incubated with tobacco alkaline phosphatase (TAP) for 1 h at $37^{\circ} \mathrm{C}$. The $5^{\prime}$ adaptor sequence was then ligated to TAP-treated RNA at $37^{\circ} \mathrm{C}$ for 1 h . Reverse transcription reactions were carried out using random decamers at $42^{\circ} \mathrm{C}$ for 1 h . Nested PCR was conducted with necessary modifications to the manufacturer's directions. In order to optimize the cycling conditions yielding consistent amplification, gradient PCR reactions were performed using both the outer and inner primer pairs. Thus, optimal conditions yielding the cleanest and strongest product for each sRNA were employed in all assays. Primers are listed in Table 4. PCR products were cloned into the pGEM-T Easy vector (Promega). Sanger Sequencing was conducted at the institutional Molecular Genomics Core.

## Electrophoretic Mobility Shift Assay (EMSA)

Validation of $R p_{\text {_ }}$ sR60 and target interactions were through the employment of electrophoretic mobility shift assay (EMSA) following standard protocols (Morita et al., 2012). The DNA templates for $R p_{-}$sR60 and its target predictions were amplified through PCR using GoTaq ${ }^{\circledR}$ Green Master Mix Kit (Promega) as instructed. Each template incorporated a T 7 promoter attached to the amplifying primer in order for in vitro transcription using MAXIscript ${ }^{\circledR}$ kit (Ambion) (Table 6). The RNA transcripts for $R p$ _sR60 were radiolabeled with $\left[\alpha-{ }_{-}^{32} \mathrm{P}\right]$ UTP during in vitro transcription. After which, the transcripts were purified using Sephadex Microspin Columns (GE Healthcare). $R p$ _sR60 radiolabeled transcripts and mRNA unlabeled transcripts were mixed at a 2:1 molar ratio and incubated at $70^{\circ} \mathrm{C}$ for 5 minutes followed immediately by 30 minute incubation at $30^{\circ} \mathrm{C}$ or $37^{\circ} \mathrm{C}$. As a control, unlabeled $R p$ _sR60 transcripts were incubated
as a cold competition. Samples were then resolved across a $4 \%$ polyacrylamide native gel. Immediately afterwards, gels were dried at $80^{\circ} \mathrm{C}$ for 55 minutes onto Whatman 3 mm filter paper using a gel dryer. Gels were then exposed to autoradiographic film at varying exposure times.

Table 2. Rickettsial species.

| Rickettsia species | RefSeq |
| :---: | :---: |
| Ancestral Group |  |
| R. bellii strain OSU 85-389 | NC_009883 |
| R. bellii strain RML 369-C | NC 007940 |
| R. canadensis strain McKiel | NC_009879 |
|  |  |
| Typhus Group |  |
| R. prowazekii strain Madrid E | NC_00963 |
| R. prowazekii strain Breinl | NC_020993 |
| R. typhi strain Wilmington | NC 006142 |
|  |  |
| Transitional Group |  |
| R. akari strain Hartford | NC 009881 |
| R. felis strain URRWXCal2 | NC 007109 |
|  |  |
| Spotted Fever |  |
| R. africae strain ESF-5 | NC_012633 |
| R. conorii strain Malish 7 | NC_003103 |
| R. heilongjiangensis strain 054 | NC 015866 |
| R. japonica strain YH | NC_016050 |
| R. massiliae strain MTU5 | NC_009900 |
| R. peacockii strain Rustic | NC_012730 |
| R. rickettsii strain Sheila Smith | NC_009882 |
| R. rickettsii strain Iowa | NC_010263 |
|  |  |
| Plasmids |  |
| R. africae strain ESF-5 plasmid pRAF | NC_012634 |
| R. felis strain URRWXCal2 plasmid pRF | NC_007110 |
| R. massiliae strain MTU5 plasmid pRMA | NC 009897 |
| R. peacockii strain Rustic plasmid pRPR | NC_012732 |

List of Rickettsia species and strains used throughout this work. The list has been categorized into the rickettsial groups with the RefSeq ID listed in the next column.

Table 3. PCR Primers.

| Gene Name | Strand | Sequence ( $5^{\prime} \rightarrow 3^{\prime}$ ) |
| :---: | :---: | :---: |
| 6S | Forward | GCTTGGTGCGTGAGCTTAATATT |
| 6S | Reverse | TGAATGAGTATTAGACAGAGACGATGTC |
| 6S | TaqMan | ACCTAGGACTACCACTAAC |
| 16S | Forward | TCGCTAGTAATCGCGGATCA |
| 16S | Reverse | TGTACAAGGCCCGAGAACGT |
| 16S | TaqMan | CATGCCGCGGTGAA |
| \#1 | Forward | CTGTCGCTTTTGCCACTATCAT |
| \#1 | Reverse | TGACCTTTAGTGCGATTAGTCACAA |
| \#2 | Forward | ATCTTGCTCTTGGTGGGGTTA |
| \#2 | Reverse | AGGGTGAAAAGGTGTGGTAAGAG |
| \#5 | Forward | CACTTTAGTGTAGTCATAATTTCTCAA |
| \#5 | Reverse | TGTTAAAAAGTGTACGATCAGATAAT |
| \#9 | Forward | TCAAGGCAGAACATAACATAAGCTAGA |
| \#9 | Reverse | AATCACCATTGTGAGCATCAATAAG |
| \#10 | Forward | AAGCTCTGAATCGTGAATCTCTTAAGT |
| \#10 | Reverse | GCTGCCATAATTACCTCCTCAATT |
| \#24 | Forward | GCACAAAACTTTAAGATGCAGAAAAA |
| \#24 | Reverse | TCCTGCTGTTATGTCAGTACTTTGAA |
| \#25 | Forward | TGTTTCCTCCCCCATGACTT |
| \#25 | Reverse | TTCCTACATTTGCAAGGATTACT |
| AAE4_sRNA | Forward | TGTTAAGAAGTTAGTGCCAAAACAA |
| AAE4_sRNA | Reverse | ACCTTAAGAGCTTAGCAAAAAGCTA |
| AAE6_sRNA | Forward | TCACAGAGTTAATATGCAGGTCTCT |
| AAE6 sRNA | Reverse | GCGCAGTTTAAATGTGATTATATGC |
| AAE15_sRNA | Forward | AAATGCGACTTCACAATAACTGA |
| AAE15_sRNA | Reverse | TACAAAATTGACTATCCCACATGGT |
| AAE18 sRNA | Forward | CGGTCCTATTAGGCTTGAAATTTGT |
| AAE18_sRNA | Reverse | AGCATCACTCGTAGAAAGTACAGA |
| AAE36-sRNA | Forward | ACAGAAAAACTATTGCATAGGAAGC |
| AAE36 sRNA | Reverse | ATCCAATGCTGATGTTCGCT |
| AAE63_sRNA | Forward | TAGCGTTACTCCCCTGACACT |
| AAE63_sRNA | Reverse | GTGATACTGAGACGCCATTAGTGA |
| AAE72_sRNA | Forward | TGTTTTCATACACGATCTAGCACC |
| AAE72_sRNA | Reverse | TGCCACTGCATCTACAAATCTT |
| AAE96_sRNA | Forward | TCGAGGTAATGTGCTGATTGTT |
| AAE96_sRNA | Reverse | ACTGGTGTTGTGCTAGTGCTTA |

Primers utilized for the RT-PCR analysis of R. prowazekii novel sRNAs.

Table 4. RLM-RACE primers for transcription start site.

| $R p$ _sR | Direction | Sequence ( $5^{\prime} \rightarrow 3^{\prime}$ ) |
| :---: | :---: | :---: |
| 67 | 5' Outer Primer | AATTGTTTCCTCCCCCATGACT |
| 67 | 5' Inner Primer | CCCCATGACTTCATACTGTGCTT |
| 17 | 5' Outer Primer | GGCAAAATATGTTACTCATTGCTG |
| 17 | 5' Inner Primer | TACATGGGTTTCACACTGCCT |
| 34 | 5' Outer Primer | ACTTTGTGGTCAAAAGTTGCTAA |
| 34 | 5' Inner Primer | ACCGTCAGAGGCTCAAAAAGT |
| 60 | 5' Outer Primer | GCATACTAAAAAAGTTCAAATTCAG |
| 60 | 5' Inner Primer | ATTACTGCATCTGCACAAACG |
| 47 | 5' Outer Primer | TCGTTAAAAGCCCCAAAAGTACC |
| 47 | 5' Inner Primer | GCTGGAGCTTTGCAAGATCATA |
| 6 S | 5' Outer Primer | TATTAGCTGCTTGGTTCGTGAG |
| 6S | 5' Inner Primer | GCTTGGTGCGTGAGCTTAATATT |

RLM-RACE primers utilized in this study for 5 ' end sequencing of novel $R$. prowazekii sRNAs.

Table 5. Northern blot primers.

| $R p_{-} \mathrm{sR}$ | Direction | Sequence ( $5^{\prime} \rightarrow 3^{\prime}$ ) |
| :---: | :---: | :---: |
| 67 | Forward | GAAATTAATACGACTCACTATAGGGATTGTTTCCTCCCCCATGAC |
| 67 | Reverse | TTCCTACATTTGCAAGGATTACT |
| 17 | Forward | GAAATTAATACGACTCACTATAGGGAGGCAGTGTGAAACCCATGT |
| 17 | Reverse | TGTTACTCATTGCTGCTAGCTAAA |
| 34 | Forward | TCAGGTTTTGGAGCAATGGGG |
| 34 | Reverse | GAAATTAATACGACTCACTATAGGGTCAAGGATTGGATAAAGGACAAACT |
| 60 | Forward | GATTTGACTGCAGAGAGTATTTTGA |
| 60 | Reverse | GAAATTAATACGACTCACTATAGGGACTGCATCTGCACAAACGAT |
| 47 | Forward | AGCCTGAACTGATCCTTTACCA |
| 47 | Reverse | GAAATTAATACGACTCACTATAGGGACGGTAATTCTGCATCTGCT |
| 6S | Forward | GAAATTAATACGACTCACTATAGGGTGGCCGTTACTTAAAATCCTTCA |
| 6S | Reverse | TGCTTGGTTCGTGAGCTTAATATT |

Primers utilized for the generation of strand-specific probes for Northern blot analysis of R. prowazekii novel sRNAs. Underlined is the T7 promoter sequence used for in vitro transcription.

Table 6. EMSA primers.

| Gene | Strand | Sequence ( $5^{\prime} \rightarrow 3^{\prime}$ ) |
| :---: | :---: | :---: |
| $R p_{-}$sR60 | Forward | GAAATTAATACGACTCACTATAGGGTGACTGCAGAGAGTATTTTGAGT |
| $R p$ _sR60 | Reverse | GCCAAAATGCATTGTACTCTCT |
| H375 8740 | Forward | GAAATTAATACGACTCACTATAGGAAAATTAACAAAGCGTCATGCAAT |
| H375 8740 | Reverse | TGACTCCGTACCTTAGGTCCAT |
| H375_7670 | Forward |  |
| H375 7670 | Reverse | GCTGTTTCTTTATTTCTTCAAGTTCA |
| H375_2860 | Forward | GAAATTAATACGACTCACTATAGGCGCTTTGCTCCATCACCAAC |
| H375_2860 | Reverse | TGTGGTTTTCTGCCCTGTTCT |
| H375 7680 | Forward | GAAATTAATACGACTCACTATAGGGAGATTAATGGAAGAAGTTGAGCAT |
| H375_7680 | Reverse | GCTGTTTCTTTATTTCTTCAAGTTCA |
| H375 6080 | Forward | GAAATTAATACGACTCACTATAGGAGGTACAATGGTAGGGCTCTT |
| H375 6 6080 | Reverse | ACTATTTCAGCACTCACTTGT |
| H375 8760 | Forward | GAAATTAATACGACTCACTATAGGTCACAAGAAGCGGTTAGCTT |
| H375 8760 | Reverse | TCAACTTGCACTAGCTCTCT |
| H375 420 | Forward | GAAATTAATACGACTCACTATAGGTACATTGTTTTAATCTTCCCCACCAT |
| H375_420 | Reverse | AATGCCTCAACTTCAGAATTAGTG |

Primers utilized for the generation of strand-specific probes for electrophoretic mobility shift assay (EMSA) analysis of $R$. prowazekii novel sRNAs. Underlined is the T7 promoter sequence used for in vitro transcription.

## Chapter 3 Prediction of Small RNAs in the Genus Rickettsia ${ }^{2}$

## Introduction

Due to the historic importance of rickettsial diseases, their global distribution and associated morbidity or mortality, and potential implications in bioterrorism, the genome of R. prowazekii was the first to be sequenced and published (Andersson et al., 1998). Unlike other intracellular bacteria, whose genomes have very high coding densities, $R$. prowazekii was found to have $24 \%$ non-coding DNA (Andersson et al., 1998; Holste et al., 2000). Such a large amount of non-coding DNA was thought to be the consequence of genomic reduction and pseudogenization due to the loss or degradation of genes involved in several mechanisms leading to the obligate intracellular lifestyle of this pathogen. A number of other rickettsial genomes, including those of $R$. rickettsii, $R$. conorii, R. typhi, and other notable species have since been sequenced and either published or made available in biomedical databases (Ogata et al., 2001; McLeod et al., 2004; Gillespie et al., 2012). However, the presence of small, non-coding RNAs in different Rickettsia species still remains undetermined. With an aim to address this important knowledge gap, I used SIPHT/sRNAPredict2 to identify candidate novel sRNAs within the intergenic regions of all four rickettsial groups, leading to the prediction of a total of 1,785 novel sRNAs within 16 different strains representing 13 rickettsial species. I further analyzed the predicted sRNAs in R. prowazekii strain Breinl using other bioinformatics tools and experimentally validated their expression using RT-

[^2]PCR and deep sequencing approaches. In tandem, these analyses constitute the very first evidence documenting the presence of sRNAs in rickettsial genomes.

## Results

## Bioinformatics Prediction of Small RNAs

Ready availability of complete genome sequences render computational approaches a widely acceptable first step for identification of sRNAs (Livny et al., 2006; Livny et al., 2008; Lu et al., 2011). Such bioinformatics approaches search the intergenic regions (IGRs) of a bacterial genome for specific sRNA features. In general, the strategy involves an in-depth search of IGRs for the presence of Rho-independent terminators, promoters, and transcription factor binding sites, followed by the analysis of their secondary structure and comparison of such IGRs with closely related species (Livny et al., 2008; Sharma et al., 2010; Sharma et al., 2014). In this study, I employed the webbased program SIPHT to examine the genomes of 16 rickettsial strains, which represent a total of 13 species spanning all four rickettsial groups. Four known plasmids, representing three from the spotted fever group strains and one from a transitional group strain, were also included. The R. felis pRFdelta plasmid (NC_007111.1) was excluded from the analysis as it was found to be an artifact from genome assembly (Gillespie et al., 2007). I primarily employed recommended default settings to identify most sRNA features. To perform a more stringent search, however, I chose to decrease the Expectation Value ( E value) from the default $5 \mathrm{e}^{-3}$ to $1 \mathrm{e}^{-15}$ to minimize false positives. As a result, I identified a total of 1,785 candidate rickettsial sRNAs (Additional File 1). On average, I predicted 74 candidates per ancestral strain, 21 candidates per typhus strain,

152 candidates per transitional strain, and 158 candidates per spotted fever strain. Table 7 categorizes the number of predictions by nucleotide size and rickettsial strain. Of the four plasmids examined, $R$. peacockii plasmid RPR had a single sRNA prediction.

## Computational Analysis of sRNA Predictions

Based on the predictive analysis suggesting sRNAs in all rickettsial groups, I set out to analyze each of the candidate sRNAs. In order to examine a common set of bacterial sRNAs within Rickettsia species, I first investigated five well-known bacterial sRNAs, namely 6S RNA (ssrS), $\alpha$-tmRNA (ssrA), RNaseP_bact_a, rpsL_ricks, and 4.5S RNA (ffs), and confirmed their presence in R. prowazekii. Using BLAST with an Evalue cut-off of $1 \mathrm{e}^{-5}$, I compared the prediction for each strain against others included in the study to find shared sRNA candidates (Altschul et al., 1990). As expected, I noted that rickettsial strains closely related to each other phylogenetically had a greater number of shared sRNA candidates when compared to those that are distantly related (Table 8). For example, $R$. rickettsii strain Sheila Smith (virulent) and strain Iowa (avirulent), which share 96.6\% homology (Ellison et al., 2008; Clark et al., 2015), had 115 sRNAs in addition to ten other sRNA predictions in Iowa, and 20 present only in Sheila Smith.

I next employed the web-based program, BPROM, to determine promoter motifs for predicted sRNAs in the spotted fever and typhus groups of rickettsiae, since they represent the most prominent human pathogens. While it is still undetermined whether the ancestral group causes human disease, the transitional group species are established pathogens, but they account for a small fraction of reported rickettsiosis cases. Using all sRNA predictions within the typhus group (3 strains) and the spotted fever group (8
strains), I searched 150 nucleotides upstream of the predicted sRNA start site for the -10 and -35 promoter motifs because nearly $80 \%$ of known $\sigma^{70}$ promoters in E. coli, considered to be a model organism, fall within 150 bp of the transcription start site (Huerta and Collado-Vides, 2003). While BPROM successfully predicted the -10 and 35 promoter sites for all candidate typhus group sRNAs, it was unable to predict a promoter site for one sRNA candidate (\#132) belonging to $R$. rickettsii strain Sheila Smith. Using the data obtained from the BPROM software, the average distance for the predicted -10 motif and -35 motif for both spotted fever and typhus groups of rickettsiae was calculated. For the typhus group, -10 and -35 motifs were an average of 67 and 88 (Stan. Dev. $= \pm 22$ ) nucleotides upstream of the sRNA start site, respectively. The spotted fever group had similar nucleotide distances at 70 and $91(\mathrm{Stan} . \mathrm{Dev}= \pm 22)$ nucleotides upstream. The average distance between the -10 and -35 motifs was 21 nucleotides for both groups, slightly longer than the reported $17 \pm 1$ nucleotide distance optimal for Escherichia coli genes (Harley and Reynolds, 1987; Mitchell et al., 2003). Typhus group and spotted fever nucleotide frequencies for the -10 and -35 motifs were plotted using WebLogo3 (Figure 4).

The known consensus sequences of $E$. coli ORFs for the -10 motif and -35 motif are TATAAT (with each nucleotide probability at $82 \%, 89 \%, 52 \%, 59 \%, 49 \%, 89 \%$ ) and TTGACA (with each nucleotide probability at $69 \%, 79 \%, 61 \%, 56 \%, 54 \%, 54 \%$ ), respectively (Harley and Reynolds, 1987). Both rickettsial groups favored a - 10 motif similar to the consensus sequence. Interestingly, the -35 motif differed between the groups, as well as from the $E$. coli consensus sequence, at the fifth nucleotide. In E. coli, this position is cytosine in $54 \%$ of tested sequences. However, it is adenosine
(approximately $41 \%$ ) or thymine (approximately $40 \%$ ) in spotted fever group and thymine (approximately 35\%) or adenosine (approximately 30\%) in typhus group. In addition, the second nucleotide position in typhus group is most conserved with a thymine in nearly $100 \%$ of predicted sites, while it is approximately $90 \%$ for spotted fever group. This is in contrast to E. coli, which has a thymine with $79 \%$ probability at the same nucleotide position.

In an attempt to explain the differences in sRNA predictions between Sheila Smith and Iowa strains of $R$. rickettsii, I performed a comparative analysis by mapping the sRNAs present only in one of the strain but absent in another. Accordingly, 20 predictions from Sheila Smith strain and their corresponding 150bp up- and downstream sequences to the strain Iowa genome were compared. All "prediction $\pm 150 \mathrm{bp}$ " sequences were $>99 \%$ identical with the exception of two (\#23 and \#71) sRNAs. For instance, sRNA candidate \#71 had a 20 bp sequence absent from the predicted sRNA sequence in the Iowa genome (Figure 5). The same analysis was conducted for the 10 predictions present only in $R$. rickettsii strain Iowa but absent in strain Sheila Smith. Again, all but two "prediction $\pm 150$ bp" sequences were nearly identical ( $>99 \%$ ). In this case, prediction \#118 for strain Iowa had a 46 bp sequence that was absent in strain Sheila Smith (Figure 6). Also, an ORF was annotated in corresponding genomic regions in strain Sheila Smith for nearly $30 \%$ of sRNAs predicted only in strain Iowa, while two sRNAs had SNPs and indels in the Sheila Smith sequences potentially leading to altered thermostability of secondary structures. Similar observations were made for sRNAs present only in Sheila Smith but absent in Iowa strain. Since SIPHT relies on the conserved intergenic regions, secondary structures, presence of promoters, and terminator
sequences, it is likely that the sRNAs predicted only in one strain, but not the other, result from these stringent criteria.

## Candidate sRNA Target Identification

Although spotted fever rickettsiae cause disease worldwide, I chose to initially focus on $R$. prowazekii due to the high public health threat. In addition, due to bioweapon testing during World War II and the development of antibiotic-resistant strains during the Cold War, R. prowazekii remains on the list of select agents with potential for bioterrorism (Walker, 2003). To identify potential mRNA targets for predicted sRNAs within the $R$. prowazekii genome, two independent web-based programs, TargetRNA2 and CopraRNA, were chosen to predict sRNA:mRNA interactions by assessing the base pairing potential based on a Smith-Waterman dynamic and conservation profile, respectively (Tjaden, 2008; Wright et al., 2013; Wright et al., 2014). The search parameters were set to default and a p-value threshold of $\leq 0.05$. A total of 393 potential targets were identified by TargetRNA2, whereas CopraRNA predicted 1154 protein coding genes to be regulated by sRNAs. A detailed comparative analysis revealed that 16 sRNA candidates had common target genes predicted by both programs and the remaining 10 candidates had independent predictions (Additional File 2). Two sRNA candidates (\#6 and \#22) had the highest number of 6 common targets predicted by TargetRNA2 and CopraRNA, in contrast to only one commonly predicted target for candidates \#12 and \#19. In summary, a total of 51 target genes were predicted by both programs, of which only 9 were categorized as hypothetical proteins. Of note, target genes such as virB10, ftsL, ftsQ, secA, ruvB, and 190 kDa antigen were commonly
predicted, indicating the potential role of post-transcriptional regulatory mechanisms in type IV secretion, cell division, and DNA repair. A majority of the common targets had functional roles. Table 9 lists the number of predicted target transcripts for each predicted sRNA. Interestingly, TargetRNA2 failed to predict targets for candidate \#7, but CopraRNA predicted 53 target genes (Table 9). Nevertheless, if the lack of target prediction by TargetRNA2 holds true for candidate \#7, this may be due to a sRNA:protein interaction, as is the case with 6 S RNA, or it may simply represent a degraded ORF with an active promoter and terminator. Using this information, the predicted mRNA targets were parsed based on their respective protein functions. Eight categories were selected, including a category for 'other' (annotated ORFs with known function, but not categorized into a separate class based on function) and 'hypothetical proteins' (annotated ORFs with unknown/uncharacterized function), and separated the 393 predictions into different categories. The categories included cell division, cell wall, metabolism, ribosomal functions, virulence, type IV secretion system, transport proteins, and phagosomal escape (Table 10). My TargetRNA2 and CopraRNA results demonstrate that the majority of known targets for sRNAs are involved in metabolism (71 vs. 197), ribosomal functions (51 vs. 129), and cell division (44 vs. 30). However, both the programs predicted a large number of target genes potentially regulated by sRNAs that were categorized as 'other' (90 vs. 370) and 'hypothetical proteins' (73 vs. 232), respectively (Table 10). While TargetRNA2 uses Smith-Waterman dynamic based base pairing, CopraRNA predictions are largely based on conservation between different genomes, possibly resulting in the differences in the number of predicted targets.

## RNA Sequencing

Next, I set out to confirm the expression of rickettsial sRNAs during infection of cultured human microvascular endothelial cells (HMECs) with R. prowazekii. HMECs were infected with R. prowazekii strain Breinl and total RNA extracted at 3 and 24 h post-infection. My rationale for choosing these durations was to allow ample time for rickettsial entry and establishment of infection within the host cells and sufficient time for at least two replication cycles keeping in mind that replication time for intracellular rickettsiae ranges from 9 to 11 h . After removal of rRNAs and eukaryotic mRNA, the enriched bacterial RNA was reverse transcribed into cDNA libraries and subjected to next generation sequencing using the Illumina $\mathrm{HiSeq}^{\mathrm{TM}} 1500$ system. The resulting RNA reads were mapped onto the R. prowazekii strain Breinl (NC_020993) genome. My deep sequencing resulted in approximately 42.6 to 46.2 million total reads for RNA isolated at 3 h and 27.4 to 28.6 million total reads at 24 h post-infection. Out of these, an average of 1.4 and 2.8 million reads mapped to the $R$. prowazekii genome at 3 h and 24 h , respectively. Rickettsia species include obligately intracellular bacteria with fastidious growth requirements in a host cell and cannot yet be cultured in a cell-free environment. Recently, it has been reported that intracellular organisms such as Rickettsia represent only $5 \%$ of the extracted total RNA, while the remaining $95 \%$ belongs to the eukaryotic host. Out of approximately $5 \%$ bacterial total RNA, $95 \%$ is composed of ribosomal and transfer RNA, while the remaining 5\% of the transcripts correspond to bacterial mRNA and sRNA, yielding a ratio of $\sim 1: 400$ bacterial mRNA and sRNA in total RNA extracted during the infection (Westermann et al., 2012). Although microbe enrichment is aimed at removing most of the polyadenylated eukaryotic transcripts and ribosomal RNAs, the
process often accomplishes only limited removal of other interfering eukaryotic RNAs such tRNAs, noncoding RNAs, and mitochondrial RNA. Furthermore, high abundance of rRNAs in the host cells also interferes with the efficacy of their removal from the sample preparations. Supporting my results, a recent study has reported that only $2-5 \%$ of the total reads mapped to the intracellular bacterial genomes despite enrichment of the total RNA (Westermann et al., 2012). By analyzing the sequencing data at the genome locations predicted by SIPHT, twelve out of 26 predicted sRNAs had a Mean Expression Value (MEV) that was $\geq 1.5$ times compared to their respective 50 nucleotide upstream and downstream flanking regions (Table 11). As expected, all five well known sRNAs, namely 6S RNA, $\alpha$-tmRNA, RNaseP_bact_a, rpsL_ricks, and 4.5S RNA were found to be expressed in vitro and exhibited an MEV of $>1.5$. The read coverage plots of 6S RNA, RNaseP_bact_a and $\alpha$-tmRNA are presented in Figure 7.

## Validation of sRNA Predictions via RT-PCR.

Prior to validating the predicted sRNAs, I decided to investigate the expression of 6S RNA within $R$. prowazekii. The underlying rationale for choosing 6S RNA to begin with was its particularly high abundance in $E$. coli, which can reach $\sim 10,000$ copies during late stationary phase (Wassarman and Storz, 2000). Using 16S rRNA as the endogenous control and infection for 1.5 h as baseline, I found a significant ( $\mathrm{p}<0.01$ ) increase in its expression from 6 to 72 h post-infection ( $\mathrm{n}=5$ ) using TaqMan-based realtime RT-PCR (Figure 8). After confirming expression of 6S RNA, nine sRNA candidates (\#1, \#2, \#5, \#9, \#10, \#11, \#21 \#24, and \#25) were chosen to verify their expression in R. prowazekii str. Breinl during infection of HMECs. These were chosen
based on their location within the genome, orientation comparative to the neighboring genes, and potential mRNA targets (Figure 9). Candidates \#11 and \#21 were not detected using RT-PCR. However, the remaining seven candidates were detected using RT-PCR $(\mathrm{n}=3)$ with an amplicon near the expected size.

Figure 10 shows a representative agarose gel for candidates \#1, \#5, \#9, \#10, \#24, and \#25. Upon cross-reference with other $R$. prowazekii genomes that included strains Madrid E, Dachau, BuV67, Katsinyian, Chernikova, RpGvF24, GvV257, and Rp22, it was found that candidate \#2 was anti-sense to the gene $r n p B$ (RNaseP_bact_a) annotated only in $R$. prowazekii strain Rp22 (NC_017560). Therefore, any amplification is likely the result of $r n p B$ expression. The remaining predictions demonstrated no association with any other annotated open-reading frames. To further confirm this observation, each sRNA sequence was examined for its ability to code for a protein. Using the ExPASy Translate Tool (Swiss Institute of Bioinformatics), all six possible translation initiation positions (3 each on $5^{\prime}$ and $3^{\prime}$ strands) were assessed to be devoid of protein coding capacity, yielding evidence that these are indeed small non-coding RNAs expressed during rickettsial infection of host endothelium.

## DISCUSSION

In this study, I did a genome wide computational analysis to identify novel sRNAs within the genus Rickettsia. I identified 1,785 sRNAs in 16 rickettsial strains belonging to 13 different species and spanning across all rickettsial groups. To further confirm my sRNA predictions, I have validated the expression of six predicted transacting sRNAs in R. prowazekii strain Breinl using high throughput sequencing and RTPCR approaches. Since the initial discovery of sRNAs in 1960s, E. coli has been shown
to harbor nearly 80 to 100 small RNAs, while Salmonella enterica serovar Typhimurium genome encodes for $\sim 140$ small RNAs (Gottesman and Storz, 2011; Shinhara et al., 2011; Kroger et al., 2012). Abundant evidence now demonstrates the ubiquitous nature of sRNAs in bacterial genomes and implicates them in playing an important role in virulence, quorum sensing, survival, plasmid expression, and primary and secondary metabolism in addition to several other housekeeping functions (Wagner and Simons, 1994; Wassarman, 2002; Lenz et al., 2004; Guillier and Gottesman, 2006; Lee and Groisman, 2010; Mraheil et al., 2011; Bobrovskyy et al., 2015). In Vibrio cholerae and $V$. harveyi, quorum-sensing genes hapR and $\operatorname{lux} R$ are under the regulatory control of four and five sRNAs, respectively (Lenz et al., 2004). Furthermore, the deletion of three sRNAs in Listeria monocytogenes results in an attenuated phenotype in mouse models, and the mutant strain is unable to grow in murine macrophages (Mraheil et al., 2011). Similarly, rli38 knockout mutants of Listeria were found to be attenuated in orallyinfected mice, suggesting a role in the pathogen's virulence (Toledo-Arana et al., 2009), and the deletion of $l h r A$ in $L$. monocytogenes was capable of altering the expression of over 300 genes (Nielsen et al., 2011). In Salmonella enterica, the AmgR small RNA controls the expression of the $m g t C B R$ mRNA required for survival in macrophages, and its overexpression leads to decreased virulence in mouse models (Lee and Groisman, 2010). However, studies examining the potential regulatory roles of sRNAs in obligate intracellular bacteria remain rather limited. In addition to a sRNA that regulates $h c t A, 16$ trans-acting and 25 cis-acting sRNAs have been identified in Chlamydia trachomatis, an intracellular human pathogen (Grieshaber et al., 2006; Albrecht et al., 2010). More recently, Coxiella burnetii and Buchnera aphidicola genomes were shown to encode 14
and 140 sRNAs, respectively, and Coxiella sRNAs exhibit differential expression at different growth stages (Leroy et al., 2010; Hansen and Degnan, 2014; Warrier et al., 2014). Here, I report on the existence of novel small RNAs in rickettsial genomes and their potential roles as determinants of pathogen virulence, host adaptation, and metabolism.

Several prediction programs using parameters such as comparative genomics, RNA structure, and thermodynamic stability, have been developed and utilized to identify bacterial small RNAs (Gautheret and Lambert, 2001; Rivas and Eddy, 2001; Washietl et al., 2005; Sridhar et al., 2010; Wright et al., 2013). In this study, I have chosen SIPHT to predict trans-acting sRNAs in rickettsial genomes as this prediction tool uses several other well-established and widely used programs to identify potential transcription factor binding sites (Altschul et al., 1997; Liu et al., 2001; Pain et al., 2015); Rho-independent terminators using RNAMotif (Macke et al., 2001), TransTermHP (Kingsford et al., 2007), and FindTerm (Argaman et al., 2001); conserved secondary structures by QRNA (Rivas and Eddy, 2001); and conserved nucleotide sequences by BLASTN 2.0 (Altschul et al., 1997). Further, this program has been widely applied for sRNA predictions in several other bacteria attesting to its potential for accurately predicting bacterial sRNAs, and its web-based availability makes it both userfriendly and easily accessible. Additionally, unlike its counterparts such as eQRNA and RNAz, SIPHT specifically searches for Rho-independent terminators and conserved intergenic structures significantly eliminating the chances of false-positive predictions (Lu et al., 2011). Using SIPHT, I predicted an average of 21, 74, 152 and 158 sRNAs in typhus, ancestral, transitional, and spotted fever groups of Rickettsia species,
respectively. To determine if predicted sRNAs have upstream transcription factor binding sites and downstream Rho-independent terminator (two independent criteria used by SIPHT), I further analyzed all $R$. prowazekii sRNAs using BPROM (Solovyey and Salamov, 2010) and TransTermHP (Kingsford et al., 2007). All R. prowazekii sRNAs were found to have a predicted upstream $\sigma^{70}$ promoter and a Rho-independent termination confirming the results retrieved from SIPHT (Figure 4).

My genus-wide global analysis suggests that the repertoire of predicted sRNAs is independent of the size of the respective rickettsial genome. This is exemplified by the presence of 191 sRNAs in the 1.31 Mbp genome of $R$. peacockii (spotted fever), in contrast to only 100 sRNAs in the 1.54 Mbp genome of ancestral $R$. bellii. The number of sRNAs among rickettsiae in different groups, however, tends to directly correlate with their respective genome size, while the average number of sRNAs per Mbp of the genome within a particular group varies depending on the Rickettsia species/strain. For example, R. bellii and R. canadensis, belonging to the ancestral group and carrying the genomes of 1.54 Mbp and 1.15 Mbp , respectively, encode 100 and 47 sRNAs. On the other hand, $R$. canadensis has only 40 sRNAs/Mbp, while $R$. bellii has $65 \mathrm{sRNAs} / \mathrm{Mbp}$, indicating the impact of genomic content and organization on the prediction of sRNAs. Also, although the average length of sRNAs in $R$. bellii and R. canadensis is fairly similar (132 vs 149 , respectively), a detailed analysis of the length of intergenic regions (IGRs) in $R$. bellii and $R$. canadensis revealed that $R$. bellii has $\sim 63 \%$ more IGRs ranging from 1300 bp . It is, therefore, possible that the lower number of sRNAs in $R$. canadensis is due to the differences in the number of IGRs included in the SIPHT analysis. Another notable difference is evident between $R$. akari and $R$. felis in the transitional group.

While both had over 100 predictions, the coding density of sRNAs in R. akari (94 sRNAs/Mbp of genome) was $22 \%$ lower in comparison to $R$. felis ( $121 \mathrm{sRNAs} / \mathrm{Mbp}$ of genome). Rickettsia are generally presumed to exhibit limited horizontal gene transfer (HGT) due to their obligately intracellular lifestyle. However, recent reports document the dynamic nature of their genomes, and transposable elements, palindromic repeats, and horizontally-acquired genes have been identified in several Rickettsia species (Gillespie et al., 2007; Gillespie et al., 2008; Sahni et al., 2013). For example, the transposable elements of $R$. felis cause inactivation of genes or integration of foreign DNA resulting in changes to both genomic content and arrangement (Ogata et al., 2005). In this regard, at least 79 genes in R. felis have been suggested to be acquired through HGT from other proteobacteria or amoebae (Merhej et al., 2011). Additionally, R. prowazekii and $R$. typhi, despite having similar size genomes, encode 26 and 15 sRNAs, respectively. Again, the number of IGRs included in the SIPHT analysis varies between $R$. prowazekii strain Breinl and R. typhi strain Wilmington (540 vs 504), which may explain the differences in the total number of predicted sRNAs in these typhus rickettsiae genomes.

Although computational approaches yield convincing evidence for the existence of sRNAs in Rickettsia, it is critical to validate the expression of predicted sRNAs during host-pathogen interactions via experimental strategies. In this context, I first attempted to confirm the expression of 6S RNA ( $s s r S$ ), a well-characterized small, noncoding RNA ubiquitously present in most bacterial lineages, including $\gamma$-proteobacteria and Bacillales (Hindley, 1967; Warrier et al., 2014). Although most bacteria encode a single copy of the $s s r S$ gene, some bacterial species, including Bacillus subtilis, reportedly encode two copies that are differentially expressed depending on the stage of growth (Wassarman,
2007). 6 S RNA is most abundantly expressed during late stationary phase, where it interacts with RNA polymerase and regulates $\sigma^{70}$ function. These data further support possible roles for 6 S RNA in long-term survival and nutrient uptake (Trotochaud and Wassarman, 2004; Faucher et al., 2010). Also, 6S RNA is potentially involved in intracellular stress response in C. burnetii and Legionella pneumophila (Weissenmayer et al., 2011; Warrier et al., 2014). I found a significant increase in the 6S RNA expression from 6 to 72 h post-infection when compared to the basal expression level at 1.5 h . Also, based on my MEV calculations, I observed an increase of 2- and 5-fold in the expression of 6 S RNA at 3 and 24 h post-infection, respectively. This is in agreement with earlier findings from other pathogenic bacteria. Specifically, a 2-fold up-regulation in expression at 72 h appears to correspond to a similar increase seen in C. burnetii (Warrier et al., 2014). My data further suggest that the highest expression at 72 h postinfection coincides with the intracellular growth kinetics of rickettsiae (Eremeeva et al., 2003). A comprehensive analysis to elucidate its mechanisms of action and regulatory functions in intracellular rickettsiae is warranted and currently in progress.

Because RNA sequencing is a novel and robust methodology that provides valuable insights into the global transcriptome (Ozsolak and Milos, 2011), I subjected total RNA from R. prowazekii-infected endothelial cells to validate the presence of sRNAs and their expression during host-pathogen interactions. Since the major focus of this study was the identification and validation of intergenic trans-acting sRNAs, additional information on the cis-acting sRNAs expressed by R. prowazekii strain Breinl during infection of HMECs was excluded to perform a direct comparative and confirmatory analysis of SIPHT-based sRNA predictions versus their expression in vitro.

Furthermore, none of the web-based sRNA prediction tools have the ability to identify cis-acting sRNAs in genomes. MEV-based identification of sRNAs in bacterial genomes is a widely utilized approach that exploits the expression profile of sRNAs and their respective flanking regions to determine the biogenesis of sRNAs (Raghavan et al., 2011; Moody et al.; Warrier et al., 2014). To this end, the reads mapping to each nucleotide of the sRNAs and their respective 50 bp flanking regions were normalized using the total number of reads mapping to the rickettsial genome (excluding those mapping to the rRNAs and tRNAs) and then to their length. MEVs were determined to decipher the expression of sRNAs from potential read-throughs attributed to flanking ORFs due to leaky transcriptional termination in R. prowazekii (Woodard and Wood, 2011). Nearly $50 \%$ of predicted sRNAs in $R$. prowazekii exhibited an MEV of $\geq 1.5$ when compared to respective flanking regions indicating their biogenesis and expression independent of neighboring genes. The reads' coverage plots for 6S RNA, RNaseP_bact_a, and $\alpha$ tmRNA clearly demonstrate the independent expression of these sRNAs (Figure 7).

During invasion of epithelial cells and intracellular replication within macrophages, Salmonella expresses IsrM RNA encoded in Salmonella pathogenicity islands (Gong et al., 2011). L. monocytogenes encodes a thermosensor sRNA, which upon encountering human body temperature $\left(37^{\circ} \mathrm{C}\right)$ forms an alternative secondary structure and activates adhesins, phagosome escape mechanisms, and other immuneregulating factors (Gripenland et al., 2010). Further assessment of the expression profile of five sRNAs ( $\# 5,9,10,24, \& 25$ ) showing an MEV of $\geq 1.5$ revealed their steady-state expression of these sRNAs from 1.5 to 72 h post-infection indicating potential roles in pathogenesis. Interestingly, despite an MEV of $<1.5$, candidate \#1 was expressed
between 6 to 72 h and its expression increased over time, most notably after 24 h . Since my in-depth transcriptome analysis was performed at 3 and 24 h post-infection, I hypothesize that the relative expression of candidate $\# 1$ is likely inadequate to generate sufficient reads to achieve an MEV greater than 1.5 fold. Alternatively, the sequencing depth may not have been high enough to achieve a 1.5 -fold difference. Even though $50 \%$ of the predicted sRNAs were either not detected or expressed below the cut-off MEV in my RNA-seq analysis, it is plausible that they are bonafide sRNAs conditionally expressed during other conditions such as stress and host-vector interactions. Previous studies have shown that different environments induce specific sRNAs. Small RNA ryhB, known to down-regulate genes involved in iron storage in E. coli, is induced mainly during low iron conditions (Masse and Gottesman, 2002). In Salmonella enterica serovar Typhimurium, IsrJ sRNA is induced under low oxygen and magnesium environments and elevated levels of IsrE are observed in iron-responsive environment (Padalon-Brauch et al., 2008). Similarly, H. pylori is known to induce the expression of six small RNAs (IsoA1-6) associated with acid stress (Sharma et al., 2010). Alternatively, it is also plausible that SIPHT may have identified degraded ORFs (Andersson et al., 1998; Fournier et al., 2009). Rickettsial genomes are known to evolve by reductive evolution (gene degradation) and transposons are known to play a pivotal role in gene inactivation (Blanc et al., 2007; Gillespie et al., 2007; Gillespie et al., 2008; Ammerman et al., 2009; Gillespie et al., 2012). R. prowazekii is known to have pseudogenes potentially resulting from gene inactivation (Andersson et al., 1998). Since SIPHT uses the presence of an upstream promoter and downstream transcriptional terminator as the main criteria for predicting sRNAs, it is possible that some of sRNA
transcripts predicted by SIPHT potentially map to the degrading ORFs, which still retain conserved promoter and terminator regions.

Despite the abundance of sRNAs in all bacterial lineages, little is known about their function and mechanism of action within the bacterial genomes and only a few sRNAs have been assigned functions, to date (Warrier et al., 2014). Using TargetRNA2 and CopraRNA, I have predicted the target mRNAs regulated by R. prowazekii sRNAs. Functional categorization of the target genes regulated by sRNAs resulted in identification of genes involved in key pathways of cell division, transport, phagosomal escape, virulence, type IV secretion system, and metabolism. A majority of these pathways are critical for the growth and survival of Rickettsia in the host cytoplasm. For example, I identified 33 genes involved in transport mechanisms and potentially regulated by sRNAs, a function important for rickettsial survival in vivo as they encode for translocases required for the exchange of ADP with ATP from host cell cytosol (Winkler, 1976; Alexeyev and Winkler, 1999; Gillespie et al., 2007). Following invasion into a host cell, rickettsiae quickly escape into the cytosol by phagosome degradation, and published studies have implicated a role for rickettsial hemolysin C (TlyC) and phospholipase D (Pld) in phagosomal escape (Whitworth et al., 2005; Driskell et al., 2009). I identified two sRNAs, \#24 and 27, with the potential to regulate $t l y C$ and $p l d$, respectively, suggesting an important role for these sRNA in the establishment of infection. A significant number (18\%) of predicted target genes were categorized as 'hypothetical proteins', which is not surprising considering that nearly $26 \%$ of the $914 R$. prowazekii genes are still reported as uncharacterized ORFs. As rickettsial genes are further investigated for their functional roles, it is anticipated that most of these
hypothetical proteins will likely be assigned a role in virulence, survival, and pathogenesis during host-pathogen and vector-pathogen interactions.

Table 7. sRNA predictions categorized by nucleotide size.

| Predicted sRNA Nucleotide Size |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rickettsia | 30-100 | 101-200 | 201-300 | 301-400 | 401-500 | 500-550 | Total |
| Ancestral Group |  |  |  |  |  |  |  |
| R. bellii OSU | 33 | 55 | 6 | 5 | 1 | 0 | 100 |
| R. bellii RML | 39 | 43 | 13 | 3 | 2 | 0 | 100 |
| R. canadensis | 22 | 14 | 7 | 1 | 1 | 2 | 47 |
| Typhus Group |  |  |  |  |  |  |  |
| R. prowazekii Breinl | 8 | 11 | 5 | 2 | 0 | 0 | 26 |
| R. prowazekii Madrid E | 8 | 11 | 5 | 2 | 0 | 0 | 26 |
| R. typhi | 4 | 5 | 3 | 2 | 1 | 0 | 15 |
| Transitional Group |  |  |  |  |  |  |  |
| R. akari | 46 | 43 | 19 | 5 | 1 | 2 | 116 |
| R. felis | 75 | 80 | 25 | 6 | 2 | 0 | 188 |
| Spotted Fever Group |  |  |  |  |  |  |  |
| R. rickettsii Iowa | 53 | 49 | 13 | 8 | 1 | 1 | 125 |
| R. rickettsii Sheila Smith | 56 | 54 | 17 | 8 | 0 | 0 | 135 |
| R. africae | 62 | 67 | 19 | 10 | 3 | 2 | 163 |
| R. heilongiangensis | 54 | 69 | 12 | 9 | 3 | 1 | 148 |
| R. conorii | 62 | 59 | 15 | 4 | 3 | 3 | 146 |
| R. japonica | 67 | 72 | 22 | 12 | 4 | 1 | 178 |
| R. massiliae | 64 | 66 | 19 | 6 | 2 | 0 | 157 |
| R. peacockii | 79 | 74 | 17 | 9 | 8 | 4 | 191 |

Table 8. sRNA comparison.

|  | R. bellii OSU | R. bellii RML | R. canadensis | R. prowazekii Madrid | R. prowazkii Breinl | R.typhi | R.felis | R. akari | R. rickettsii SS | R. .ricketsiil ${ }^{\text {A }}$ | R. conorii | R. aficae | R. heilongjangensis | R.japonica | R. massiliae | R. peacocki |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ancestral |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| R. bellii OSU | $\cdots$ | 86 | 5 | 4 | 4 | 4 | 58 | 6 | 20 | 24 | 26 | 19 | 23 | 22 | 14 | 32 |
| R. bellii RML |  | $\cdots$ | 4 | 4 | 4 | 4 | 60 | 7 | 21 | 24 | 33 | 21 | 28 | 25 | 15 | 37 |
| R. canadensis |  |  | $\cdots$ | 3 | 3 | 3 | 11 | 8 | 6 | 5 | 6 | 6 | 5 | 7 | 8 | 3 |
| Typhus |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| R. prowazekii Madrid E |  |  |  | $\cdots$ | 31 | 7 | 5 | 4 | 5 | 3 | 5 | 5 | 3 | 2 | 4 | 2 |
| R. prowazkii Breinl |  |  |  |  | $\cdots$ | 7 | 5 | 4 | 5 | 3 | 5 | 5 | 3 | 2 | 4 | 2 |
| R. typhi |  |  |  |  |  | $\cdots$ | 3 | 3 | 3 | 4 | 3 | 3 | 1 | 1 | 3 | 1 |
| Transitional |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| R.felis |  |  |  |  |  |  | $\cdots$ | 67 | 85 | 65 | 86 | 90 | 78 | 84 | 86 | 91 |
| R. akari |  |  |  |  |  |  |  | $\cdots$ | 37 | 34 | 42 | 41 | 41 | 36 | 39 | 38 |
| Spotted Fever |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| R. rickettsii SS |  |  |  |  |  |  |  |  | $\cdots$ | 120 | 98 | 103 | 88 | 98 | 87 | 98 |
| R. rickettsil A |  |  |  |  |  |  |  |  |  | $\cdots$ | 103 | 106 | 96 | 107 | 94 | 105 |
| R. conorii |  |  |  |  |  |  |  |  |  |  | $\cdots$ | 126 | 93 | 102 | 94 | 111 |
| R. fricae |  |  |  |  |  |  |  |  |  |  |  | $\cdots$ | 100 | 118 | 104 | 121 |
| R. heilongiangensis |  |  |  |  |  |  |  |  |  |  |  |  | $\cdots$ | 136 | 82 | 98 |
| R. japonica |  |  |  |  |  |  |  |  |  |  |  |  |  | $\cdots$ | 93 | 109 |
| R. massiliae |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\cdots$ | 92 |
| R. peacocki |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | $\cdots$ |

Comparison of sRNA predictions and five well-known bacterial sRNAs (6S RNA, $\alpha$-tmRNA, rpsL_ricks, 4.5S RNA, RNaseP_bact_a) against other rickettsial species and strains. The numbers represent the amount of sRNAs that demonstrate similarity after a BLAST comparison (E-value $<1 \mathrm{e}^{-5}$ ).

Table 9. sRNA target predictions.

| sRNA Prediction | Number of Targets |  |
| :---: | :---: | :---: |
|  | TargetRNA | CopraRNA |
| $1^{*}$ | 39 | 47 |
| $2^{*}$ | 3 | 43 |
| 3 | 4 | 40 |
| 4 | 11 | 23 |
| $5^{*}$ | 27 | 50 |
| 6 | 21 | 49 |
| 7 | 0 | 53 |
| 8 | 8 | 37 |
| $9^{*}$ | 19 | 43 |
| $10^{*}$ | 32 | 49 |
| $11^{*}$ | 17 | 49 |
| 12 | 11 | 44 |
| 13 | 17 | 49 |
| 14 | 13 | 37 |
| 15 | 25 | 50 |
| 16 | 12 | 45 |
| 17 | 18 | 51 |
| 18 | 2 | 54 |
| 19 | 9 | 45 |
| 20 | 10 | 39 |
| $21^{*}$ | 12 | 39 |
| 22 | 14 | 46 |
| 23 | 10 | 45 |
| $24^{*}$ | 24 | 54 |
| $25^{*}$ | 29 | 36 |
| 27 | 6 | 37 |
|  |  |  |
| Total | 393 | 1154 |

Number of target predictions per each sRNA for R. prowazekii strain Breinl. Candidate \#26 is not listed, as SIPHT provided no \#26 prediction. Asterisks represent those candidates selected for confirmation of expression.

Table 10. sRNA target categorization.

|  | \# of Predicted Targets by |  |
| :--- | :---: | :---: |
| Target Classification | TargetRNA2 | CopraRNA |
| Cell Division | 44 | 30 |
| Cell Wall | 24 | 83 |
| Metabolism | 71 | 197 |
| Ribosomal Protein | 51 | 129 |
| Virulence | 3 | 17 |
| T4SS | 2 | 28 |
| Other | 90 | 370 |
| Transport | 33 | 67 |
| Phagosome Escape | 2 | 1 |
| Hypothetical Protein | 73 | 232 |
| Total | 393 | 1154 |

Target genes are classified into ten categories based on either known or hypothetical function for $R$. prowazekii strain Breinl.

Table 11. sRNA predicted promoter locations.

| Candidates | Start Position | Stop Position | Strand | -10 box | -35 box |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 163641 | 163556 | Anti-Sense | ATCTAGGAT | TTAATT |
| 5 | 659164 | 659057 | Anti-Sense | TTGTATTAT | TTTATT |
| 6 | 644329 | 644199 | Anti-Sense | TAGTAAAAA | TTAGAA |
| 9 | 457001 | 456876 | Sense | ACTTATCAT | TTGCTG |
| 10 | 371859 | 371506 | Anti-Sense | TGTTAAAAAT | TTTATT |
| 11 | 308324 | 308042 | Anti-Sense | TTTTGAAAT | TTCTAA |
| 12 | 306070 | 305924 | Sense | ATGTATATT | TTGATG |
| 21 | 47692 | 47542 | Sense | GGGTATAAC | ATGACA |
| 22 | 10482 | 10278 | Anti-Sense | ATGTAAGAT | TTTACT |
| 23 | 1105018 | 1104959 | Sense | GATCAGAAT | TTCAAA |
| 24 | 1039473 | 1039278 | Anti-Sense | ATGTAGATT | TTGATT |
| 25 | 998167 | 997927 | Anti-Sense | GACTAAAAT | TTGCCA |

This table outlines those R. prowazekii strain Breinl sRNA predictions that had an Mean Expression Value $(\mathrm{MEV}) \geq 1.5$. It includes the SIPHT predicted start and stop positions as well as the predicted strand. In addition, it contains the BPROM predicted -10 box and -35 box for the $\sigma^{70}$ promoters.


Figure 4. sRNA promoter frequencies.
Conservation diagrams illustrating the probability of a nucleotide in a specific promoter motif position. The left side demonstrates the -10 promoter motif, while the right side is the -35 promoter motif. The upper portion displays the typhus group, while the lower displays the spotted fever group. Both groups have -10 motifs similar to the $E$. coli consensus sequence (TATAAT). On the other hand, the -35 motifs vary when compared to the E. coli consensus sequence (TTGACA).

```
                            10 20 30 40
RrSS71/1-218 ATTTTGGTATGGTATCGATTAATGACCCGTTACCTGCAAATGCAAAAGCAC
Rr/A/1-198 ATTTTGGTATGGTATCGATTAATGACCCGTTACCTGCAAATGCAAAAGCAC
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 60 & 70 & 80 & 90 & 100 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
RrSS71/1-218 CTTTTGCAGGACGTAAAGCTTCAGGTTTTGGAGTGGAAGGCTCATTTGAAG RrIA/1-198 \\
CTTTTGCAGGACGTAAAGCTTCAGGTTTTGGAGTGGAAGGCTCAT
\end{tabular}}} \\
\hline & & & & & \\
\hline & 110 & 120 & 130 & 140 & 150 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{RrSS \(71 / 1 /-218\) GGATATTTGAATATCTAAATACGAAATATATAAATTTACAGAATTAAGCAT RrIA/1-198 GGATATTTGAATATCTAAATACGAAATATATAAATTTACAGAATTAAGCAT}} \\
\hline & & & & & \\
\hline & 160 & 170 & 180 & 190 & 200 \\
\hline \multicolumn{6}{|l|}{\multirow[t]{2}{*}{RrSS71/1-218 GCCCGCATGGTTCCTTTTATGTCATTCCTGCGAAAGCAGGAATCTAATAAA
RrIA/1-198 GCCCGC}} \\
\hline & & & & & \\
\hline
\end{tabular}
    2 1 0
RrSS71/1-218 GAATATAATTCTTT
RrIA/1-198 GAATATAATTCTTT
```

Figure 5. Alignment of R. rickettsii strain Sheila Smith sRNA candidate \#71.
The sRNA candidate \#71, predicted only in R. rickettsii strain Sheila Smith but not in strain Iowa and the upstream 150 bp region of predicted sRNA were aligned with the corresponding genomic region from strain Iowa. The predicted -10 box (orange), -35 box (blue), and sRNA sequence (green) are highlighted. A 20 bp deletion observed in the genomic sequence of strain Iowa is shown by the dotted line.


Figure 6. Alignment of R. rickettsii strain Iowa sRNA candidate \#118.
The sRNA candidate \#118, predicted only in R. rickettsii strain Iowa but not in strain Sheila Smith and the 150 bp up- and downstream regions of predicted sRNA were aligned with the corresponding genomic region from strain Sheila Smith. The predicted -10 box (orange), -35 box (blue), sRNA sequence (green) and the Rho independent terminator (yellow) are highlighted. A nucleotide sequence absent in the genomic sequence of strain Sheila Smith and mapping to the predicted sRNA and the Rho independent terminator in strain Iowa is shown by the dotted line.


Figure 7. Expression profiles for 6S RNA, RNaseP_bact_a, and $\alpha$-tmRNA.
Expression profiles for: 6S RNA (Panel a), RNaseP_bact_a (Panel b), and $\alpha-\operatorname{tmRNA}$ (Panel c) during $R$. prowazekii infection of HMECs. Y-axis denotes the nucleotide coverage. X-axis shows the genomic location of sRNAs in $R$. prowazekii genome (NC_020993). The sRNAs are shown by red arrows whereas green arrows indicate the flanking up and downstream genes. The numbers in the parenthesis indicate the exact genomic location. The flanking genes and sRNAs are not drawn to scale.


Figure 8. 6S RNA (ssrS) expression during host cell infection.
R. prowazekii strain Breinl 6S RNA ( $s s r S$ ) expression was measured during the infection of HMECs over a course of 72 hours ( $\mathrm{n}=5$ ). The expression was normalized to 16 S rRNA (endogenous control) and baselined to 1.5 h post infection. Significant increase was observed starting at 6 h post infection. Data are represented as Mean $\pm$ SEM. ${ }^{* *} \mathrm{p}<0.01$.


Figure 9. Genomic location of R. prowazekii strain Breinl sRNAs.
Schematic representation of sRNAs identified to be expressed in R. prowazekii strain Breinl during the infection of HMECs. Green arrows represent the orientation of flanking ORFs in relation to the sRNA depicted by blue arrows. The nucleotide distance between the sRNA and the flanking ORF is shown above the brace.


Figure 10. Expression of R. prowazekii strain Breinl candidate sRNAs during host cell infection.
R. prowazekii strain Breinl sRNA candidates \#1, \#5, \#9, \#10, \#24, and \#25 were tested for their expression during infection of HMEC by RT-PCR ( $\mathrm{n}=3$ ). The band sizes shown on the left side correspond to the 100 bp DNA ladder (New England Biolabs). The lane 2 (-RT) is a "no reverse transcriptase" control, while the lane $3(\mathrm{Crtl})$ is an uninfected HMEC control. Lanes 4 through 10 are the samples from R. prowazekii strain Breinl infected HMECs from 1.5 h to 72 h post infection. All the tested sRNA candidates showed expression during host cell infection.

# Chapter 4 Identification and Validation of Novel Candidate sRNAs within R. prowazekii strain Breinl ${ }^{3}$ 

## Introduction

Sequencing of a pathogen's genome is an effective umbrella approach to identify unknown genotypic/phenotypic traits and to establish a platform for dissecting and deciphering gene function. Ready availability of a number of rickettsial genomes has had a dramatic impact on our understanding of their genetic diversity, genomic architecture, gene identification and function, and mechanisms of pathogenesis. As the first rickettsial genome to be sequenced and published (Andersson et al., 1998), R. prowazekii was found to carry a rather high amount (approximately 24\%) of non-coding DNA (Andersson et al., 1998; Holste et al., 2000) and an AT-rich genome with a GC content of $29.1 \%$, suggesting genomic reduction and gene neutralization due to obligate intracellular parasitism. While intergenic regions in other bacteria harbor small non-coding RNAs, their presence in Rickettsia species remained an open question until recently, when I predicted a number of sRNAs in rickettsial genomes using complementary computational approaches (Schroeder et al., 2015). Using infection of human microvascular endothelial cells (HMECs) with R. prowazekii as an experimental model system, I further determined the presence of six novel trans-acting sRNAs, but a limitation of this study was the exclusion of potential cis-acting sRNAs and possibly other novel trans-acting sRNAs. Here, I report on the identification, validation, and characterization of both cis-acting and

[^3]additional novel trans-acting sRNAs in $R$. prowazekii. I identified 35 novel trans-acting and 23 cis-acting sRNAs through next generation sequencing and confirmed the expression of four novel sRNAs in addition to well-known noncoding sRNAs, namely, $\alpha$ tmRNA, RNaseP_bact_a, $f f s$, and 6S RNA. I further analyzed the validated sRNAs using experimental and bioinformatics techniques to determine their transcriptional start sites, upstream promoter motifs, and potential target genes.

## Results

## Identification of R. prowazekii sRNAs through RNA Sequencing.

In a recently published study, I predicted the existence of 26 candidate sRNAs within the $R$. prowazekii strain Breinl genome using a web-based interface SIPHT. Upon further analysis, 12 of these candidates were found to have an MEV of $>1.5$ and six were confirmed through RT-PCR (Additional File 3) (Schroeder et al., 2015). A limitation of this study, however, was that programs such as SIPHT only survey the intergenic regions and do not screen regions antisense to ORFs, thus failing to identify cis-acting sRNAs. To investigate the presence of cis-acting sRNAs and to perform a deeper analysis of the transcriptome to identify additional trans-acting sRNAs that do not meet the parameters of the SIPHT program, I performed next generation sequencing to identify and catalogue all sRNAs in R. prowazekii.

RNA sequencing of HMECs infected with $R$. prowazekii for 3 h (to enable entry and infection) resulted in approximately 42 to 46 million total reads, whereas 27 to 29 million total reads were obtained for RNA isolated from cells infected for 24 h . Of these, approximately 930,000 to 2 million reads mapped to the $R$. prowazekii genome at 3 h and
a total of 1 to 4 million reads corresponded to $R$. prowazekii at 24 h . This is in agreement with a recent demonstration that intracellular organisms, such as Rickettsia species, constitute only $5 \%$ of extracted total RNA, whereas the remaining $95 \%$ belongs to eukaryotic host cells. Further analysis revealed that about $95 \%$ of bacterial RNA was comprised of rRNAs and tRNAs and only the remaining $5 \%$ included mRNAs and sRNAs. This, in essence, translates to a ratio of $\sim 1: 400$ bacterial mRNAs and sRNAs in the preparations of total cellular RNA from infected host cells (Westermann et al., 2012). Despite efficient removal of eukaryotic polyadenylated transcripts and ribosomal RNAs through microbial enrichment protocols, the process is limited in removing tRNAs, eukaryotic noncoding RNAs, and mitochondrial RNAs, resulting in possible interference. Consequently, only 2-5\% of extracted total RNA generally maps to intracellular bacterial genomes (Westermann et al., 2012).

RNA-seq based search of the transcriptome identified a total of 70 candidate trans-acting (intergenic) and cis-acting (antisense) sRNAs that were either expressed at 3 and/or 24 h post-infection (Additional File 3). All sequences are available in the Bacterial Small RNA Database (Li et al., 2013) and GenBank (accession number KX215777 through KX215846). A representative selection of RNA read coverage plots for transand cis-acting sRNAs is presented in Figure 1 and Figure 2, respectively. Amongst the newly identified candidates, 35 candidates were trans-acting and another 23 were cisacting sRNAs. The sizes of the candidates identified ranged from 59 bp to 585 bp , with an average of 233bp. Interestingly, four trans-acting candidates (named Rickettsia prowazekii small RNAs [ $\left.R p_{-} \mathrm{sR}\right] 5, R p_{-} \mathrm{sR} 45, R p_{-} \mathrm{sR} 50$, and $R p_{-}$sR66) were found to have sequence homologs in other rickettsial species. All four had strong ( $\sim 90 \%$ )
homologs in the typhus group $R$. typhi, while candidate $R p$ _sR5 also shared a strong homolog in R. felis, a transitional group species. Otherwise, all remaining trans-acting sRNAs were unique to $R$. prowazekii. With the exception of two candidates $\left(R p \_\right.$sR 3 and $R p$ _sR18), cis-acting sRNA candidates generally shared considerable homology to their sRNA counterparts in rickettsial species outside of the typhus group. The corresponding ORF for $R p$ _sR3 is H375_160 (a transcription-repair coupling factor), which is present in all other sequenced $R$. prowazekii strains. For $R p_{-}$sR18, the corresponding ORF is a single-stranded DNA-specific exonuclease (H375_870), which is also conserved in other R. prowazekii and $R$. typhi strains. Considering that the intergenic regions are more likely to undergo dynamic changes in their sequences over time and cis-acting sequences tend to remain conserved by virtue of their location on the anti-sense strand of an ORF, the high number of candidates sharing homology outside of the typhus group is not surprising. Accordingly, 17 cis-acting sRNAs were present on the ORFs conserved in all sequenced rickettsial species, and 4 sRNAs were encoded from an antisense strand representing hypothetical and ORFan proteins (ORFs with no known homologs within current databases). Interestingly, candidate $R p_{-}$sR12 had no homologs in the spotted fever group, but it did share a homolog in the ancestral group, typhus group, and transitional group. Further, candidate $R p_{-}$sR28 had homologs in the typhus group and transitional group, but no homologs were found in the ancestral group or the spotted fever group. Candidate $R p_{-}$sR22 shared homologs in the typhus group and the spotted fever group, but not the transitional group. It is important to note that homology was not necessarily observed for all rickettsial species of a particular group. For example,
homologs of candidate $R p \_$sR22 were found in the spotted fever group species $R$. montanensis and $R$. japonica, but not $R$. rickettsii or $R$. conorii.

## Experimental Validation of Candidate sRNAs

To verify expression of candidate sRNAs, Northern blots were carried out with strand-specific $\left[\alpha-{ }^{32} \mathrm{P}\right]$ UTP-labeled RNA oligonucleotide probes specific to the corresponding candidate with enriched rickettsial RNA from R. prowazekii-infected HMECs at 3 and 24h post-infection. Two trans-acting sRNAs ( $R p_{-}$sR17 and $R p_{-}$sR60) and two cis-acting sRNAs ( $R p_{-}$sR34 and $R p \_$sR47) identified from the RNA-seq data were selected on the basis of their genomic location, number of RNA reads, strand orientation, as well as the orientation of corresponding upstream and downstream ORFs. Candidate Rp_sR67 [identified earlier with the SIPHT program as Candidate \#25 (Schroeder et al., 2015)] was also selected for verification via Northern blot analysis. In addition, four other highly conserved bacterial sRNAs were chosen. These included 6 S RNA (ssrS), 4.5S RNA (ffs), RNaseP_bact_a, and $\alpha$-tmRNA (ssrA). 6S RNA was only probed at 24 h post-infection as my previous data demonstrated that rickettsial 6S RNA was most abundantly expressed at this time-point (Schroeder et al., 2015). Strong and distinct RNA bands were observed for six probed sRNAs except for $\alpha$-tmRNA, which had a light but distinct band (Figure 13). Rp_sR34 and $R p \_$sR60 could not be detected by Northern blot analysis. Interestingly, the blots for RNaseP_bact_a, Rp_sR17, and $R p$ _sR47 revealed multiple bands, suggesting processed sRNA transcripts. As these bands are relatively similar in size, the fact that I did not see these differences in the RNA-seq data is not surprising since the libraries were generated from both primary and
processed transcripts. Because the RNA probes utilized in my experiments were strandspecific and the detected signals were at their predicted sizes, the Northern blot analysis validates and confirms independent transcription of the candidate sRNAs during host cell infection.

Since $R p_{-}$sR60 was not detected using Northern blot, RT-PCR was done as an alternative approach to confirm expression. Total RNA from R. prowazekii-infected HMECs clearly demonstrated expression of $R p_{-}$sR60 at both 3 h and 24 h post-infection. Figure 14 shows a representative agarose gel with 16 S RNA serving as an endogenous control. A similar approach was not amenable for the detection of $R p_{-}$sR34 because of its cis-acting nature and the possibility of confounding amplification of its corresponding ORF transcript. These results, nevertheless, provide clear evidence for the expression of $R p \_$sR60 during $R$. prowazekii infection of HMECs.

## Nucleotide Sequencing of Validated sRNAs by RLM-RACE

Northern blot analysis only provides information regarding the levels of expression and the transcript size, but is unable to reveal the exact transcription start site. Therefore, to determine the transcription start sites (TSS) of confirmed novel sRNAs ( $R p_{-}$sR17, $R p \_$sR34, $R p$ _sR47, $R p \_$sR60, and $R p \_$sR67) and 6S RNA, 5' RLM-RACE was employed. RLM-RACE provides a distinct advantage over the traditional 5' RACE method because it only amplifies primary transcripts, and not processed RNAs, for subsequent sequencing, which then permits the determination of an exact transcription start site. The TSSs for the novel $R$. prowazekii sRNAs, confirming the potential for their independent expression, are listed in Table 12. Furthermore, the TSSs deciphered from
the RLM-RACE approach were found to correspond to transcriptomic data from RNAseq experiments and to closely align with the initiation loci of sRNAs' expression. This correlation, thus, further supports independent expression of the $R p$ _sRs during infection of target host cells.

Molecular Analysis of $6 S$ RNA and Novel R. prowazekii sRNAs
In order to analyze each confirmed sRNA for potential promoter motifs (-10 and 35 sites), 150 nucleotides upstream of the identified transcription start site were submitted to the web-based program, BPROM. This range was chosen keeping in mind that approximately $80 \%$ of known $\sigma^{70}$ promoters in Escherichia coli are located within 150 nucleotides of the transcription start site (Huerta and Collado-Vides, 2003). Upon predicting $\sigma^{70}$ promoters for all novel sRNAs and 6S RNA, a deeper analysis demonstrated that the -10 and -35 motifs were an average of 60 nucleotides and 82 nucleotides upstream of the transcription start site, respectively. This distance ranged from 36 to 93 bp upstream for the -10 motif and 56 to 114 bp upstream for the -35 motif (Table 12). For E. coli, the optimum distance between the -10 and -35 motifs has been reported to be $17 \pm 1$ nucleotides (Harley and Reynolds, 1987; Mitchell et al., 2003), but my data indicate that the average distance for $R$. prowazekii is 21 nucleotides. This result is in close agreement with my previous findings for sRNAs predicted by SIPHT in spotted fever and typhus group rickettsiae (Schroeder et al., 2015). The predictions, which have a consensus of TATAAT, are identical to accepted -10 consensus sequence for E. coli (Harley and Reynolds, 1987). The first and second position of the -10 motif is conserved with T and A at $100 \%$ and $85 \%$, respectively. The third and fourth positions
are approximately $50 \% \mathrm{~T}$ and A . The fifth position is $85 \% \mathrm{~A}$, while the sixth position is $100 \%$ T. On the other hand, the rickettsial -35 motif, predicted as TTGCAA, has notable differences compared to the -35 consensus sequence for $E$. coli, reported as TTGACA (Harley and Reynolds, 1987). For the rickettsial sRNAs, the first three positions of the 35 motif are TTG nearly $82 \%$ to $100 \%$ of the time. The fourth position is a C with approximately $50 \%$ probability as opposed to an A in E. coli consensus sequence. The fifth position for $E$. coli is C , but it is A or T in $R$. prowazekii. The final position was an A approximately $70 \%$ of the time (Figure 15).

## Candidate sRNA Target Identification

Two independent programs, TargetRNA2 and IntaRNA, were used to further understand the regulatory roles of the confirmed novel trans-acting sRNAs (Rp_sR17, $R p_{-}$sR60, and $R p_{-}$sR67). These programs identify sRNA:mRNA interactions by assessing base pairing potential based on a Smith-Waterman dynamic and by assessing interaction sites and seed regions, respectively (Busch et al., 2008; Tjaden, 2008). By using TargetRNA2, a total of 72 protein-coding targets were identified to be potentially regulated by sRNAs. Conversely, IntaRNA predicted a total of 122 targets with a $\mathrm{p} \leq 0.05$. A detailed analysis revealed common target predictions by both programs (Table 13). For $R p$ _sR60 and $R p \_$sR67, a total of 7 and 6 common protein targets were found, respectively. Three common targets predicted for $R p$ _sR67 have functional roles in tRNA synthesis and another one participates in ATP synthesis, while the other common targets were hypothetical or uncharacterized proteins. Interestingly, $R p_{-}$sR60 has two protein-coding mRNA targets involved in ribosomal protein synthesis and three targets
involved in cell metabolism. In contrast, $R p_{-}$sR17 has a single common predicted target, namely protein translocase subunit, $\sec D$. This protein facilitates secretion across the inner membrane of Gram-negative bacteria. The target genes regulated by each sRNA are listed in Additional File 4. Targets for the cis-acting sRNAs were not predicted as previous data demonstrate that cis-acting sRNAs tend to interact with their associated ORFs. This suggests the potential for Rp_sR34 interaction with H375_2470, a hypothetical protein, whereas $R p_{\text {_ }}$ sR47 may base-pair and regulate the expression of H375_3890, an ORF encoding for a carboxyl-terminal protease on the complementary strand. Although a large percentage of R. prowazekii genes either code for hypothetical proteins or remain uncharacterized, a majority of predicted mRNA targets for novel sRNAs have an assigned function. It is reasonable to posit, therefore, that sRNAs may have a regulatory influence on at least some of the predicted targets and are likely to be functional in $R$. prowazekii.

## DISCUSSION

Despite recent developments and tremendous progress in the identification of bacterial sRNAs and discoveries uncovering their novel roles as important posttranscriptional regulators, rickettsial sRNAs remain largely unknown and uncharacterized. A recent study from my laboratory reported on the predictive analysis of rickettsial sRNAs by SIPHT and an initial confirmatory analysis of their presence and expression in infected host cells by RT-PCR (Schroeder et al., 2015). Here, I report on a transcriptome-wide analysis focused on the identification of entire repertoire of both trans-acting and cis-acting sRNAs in the virulent Breinl strain of R. prowazekii expressed
during the infection of host cells in vitro. I identified a total of 58 novel sRNAs through RNA-seq and confirmed the expression of four sRNAs along with 6S RNA, $\alpha$-tmRNA, RNaseP_bact_a, and 4.5S RNA. I further performed RLM-RACE to identify their transcription start sites and computational promoter analysis on the confirmed sRNAs. Also, target predictions using two independent programs, TargetRNA2 and IntaRNA, have revealed probable mRNA targets for each trans-acting sRNA.

Most sRNAs described to date have been found in model organisms, such as $E$. coli, Salmonella enterica serovar Typhimurium, and Staphylococcus aureus (Sharma and Heidrich, 2012). These sRNAs have been found to control gene expression in bacterial virulence, stress response, and other necessary functions and thus play a critical role in bestowing the adaptation skills that allow the organism to launch a quick response to environmental changes (DiChiara et al., 2010; Sharma and Heidrich, 2012). For example, $S$. aureus encodes SprD, a regulatory RNA that targets the Sbi immune-evasion molecule. Upon interaction with the $5^{\prime}$ region of the sbi mRNA, the central region of the sRNA interacts with the target translational start site and negatively regulates expression of the Sbi immune-evasion molecule, which impairs the host's innate and adaptive immune response (Chabelskaya et al., 2010). Similarly, biofilm formation in E. coli is increased with an overexpression of McaS (multi-cellular adhesive sRNA) and compromised in strains lacking the $m c a S$ gene. The McaS is responsible for repressing the curli biogenesis gene (extracellular proteinaceous attachment proteins) ( $\operatorname{csg} D$ ), activating the flagella synthesis regulator (flhD) to increase motility, and decreasing export of the polysaccharide through porin expression (pgaA) (Thomason et al., 2012). These sRNAs have critical implications on bacterial virulence and survival. Although
not yet characterized in as much detail, sRNAs are now beginning to be described in a wide range of $\alpha$-proteobacteria, including Coxiella, Bartonella, and Rickettsia species (Warrier et al., 2014; Schroeder et al., 2015; Tu, 2015).

Previous studies demonstrate that $R$. prowazekii relies on leaky transcriptional termination for host adaptation and survival (Woodard and Wood, 2011). Therefore, to ascertain whether the candidates represent independent transcripts or are simply the result of leaky termination, the MEV for each of the sRNA candidates that were in the same orientation as the closest upstream ORF was calculated and compared to the MEVs calculated for the respective 50 -base flanking regions. Of the 58 candidate sRNAs, 22 candidates were identified to be in the same orientation as the closest upstream ORF. Each candidate had an MEV of $\geq 5$ when compared to the surrounding 50-base flanking regions with the only exception of candidate $R p \_$sR17, which had an MEV of $\geq 2$ when compared to its flanking region. Even though it did not surpass the cut-off threshold of 5-fold used in this study, expression of sRNA candidate $R p$ _sR17 is quite likely to be independent from its neighboring ORF's and the low MEV may be due to its lower level of expression during infection of HMECs. The remaining 33 candidate sRNAs were in an orientation opposite their closest upstream ORF. For this situation, it is reasonable to expect that evidence for sRNA expression is not an outcome of leaky termination, as the reads corresponding to candidate sRNAs map onto the opposite strand. These data support the notion that identified candidate sRNAs are not the consequence of leaky termination, but instead represent bona fide transcripts expressed independently of their flanking ORFs.

In this study, I have identified a total of 32 novel sRNAs to be specifically present in the $R$. prowazekii genome, while only 26 sRNAs were shared among species belonging to other rickettsial groups (Additional File 3). The occurrence of a vast number of $R$. prowazekii-specific sRNAs is not surprising, considering that rickettsial genomes have undergone genome degradation and rearrangements resulting from horizontal gene transfer (HGT), transposon mutagenesis, and pseudogenization (Andersson et al., 1998; Fournier et al., 2009; Gillespie et al., 2012). For instance, the genome of the Rickettsia endosymbiont of Ixodes scapularis (REIS) is replete with mobile genetic elements and conjugative plasmids resulting in acquisition of nearly $32 \%$ of the ORFan genes unique to REIS. It is presumed that large tracks of unique genes along with their IGRs may have been acquired from other unknown organisms with AT-rich genomes similar to rickettsiae (Gillespie et al., 2012). Species-specific sRNAs arising from genome rearrangements, deletions, and point mutations have been reported in several bacteria. For instance, E. coli and S. enterica serovar Typhimurium, despite having evolutionarily conserved genomes, are known to encode species-specific EcsR1 and SesR2 sRNAs, respectively (Raghavan et al., 2015). SesR2 has been shown to transcribe from an IGR resulting from a genome rearrangement due to phage translocation. Furthermore, point mutations resulting in the evolution of new RpoD promoters are also presumed to transcribe novel transcripts resulting in the biogenesis of species-specific non-coding RNAs (Mendoza-Vargas et al., 2009).

Although next generation sequencing yields convincing data suggesting expression of selected $R$. prowazekii sRNAs during infection of HMECs, an important next step was to validate their expression via independent experimental methods
considered to be the 'gold standard' in the fields of RNA biology in general and bacterial sRNAs in particular. Accordingly, I chose four novel sRNA candidates for validation through Northern blot analysis with strand-specific RNA probes and 5' RLM-RACE. Previously, qRT-PCR based analysis of $R$. prowazekii-infected HMECs demonstrated that 6 S RNA expression was significantly higher at 24 h post-infection in comparison to the same at 1.5 h (Schroeder et al., 2015). In the present study, Northern blotting confirmed abundant expression of 6 S RNA at 24 h post-infection as expected. Importantly, Northern blots and RT-PCR further revealed clear expression of three selected novel sRNA candidates ( $R p_{-}$sR17, $R p_{-}$sR47, and $R p_{-}$sR60) at 3 and/or 24 h post-infection. In regards to the well-known sRNAs (RNaseP_bact_a, $\alpha$-tmRNA, 4.5S RNA, and 6 S RNA), there was clear expression at 3 h and 24 h post-infection. The successful sequencing and determination of transcriptional start sites for each novel sRNA further demonstrates that $R$. prowazekii does, indeed, express these sRNAs during host cell infection. When the RLM-RACE data are overlaid with the RNA-seq data, the transcription start sites, as determined by RLM-RACE, correspond to the start of the sequencing reads with the exception of $R p_{-}$sR60, in which case the transcription start site determined by RLM-RACE mapped towards the middle of the observed RNA-seq reads. This could potentially be an outcome of: (i). occurrence of two novel small RNAs that may either have a significant overlap or may be located within extremely close proximity of each other in the $R$. prowazekii genome, (ii). presence of an unannotated ORF upstream of the sRNA TSS, or (iii). Rp_sR60 could be a riboswitch containing sRNA. Translation of the sequence upstream of the TSS identified by RACE revealed the existence of a predicted hypothetical ORF between positions 844285 and 844416 .

However, the -10 and -35 motifs were absent upstream of this predicted ORF. Riboswitch sRNAs are present in the $5^{\prime}$ untranslated region of the coding genes and regulate expression of the downstream gene in response to metabolic stimuli. Several riboswitches have been well characterized in different bacterial species, and Bartonella, a facultative intracellular pathogen, is shown to express at least 9 riboswitch sRNAs (Brt 19) upstream of different helix-turn-helix XRE genes (Tu, 2015). Most recently, EutX and Rli55 sRNAs belonging to Enterococcus faecalis and Listeria monocytogenes, respectively, were shown to contain riboswitches regulated by ethanolamine. The EutX is expressed as two independent transcripts depending on the presence or absence of ethanolamine and cofactor adenosylcobalamin (AdoCbl). The larger transcript ( $\sim 300$ bases) is predominantly expressed in the presence of ethanolamine, but not AdoCbl. In contrast, an $\sim 150$ nucleotide transcript is present only in the presence of AdoCbl , indicating metabolite-dependent variations in the sRNA transcript length (DebRoy et al., 2014; Mellin et al., 2014). Further studies on the Rp_sR60 genomic region are, therefore, necessary to resolve the differences in my RNAseq and RLM-RACE based annotation of TSS. Taken together, the results from Northern blot analysis and RLMRACE sequencing as two independent approaches not only substantiate the presence and expression of the sRNA candidates under investigation in R. prowazekii, but also allow for the determination of their transcriptional start sites within the genome.

Using the web-based program RNAfold (Hofacker, 2002), a prediction of the secondary structure for $R$. prowazekii 6S RNA based on the RLM-RACE data and the RNA-seq data reveals that it is quite similar to other published bacterial 6S RNAs (Figure 16) (Barrick et al., 2005). The structure is composed of a single central strand, the ends
of which contain either a closed stem or a terminal loop. The purpose of the central bubble is to mimic an open promoter complex on a DNA template (Wassarman and Storz, 2000; Wassarman, 2007). This bubble is responsible for RNA polymerase binding to the 6S RNA molecule and eventually becoming sequestered. Based on its pattern of expression and the predicted secondary structure, it is quite likely that 6 S RNA in $R$. prowazekii is functional. I also predicted the secondary structures of novel rickettsial sRNAs using the determined start site and a predicted termination location in Additional File 5. As an example, $R p$ _sR67 predictably contains three arms organized around a central bulge. The sRNA secondary structures are predominantly projected as indicators of evolutionary conservation/relationships and structure-function prediction based on the thermodynamics of stable structures (Mathews et al., 2010). Distinct mechanisms of regulation are employed by Vibrio harveyi quorum sensing Qrr sRNA depending on the base pairing of the nucleotides in different stem loops that are involved in interactions with the target gene. The binding of $l u x M$ and $a p h A$ target genes to the first stem loop of Qrr sRNA results in the degradation of Qrr sRNA. The strong binding of luxO to the second stem loop, on the other hand, leads to the sequestration of the sRNA and catalytic repression of Qrr occurs following relatively weak interactions between the sRNA and luxR mRNA (Feng et al., 2015). The prediction of multiple target genes regulated by the R. prowazekii sRNA repertoire (Table 13). coupled with the existence of complex RNA fold structures such as several predicted stem loops suggests the potential for their involvement in diverse regulatory mechanisms. Hence, the details of their functions and the mechanisms of action are critically important topics indeed for further detailed investigations.

The discovery of small RNAs in a wide range of bacterial pathogens and the obvious need for further definition of their functions served as a stimulus for the development of algorithms to predict their possible targets. As such, a variety of computational programs have been developed for the prediction of small RNA targets. For this study, I chose TargetRNA2 and IntaRNA to predict the potential mRNA targets for trans-acting sRNAs in R. prowazekii. An important consideration for trans-acting sRNAs originating from intergenic regions is that their targets can be located elsewhere in the genome and are not necessarily restricted to adjoining or neighboring ORFs. As expected, the predicted targets for $R p_{-}$sR17, $R p_{-}$sR60, and $R p$ sR67 primarily include bacterial metabolism and other housekeeping functions. However, a confounding factor is that a number of potential targets are either hypothetical or uncharacterized genes, rendering the possible downstream functional implications of these sRNAs difficult to analyze and interpret. It must also be noted that most trans-acting small RNAs require the use of a chaperone molecule to facilitate sRNA:target binding due to a limited nucleotide similarity. The most prominent among the sRNA chaperones is Hfq; a small hexameric RNA-binding protein, whose role as a post-transcriptional regulator has been recognized relatively recently (Chao and Vogel, 2010). Hfq-dependent sRNAs usually repress translation and/or increase target destruction through ribonuclease E (RNase E) activity (Chao and Vogel, 2010), although there are some examples in which Hfqdependent sRNAs stabilize their target mRNAs. Interestingly, both typhus group ( $R$. prowazekii) and spotted fever group (e.g., R. rickettsii, $R$. conorii) are not known to encode for a canonical $h f q$, nor has another chaperone molecule been described in Rickettsia species (Sun et al., 2002; Chao and Vogel, 2010). Nearly all members of

Enterobacteriaceae encode the $h f q$ gene, but nearly $50 \%$ of other bacteria are know not to code for the gene (Sharma and Heidrich, 2012). These include Streptococcus, Mycobacteria, Helicobacter, and Chlamydia, which all have validated small, noncoding RNAs. This suggests the use of an alternative chaperone molecule to facilitate rickettsial trans-acting sRNA interactions with target mRNAs. Indeed, potential non-Hfq chaperone molecules have been described in Helicobacter pylori and Mycobacterium tuberculosis.

Because cis-acting sRNAs exhibit perfect nucleotide similarity, the expected target would be the corresponding ORF on the opposite strand. In this context, H375_2470 as the corresponding ORF for $R p \_$_s 34 has been annotated as a hypothetical protein, and thus it is difficult indeed to hypothesize the significance or role of this sRNA for $R$. prowazekii until the function of this protein in the rickettsial lifecycle has been ascertained. A BLAST search reveals that H375_2470 is conserved in rickettsial genomes; therefore, it is likely a functional protein. On the other hand, $R p \_$sR47 is antisense to a known carboxyl-terminal protease (H375_3890). Carboxyl-terminal proteases (CTPs) are a group of serine proteases, including tail-specific proteases (TSPs), that have been recognized as critical players in bacterial protein processing (Hoge et al., 2011; Seo and Darwin, 2013). The functions of CTPs include post-translational modification, maturation, and/or disassembly/degradation of proteins performing basal physiological functions and virulence factors (Lad et al., 2007; Hoge et al., 2011). Chlamydia trachomatis, an obligate intracellular human pathogen, has recently been described to secrete a tail-specific protease CT441, which degrades p65 and disrupts the NF-кB pathway of host antimicrobial and inflammatory responses (Lad et al., 2007).

Similarly, R. rickettsii interacts with inactive NF-кB of the endothelial cell cytoplasm in a 'cell-free' system resulting in its activation as evidenced by increased DNA-protein binding in a mobility shift assay (Sahni et al., 1998; Sahni et al., 2003). Furthermore, Pseudomonas aeruginosa, an opportunistic human pathogen, relies on CtpA for normal function of its type 3 secretion system (T3SS). The T3SS is essential for cytotoxicity towards host cells and is a vital virulence factor in mouse models of acute pneumonia. Conversely, up-regulation of CtpA in $P$. aeruginosa induces the expression of an extracytoplasmic function sigma factor regulon, resulting in an attenuated phenotype in rat models of chronic lung infection (Seo and Darwin, 2013). In the facultative intracellular pathogen Brucella suis, ctpA-deficient strains display altered morphology, increased cell size, and partial dissociation of cell membrane from the envelope and are cleared nine weeks post-inoculation in a BALB/c mouse model, suggesting that CtpA is critical for survival in macrophages (Bandara et al., 2005). Since my RNA-seq data indicate simultaneous expression of both $R p$ _sR47 and H375_3890, I hypothesize that Rp_sR47 interaction with H375_3890 may lead to the stabilization of the transcript for efficient translation. Further evaluation of this interaction and its functional implications in R. prowazekii are currently ongoing.

The field of bacterial pathogenesis is rapidly evolving and expanding with enhanced appreciation of the vastness of virulence factors and effector sRNAs. Here, I report on the identification of a number of sRNAs encoded and expressed by $R$. prowazekii during in vitro infection of vascular endothelial cells, the primary target celltype during human disease. I have further substantiated the potential implications of this new regulatory paradigm in rickettsial biology via determination of transcription start
sites of select novel rickettsial sRNAs and predictive analysis of their target genes involved in the pathways of bacterial maintenance, growth, and survival, and mechanisms of pathogenesis. In summary, this study provides the very first glimpse of the non-coding transcriptional landscape of $R$. prowazekii in target host cells.


Figure 11. Identified novel trans-acting candidate sRNAs.
Shown are the coverage plots for selected trans-acting sRNAs. Nucleotide positions within the genome are indicated on X -axis and the Y -axis displays the number of reads for that particular nucleotide position. The dark grey arrow represents the sRNA. The light grey arrows represent the orientation of upstream and downstream ORFs, respectively.


Figure 12. Identified novel cis-acting candidate sRNAs.
Shown are the coverage plots for selected cis-acting sRNAs. Nucleotide positions within the genome are indicated on X -axis and the Y -axis displays the number of reads for that particular nucleotide position. The dark grey arrow represents the sRNA. The light grey arrows represent the orientation of the respective ORF.


Figure 13. Northern blot analysis.
A representative image of the Northern blots for candidate sRNAs is shown. Northern blot analysis was performed using strand-specific sRNA probes radiolabeled with $\left[\alpha-{ }^{32} \mathrm{P}\right]$ UTP. All blots included RNA samples from control (uninfected HMECs) and those infected for 3 h and 24 h with $R$. prowazekii. The blot for 6S RNA only included RNA isolated from HMECS that were either left uninfected or processed at 24 h post-infection.


Figure 14. RT-PCR analysis.
A representative image of the RT-PCR analysis for $R p \_$sR60 is shown. All blots included cDNA samples from control (uninfected HMECs) and those infected for 3h and 24h with $R$. prowazekii.


Figure 15. sRNA promoter frequencies.
Conservation diagrams illustrating the probability of a nucleotide in a specific promoter motif position based on the confirmed sRNAs. Top panel shows the -10 promoter motif, while bottom panel represents the -35 promoter motif. The predicted -10 motifs are similar to the $E$. coli consensus sequence (TATAAT). On the other hand, the -35 motifs differ in comparison to the $E$. coli consensus sequence (TTGACA).


Figure 16. Predicted secondary structure of $\boldsymbol{R}$. prowazekii 6S RNA.
Predictive analysis of the secondary structures of identified sRNAs was accomplished using RNA-fold. The color palette represents base-pairing probability from 0 to 1 (purple to red). This secondary structure of $R$. prowazekii 6 S RNA resembles the previously reported consensus secondary structure of bacterial 6 S RNA.

Table 12. Identified transcription start sites determined by RLM-RACE and associated promoter motifs.

| sRNA | -10 Box | -10 <br> Position | -35 Box | -35 Position | Start Site |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | TGCTTTTAT | -93 bp | TTGCAA | -114 bp | 105,761 |
| 34 | CTTTATAAT | -45 bp | TTGCTA | -69 bp | 326,320 |
| 47 | AATTAAAAT | -65 bp | TGGATA | -89 bp | 481,512 |
| 60 | AGTTACTAT | -43 bp | TTGGTG | -65 bp | 844,442 |
| 67 | AATTATAAT | -36 bp | TTGCAT | -56 bp | 998,424 |
| 6 S | CCTTACTCT | -77 bp | TTATAA | -94 bp | 934,943 |

Using the RLM-RACE sequencing data, the -10 motif and the -35 motif for the $\sigma^{70}$ promoter were predicted using BPROM. The table lists the predicted -10 nucleotide sequence, the -10 start position upstream from the transcription start site, the -35 nucleotide sequence, and the -35 start position upstream from the transcription start site for the confirmed rickettsial sRNAs. The "Start Site" is the transcription start site determined by RLM-RACE.

Table 13. Prediction of target genes using TargetRNA2 and IntaRNA.

|  | sRNA candidate name | Total number of target genes predicted by TargetRNA2 | Total number of target genes predicted by CopraRNA | Number of common targets predicted by both programs | List of target genes predicted by both programs | Protein name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $R p_{\text {_ }}$ sR17 | 19 | 44 | 1 | H375_290 | Protein translocase subunit SecD |
| $\bigcirc$ | $R p_{\text {_ }}$ sR60 | 23 | 40 | 6 | H375_7590 H375_4980 H375_3020 H375_1850 H375_8280 H375 8880 | 3-oxoacyl-[acyl-carrier-protein] synthase 2 <br> SSU ribosomal protein S7p (S5e <br> Putative TolA protein <br> Phosphatidate cytidylyltransferase <br> Putative cytochrome c-type biogenesis protein related to CcmF <br> LSU ribosomal protein L6p (L9e) |
|  | $R p_{\text {_ }}$ sR67 | 30 | 37 | 7 | H375_8490 H375_6610 H375_-4810 H375_2550 H375_-1110 H375_3730 H375_6090 | Methionine--tRNA ligase <br> Alanine--tRNA ligase <br> Hypothetical protein H375 <br> Reductase <br> tRNA pseudouridine synthase B H375 <br> Uncharacterized protein RP244 of Rickettsia <br> ATP synthase subunit c H375 |

Listed are the common set of targets predicted by both TargetRNA2 and IntaRNA. The total number of targets predicted by TargetRNA2 is shown next to the total number of targets predicted by IntaRNA. The number of common targets is documented next to a list of those common targets and their functions.

## Chapter 5 Define the expression profile of novel sRNAs between the virulent strains of $\boldsymbol{R}$. prowazekii and their mechanistic role during hostpathogen and vector-pathogen interactions

## Introduction.

Despite being essentially ignored for nearly 40 years, sRNAs are now viewed as a critical-regulators for bacterial gene expression (Pichon and Felden, 2008). Intense focus into these RNA transcripts has yielded their reports in practically all Eubacteria families as well as some Archaea families (Updegrove et al., 2015). In the previous chapters, I showed that Rickettsia encode and express small RNAs during infection of human microvascular endothelial cells (Schroeder et al., 2015; Schroeder et al., 2016). These studies excluded the sRNA expression during infection of an arthropod vector, which represents a large portion of the rickettsial life cycle.

Traditionally, Pediculus humanus corporis (human body louse) has been considered the vector for Rickettsia prowazekii. However, past reports have described isolation of the pathogen from non-traditional sources, such as Amblyomma variegatum, Hyalomma marginatum, and Hyalomma truncatum ticks from Ethiopia and fleas (ReissGutfreund, 1966). Considered to be controversial at the time as repeated searches in ticks failed to find R. prowazekii (Philip et al., 1966), Amblyomma cajennense ticks from Mexico were found to harbor the bacterium (Medina-Sanchez et al., 2005). Few reports have investigated bacterial sRNAs expression during infection of the arthropod vector. One such study examined the sRNA expression profile of Wolbachia pipientis, an $\alpha$ -
proteobacteria distantly related to Rickettsia, during infection of Drosophila melanogaster (commonly known as the fruit fly). The authors noted that Wolbachia's putative sRNAs showed a differential expression profile based on the fly's sex and the specific tissues from which the pathogen was isolated (Woolfit et al., 2015). Nonetheless, this species is not known to naturally infect humans.

While it is vital to understand sRNA expression during human infection in order to yield a greater understanding of rickettsial virulence and pathogenesis, it is equally importantly to characterize sRNA expression during infection of an arthropod vector. In this way, novel arthropod-pathogen interactions may be identified, shedding light on bacterial maintenance and its life cycle. To address this knowledge gap, I infected Amblyomma americanum tick cell line (AAE2) with Rickettsia prowazekii strain Breinl and identified additional 96 novel trans-acting and cis-acting sRNAs. In addition, I report the confirmed interaction between $R p_{-}$sR60, a previously confirmed sRNA, and H375_0420, and further characterizing its expression profile in the human host and the arthropod vector.

## Results

Rp_sR60 sRNA Target Identification
Cis-acting sRNAs primarily regulate expression of the gene located on the sense strand. On the other hand, trans-acting sRNAs regulate the expression of gene targets located elsewhere in the genome through partial base pairing that either represses or stimulates translation. For this reason, the determination of functional roles for transacting sRNAs initially required a bioinformatics approach to predict and analyze potential targets. To accomplish this, I employed the web-based program CopraRNA to
predict a set of targets for $R p$ _sR60. Initially in Aim \#2, I predicted targets for this sRNA using a combination of TargetRNA2 and IntaRNA. However, it has been reported that with the addition of phylogenetic conservation into an RNA target prediction program, as was done with CopraRNA, a large gain of target accuracy is had (Pain et al., 2015). This gain resulted in a lower rate of false positives for CopraRNA predictions when compared to TargetRNA2 and IntaRNA. As such, a new set of predictions was created for $R p$ _sR60 using CopraRNA. Using the basic parameters, the algorithm predicted a total of 53 targets with a $\mathrm{p} \leq 0.05$. A detailed analysis revealed that $85 \%$ of the predicted targets had assigned function. The $R$. prowazekii genome annotation includes a high percentage of either hypothetical or uncharacterized proteins; thus, it is reasonable to speculate that $R p$ _sR60 has some regulatory influence in $R$. prowazekii. Rp_sR60 regulated pathways macromolecule biosynthesis, transport, ribosomal RNA formation, and other cellular and metabolic functions. Furthermore, $R p$ _sR60 has also been shown to regulate VirD4, an ATP hydrolysis protein that is essential to energy production for the Type IV Secretion System. The predicted target genes regulated by $R p$ _sR60 are listed in Additional File 6.

## Experimental Validation of Rp_sR60-mRNA Target Interaction.

In order to confirm targets predicted by CopraRNA, electrophoretic mobility shift assays (EMSA) were carried out using in vitro transcription-generated $\left[\alpha-{ }_{-}^{32} \mathrm{P}\right]$ UTP labeled sRNA transcripts and unlabeled target transcripts mixed in a 2:1 molar ratio. Mixtures were incubated at $30^{\circ} \mathrm{C}$ or $37^{\circ} \mathrm{C}$ to simulate arthropod and human host temperatures, respectively. Only ten target predictions (marked with star in Additional

File 7) were analyzed for interaction as these targets exhibited the strongest seed region energies. Namely, these were H375_8740, H375_7670, H375_1650, H375_2860, H375_7680, H375_1040, H375_6080, H375_8760, H375_0420, and H375_2090, in order of the strongest $p$-value. Interestingly, $R p$ _sR60 formed a stable RNA duplex at both $30^{\circ} \mathrm{C}$ and $37^{\circ} \mathrm{C}$ ( $\mathrm{n}=3$ for both temperatures) with H375_0420, excinuclease ABC subunit $\mathrm{C}(u v r C)$. The RNA complex was absent during cold competition, thus indicating a true positive interaction. No interactions were observed with the other selected targets (Figure 17).

In Vitro Expression Profile for Rickettsial H375_0420 and Rp_sR60 During Infection of HMECs and AAE2 Cell Lines

Although the human body louse is considered the primary natural vector, $R$. prowazekii has been isolated from Amblyomma ticks in Mexico and Ethiopia, indicating that body lice are not the only natural arthropod vector (Philip et al., 1966; MedinaSanchez et al., 2005). Therefore, I used the well-established AAE2 tick cell line created from Amblyomma americanum nymphs as a model of arthropod infection. The expression of $R p \_$sR60 and H375_0420 was assessed at 0.5 h , which served as the baseline, 3 h , and 24 h post-infection by RT-PCR using target specific primers and 16 S rRNA as the endogenous control. Interestingly, expression of $R p$ _sR60 and H375_0420 was found in HMECs and AAE2 cells, indicating a potential function during both arthropod and human infections. Further, in AAE2 infection, both H375_0420 and $R p$ _sR60 kept a steady expression when compared to their respective 0.5 h baseline (Figure 18). There were no significant differences in expression between $R p_{-}$sR60 and

H375_0420 at 3 h and 24 h , respectively. However, for HMEC infection, both $R p$ _sR60 and H375_0420 showed a significant decrease $(\mathrm{p}<0.01)$ when compared to their respective baselines (Figure 19). When analyzed between Rp_sR60 and H375_0420 at 3 h and 24 h , respectively, there were no significant differences in expression. These results suggest that $R p$ _sR60 may positively regulate H375_0420.

## RNA Sequencing of Rickettsia prowazekii Infected AAE2 Cells

Using the web-based SIPHT interface, I predicted 26 candidate trans-acting small RNAs encoded in the $R$. prowazekii strain Breinl genome. Using RNA-seq to verify their existence during HMEC infection, 12 candidates were found to have a Mean Expression Value (MEV) of $>1.5$. RT-PCR confirmed the expression of six potential sRNAs (Additional File 1 and Additional File 3) (Schroeder et al., 2015). As the SIPHT program only predicts candidate trans-acting sRNAs based on specific parameters and factors, a deeper analysis of the RNA-seq data demonstrated an additional 35 trans-acting and 23 cis-acting sRNAs at either 3 h or 24 h post-infection (Additional File 3) (Schroeder et al., 2016). To investigate expression of novel sRNAs during arthropod infection, I performed next generation sequencing to identify and catalogue arthropod-specific sRNAs encoded in R. prowazekii strain Breinl.

Serving as a model for late infection, RNA sequencing of AAE2 and HMECs infected with R. prowazekii strain Breinl for 24 h resulted in approximately 91.15 million and 46.1 million total reads, respectively. Despite treatment methods to enrich the bacterial transcripts, the majority of total reads consisted of eukaryotic transcripts such as mitochondrial transcripts, structural transcripts, and long and small non-coding RNAs.

Overall, the AAE2 sample provided 2,982,823 reads to the bacterial genome, while the HMEC sample consisted of $1,255,181$ bacterial reads. Prior to sequencing, half of each RNA sample was subjected to TEX treatment to remove any processed RNA transcripts, of which 333,431 mapped to the HMEC-infected R. prowazekii genome and 256,084 reads mapped to AAE2-infected $R$. prowazekii genome. While initially appearing limited, the percentage of reads mapping to the bacterial genome correlated with previous next generation sequencing conducted by the laboratory (Schroeder et al., 2016). In addition, the eukaryotic-to-bacteria ratio obtained in the RNA-seq data strongly matched a finding that obligate intracellular bacterial genomes only constitute $2-5 \%$ of extracted total RNA despite efficient enrichment protocols. Further, only $5 \%$ of the extracted bacterial RNA is composed of mRNAs and sRNAs, with the remaining $95 \%$ mapping to rRNAs and tRNAs (Westermann et al., 2012).

An RNA-seq based search of the AAE2-infected transcriptome resulted in the identification of an additional 93 trans-acting (intergenic) and/or cis-acting (antisense) sRNAs at 24 h . Cis-acting composed $72 \%$ of the novel sRNAs. Generally speaking, sRNAs range from 50 to 500 bp in length, although there are exceptions, such as RNAIII encoded by Staphylococcus aureus at 514 bp (Boisset et al., 2007), a 581 bp anti-sense sRNA in Pseudomonas aeruginosa (Gómez-Lozano et al., 2014), and even a 1.2 kb antisense RNA encoded by Salmonella enterica, termed AmgR (Lee and Groisman, 2010). In fact, a recent examination of the sRNA profile in Burkholderia pseudomallei identified nine sRNAs over 500 bp , with the longest sRNA at 750 bp (Ooi et al., 2013). Rp_sR152, a cis-acting sRNA antisense to H375_8370, was identified as the smallest sRNA at 148 bp in length. Interestingly, 11 sRNAs ( $R p_{\text {_ }}$ sR79, Rp_sR92, Rp_sR93, Rp_sR94,
$R p_{-} \mathrm{sR} 114, R p_{-} \mathrm{sR} 120, R p_{-} \mathrm{sR} 128, R p_{-} \mathrm{sR} 130, R p_{-} \mathrm{sR} 135, R p_{-} \mathrm{sR} 143$, and $R p_{-} \mathrm{sR} 154$ ) were identified that ranged from 516 bp to 844 bp in length, 8 of which were classified as cis-acting. No strand bias was observed with $47 \%$ of sRNAs on the leading strand and $53 \%$ on the lagging strand. Further, no significant differences were observed based on the type of sRNA as $38 \%$ trans-acting and $50 \%$ cis-acting sRNAs were located on the leading strand. When examining the transcription direction of the trans-acting sRNAs, I compared the trans-acting sRNA and the upstream gene orientations. I found 6 of the 26 trans-acting sRNAs were encoded in the same orientation as their upstream genes ( $R p_{-}$sR71, $R p_{-}$sR74, $R p_{-}$sR75, $R p_{-}$sR129, $R p_{-}$sR139, and $R p_{-}$sR155). In regards to the context of the cis-acting sRNAs, 66 sRNAs were found to be directly anti-sense to only one ORF, as generally expected. Interestingly, however, $R p$ _sR124 overlaps the 3' end of H375_7030, a 3-polyprenyl-4-hydroxybenzoate carboxylase, and the 5' end of H375_7040, polyhydroxyalkanoic acid synthase, a space of approximately 50 bp .
qRT-PCR of Novel Differentially Expressed sRNAs
As previously reported, bacterial sRNA expression can differ between tissues and organ systems within an infected host as well as between genders of a species (Woolfit et al., 2015). It stands to reason that sRNA expression can vary depending on the host (human vs arthropod). Therefore, qRT-PCR was employed to assess the differences in expression for five novel sRNAs identified in the AAE2 model to that of the human model. Rickettsial sRNAs were assessed at 0.5 h , which served as the baseline, 3 h , and 24 h post-infection using sRNA specific primers and 16 S rRNA as the endogenous control (Table 3). Rp_sR76 and $R p$ _sR86 demonstrated significantly higher levels of
expression at 3 h when compared to their respective HMEC expression ( $\mathrm{p} \leq 0.001$ ), but failed to show any significance differences at 24 h (Figure 20 and Figure 22, respectively). Likewise, $R p_{-}$sR83 and $R p_{-}$sR159 also showed a significantly higher expression at 3 h and no significant differences at 24 h when compared to the respective HMEC expression levels ( $\mathrm{p} \leq 0.05$ ) (Figure 21 and Figure 23). Interestingly, there was no evidence of any significant differences between HMEC and AAE2 for $R p$ _sR63 (data not shown).

## DISCUSSION

It is now widely accepted that sRNAs are critical post-transcriptional regulators of bacterial gene expression (Pichon and Felden, 2008). The availability of bacterial genomes and more cost-effective methods for identification has allowed intensive studying and characterization of these noncoding transcripts. While initial screening methods for sRNAs included computational searches, today both bioinformatics and next generation sequencing are the primary methods of detecting small RNAs. However, identification still remains difficult due to the poor understanding of recurring nucleotide motifs (Pichon and Felden, 2008). Further, sRNAs are commonly expressed in specific environmental situations, such as iron limitation, cell stress, or nutrient starvation, making them difficult to detect globally (Updegrove et al., 2015). Further, searches for sRNA repertoires in intracellular bacteria, such as Rickettsia, remain particularly challenging due to low RNA yields (Khandige et al., 2015). The total number of encoded sRNAs within any bacterial species remains unknown, although it is assumed to be
around a few hundred as opposed to the few thousands as once thought (Gottesman and Storz, 2011).

Recently, R. prowazekii was shown, using next generation sequencing, to express a repertoire of both cis-acting and trans-acting sRNAs during infection of human microvascular endothelial cells (HMECs) (Schroeder et al., 2015; Schroeder et al., 2016). $R p$ _sR60 was selected due to its orientation in the genome and the number of mapped reads for an mRNA target computational search. Of the ten targets predicted using CopraRNA, only H375_0420, a known ORF to encode for UvrC, displayed a stable RNA complex during electrophoretic mobility shift assays, verifying its ability to interact with $R p$ _sR60. As trans-acting sRNAs frequently require a chaperone protein to facilitate binding of the target and the sRNA, of which there are currently none described with this function in Rickettsia, it must be noted that $R p_{-}$sR60 may still in fact bind with the other nine predicted targets (Östberg et al., 2004). Analysis of the predicted interaction showed that $R p$ _sR60 interacts with H375_0420 approximately 150 bp upstream of the start codon (genomic location 49914 and 49936) (Figure 24). UvrC is a dual excinuclease with the function to nick a damaged DNA strand at both $5^{\prime}$ and $3^{\prime}$ of the lesion site (Van Houten and Kad, 2014). After DNA damage, particularly UV damage that causes dimerization of specific nucleotides, the prokaryotic nucleotide excision repair system is initiated using one of two mechanisms. The first, known as the global genome repair, is initiated when a scanning $\mathrm{UvrA}_{2} \mathrm{UvrB}_{2}$ complex detects a distortion in the DNA strand and recruits UvrC. The other method, transcription-coupled repair (TCR), occurs during transcription when an RNA polymerase is blocked due to a lesion and is pushed off by Mfd, a TCR factor, which recruits $\operatorname{UvrA}_{2}$ to the site. At this point,
both systems proceed the same as UvrB guides UvrC to the lesion site for an incision that is then repaired by UvrD and RNA Polymerase I (Van Houten and Kad, 2014). To prevent tuberculosis disease progression caused by Mycobacterium tuberculosis, targeting UvrC has been suggested since it was reported to enhance pathogenicity (Parulekar et al., 2013). Further, the SOS response system induces $u v r A$ and $u v r B$, which indirectly induces $u v r C$ (Janion, 2008). Inactivation of either $\operatorname{UvrA}, \mathrm{UvrB}$, or $\operatorname{UvrC}$ would sabotage the nucleotide excision repair and TCR systems, opening the pathogen to deleterious DNA damage. A BLAST analysis reveals UvrA, UvrB, and UvrC to be highly conserved within the genus Rickettsia (data not shown).

To define the transcriptional catalogue for $R$. prowazekii during the arthropod stage of its life cycle, I used next generation sequencing as a global high throughput method to identify potential small RNAs. RNA sequencing improves the extent of the transcriptome and the accuracy for genome annotations (Sharma and Vogel, 2014). The search, based on the transcript orientation and genome location, the orientation of the upand down-stream genes, and the number of mapped reads, identified an additional 93 small RNAs expressed at 24 h post-infection that can be included with the already identified 70 sRNAs at 3 h and 24 h post-infection in HMECs. Five of these were selected for further characterization during host- and vector-pathogen interactions. Namely, $R p_{\text {_ }}$ sR76, $R p_{\text {_ }}$ sR83, $R p_{-}$sR86, and $R p_{-}$sR159 were found through qRT-PCR to have significantly higher levels of expression at 3 h post-infection in arthropod cells, suggesting that these sRNAs are niche-dependent. However, Rp_sR63 showed no significant differences in expression at 3 h or 24 h post-infection. These results were expected as the majority of sRNAs, especially trans-acting, are expressed under specific
environmental conditions (Woolfit et al., 2015). A recently identified sRNA in Wolbachia, termed ncrwmel02, was reportedly expressed at two and seven times higher levels in $W$. pipientis strain $w M e l$ and strain $w A u$, respectively, when compared to strains wMelCs and wMelPop. Further, ncrwmel02 in strain wMel was expressed at significantly higher levels in male Drosophila abdomens than female abdomens and was upregulated in testes compared to ovaries, suggesting tissue-specific and host sex-specific regulation (Woolfit et al., 2015). In the $\beta$-proteobacteria Burkholderia thailandensis, microarray analysis identified differential expression of 38 novel and 2 conserved sRNAs in response to 54 environmental conditions (Stubben et al., 2014). Likewise, a comprehensive transcriptomic analysis revealed differential expression of sRNAs encoded in Burkholderia pseudomallei under 82 environmental conditions (Ooi et al., 2013).

The majority of sRNAs described in Gram-negative bacteria have been classified as trans-acting and require the assistance of Hfq, a chaperone protein that facilitates the binding of the trans-acting sRNA and the mRNA target (Khandige et al., 2015). However, approximately $50 \%$ of bacteria do not encode for Hfq, including Rickettsia (Östberg et al., 2004; Dugar et al., 2013). Despite Rickettsia being a Gram-negative organism, approximately $25 \%$ of the identified sRNAs during AAE2 infection were categorized as trans-acting. This is contradictory to the current school of thought that Gram-negative organisms rely mostly on trans-acting sRNAs, while Gram-positive organisms rely primarily on cis-acting elements (Waters and Storz, 2009; Lasa et al., 2012). It should be noted that research direction and the previous lack of technologies to detect cis-acting sRNAs may skew these assumptions (Waters and Storz, 2009). In a
transcriptomic search of B. pseudomallei, approximately $10 \%$ of genes were found to have antisense transcription (Ooi et al., 2013). Likewise, a global analysis of Helicobacter pylori found at least one antisense transcription start site for nearly $46 \%$ of all ORFs and 28\% of tRNAs (Sharma et al., 2010). For Staphylococcus aureus, a Grampositive bacterium, antisense transcription was reported for nearly $50 \%$ of its ORFs (Lasa et al., 2011). Combining the AAE2 novel sRNAs and the previously identified sRNAs during HMEC infection, approximately $44 \%$ have been classified as trans-acting and $55 \%$ classified as cis-acting, bringing this ratio closer to other reported organisms.

Originating from the anti-sense of a coding gene, cis-acting sRNAs bind to their complementary coding transcript presumably resulting in post-transcriptional regulation. In this study, I identified 67 cis-acting sRNAs antisense to key ORFs encoding for structural proteins, transporters, membrane lipoproteins, and metabolic pathways. Namely, $R p_{-}$sR101 and $R p$ _sR102 are antisense to H375_5210, a VirB6 paralog, and H375_5270, the ATPase VirB4, respectively. The Outer Membrane Protein B, H375_8270, harbors the cis-acting $R p$ _sR148. Further, H375_1620, an ATP-dependent helicase encoding UvrD, is hypothetically regulated via $R p_{-}$sR77. Spanning multiple membranes, the Type IV Secretion System (T4SS) is a complex multi-protein transporter in many Gram-negative organisms. Acting similar to a hypodermic syringe, the system allows bacteria to inject a variety of virulence factors into eukaryotic hosts. For this reason, it has garnered significant attention in the field of rickettsiology (Gillespie et al., 2009; Gillespie et al., 2015). The T4SS is composed of at least 12 proteins, many of which have multiple paralogs with unknown individual functions. The VirB6 component comprises the T4SS inner channel and is essential to substrate transfer, making it the
most divergent of the VirB proteins with at least five paralogs (Gillespie et al., 2009). Likewise, the VirB4 protein is an integral part of the T4SS due to its ATPase activity, which provides the required energy for operation. Outer membrane protein $\mathrm{B}(\mathrm{OmpB})$, also known as sca5, is an abundant protein expressed on the surface of all species of Rickettsia. Its function, among a few other rickettsial outer membrane proteins, enables Rickettsia to bind to and invade the eukaryotic host cell. Antibodies directed against OmpB have been reported to protect mice from lethal doses of Rickettsia (Chan et al., 2009). As alluded to above in the nucleotide excision repair and the transcription coupled repair description, after UvrC incises $5^{\prime}$ and $3^{\prime}$ of a DNA lesion, UvrD excises the dimerized nucleotides for final repair by RNA Polymerase I (Van Houten and Kad, 2014).

Further investigation into rickettsial sRNAs will likely lead the identification of novel sRNAs in all species of Rickettsia. In addition, different environmental conditions that Rickettsia may experience, such as overwintering in ticks, will lend itself to the identification of additional sRNAs. Determination as to whether these sRNAs upregulate or down-regulate gene expression will shed new insights into rickettsial virulence. As the field of rickettsial pathogenesis evolves, a deeper understanding for rickettsial virulence factors and rickettsial transcriptomics will emerge. This study provided the very first glimpse of rickettsial small RNAs expressed in the arthropod vector and validated that H375_0420 interacts with Rp_sR60.


Figure 17. Rp_sR60 EMSA with CopraRNA predicted targets.
$R p_{-}$sR60 electrophoretic mobility shift assays (EMSA) were performed on selected CopraRNA predicted mRNA targets. $\left[\alpha-{ }^{32} \mathrm{P}\right]$ UTP labeled sRNA transcripts and unlabeled target transcripts were created through in vitro transcription and mixed at a $2: 1$ molar ratio followed by incubation at $30^{\circ} \mathrm{C}$ or $37^{\circ} \mathrm{C}$. Cold competitions were carried out using unlabeled sRNA transcripts mixed with unlabeled RNA targets chased by radiolabeled sRNA transcripts. A stable RNA complex was observed for H375_0420 for the "hot probe" lane only. No RNA complexes were observed in the cold competition lane, nor were any observed with the other predicted targets (e.g. H375_6080).


Figure 18. Rp_sR60 and H375_0420 expression using AAE2 model of infection.
Confluent monolayer of AAE2 cells were infected with Rickettsia prowazekii for $0.5 \mathrm{~h}, 3 \mathrm{~h}$, and 24 h . Total RNA was extracted using Trizol, DNaseI treated, and reverse transcribed for reverse transcriptase PCR ( $\mathrm{n}=3$ ). Rp_sR60 (blue) and H375_0420 (red) expression were normalized to 16 S rRNA with 30 minutes as baseline gene expression. Relative densities were measured using ImageJ. No significant difference was observed between baseline expression or between targets at a specific time point.


Figure 19. Rp_sR60 and H375_0420 expression using HMEC model of infection.
Confluent monolayer of HMECs were infected with Rickettsia prowazekii for $0.5 \mathrm{~h}, 3 \mathrm{~h}$, and 24 h . Total RNA was extracted using Trizol, DNaseI treated, and reverse transcribed for reverse transcriptase PCR (n=3). Rp_sR60 (blue) and H375_0420 (red) expression were normalized to 16S rRNA with 30 minutes as baseline gene expression. Relative densities were measured using ImageJ. A significant decrease was observed between 3 h and 24 h when compared to baseline. However, no significant difference was observed between targets at a specific time points.


Figure 20. $R p_{1}$ sR76 expression using HMEC and AAE2 models of infection.
Confluent monolayer of HMECs or AAE2 were infected with Rickettsia prowazekii for $0.5 \mathrm{~h}, 3 \mathrm{~h}$, and 24 h . Total RNA was extracted using Trizol, DNaseI treated, and reverse transcribed for RT-PCR ( $\mathrm{n}=3$ ). AAE2 (blue) and HMEC (red) expression were normalized to 16 S rRNA. A significantly higher level ( $\mathrm{p} \leq 0.001$ ) of expression was observed for AAE2 at 3 h when compared to HMEC. No significance was observed for 24 h .


Figure 21. Rp_sR83 expression using HMEC and AAE2 models of infection.
Confluent monolayer of HMECs or AAE2 were infected with Rickettsia prowazekii for $0.5 \mathrm{~h}, 3 \mathrm{~h}$, and 24 h . Total RNA was extracted using Trizol, DNaseI treated, and reverse transcribed for RT-PCR ( $\mathrm{n}=3$ ). AAE2 (blue) and HMEC (red) expression were normalized to 16 S rRNA. A significantly higher level ( $\mathrm{p} \leq 0.05$ ) of expression was observed for AAE2 at 3 h when compared to HMEC. No significant differences were observed at 24 h .


Figure 22. Rp_sR86 expression using HMEC and AAE2 models of infection.
Confluent monolayer of HMECs or AAE2 were infected with Rickettsia prowazekii for $0.5 \mathrm{~h}, 3 \mathrm{~h}$, and 24 h . Total RNA was extracted using Trizol, DNaseI treated, and reverse transcribed for RT-PCR ( $\mathrm{n}=3$ ). AAE2 (blue) and HMEC (red) expression were normalized to 16 S rRNA. A significantly higher level ( $\mathrm{p} \leq 0.05$ ) of expression was observed for AAE2 at 3 h when compared to HMEC. No significant differences were observed at 24 h .


Figure 23. $R p_{-}$sR159 expression using HMEC and AAE2 models of infection.
Confluent monolayer of HMECs or AAE2 were infected with Rickettsia prowazekii for $0.5 \mathrm{~h}, 3 \mathrm{~h}$, and 24 h . Total RNA was extracted using Trizol, DNaseI treated, and reverse transcribed for RT-PCR ( $\mathrm{n}=3$ ). AAE2 (blue) and HMEC (red) expression were normalized to 16 S rRNA. A significantly higher level ( $\mathrm{p} \leq 0.05$ ) of expression was observed for AAE2 at 3 h when compared to HMEC. No significant differences were observed for 24 h .


Figure 24. Rp_sR60 interaction with H375_0420.
$R p$ _sR60, which was validated previously to be expressed in human microvascular endothelial cells, binds with the mRNA target H375_0420 as predicted by CopraRNA. A stable RNA complex was observed in electrophoretic mobility shift assays (EMSAs).

## Chapter 6 Summary

Rickettsia are medically relevant obligately intracellular bacterial pathogens that cause severe disease. As the causative agents of epidemic typhus and Rocky Mountain spotted fever, these neglected pathogens have had significant impacts on society with mortality rates reaching upwards of $50 \%$. Clinical diagnosis of rickettsial infections is often difficult owing to common flu-like symptoms such as nausea, headache, fever and vomiting, which are invoked by several other bacterial and viral pathogens. For this reason, antibiotic therapies are often delayed or inappropriately administered. The central hypothesis of this work is that since genomic reduction, the main driving force shaping rickettsial genomes, results in maintaining only a minimal set of genes required for pathogenesis and the obligate intracellular lifestyle, the Rickettsia genome encodes sRNAs required for regulation of its transcriptome, and differentially expresses these sRNAs leading to altered virulence and adaptation depending on the host niche.

The first aim analyzed the potential for sRNAs in a number of Rickettsia species using a combination of bioinformatics and in vitro methods. Using the SIPHT graphics user input to analyze the intergenic regions of 16 rickettsial strains, which represented 13 species, I predicted a potential of 1,700 small RNAs to be present. Selecting $R$. prowazekii and $R$. typhi from the typhus group and $R$. rickettsii and $R$. conorii from the spotted fever group, each of the predicted sRNAs were further characterized using BPROM and TransTermHP for promoters and Rho-independent terminators, respectively. Each of the sRNAs analyzed had strong $\sigma 70$ promoters within 150 bp upstream, thus indicating the potential for transcriptional activity. Due to its medical
importance and potential for bioterrorism, R. prowazekii was chosen for experimental validation of the 26 sRNA candidates using next generation sequencing to analyze the bacterial transcriptome during infection of human microvascular endothelial cells (HMECs) at 3 h and 24 h post-infection. Six sRNA candidates were further verified using reverse transcriptase PCR. These results yielded clear evidence for sRNA expression during $R$. prowazekii infection of HMECs.

The second aim of this project identified novel $R$. prowazekii sRNAs and validated well-conserved bacterial sRNAs. Next generation sequencing of human microvascular endothelial cells infected with $R$. prowazekii exposed the expression of 35 trans- and 23 cis-acting sRNAs. Further validation through Northern blot or RT-PCR analyses confirmed the expression of two trans-acting ( $R p_{-}$sR17 and $R p_{-}$sR60) and one cis-acting ( $R p_{\text {_s }}$ sR47) novel sRNAs. In addition, Northern blot analysis verified the expression of four well-conserved sRNAs (RNaseP_bact_a, $\alpha$-tmRNA, 4.5S RNA, 6 S RNA). Selecting five novel rickettsial sRNAs and 6S RNA, the transcriptional start sites were determined using 5' RLM-RACE, supporting independent expression during $R$. prowazekii infection of HMECs. Analysis of sRNA nucleotide sequences using computational approaches was employed to characterize the secondary structures and potential mRNAs targets of these novel sRNAs. The presence and expression of novel $R$. prowazekii sRNAs during human infection were established and potential functions suggested for these non-coding RNA regulators.

The third aim detailed the identification of novel $R$. prowazekii sRNAs expressed during the arthropod stage of its life cycle. In addition, it characterized and validated a predicted mRNA target for the confirmed $R p \_$sR60 sRNA expressed during $R$.
prowazekii infection of human microvascular endothelial cells. Next generation sequencing of AAE2 cells infected with $R$. prowazekii demonstrated the expression of 93 novel sRNAs, which 67 and 26 were considered cis-acting and trans-acting, respectively. Five novel sRNAs were selected, and their expression was compared between the arthropod vector and the human host using qRT-PCR. The analysis demonstrated that four of the five sRNAs ( $R p_{-}$sR76, $R p_{-}$sR83, $R p \_$sR86, and $R p \_$sR159) were expressed at significantly higher levels at 3 h post-infection in AAE2 cells than HMECs. The fifth sRNA (Rp_sR63) showed no significant differences in expression at 3 h or 24 h postinfection. Previously, I validated the expression of $R p_{-}$sR60 during $R$. prowazekii infection of HMECs. A list of 53 potential mRNA target interactions was developed using the web-based CopraRNA. To validate $R p$ _sR60 interaction with the targets, I selected ten targets and analyzed their interactions using EMSA. From the list, only H375_0420 demonstrated a stable RNA complex at $30^{\circ} \mathrm{C}$ and $37^{\circ} \mathrm{C}$, thereby confirming the gene as a target for $R p_{-}$sR60. Interestingly, during HMEC infection, RT-PCR presented a significant decrease in expression for both H375_0420 and Rp_sR60 after 0.5 h post-infection; however, there were no significant differences in expression during AAE2 infection. Differential expression of novel sRNAs between the arthropod vector and the human host was established, alluding to different mechanisms of bacterial maintenance during the $R$. prowazekii life cycle.

This project has provided a new understanding for rickettsial virulence, a subject for which little is known despite over a century of study. Due to reductive evolution, rickettsial gene expression and regulation remain rather unclear. Small RNAs allow bacteria to fine tune gene expression without having to invest energy or resources into
protein-based pathways. Therefore, sRNA elucidation in Rickettsia may lead to exciting new directions in rickettsial genetics. As over 150 sRNAs were found to be expressed during R. prowazekii infection of human microvascular endothelial cells and Amblyomma tick cells, their targets and the effects these sRNAs have on their targets remain unknown. Confirming and characterizing these roles will lead to a more complete picture of the virulence mechanisms employed by Rickettsia prowazekii, a pathogen that has had serious impacts on war, famine, homeless populations, and natural disasters (Raoult et al., 2004; Bechah et al., 2008a).

Future studies should also investigate and define the sRNA expression profile between different environmental conditions and niches. Particularly for spotted fever rickettsiae, an eschar, cutaneous necrosis that resulted from severe injury to the blood vessels, may form at the bite site of an infected arthropod (Parola et al., 2005). An examination of $R$. conorii gene expression at an eschar site from infected human skin biopsies demonstrated that about $15 \%$ of $R$. conorii ORFs were differentially expressed (Renesto et al., 2008). Of the 211 transcripts found to have differential expression when compared to $R$. conorii grown in Vero cells, 180 genes demonstrated a 2-fold or greater down-regulation, most of which were genes involved in translation, cell wall synthesis, secretion, and energy production. Conversely, 31 genes were up-regulated by two-fold or greater. These genes mostly belonged to DNA repair and modification and osmotic stress response. Interestingly, of these genes, 21 were absent from typhus group rickettsiae (Renesto et al., 2008). Differences in gene expression were also noted in R. rickettsii grown at $37^{\circ} \mathrm{C}$ in Vero cells and $22^{\circ} \mathrm{C}$ in ISE6 cells (Ixodes scapularis [deer tick]). Using a 3-fold cut off, six rickettsial genes (3 up-regulated and 3 down-regulated) met or
exceeded this threshold, but are annotated as hypothetical proteins with no known homolog (Ellison et al., 2009). When subjected to significant changes in prolonged temperatures $\left(4^{\circ} \mathrm{C}\right.$ for 2 h vs $4^{\circ} \mathrm{C}$ for 24 h$)$, there were minimal differences. That is, the same gene expression profiles were found whether the $R$. rickettsii were at $4^{\circ} \mathrm{C}$ for 2 h or 24 h. However, when the gene expressions were compared between significant temperature changes with prolonged exposure $\left(34^{\circ} \mathrm{C}\right.$ vs $\left.4^{\circ} \mathrm{C}\right)$, there were 56 genes that met or exceeded the 3-fold up- or down-regulated threshold (Ellison et al., 2009). When shifting temperatures from $34^{\circ} \mathrm{C}$ to $42^{\circ} \mathrm{C}$ in order to heat shock $R$. prowazekii, there were 23 transcripts that met or exceeded at 2-fold threshold, which were all significantly increased. Of these, $57 \%$ were known heat-shock-inducible genes. There were no genes found that were reliably down-regulated during this study (Audia et al., 2008). As a result, I hypothesize that interesting sRNA expression profiles will be observed under these regimens, providing a more thorough explanation to the above changes in gene expression. Further, significant differences will be observed between R. prowazekii sRNA profiles during tick cell infections and body louse infections.

## Appendix Additional Files

## Additional File 1. sRNA Predictions Using SIPHT

Rickettsia africae SIPHT Predictions

|  | sRNAName | UpGENEnumber | Direction | Distance | sRNAstart | sRNAend | Direction | Length | Distance | DnGENEdir. | DnGENEnumber |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | RAF_ORF0138 | >>> | 29 | 152429 | 152558 | >>> | 129 | 567 | >>> | RAF_ORF0140 |
|  | 2 | RAF_ORF0416 | <<< | 1 | 443156 | 443213 | >>> | 57 | 49 | <<< | RAF ORF0417 |
|  | 3 | RAF_ORF0552 | <<< | 16 | 582515 | 582575 | >>> | 60 | 138 | >>> | RAF_ORF0553 |
|  | 4 | RAF_ORF0587 | >>> | 1 | 619636 | 619728 | >>> | 92 | 22 | >>> | RAF ORF0588 |
|  | 5 | RAF_ORF0701 | <<< | 82 | 734968 | 735431 | >>> | 463 | 152 | <<< | RAF_ORF0702 |
| 二 | 6 | RAF_ORF1101 | >>> | 314 | 1115365 | 1115524 | >>> | 159 | 179 | <<< | RAF_ORF1103 |
|  | 7 | RAF_ORF1231 | >>> | 2 | 1257748 | 1257853 | <<< | 105 | 0 | >>> | RAF_ORF1232 |
|  | 8 | RAF_ORF0810 | >>> | 110 | 850274 | 850394 | <<< | 120 | 13 | >>> | RAF_ORF0811 |
|  | 9 | RAF_ORF0753 | >>> | 120 | 788757 | 789283 | <<< | 526 | 633 | >>> | RAF_RNA22 |
|  | 10 | RAF_ORF0706 | >>> | 105 | 739648 | 739741 | <<< | 93 | 176 | <<< | RAF_ORF0707 |
|  | 11 | RAF_ORF0622 | <<< | 594 | 662308 | 662399 | <<< | 91 | 244 | >>> | RAF_ORF0623 |
|  | 12 | RAF_ORF0546 | >>> | 512 | 577297 | 577640 | <<< | 343 | 194 | <<< | RAF_ORF0547 |
|  | 13 | RAF_ORF0325 | <<< | 1016 | 356820 | 356894 | <<< | 74 | 2 | >>> | RAF_ORF0326 |
|  | 14 | RAF_ORF0213 | >>> | 122 | 231244 | 231392 | <<< | 148 | 268 | <<< | RAF_ORF0214 |
|  | 15 | RAF_ORF0029 | <<< | 325 | 32306 | 32395 | <<< | 89 | 10 | <<< | RAF_ORF0030 |
|  | 16 | RAF_ORF0042 | >>> | 55 | 41898 | 42178 | <<< | 280 | 167 | >>> | RAF_ORF0043 |
|  | 17 | RAF_ORF0062 | >>> | 352 | 62195 | 62258 | >>> | 63 | 204 | >>> | RAF ORF0063 |
|  | 18 | RAF_ORF0067 | >>> | 34 | 67255 | 67338 | >>> | 83 | 65 | >>> | RAF_ORF0068 |
|  | 19 | RAF_ORF0086 | >>> | 445 | 85846 | 85976 | >>> | 130 | -10 | <<< | RAF_ORF0087 |


| $\stackrel{\rightharpoonup}{\infty}$ | 20 | RAF_ORF0093 | <<< | 2 | 93049 | 93320 | <<< | 271 | 78 | <<< | RAF_ORF0094 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 21 | RAF_ORF0098 | >>> | 19 | 97834 | 98058 | <<< | 224 | 0 | <<< | RAF_ORF0099 |
|  | 22 | RAF_ORF0104 | >>> | 76 | 104441 | 104968 | <<< | 527 | 297 | <<< | RAF_ORF0105 |
|  | 23 | RAF_ORF0107 | >>> | 69 | 113887 | 113952 | >>> | 65 | 61 | >>> | RAF_ORF0108 |
|  | 24 | RAF_ORF0109 | >> | 63 | 115812 | 116214 | >>> | 402 | 245 | <<< | RAF_ORF0110 |
|  | 25 | RAF_ORF0121 | >>> | 222 | 127525 | 127879 | >>> | 354 | -13 | <<< | RAF_ORF0122 |
|  | 26 | RAF_ORF0129 | >>> | 1 | 135204 | 135326 | >>> | 122 | -7 | >>> | RAF_ORF0130 |
|  | 27 | RAF_ORF0155 | >> | 2 | 167327 | 167463 | >>> | 136 | 37 | >> | RAF_ORF0156 |
|  | 28 | RAF_ORF0160 | >>> | 1 | 172040 | 172180 | $\ggg$ | 140 | 18 | >>> | RAF_ORF0161 |
|  | 29 | RAF_ORF0165 | >>> | 1 | 176424 | 176594 | >>> | 170 | 99 | >> | RAF_ORF0166 |
|  | 30 | RAF_ORF0169 | >>> | 675 | 179729 | 179783 | >>> | 54 | 214 | >>> | RAF_ORF0170 |
|  | 31 | RAF_ORF0170 | >>> | 16 | 184136 | 184195 | >>> | 59 | 181 | >>> | RAF_ORF0171 |
|  | 32 | RAF_ORF0171 | >>> | 340 | 188836 | 188901 | <<< | 65 | 0 | <<< | RAF_ORF0172 |
|  | 33 | RAF_ORF0171 | >> | 1 | 188497 | 188896 | >>> | 399 | 5 | <<< | RAF_ORF0172 |
|  | 34 | RAF_ORF0176 | >>> | 141 | 195319 | 195359 | <<< | 40 | 95 | <<< | RAF_ORF0177 |
|  | 35 | RAF_ORF0213 | >> | 297 | 231419 | 231475 | <<< | 56 | 185 | <<< | RAF_ORF0214 |
|  | 36 | RAF_ORF0213 | >>> | 148 | 231270 | 231459 | >>> | 189 | 201 | <<< | RAF_ORF0214 |
|  | 37 | RAF_ORF0218 | <<< | 57 | 235814 | 235920 | <<< | 106 | 0 | <<< | RAF_ORF0219 |
|  | 38 | RAF_ORF0218 | <<< | 78 | 235835 | 235920 | <<< | 85 | 0 | <<< | RAF_ORF0219 |
|  | 39 | RAF_ORF0220 | <<< | 40 | 240372 | 240492 | <<< | 120 | 15 | <<< | RAF_ORF0221 |
|  | 40 | RAF_ORF0226 | >>> | 862 | 249000 | 249051 | <<< | 51 | 245 | <<< | RAF_ORF0227 |
|  | 41 | RAF_ORF0226 | >>> | 1039 | 249177 | 249295 | <<< | 118 | 1 | <<< | RAF_ORF0227 |
|  | 42 | RAF_ORF0230 | >> | 112 | 252068 | 252113 | >>> | 45 | 317 | >> | RAF_ORF0231 |
|  | 43 | RAF_ORF0232 | >>> | 1 | 253871 | 253956 | >>> | 85 | 256 | <<< | RAF_ORF0233 |
|  | 44 | RAF_ORF0232 | >>> | 24 | 253894 | 254212 | <<< | 318 | 0 | <<< | RAF_ORF0233 |
|  | 45 | RAF_ORF0232 | >>> | 151 | 254021 | 254212 | <<< | 191 | 0 | <<< | RAF_ORF0233 |


| $\stackrel{\rightharpoonup}{\sigma}$ | 46 | RAF_ORF0232 | >>> | 1 | 253871 | 254079 | >>> | 208 | 133 | <<< | RAF_ORF0233 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 47 | RAF_ORF0234 | >>> | 115 | 255867 | 255918 | >>> | 51 | 131 | <<< | RAF_ORF0235 |
|  | 48 | RAF_ORF0234 | >>> | 108 | 255860 | 255962 | <<< | 102 | 87 | <<< | RAF_ORF0235 |
|  | 49 | RAF_ORF0262 | <<< | 129 | 289639 | 289723 | <<< | 84 | 0 | <<< | RAF_ORF0263 |
|  | 50 | RAF_ORF0276 | >>> | 148 | 304650 | 304815 | <<< | 165 | 250 | >>> | RAF_ORF0277 |
|  | 51 | RAF_ORF0279 | <<< | 315 | 307664 | 307751 | <<< | 87 | 40 | <<< | RAF_ORF0281 |
|  | 52 | RAF_ORF0279 | <<< | 25 | 307374 | 307729 | >>> | 355 | 62 | <<< | RAF_ORF0281 |
|  | 53 | RAF_ORF0309 | >>> | 8 | 336644 | 336755 | >>> | 111 | 123 | >>> | RAF_ORF0310 |
|  | 54 | RAF_ORF0309 | >>> | 8 | 336644 | 336797 | >>> | 153 | 81 | >>> | RAF_ORF0310 |
|  | 55 | RAF_ORF0312 | >>> | 25 | 340033 | 340149 | <<< | 116 | 0 | <<< | RAF_ORF0313 |
|  | 56 | RAF_ORF0318 | >>> | 13 | 347222 | 347346 | >>> | 124 | 107 | >> | RAF_ORF0319 |
|  | 57 | RAF_ORF0326 | >>> | 19 | 357471 | 357603 | >>> | 132 | 29 | >>> | RAF_ORF0327 |
|  | 58 | RAF_ORF0326 | >>> | 19 | 357471 | 357625 | >>> | 154 | 7 | >> | RAF_ORF0327 |
|  | 59 | RAF_ORF0333 | >> | 45 | 363633 | 363753 | >> | 120 | 324 | >> | RAF_ORF0334 |
|  | 60 | RAF_ORF0337 | >>> | 635 | 366763 | 366840 | >>> | 77 | 145 | <<< | RAF_ORF0338 |
|  | 61 | RAF_ORF0352 | <<< | 82 | 380465 | 380538 | <<< | 73 | 22 | <<< | RAF_ORF0353 |
|  | 62 | RAF_ORF0386 | >>> | 113 | 415355 | 415478 | >>> | 123 | 195 | >>> | RAF_ORF0387 |
|  | 63 | RAF_ORF0388 | >>> | 4 | 416157 | 416237 | >>> | 80 | 314 | <<< | RAF_ORF0389 |
|  | 64 | RAF_ORF0388 | >>> | 0 | 416153 | 416551 | <<< | 398 | 0 | <<< | RAF_ORF0389 |
|  | 65 | RAF_ORF0400 | <<< | 81 | 429567 | 429654 | <<< | 87 | 18 | <<< | RAF_ORF0401 |
|  | 66 | RAF_ORF0415 | >>> | 245 | 441699 | 441808 | <<< | 109 | 2 | <<< | RAF_ORF0416 |
|  | 67 | RAF_ORF0415 | >>> | 188 | 441642 | 441757 | >> | 115 | 53 | <<< | RAF_ORF0416 |
|  | 68 | RAF_ORF0423 | >> | 36 | 451086 | 451227 | >> | 141 | 79 | >> | RAF_ORF0424 |
|  | 69 | RAF_ORF0434 | >>> | 2291 | 465052 | 465261 | <<< | 209 | 0 | <<< | RAF_ORF0435 |
|  | 70 | RAF_ORF0461 | >>> | 6 | 488452 | 488571 | >> | 119 | 60 | <<< | RAF_ORF0462 |
|  | 71 | RAF_ORF0461 | >>> | 6 | 488452 | 488553 | >>> | 101 | 78 | <<< | RAF_ORF0462 |


| $\stackrel{\rightharpoonup}{\sim}$ | 72 | RAF_ORF0464 | >>> | 154 | 492656 | 492712 | >>> | 56 | 240 | >> | RAF_ORF0465 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 73 | RAF_ORF0473 | >>> | 1 | 500577 | 500675 | >>> | 98 | 39 | >>> | RAF_ORF0474 |
|  | 74 | RAF_ORF0482 | >>> | 678 | 511620 | 511769 | >>> | 149 | 302 | <<< | RAF_ORF0483 |
|  | 75 | RAF_ORF0500 | <<< | 89 | 531247 | 531383 | <<< | 136 | 6 | <<< | RAF_ORF0501 |
|  | 76 | RAF_ORF0508 | >>> | 1 | 537538 | 537676 | >>> | 138 | 77 | >>> | RAF_ORF0509 |
|  | 77 | RAF_ORF0519 | >>> | 11 | 551424 | 551506 | >>> | 82 | 99 | >>> | RAF_ORF0520 |
|  | 78 | RAF_ORF0519 | >>> | 11 | 551424 | 551550 | >>> | 126 | 55 | >>> | RAF_ORF0520 |
|  | 79 | RAF_ORF0525 | >>> | 751 | 558475 | 558576 | >>> | 101 | 114 | <<< | RAF_ORF0526 |
|  | 80 | RAF_ORF0525 | >>> | 788 | 558512 | 558611 | <<< | 99 | 79 | <<< | RAF_ORF0526 |
|  | 81 | RAF_ORF0525 | >>> | 751 | 558475 | 558556 | >>> | 81 | 134 | <<< | RAF_ORF0526 |
|  | 82 | RAF_ORF0544 | >>> | 199 | 573484 | 573574 | >>> | 90 | 70 | >>> | RAF_ORF0545 |
|  | 83 | RAF_ORF0546 | >>> | 849 | 577634 | 577697 | <<< | 63 | 137 | <<< | RAF_ORF0547 |
|  | 84 | RAF_ORF0550 | <<< | 31 | 580290 | 580403 | <<< | 113 | 0 | <<< | RAF_ORF0551 |
|  | 85 | RAF_ORF0555 | >>> | 1 | 585113 | 585241 | >>> | 128 | 2 | >>> | RAF_ORF0556 |
|  | 86 | RAF_ORF0561 | <<< | 67 | 589835 | 589921 | <<< | 86 | 0 | <<< | RAF_ORF0563 |
|  | 87 | RAF_ORF0570 | >>> | 513 | 596829 | 596875 | <<< | 46 | 37 | <<< | RAF_ORF0571 |
|  | 88 | RAF_ORF0570 | >>> | 471 | 596787 | 596899 | >> | 112 | 13 | <<< | RAF_ORF0571 |
|  | 89 | RAF_ORF0575 | >>> | 3 | 602662 | 602826 | >> | 164 | 33 | >> | RAF_ORF0576 |
|  | 90 | RAF_ORF0578 | >>> | 23 | 606414 | 606459 | >>> | 45 | 426 | >>> | RAF_ORF0579 |
|  | 91 | RAF_ORF0582 | >>> | 1 | 612149 | 612286 | >>> | 137 | 37 | <<< | RAF_ORF0583 |
|  | 92 | RAF_ORF0584 | >>> | 4 | 615782 | 616090 | >>> | 308 | 1192 | >>> | RAF_ORF0585 |
|  | 93 | RAF_ORF0584 | >>> | 4 | 615782 | 616060 | >>> | 278 | 1222 | >> | RAF_ORF0585 |
|  | 94 | RAF_ORF0587 | >>> | 1 | 619636 | 619751 | >> | 115 | -1 | >> | RAF_ORF0588 |
|  | 95 | RAF_ORF0603 | <<< | 45 | 638738 | 638862 | <<< | 124 | 0 | <<< | RAF_ORF0604 |
|  | 96 | RAF_ORF0612 | >>> | 1 | 650817 | 650913 | >>> | 96 | 20 | <<< | RAF_ORF0613 |
|  | 97 | RAF_ORF0621 | <<< | 91 | 658915 | 659066 | <<< | 151 | 10 | <<< | RAF_ORF0622 |


| $\stackrel{N}{N}$ | 98 | RAF_ORF0625 | >>> | 119 | 664914 | 664950 | >>> | 36 | 45 | >>> | RAF_ORF0626 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 99 | RAF_ORF0640 | >>> | 2 | 674913 | 675039 | >>> | 126 | 7 | <<< | RAF_ORF0641 |
|  | 100 | RAF_ORF0692 | $\ggg$ | 97 | 724559 | 724614 | <<< | 55 | 65 | <<< | RAF_ORF0693 |
|  | 101 | RAF_ORF0706 | >>> | 45 | 739588 | 739673 | <<< | 85 | 244 | <<< | RAF_ORF0707 |
|  | 102 | RAF_ORF0707 | <<< | 71 | 740532 | 740718 | <<< | 186 | 10 | <<< | RAF_ORF0708 |
|  | 103 | RAF_ORF0718 | >>> | 96 | 750272 | 750428 | <<< | 156 | 0 | >>> | RAF_RNA21 |
|  | 104 | RAF_ORF0718 | >>> | 1 | 750177 | 750332 | >>> | 155 | 96 | >>> | RAF_RNA21 |
|  | 105 | RAF_ORF0733 | >>> | 153 | 765520 | 765627 | >>> | 107 | 105 | >>> | RAF_ORF0734 |
|  | 106 | RAF_ORF0734 | $\ggg$ | 19 | 767237 | 767350 | >>> | 113 | 707 | <<< | RAF_ORF0735 |
|  | 107 | RAF_ORF0734 | >>> | 109 | 767327 | 767378 | >>> | 51 | 679 | <<< | RAF_ORF0735 |
|  | 108 | RAF_ORF0740 | >>> | 1 | 775232 | 775300 | >>> | 68 | 50 | >>> | RAF_ORF0741 |
|  | 109 | RAF_ORF0749 | <<< | 54 | 786395 | 786498 | <<< | 103 | 0 | <<< | RAF_ORF0750 |
|  | 110 | RAF_ORF0753 | >>> | 20 | 788657 | 788813 | >>> | 156 | 1103 | >>> | RAF_RNA22 |
|  | 111 | RAF_ORF0775 | <<< | 277 | 811665 | 811745 | <<< | 80 | 317 | <<< | RAF_ORF0776 |
|  | 112 | RAF_ORF0789 | <<< | 720 | 828111 | 828162 | <<< | 51 | 176 | <<< | RAF_ORF0790 |
|  | 113 | RAF_ORF0826 | <<< | 65 | 865438 | 865560 | <<< | 122 | 20 | <<< | RAF_ORF0827 |
|  | 114 | RAF_ORF0849 | >>> | 166 | 885817 | 886050 | >>> | 233 | 108 | <<< | RAF_ORF0850 |
|  | 115 | RAF_ORF0850 | <<< | 21 | 888121 | 888564 | <<< | 443 | 1129 | <<< | RAF_ORF0851 |
|  | 116 | RAF_ORF0850 | <<< | 220 | 888320 | 888497 | <<< | 177 | 1196 | <<< | RAF_ORF0851 |
|  | 117 | RAF_ORF0860 | >>> | 819 | 904832 | 905043 | >>> | 211 | 30 | >>> | RAF_ORF0861 |
|  | 118 | RAF_ORF0865 | >>> | 9 | 913242 | 913308 | >>> | 66 | 190 | <<< | RAF_ORF0866 |
|  | 119 | RAF_ORF0865 | >>> | 9 | 913242 | 913327 | >> | 85 | 171 | <<< | RAF_ORF0866 |
|  | 120 | RAF_ORF0868 | >>> | 12 | 915483 | 915590 | >>> | 107 | 178 | >>> | RAF_ORF0869 |
|  | 121 | RAF_ORF0868 | >>> | 12 | 915483 | 915743 | >> | 260 | 25 | >>> | RAF_ORF0869 |
|  | 122 | RAF_ORF0870 | >>> | 40 | 917884 | 917952 | >>> | 68 | 849 | <<< | RAF_ORF0871 |
|  | 123 | RAF_ORF0870 | >>> | 353 | 918197 | 918454 | <<< | 257 | 347 | <<< | RAF_ORF0871 |



|  | 150 | RAF_ORF1173 | >>> | 6 | 1198512 | 1198879 | >>> | 367 | 13 | <<< | RAF_ORF1174 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 151 | RAF_ORF1173 | >>> | 321 | 1198827 | 1198892 | <<< | 65 | 0 | <<< | RAF_ORF1174 |
|  | 152 | RAF_ORF1193 | >>> | 54 | 1217345 | 1217472 | >>> | 127 | 1472 | >>> | RAF_ORF1194 |
|  | 153 | RAF_ORF1208 | <<< | 137 | 1235008 | 1235084 | <<< | 76 | 1 | <<< | RAF_ORF1211 |
|  | 154 | RAF_ORF1192 | >>> | 137 | 1216005 | 1216045 | <<< | 40 | 0 | >>> | RAF_ORF1193 |
|  | 155 | RAF_ORF0118 | >>> | 35 | 125254 | 125349 | <<< | 95 | 14 | >>> | RAF_ORF0119 |
|  | 156 | RAF_ORF0129 | >>> | 1 | 135204 | 135296 | >>> | 92 | 23 | >>> | RAF_ORF0130 |
|  | 157 | RAF_ORF0177 | <<< | 245 | 197815 | 197950 | <<< | 135 | 2 | <<< | RAF_ORF0178 |
|  | 158 | RAF_ORF0206 | >>> | 212 | 226782 | 226832 | >>> | 50 | 100 | <<< | RAF_ORF0207 |
|  | 159 | RAF_ORF0226 | >>> | 221 | 248359 | 248554 | <<< | 195 | 742 | <<< | RAF_ORF0227 |
|  | 160 | RAF_ORF0333 | >>> | 45 | 363633 | 363716 | >>> | 83 | 361 | >>> | RAF_ORF0334 |
|  | 161 | RAF_ORF0489 | >>> | 87 | 519562 | 519605 | <<< | 43 | 33 | >>> | RAF_ORF0490 |
| $\omega$ | 162 | RAF_RNA17 | >>> | -38 | 699363 | 699616 | <<< | 253 | 484 | >>> | RAF_ORF0665 |
|  | 163 | RAF_ORF0746 | <<< | 16 | 783642 | 783748 | <<< | 106 | 998 | <<< | RAF_ORF0747 |

Rickettsia akari SIPHT Predictions

|  | sRNAName | UpGENEnumber | Direction | Distance | sRNAstart | sRNAend | Direction | Length | Distance | DnGENEdir. | DnGENEnumber |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | A1C_00730 | >>> | 10 | 131924 | 131980 | >>> | 56 | 142 | >>> | A1C_00735 |
|  | 2 | A1C_00760 | >>> | 120 | 136143 | 136676 | >>> | 533 | 233 | >>> | A1C 00780 |
|  | 3 | A1C 01315 | <<< | 1 | 248816 | 249066 | >>> | 250 | 15 | <<< | A1C 01320 |
|  | 5 | A1C_03440 | >>> | 1 | 621612 | 621786 | >>> | 174 | 22 | >>> | A1C 03445 |
|  | 6 | A1C 05510 | >>> | 105 | 977703 | 977924 | >>> | 221 | -14 | >>> | A1C 05515 |
|  | 7 | A1C_05515 | >>> | 105 | 979675 | 979972 | >>> | 297 | 205 | <<< | A1C_05530 |
|  | 9 | A1C_05945 | >>> | 19 | 1056399 | 1056583 | >>> | 184 | 1243 | >>> | A1C 05960 |
|  | 10 | A1C_06710 | <<< | 4 | 1207113 | 1207187 | >>> | 74 | 154 | <<< | A1C_06715 |
|  | 11 | A1C 06865 | <<< | 739 | 1227903 | 1228122 | <<< | 219 | 59 | <<< | A1C 06870 |
|  | 12 | A1C_06125 | >>> | 146 | 1101212 | 1101245 | <<< | 33 | 68 | >>> | A1C_06130 |
|  | 13 | A1C_05620 | >>> | 314 | 999762 | 999925 | <<< | 163 | 23 | <<< | A1C_05625 |
|  | 14 | A1C_04715 | <<< | 292 | 853273 | 853541 | <<< | 268 | 471 | <<< | A1C_04730 |
| $\stackrel{\sim}{\sim}$ | 15 | A1C 04440 | <<< | 963 | 802244 | 802295 | <<< | 51 | 6 | >>> | A1C 04455 |
|  | 16 | A1C_03640 | <<< | 491 | 661673 | 661761 | <<< | 88 | 266 | >>> | A1C_03645 |
|  | 17 | A1C_02080 | >>> | 58 | 391653 | 391790 | <<< | 137 | 1585 | >>> | A1C_02105 |
|  | 18 | A1C_01640 | >>> | 119 | 308494 | 308593 | <<< | 99 | 168 | >>> | A1C_01645 |
|  | 19 | A1C_00710 | <<< | 91 | 129928 | 130176 | <<< | 248 | 0 | >>> | A1C_00715 |
|  | 20 | A1C_00420 | <<< | 211 | 67071 | 67115 | <<< | 44 | 253 | >>> | A1C_00425 |
|  | 21 | A1C_00185 | >>> | 57 | 26255 | 26318 | <<< | 63 | 21 | >>> | A1C_00190 |
|  | 22 | A1C_00115 | >>> | 428 | 18473 | 18678 | <<< | 205 | 31 | <<< | A1C_00120 |
|  | 23 | A1C 00115 | >>> | 478 | 18523 | 18655 | >>> | 132 | 54 | <<< | A1C 00120 |
|  | 24 | A1C_00115 | >>> | 478 | 18523 | 18625 | >>> | 102 | 84 | <<< | A1C_00120 |
|  | 25 | A1C_00155 | <<< | 365 | 21995 | 22066 | <<< | 71 | 48 | <<< | A1C_00160 |
|  | 26 | A1C_00320 | <<< | 208 | 49724 | 49798 | <<< | 74 | 203 | >>> | A1C_t06889 |
|  | 27 | A1C_00365 | >>> | 1 | 57409 | 57545 | >>> | 136 | 439 | >>> | A1C_00370 |
|  | 28 | A1C_00430 | >>> | 53 | 67987 | 68125 | >>> | 138 | 246 | <<< | A1C_00435 |
|  | 29 | A1C_00430 | >>> | 53 | 67987 | 68107 | >>> | 120 | 264 | <<< | A1C_00435 |
|  | 30 | A1C_00530 | <<< | 36 | 88654 | 88896 | <<< | 242 | 253 | <<< | A1C_00535 |
|  | 31 | A1C_00530 | <<< | 291 | 88909 | 89147 | <<< | 238 | 2 | <<< | A1C_00535 |


|  | 32 | A1C_00530 | <<< | 383 | 89001 | 89147 | <<< | 146 | 2 | <<< | A1C_00535 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 33 | A1C_00605 | <<< | 74 | 106739 | 107060 | <<< | 321 | 85 | <<< | A1C_00610 |
|  | 34 | A1C_00705 | <<< | 173 | 128504 | 128604 | <<< | 100 | 38 | <<< | A1C_00710 |
|  | 35 | A1C_00730 | >>> | 10 | 131924 | 132001 | >>> | 77 | 121 | >>> | A1C_00735 |
|  | 36 | A1C_00780 | >>> | 15 | 137213 | 137466 | >>> | 253 | 29 | >>> | A1C_00785 |
|  | 37 | A1C_01005 | >>> | 134 | 185054 | 185216 | >>> | 162 | 587 | >>> | A1C_01010 |
|  | 38 | A1C_01015 | >>> | 300 | 194663 | 194792 | >>> | 129 | -4 | <<< | A1C_01020 |
|  | 39 | A1C_01315 | <<< | 149 | 248964 | 249051 | <<< | 87 | 30 | <<< | A1C_01320 |
|  | 40 | A1C_01335 | >>> | 143 | 254567 | 254639 | >>> | 72 | 121 | >>> | A1C_01340 |
|  | 41 | A1C_01340 | >>> | 132 | 255385 | 255507 | <<< | 122 | 0 | <<< | A1C_01345 |
|  | 42 | A1C_01375 | >>> | 26 | 260290 | 260560 | <<< | 270 | 1 | <<< | A1C_01380 |
|  | 44 | A1C_01450 | >>> | 1 | 269536 | 269649 | >>> | 113 | 59 | <<< | A1C_01455 |
|  | 45 | A1C_01525 | >>> | 233 | 283481 | 283553 | >>> | 72 | 229 | <<< | A1C_01530 |
|  | 46 | A1C_01605 | >>> | 46 | 298516 | 298557 | >>> | 41 | 121 | >>> | A1C_01610 |
| N | 47 | A1C_01815 | >>> | 5 | 339807 | 339917 | >>> | 110 | 32 | >>> | A1C_01820 |
|  | 48 | A1C_01815 | >>> | 5 | 339807 | 339893 | >>> | 86 | 56 | >>> | A1C_01820 |
|  | 49 | A1C_01965 | >>> | 702 | 368575 | 368809 | <<< | 234 | 85 | <<< | A1C_01970 |
|  | 50 | A1C_01965 | >>> | 689 | 368562 | 368627 | >>> | 65 | 267 | $\lll$ | A1C_01970 |
|  | 51 | A1C_02470 | >>> | 20 | 451678 | 451838 | >>> | 160 | 33 | >>> | A1C_02475 |
|  | 52 | A1C_02555 | <<< | 288 | 465579 | 465720 | <<< | 141 | 39 | <<< | A1C_02560 |
|  | 53 | A1C_02595 | >>> | 1 | 470159 | 470226 | >>> | 67 | 218 | $\lll$ | A1C_02600 |
|  | 54 | A1C_02630 | >>> | 125 | 477844 | 477994 | >>> | 150 | 119 | <<< | A1C_02635 |
|  | 55 | A1C_02795 | >>> | 3 | 508289 | 508450 | >>> | 161 | 333 | <<< | A1C_02800 |
|  | 56 | A1C_02795 | >>> | 3 | 508289 | 508420 | >>> | 131 | 363 | <<< | A1C_02800 |
|  | 57 | A1C_02825 | <<< | 1040 | 513630 | 513721 | <<< | 91 | 108 | <<< | A1C_02830 |
|  | 58 | A1C_02935 | <<< | 142 | 531589 | 531855 | <<< | 266 | 0 | <<< | A1C_02940 |
|  | 59 | A1C_03035 | >>> | 95 | 552768 | 552890 | >>> | 122 | 96 | >>> | A1C_03040 |
|  | 60 | A1C_03035 | >>> | 95 | 552768 | 552872 | >>> | 104 | 114 | >>> | A1C_03040 |
|  | 61 | A1C_03065 | >>> | 5 | 558790 | 558892 | >>> | 102 | 208 | >>> | A1C_03070 |
|  | 62 | A1C_03070 | >>> | 16 | 559330 | 559405 | >>> | 75 | 2168 | <<< | A1C_03095 |
|  | 63 | A1C_03070 | >>> | 1916 | 561230 | 561573 | <<< | 343 | 0 | <<< | A1C_03095 |


|  | 64 | A1C_03180 | <<< | 126 | 579805 | 579908 | <<< | 103 | 2 | <<< | A1C_03185 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 65 | A1C_03210 | >>> | 189 | 585613 | 585709 | <<< | 96 | 91 | <<< | A1C_03215 |
|  | 66 | A1C_03365 | >>> | 78 | 606913 | 607053 | >>> | 140 | 78 | >>> | A1C_03370 |
|  | 67 | A1C_03365 | >>> | 78 | 606913 | 607026 | >>> | 113 | 105 | >>> | A1C_03370 |
|  | 68 | A1C_03420 | <<< | 91 | 618989 | 619321 | <<< | 332 | 1071 | <<< | A1C_03435 |
|  | 69 | A1C_03440 | >>> | 1 | 621612 | 621815 | >>> | 203 | -7 | >>> | A1C_03445 |
|  | 70 | A1C_03610 | >>> | 42 | 654084 | 654206 | >>> | 122 | 254 | >>> | A1C_03615 |
|  | 71 | A1C_03875 | >>> | 127 | 696545 | 696597 | <<< | 52 | 99 | <<< | A1C_03880 |
|  | 72 | A1C_04005 | >>> | 16 | 720009 | 720122 | >>> | 113 | 56 | >>> | A1C_04010 |
|  | 73 | A1C_t06917 | >>> | 116 | 754294 | 754349 | >>> | 55 | 133 | >>> | A1C_04190 |
|  | 74 | A1C_04240 | <<< | 135 | 762017 | 762110 | <<< | 93 | 32 | <<< | A1C_04245 |
|  | 75 | A1C_04270 | >>> | 70 | 766086 | 766238 | >>> | 152 | 435 | <<< | A1C_04275 |
|  | 76 | A1C_04365 | >>> | 25 | 786350 | 786477 | >>> | 127 | 102 | <<< | A1C_04370 |
|  | 77 | A1C_04365 | >>> | 25 | 786350 | 786459 | >>> | 109 | 120 | <<< | A1C_04370 |
| $\stackrel{N}{N}$ | 78 | A1C_04490 | >>> | 9 | 809378 | 809538 | >>> | 160 | 86 | <<< | A1C_04495 |
|  | 79 | A1C_04505 | <<< | 102 | 811921 | 811988 | <<< | 67 | 169 | <<< | A1C_04510 |
|  | 80 | A1C_04520 | >>> | 178 | 817885 | 817970 | <<< | 85 | 101 | <<< | A1C_04525 |
|  | 81 | A1C_04575 | >>> | 1 | 824967 | 825071 | >>> | 104 | 21 | >>> | A1C_04580 |
|  | 82 | A1C_04580 | >>> | 15 | 825630 | 825717 | >>> | 87 | 129 | >>> | A1C_04585 |
|  | 83 | A1C_04595 | >>> | 695 | 829469 | 829546 | <<< | 77 | 80 | <<< | A1C_04600 |
|  | 84 | A1C_04745 | <<< | 127 | 856379 | 856483 | <<< | 104 | 0 | <<< | A1C_04750 |
|  | 85 | A1C_04780 | >>> | 48 | 860015 | 860105 | >>> | 90 | 308 | <<< | A1C_04785 |
|  | 86 | A1C_04815 | <<< | 323 | 867017 | 867114 | <<< | 97 | 8 | <<< | A1C_04820 |
|  | 87 | A1C_04900 | >>> | 127 | 887289 | 887389 | <<< | 100 | 450 | $\lll$ | A1C_04905 |
|  | 88 | A1C_05300 | >>> | 97 | 944498 | 944586 | >>> | 88 | 397 | <<< | A1C_05305 |
|  | 89 | A1C_05300 | >>> | 174 | 944575 | 944791 | <<< | 216 | 192 | <<< | A1C_05305 |
|  | 90 | A1C_05300 | >>> | 318 | 944719 | 944791 | <<< | 72 | 192 | $\lll$ | A1C_05305 |
|  | 91 | A1C_05300 | >>> | 356 | 944757 | 944791 | <<< | 34 | 192 | <<< | A1C_05305 |
|  | 92 | A1C_05300 | >>> | 486 | 944887 | 944966 | <<< | 79 | 17 | <<< | A1C_05305 |
|  | 93 | A1C_05300 | >>> | 24 | 944425 | 944927 | >>> | 502 | 56 | <<< | A1C_05305 |
|  | 94 | A1C_05475 | >>> | 9 | 969868 | 969979 | >>> | 111 | 207 | >>> | A1C_05480 |



## Rickettsia bellii strain OSU

| $\underset{\infty}{N}$ | sRNAName | UpGENEnumber | Direction | Distance | sRNAstart | sRNAend | Direction | Length | Distance | DnGENEdir. | DnGENEnumber |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | A1I 01875 | >>> | 206 | 364852 | 365124 | >>> | 272 | 11 | >>> | A1I 01880 |
|  | 2 | A1I_02655 | <<< | 6 | 492718 | 492823 | >>> | 105 | 46 | <<< | A1I_02660 |
|  | 3 | A1I_06135 | <<< | 64 | 1176398 | 1176541 | >>> | 143 | 119 | <<< | A1I_06140 |
|  | 4 | A1I_07920 | <<< | 25 | 1523781 | 1523864 | >>> | 83 | 39 | <<< | A1I_07925 |
|  | 5 | A1I_r08025 | <<< | 86 | 1126283 | 1126472 | <<< | 189 | 0 | <<< | A1I_r01 |
|  | 6 | A1I_01860 | >>> | 882 | 362976 | 363109 | <<< | 133 | 1032 | >>> | A1I_01875 |
|  | 7 | A1I_01250 | <<< | 290 | 247963 | 248045 | <<< | 82 | 309 | >>> | A1I_01255 |
|  | 8 | A1I_00070 | >>> | 78 | 15057 | 15160 | <<< | 103 | 63 | <<< | A1I_00075 |
|  | 9 | A1I_00070 | >>> | 4 | 14983 | 15101 | >>> | 118 | 122 | <<< | A1I_00075 |
|  | 10 | A1I 00370 | >>> | 81 | 67246 | 67347 | <<< | 101 | 97 | <<< | A1I 00375 |
|  | 11 | A1I_00395 | >>> | 345 | 72492 | 72553 | <<< | 61 | 114 | <<< | A1I_00400 |
|  | 12 | A1I_t07959 | >>> | 64 | 87346 | 87454 | >>> | 108 | 84 | >>> | A1I_00480 |
|  | 13 | A1I_t07959 | >>> | 64 | 87346 | 87433 | >>> | 87 | 105 | >>> | A1I_00480 |
|  | 14 | A1I_00910 | <<< | 274 | 167396 | 167459 | <<< | 63 | 36 | <<< | A1I_00915 |
|  | 15 | A1I_00950 | >>> | 41 | 175620 | 175709 | >>> | 89 | 62 | >>> | A1I_00955 |
|  | 16 | A1I_01030 | >> | 236 | 203048 | 203167 | >>> | 119 | 1218 | <<< | A1I_01045 |
|  | 17 | A1I_01030 | >>> | 290 | 203102 | 203205 | <<< | 103 | 1180 | <<< | A1I_01045 |
|  | 18 | A1I_01030 | >>> | 236 | 203048 | 203146 | >>> | 98 | 1239 | <<< | A1I_01045 |
|  | 19 | A1I_01185 | <<< | 235 | 229219 | 229292 | <<< | 73 | 60 | <<< | A1I_01190 |
|  | 20 | A1I_01235 | >>> | 3167 | 244384 | 244519 | >>> | 135 | 516 | <<< | A1I_01250 |
|  | 21 | A1I_01290 | >> | 3 | 255135 | 255208 | >> | 73 | 349 | <<< | A1I_01295 |
|  | 22 | A1I_01290 | >>> | 127 | 255259 | 255319 | >>> | 60 | 238 | <<< | A1I_01295 |
|  | 23 | A1I_01290 | >>> | 187 | 255319 | 255351 | >>> | 32 | 206 | <<< | A1I_01295 |
|  | 24 | A1I_01730 | >>> | 67 | 335395 | 335565 | >>> | 170 | 418 | >>> | A1I_t07965 |





Rickettsia bellii strain RML

|  | sRNAName | UpGENEnumber | Direction | Distance | sRNAstart | sRNAend | Direction | Length | Distance | DnGENEdir. | DnGENEnumber |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | RBE_0347 | <<< | 81 | 392587 | 392864 | >>> | 277 | 24 | >>> | RBE_0348 |
|  | 2 | RBE_RNA08 | >>> | 22 | 420992 | 421180 | >>> | 188 | 86 | >>> | RBE_RNA09 |
|  | 3 | RBE_0446 | <<< | 59 | 505298 | 505595 | >>> | 297 | 24 | >>> | RBE_0447 |
|  | 4 | RBE_1204 | <<< | 311 | 1294260 | 1294340 | >>> | 80 | 290 | >>> | RBE_1205 |
|  | 5 | RBE_1423 | <<< | 25 | 1516877 | 1516960 | >>> | 83 | 39 | <<< | RBE_1424 |
|  | 6 | RBE_0852 | >>> | 46 | 940008 | 940115 | <<< | 107 | 4 | >>> | RBE_0853 |
|  | 7 | RBE_0671 | <<< | 824 | 751535 | 751701 | <<< | 166 | 29 | >>> | RBE_0672 |
|  | 8 | RBE_0329 | >>> | 120 | 370644 | 370789 | <<< | 145 | 143 | >>> | RBE_0330 |
|  | 9 | RBE_0015 | >>> | 78 | 15004 | 15107 | <<< | 103 | 63 | <<< | RBE_0016 |
|  | 10 | RBE_0015 | >>> | 4 | 14930 | 15048 | >>> | 118 | 122 | <<< | RBE_0016 |
| N | 11 | RBE_0088 | >>> | 1 | 101613 | 102010 | >>> | 397 | 81 | >>> | RBE_0089 |
|  | 12 | RBE_0097 | >>> | 142 | 110289 | 110414 | >>> | 125 | 76 | >>> | RBE_0098 |
|  | 13 | RBE_0097 | >>> | 142 | 110289 | 110393 | >>> | 104 | 97 | >>> | RBE_0098 |
|  | 14 | RBE_0113 | <<< | 331 | 133493 | 133565 | <<< | 72 | 49 | <<< | RBE_0114 |
|  | 15 | RBE_0119 | >>> | 221 | 138625 | 139073 | >>> | 448 | -1 | <<< | RBE_0120 |
|  | 16 | RBE_RNA03 | >>> | 76 | 147543 | 147679 | >>> | 136 | 151 | >>> | RBE_0130 |
|  | 17 | RBE_RNA03 | >>> | 76 | 147543 | 147658 | >>> | 115 | 172 | >>> | RBE_0130 |
|  | 18 | RBE_RNA03 | >>> | 76 | 147543 | 147794 | >>> | 251 | 36 | >>> | RBE_0130 |
|  | 19 | RBE_0132 | >>> | 399 | 151381 | 151590 | >>> | 209 | 142 | >>> | RBE_0133 |
|  | 20 | RBE_0141 | >>> | 430 | 162093 | 162375 | >>> | 282 | 13 | >>> | RBE_0142 |
|  | 21 | RBE_0153 | <<< | 114 | 179587 | 179688 | <<< | 101 | 41 | <<< | RBE_0154 |
|  | 22 | RBE_0186 | >>> | 61 | 219889 | 219996 | <<< | 107 | 51 | $\lll$ | RBE_0187 |
|  | 23 | RBE_RNA06 | <<< | 132 | 266213 | 266367 | >> | 154 | 117 | <<< | RBE_0223 |
|  | 24 | RBE_RNA06 | $\lll$ | 132 | 266213 | 266346 | >>> | 133 | 138 | <<< | RBE_0223 |



| 51 | RBE_0517 | >>> | 94 | 578765 | 578861 | >>> | 96 | 738 | >>> | RBE_0518 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 52 | RBE_0521 | >>> | 60 | 584241 | 584551 | <<< | 310 | 3 | <<< | RBE_0522 |
| 53 | RBE_0521 | >>> | 174 | 584355 | 584458 | >>> | 103 | 96 | <<< | RBE_0522 |
| 54 | RBE_0521 | >>> | 233 | 584414 | 584532 | <<< | 118 | 22 | <<< | RBE_0522 |
| 55 | RBE_0572 | >>> | 7 | 631471 | 631566 | >>> | 95 | 756 | >>> | RBE_0573 |
| 56 | RBE_0589 | >>> | 134 | 651382 | 651468 | <<< | 86 | 48 | <<< | RBE_0590 |
| 57 | RBE_0589 | >>> | 45 | 651293 | 651426 | >>> | 133 | 90 | <<< | RBE_0590 |
| 58 | RBE_0612 | >>> | 1 | 676412 | 676532 | >>> | 120 | 106 | >>> | RBE_0613 |
| 59 | RBE_0613 | >>> | 117 | 679243 | 679348 | $\ggg$ | 105 | 128 | >>> | RBE_0614 |
| 60 | RBE 0619 | <<< | 426 | 687110 | 687534 | <<< | 424 | 160 | <<< | RBE 0620 |
| 61 | RBE_0630 | <<< | 138 | 696279 | 696399 | <<< | 120 | 36 | <<< | RBE_0631 |
| 62 | RBE_0653 | >>> | 50 | 725208 | 725347 | >>> | 139 | -13 | >> | RBE_0654 |
| 63 | RBE_0773 | >>> | 30 | 855489 | 855596 | >>> | 107 | 112 | >>> | RBE_0774 |
| 64 | RBE_0823 | >> | 603 | 910896 | 910953 | >>> | 57 | 107 | >> | RBE_0824 |
| 65 | RBE_0823 | $\ggg$ | 603 | 910896 | 910932 | $\ggg$ | 36 | 128 | >>> | RBE_0824 |
| 66 | RBE_0841 | >> | 292 | 927723 | 927871 | >>> | 148 | 266 | <<< | RBE_0842 |
| 67 | RBE_0855 | >>> | 126 | 944368 | 944447 | >>> | 79 | 391 | <<< | RBE_0856 |
| 68 | RBE_0855 | >>> | 126 | 944368 | 944426 | >>> | 58 | 412 | <<< | RBE_0856 |
| 69 | RBE_0855 | >>> | 126 | 944368 | 944591 | >>> | 223 | 247 | <<< | RBE_0856 |
| 70 | RBE_0855 | >>> | 126 | 944368 | 944570 | >>> | 202 | 268 | <<< | RBE_0856 |
| 71 | RBE_0855 | >>> | 284 | 944526 | 944647 | <<< | 121 | 191 | <<< | RBE_0856 |
| 72 | RBE_0861 | <<< | 193 | 951463 | 951694 | <<< | 231 | 49 | <<< | RBE_0862 |
| 73 | RBE_0867 | >>> | 84 | 954609 | 954740 | >>> | 131 | 530 | $\lll$ | RBE_0868 |
| 74 | RBE_0867 | >>> | 154 | 954679 | 954782 | <<< | 103 | 488 | <<< | RBE_0868 |
| 75 | RBE_0867 | >>> | 84 | 954609 | 954719 | >>> | 110 | 551 | <<< | RBE_0868 |
| 76 | RBE_0889 | >>> | 63 | 978670 | 978767 | >>> | 97 | 246 | >>> | RBE_0890 |



Rickettsia canadensis SIPHT Predictions

| $\stackrel{\rightharpoonup}{\omega}$ | sRNAName | UpGENEnumber | Direction | Distance | sRNAstart | sRNAend | Direction | Length | Distance | DnGENEdir. | DnGENEnumber |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | A1E_00490 | >>> | 20 | 111277 | 111501 | >>> | 224 | 235 | >>> | A1E_00495 |
|  | 2 | A1E_00665 | >>> | 1 | 152236 | 152363 | >>> | 127 | 28 | >>> | A1E_00670 |
|  | 3 | A1E_02840 | <<< | 218 | 594155 | 594242 | >> | 87 | 426 | >> | A1E_02845 |
|  | 4 | A1E_05200 | <<< | 567 | 1064658 | 1064779 | >>> | 121 | 327 | <<< | A1E_05205 |
|  | 5 | A1E_05585 | <<< | 6 | 1147042 | 1147271 | >>> | 229 | -1 | <<< | A1E_05590 |
|  | 6 | A1E_04445 | <<< | 173 | 893435 | 893619 | <<< | 184 | 205 | >>> | A1E_04450 |
|  | 7 | A1E_03540 | >> | 259 | 733592 | 733663 | <<< | 71 | 376 | >> | A1E_03545 |
|  | 8 | A1E_02545 | <<< | 210 | 549039 | 549095 | <<< | 56 | 180 | >>> | A1E_02550 |
|  | 9 | A1E_00080 | >>> | 150 | 20294 | 20590 | <<< | 296 | 1321 | <<< | A1E_00085 |
|  | 10 | A1E_00080 | >> | 656 | 20800 | 20872 | >>> | 72 | 1039 | <<< | A1E_00085 |
|  | 11 | A1E_00080 | >> | 630 | 20774 | 20903 | <<< | 129 | 1008 | <<< | A1E_00085 |
|  | 12 | A1E_00145 | >>> | 34 | 32661 | 32776 | >>> | 115 | 255 | >>> | A1E_00150 |
|  | 13 | A1E_00225 | >>> | 42 | 53352 | 53427 | >>> | 75 | 71 | >>> | A1E_00230 |
|  | 14 | A1E_00240 | >> | 37 | 56312 | 56357 | >>> | 45 | 169 | <<< | A1E_00245 |
|  | 15 | A1E_00240 | >>> | 164 | 56439 | 56473 | <<< | 34 | 53 | <<< | A1E_00245 |
|  | 16 | A1E_00320 | >>> | 178 | 76723 | 76815 | <<< | 92 | 92 | <<< | A1E_00325 |
|  | 17 | A1E_00320 | >>> | 213 | 76758 | 76815 | <<< | 57 | 92 | <<< | A1E_00325 |
|  | 19 | A1E_t05688 | >> | 88 | 109997 | 110293 | >>> | 296 | 27 | >>> | A1E_00485 |
|  | 20 | A1E_00560 | >> | 86 | 133502 | 133636 | >> | 134 | 35 | >> | A1E_00565 |
|  | 21 | A1E_00665 | >>> | 1 | 152236 | 152390 | >> | 154 | 1 | >>> | A1E_00670 |
|  | 22 | A1E_00710 | >> | 13 | 159214 | 159500 | >>> | 286 | 402 | >>> | A1E_00715 |
|  | 23 | A1E_00810 | >>> | 0 | 185067 | 185276 | <<< | 209 | 398 | <<< | A1E_t05692 |
|  | 24 | A1E 01135 | >> | 27 | 254109 | 254152 | >> | 43 | 542 | <<< | A1E 01140 |
|  | 25 | A1E_01135 | >>> | 469 | 254551 | 254619 | >>> | 68 | 75 | <<< | A1E_01140 |



Rickettsia conorii SIPHT Predictions

| $\begin{gathered} \text { sRNANam } \\ \mathrm{e} \end{gathered}$ | UpGENEnumber | Direction | Distance | sRNAstart | sRNAend | Direction | Length | Distance | DnGENEdir. | DnGENEnumber |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | RC0097 | >>> | 116 | 92575 | 92721 | >>> | 146 | 437 | <<< | RC0098 |
| 2 | RC0150 | >>> | 1 | 151550 | 151679 | >>> | 129 | 564 | >>> | RC0151 |
| 3 | RC0375 | <<< | 179 | 375697 | 375836 | >>> | 139 | 130 | <<< | RC0376 |
| 4 | RC0448 | <<< | 1 | 442624 | 442681 | >>> | 57 | 49 | <<< | RC0449 |
| 5 | RC0593 | <<< | 16 | 580992 | 581052 | >>> | 60 | 138 | >>> | RC0594 |
| 6 | RC0633 | >>> | 1 | 619218 | 619310 | >>> | 92 | 22 | >>> | RC0634 |
| 7 | RC0782 | <<< | 246 | 739506 | 739595 | >>> | 89 | 580 | >>> | RC0783 |
| 8 | RC1056 | <<< | 1 | 980514 | 980727 | >>> | 213 | 1246 | >>> | RC1057 |
| 9 | RC1095 | <<< | 1 | 1020872 | 1020952 | >>> | 80 | 183 | <<< | RC1096 |
| 10 | RC1337 | >> | -24 | 1241587 | 1241949 | <<< | 362 | 131 | <<< | RC1338 |
| 11 | RC1120 | >>> | 653 | 1042270 | 1042553 | <<< | 283 | 9 | >>> | RC1121 |
| 12 | RC1102 | <<< | -5 | 1026622 | 1026664 | <<< | 42 | 548 | >> | RC1103 |
| 13 | RC0894 | >>> | 110 | 841793 | 841913 | <<< | 120 | 13 | >>> | RC0895 |
| 14 | RC0826 | >> | 120 | 780179 | 780704 | <<< | 525 | 613 | >> | RCRNA22 |
| 15 | RC0701 | >>> | 21 | 674690 | 675153 | <<< | 463 | 80 | >>> | RC0702 |
| 16 | RC0481 | <<< | 273 | 477661 | 477738 | <<< | 77 | 73 | <<< | RC0482 |
| 17 | RC0351 | >>> | 333 | 354359 | 354432 | <<< | 73 | 3 | >>> | RC0352 |
| 18 | RC0219 | >>> | 417 | 229291 | 229521 | <<< | 230 | 0 | <<< | RC0220 |
| 19 | RC0031 | <<< | 324 | 32400 | 32494 | <<< | 94 | 5 | <<< | RC0032 |
| 20 | RC0044 | >> | 55 | 42041 | 42249 | <<< | 208 | 127 | <<< | RC0045 |
| 21 | RC0059 | >> | 116 | 52581 | 52642 | <<< | 61 | 62 | <<< | RC0060 |
| 22 | RC0068 | >>> | 448 | 61996 | 62026 | >>> | 30 | 203 | >>> | RC0069 |
| 23 | RC0073 | >>> | 42 | 67028 | 67111 | >> | 83 | 65 | >>> | RC0074 |


| 24 | RC0092 | >>> | 44 | 85536 | 85667 | >>> | 131 | -10 | <<< | RC0093 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | RC0097 | >>> | 338 | 92797 | 93067 | <<< | 270 | 91 | <<< | RC0098 |
| 26 | RC0109 | >>> | 76 | 104284 | 104811 | <<< | 527 | 297 | <<< | RC0110 |
| 27 | RC0112 | >>> | 69 | 113313 | 113378 | >>> | 65 | 61 | >>> | RC0113 |
| 28 | RC0141 | >>> | 1 | 134587 | 134709 | >>> | 122 | -7 | >>> | RC0142 |
| 29 | RC0166 | >>> | 2 | 166510 | 166646 | >>> | 136 | 37 | >>> | RC0167 |
| 30 | RC0171 | >>> | 1 | 171221 | 171361 | >>> | 140 | 18 | >>> | RC0172 |
| 31 | RC0176 | >>> | 1 | 175608 | 175778 | >>> | 170 | 98 | >>> | RC0177 |
| 32 | RC0180 | >>> | 676 | 178909 | 178963 | >>> | 54 | 210 | >>> | RC0181 |
| 33 | RC0181 | >>> | 16 | 183312 | 183371 | >>> | 59 | 181 | $\ggg$ | RC0182 |
| 34 | RC0182 | >>> | 1 | 187673 | 188079 | >>> | 406 | -1 | <<< | RC0183 |
| 35 | RC0188 | <<< | 245 | 196978 | 197113 | <<< | 135 | 0 | <<< | RC0189 |
| 36 | RC0219 | >>> | 592 | 229466 | 229521 | <<< | 55 | 0 | <<< | RC0220 |
| 37 | RC0226 | <<< | 78 | 233892 | 233977 | <<< | 85 | 0 | <<< | RC0227 |
| 38 | RC0228 | <<< | 40 | 238429 | 238549 | <<< | 120 | 15 | <<< | RC0229 |
| 39 | RC0241 | >>> | 24 | 251936 | 252254 | <<< | 318 | 0 | <<< | RC0242 |
| 40 | RC0241 | >>> | 1 | 251913 | 251998 | >>> | 85 | 256 | <<< | RC0242 |
| 41 | RC0241 | >>> | 91 | 252003 | 252121 | >>> | 118 | 133 | <<< | RC0242 |
| 42 | RC0241 | >> | 151 | 252063 | 252254 | <<< | 191 | 0 | <<< | RC0242 |
| 43 | RC0243 | >>> | 108 | 253896 | 253963 | <<< | 67 | 122 | <<< | RC0244 |
| 44 | RC0243 | >> | 115 | 253903 | 253954 | >> | 51 | 131 | <<< | RC0244 |
| 45 | RC0257 | >>> | 400 | 262951 | 263040 | >>> | 89 | 85 | <<< | RC0258 |
| 46 | RC0282 | $\lll$ | 129 | 287255 | 287339 | $\lll$ | 84 | 0 | <<< | RC0283 |
| 47 | RC0332 | >> | 13 | 334165 | 334271 | >> | 106 | 123 | >> | RC0333 |
| 48 | RC0332 | >> | 13 | 334165 | 334313 | >> | 148 | 81 | >> | RC0333 |
| 49 | RC0335 | >> | 25 | 337549 | 337665 | <<< | 116 | 0 | <<< | RC0336 |


| 50 | RC0342 | >>> | 19 | 344734 | 344857 | >>> | 123 | 107 | >>> | RC0343 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 51 | RC0352 | >>> | 19 | 355010 | 355142 | >>> | 132 | 24 | >>> | RC0353 |
| 52 | RC0352 | >>> | 19 | 355010 | 355164 | >>> | 154 | 2 | >>> | RC0353 |
| 53 | RC0359 | >>> | $45$ | 361167 | 361287 | >>> | 120 | 324 | >>> | RC0360 |
| 54 | RC0388 | >>> | $1$ | 388642 | 388729 | >>> | 87 | 95 | >>> | RC0389 |
| 55 | RC0412 | >>> | $45$ | 414336 | 414527 | >>> | 191 | 195 | >>> | RC0413 |
| 56 | RC0414 | >>> | 0 | 415202 | 415638 | <<< | 436 | 0 | <<< | RC0415 |
| 57 | RC0414 | >>> | $32$ | 415234 | 415286 | >>> | 52 | 352 | <<< | RC0415 |
| 58 | RC0431 | <<< | $81$ | 429228 | 429315 | <<< | 87 | 18 | <<< | RC0432 |
| 59 | RC0447 | >>> | 11 | 441137 | 441225 | >>> | 88 | 53 | $\lll$ | RC0448 |
| 60 | RC0447 | >>> | 41 | 441167 | 441278 | <<< | 111 | 0 | <<< | RC0448 |
| 61 | RC0455 | >>> | 6 | 450533 | 450705 | >>> | 172 | 421 | >>> | RC0456 |
| $62$ | RC0467 | <<< | $1199$ | $464303$ | $464511$ | <<< | $208$ | $0$ | <<< | RC0468 |
| 63 | RC0493 | >>> | 6 | 487697 | 487818 | >>> | 121 | 69 | <<< | RC0494 |
| 64 | RC0493 | $\ggg$ | 6 | 487697 | 487800 | $\ggg$ | 103 | 87 | <<< | RC0494 |
| 65 | RC0497 | >>> | 84 | 491842 | 491968 | >>> | 126 | 594 | >>> | RC0498 |
| 66 | RC0506 | >>> | $1$ | 500186 | 500284 | >>> | 98 | 38 | >>> | RC0507 |
| 67 | RC0522 | <<< | 94 | 512453 | 512522 | >>> | 69 | 47 | <<< | RC0523 |
| 68 | RC0546 | >>> | 1 | 536256 | 536393 | >>> | 137 | 77 | >>> | RC0547 |
| 69 | RC0557 | >>> | 44 | 550166 | 550215 | >>> | 49 | 84 | $\ggg$ | RC0558 |
| 70 | RC0557 | >> | 44 | 550166 | 550259 | >> | 93 | 40 | >>> | RC0558 |
| 71 | RC0563 | $\ggg$ | 654 | 557086 | 557184 | $\ggg$ | 98 | 104 | <<< | RC0564 |
| 72 | RC0563 | >>> | $654$ | 557086 | 557164 | >>> | 78 | 124 | <<< | RC0564 |
| 73 | RC0563 | >> | $688$ | 557120 | 557217 | <<< | 97 | 71 | <<< | RC0564 |
| 74 | RC0583 | >>> | 199 | 572072 | 572162 | >> | 90 | 64 | >>> | RC0584 |
| 75 | RC0596 | >>> | 1 | 583592 | 583719 | >>> | 127 | 1 | >>> | RC0597 |



|  | 102 | RC0967 | >>> | 40 | 909140 | 909208 | >>> | 68 | 849 | <<< | RC0968 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 103 | RC0967 | >>> | 353 | 909453 | 909709 | <<< | 256 | 348 | <<< | RC0968 |
|  | 104 | RC0974 | >>> | 92 | 914960 | 915021 | <<< | 61 | 0 | <<< | RC0975 |
|  | 105 | RC0979 | >>> | 729 | 919114 | 919257 | >>> | 143 | 1006 | <<< | RCRNA27 |
|  | 106 | RC0979 | >>> | 1647 | 920032 | 920121 | >>> | 89 | 142 | <<< | RCRNA27 |
|  | 107 | RC0979 | >>> | 1635 | 920020 | 920240 | <<< | 220 | 23 | <<< | RCRNA27 |
|  | 108 | RC1041 | >> | 27 | 966835 | 966988 | >>> | 153 | 77 | <<< | RC1042 |
|  | 109 | RC1041 | >>> | 140 | 966948 | 967049 | <<< | 101 | 16 | <<< | RC1042 |
|  | 110 | RC1048 | >>> | -4 | 974182 | 974336 | <<< | 154 | 0 | <<< | RC1049 |
|  | 111 | RC1073 | >>> | 7 | 994661 | 994792 | >>> | 131 | 163 | >>> | RC1074 |
|  | 112 | RC1074 | >>> | 586 | 995791 | 995852 | >>> | 61 | 18 | >>> | RC1075 |
|  | 113 | RC1084 | <<< | 499 | 1007117 | 1007168 | <<< | 51 | 19 | <<< | RC1085 |
| N | 114 | RC1090 | >>> | 1 | 1016864 | 1017022 | >>> | 158 | -41 | <<< | RC1091 |
|  | 115 | RCRNA33 | >>> | 4 | 1040304 | 1040654 | >>> | 350 | 22 | <<< | RC1119 |
|  | 116 | RC1120 | >> | 292 | 1041909 | 1042044 | >>> | 135 | 518 | >>> | RC1121 |
|  | 117 | RC1120 | >> | 292 | 1041909 | 1042014 | >>> | 105 | 548 | >> | RC1121 |
|  | 118 | RC1123 | >> | 527 | 1043770 | 1044310 | <<< | 540 | 0 | <<< | RC1124 |
|  | 119 | RC1138 | >> | 57 | 1052324 | 1052449 | <<< | 125 | 339 | <<< | RC1139 |
|  | 120 | RC1186 | >> | 123 | 1087009 | 1087096 | >>> | 87 | 70 | >>> | RC1187 |
|  | 121 | RC1228 | >> | 2 | 1133330 | 1133619 | >>> | 289 | 186 | <<< | RC1229 |
|  | 122 | RC1254 | >> | 1 | 1159676 | 1159876 | >>> | 200 | -57 | <<< | RC1255 |
|  | 123 | RC1254 | >> | 1 | 1159676 | 1159833 | >>> | 157 | -14 | $\lll$ | RC1255 |
|  | 124 | RC1280 | >> | 327 | 1188699 | 1188764 | <<< | 65 | 0 | <<< | RC1281 |
|  | 125 | RC1280 | >>> | 6 | 1188378 | 1188751 | >>> | 373 | 13 | <<< | RC1281 |
|  | 126 | RC1303 | >>> | 75 | 1207263 | 1207375 | >>> | 112 | 747 | >>> | RC1304 |
|  | 127 | RC1323 | <<< | 136 | 1224816 | 1224892 | <<< | 76 | 1 | <<< | RC1324 |



| sRNAName | UpGENEnum ber | Direction | Distance | sRNAstart | sRNAend | Direction | Length | Distance | DnGENEdir. | DnGENEnumber |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | RF_0052 | <<< | 79 | 53567 | 53714 | >>> | 147 | 832 | <<< | RF_0053 |
| 2 | RF_0185 | <<< | 162 | 203281 | 203376 | >>> | 95 | 80 | >>> | RF_0186 |
| 3 | RF_0378 | >>> | 922 | 402257 | 402324 | >>> | 67 | 589 | >>> | RF_0379 |
| 4 | RF_0693 | >>> | 41 | 751761 | 751922 | >> | 161 | 146 | >> | RF_0694 |
| 5 | RF_1067 | >>> | 9 | 1129055 | 1129552 | >>> | 497 | -56 | <<< | RF_1068 |
| 6 | RF_1183 | <<< | 1 | 1252953 | 1253070 | >>> | 117 | 64 | >> | RF_1184 |
| 7 | RF_1334 | >>> | 211 | 1420894 | 1421010 | <<< | 116 | 30 | >>> | RF_1335 |
| 8 | RF_0929 | >> | 353 | 989853 | 989987 | <<< | 134 | 169 | >>> | RF_0930 |
| 9 | RF_0780 | >>> | 116 | 836630 | 836706 | <<< | 76 | 146 | >>> | RF_0781 |
| 10 | RF_0735 | <<< | 576 | 799527 | 799618 | <<< | 91 | 461 | >>> | RF_0736 |
| 11 | RF_0684 | >>> | 247 | 731985 | 732070 | <<< | 85 | 67 | >>> | RF_0685 |
| 12 | RF_0470 | >>> | 261 | 501131 | 501267 | <<< | 136 | 0 | >> | RF_0471 |
| 13 | RF_0244 | >> | 236 | 272732 | 272875 | <<< | 143 | 0 | >> | RF_0245 |
| 14 | RF_0009 | >>> | 36 | 10477 | 10617 | >>> | 140 | 328 | >>> | RF_0010 |
| 15 | RF_0009 | >>> | 36 | 10477 | 10585 | >> | 108 | 360 | >> | RF_0010 |
| 16 | RF_0010 | >>> | 155 | 11404 | 11513 | >>> | 109 | 87 | <<< | RF_0011 |
| 17 | RF_0010 | >> | 224 | 11473 | 11567 | <<< | 94 | 33 | <<< | RF_0011 |
| 18 | RF_0034 | <<< | 103 | 36802 | 36894 | <<< | 92 | 8 | <<< | RF_0035 |
| 19 | RF_0052 | <<< | 292 | 53780 | 54084 | <<< | 304 | 462 | <<< | RF_0053 |
| 20 | RF_0052 | <<< | 914 | 54402 | 54459 | <<< | 57 | 87 | <<< | RF_0053 |
| 21 | RF_0057 | >> | 39 | 59191 | 59302 | >> | 111 | 154 | <<< | RF_0058 |
| 22 | RF_0070 | >>> | 5 | 77036 | 77128 | >> | 92 | 104 | >>> | RF_0071 |
| 23 | RF_RNA04 | >>> | 48 | 89616 | 89895 | >> | 279 | 84 | >>> | RF_0085 |


| 24 | RF_0091 | >>> | 2 | 102909 | 103010 | >> | 101 | 124 | >>> | RF_0092 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | RF_0103 | <<< | 174 | 116606 | 116915 | <<< | 309 | 14 | <<< | RF_0104 |
| 26 | RF_0111 | >>> | 72 | 125658 | 125758 | <<< | 100 | 92 | <<< | RF_0112 |
| 27 | RF_0111 | >>> | 184 | 125770 | 125826 | <<< | 56 | 24 | <<< | RF_0112 |
| 28 | RF_0140 | <<< | 201 | 158827 | 158903 | <<< | 76 | 0 | <<< | RF_0141 |
| 29 | RF_0159 | >>> | 23 | 175827 | 175862 | >>> | 35 | 149 | >>> | RF_0160 |
| 30 | RF_0182 | >>> | 1 | 201331 | 201411 | >>> | 80 | 79 | >>> | RF_0183 |
| 31 | RF_0184 | >>> | 1 | 202238 | 202303 | >>> | 65 | 284 | <<< | RF_0185 |
| 32 | RF_0204 | >>> | 88 | 219599 | 219643 | >>> | 44 | 332 | >>> | RF_0205 |
| 33 | RF 0204 | >>> | 88 | 219599 | 219675 | >> | 76 | 300 | >>> | RF 0205 |
| 34 | RF_0205 | >> | 1 | 224942 | 225032 | >>> | 90 | 564 | >>> | RF_0206 |
| 35 | RF_0205 | >>> | 387 | 225328 | 225415 | >>> | 87 | 181 | >>> | RF_0206 |
| 37 | RF_0262 | >> | 5 | 291474 | 291580 | >> | 106 | 538 | >>> | RF_0263 |
| 38 | RF_0265 | >>> | 17 | 294743 | 294804 | >>> | 61 | 86 | <<< | RF_0266 |
| 39 | RF_0265 | >>> | 17 | 294743 | 294847 | >>> | 104 | 43 | <<< | RF_0266 |
| 40 | RF_0265 | >> | 17 | 294743 | 294829 | >>> | 86 | 61 | <<< | RF_0266 |
| 41 | RF_0265 | >>> | 59 | 294785 | 294886 | <<< | 101 | 4 | <<< | RF_0266 |
| 42 | RF_RNA11 | >> | 185 | 319853 | 319947 | >>> | 94 | 923 | >>> | RF_0305 |
| 43 | RF_RNA11 | >> | 366 | 320034 | 320088 | >> | 54 | 782 | >>> | RF_0305 |
| 44 | RF_0315 | >>> | 200 | 331166 | 331399 | >>> | 233 | 151 | >>> | RF_0316 |
| 45 | RF_0316 | >> | 19 | 331828 | 332206 | >> | 378 | 852 | >>> | RF_0317 |
| 46 | RF_RNA12 | >> | 22 | 344467 | 344607 | >> | 140 | 98 | >>> | RF_RNA13 |
| 47 | RF_0332 | >> | 35 | 352842 | 352894 | >>> | 52 | 121 | >> | RF_0333 |
| 48 | RF_0332 | >> | 35 | 352842 | 352995 | >> | 153 | 20 | >>> | RF_0333 |
| 49 | RF_0346 | >> | 126 | 367530 | 367657 | <<< | 127 | 241 | <<< | RF_0347 |
| 50 | RF_0346 | >>> | 7 | 367411 | 367570 | >>> | 159 | 328 | <<< | RF_0347 |



| $\stackrel{\rightharpoonup}{ \pm}$ | 77 | RF_0548 | <<< | 840 | 586336 | 586573 | <<< | 237 | 130 | <<< | RF_0549 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 78 | RF_0552 | >>> | 425 | 590379 | 590412 | <<< | 33 | 452 | <<< | RF_0553 |
|  | 79 | RF_0574 | >>> | 224 | 611046 | 611284 | <<< | 238 | 3 | <<< | RF_0575 |
|  | 80 | RF_0574 | >>> | 247 | 611069 | 611181 | >>> | 112 | 106 | <<< | RF_0575 |
|  | 81 | RF_0577 | >>> | 691 | 614952 | 615192 | >>> | 240 | 311 | >>> | RF_0578 |
|  | 82 | RF_0577 | >>> | 691 | 614952 | 615427 | >>> | 475 | 76 | >>> | RF_0578 |
|  | 83 | RF_0591 | >>> | 85 | 635163 | 635286 | >>> | 123 | 81 | <<< | RF_0592 |
|  | 84 | RF_0591 | >>> | 168 | 635246 | 635364 | <<< | 118 | 3 | <<< | RF_0592 |
|  | 85 | RF_0626 | <<< | 42 | 670494 | 670633 | <<< | 139 | 2 | <<< | RF_0627 |
|  | 86 | RF_0638 | >>> | 4 | 683524 | 683623 | >>> | 99 | 34 | <<< | RF_0639 |
|  | 87 | RF_0638 | >>> | 4 | 683524 | 683602 | >>> | 78 | 55 | <<< | RF_0639 |
|  | 88 | RF_0638 | >>> | 38 | 683558 | 683656 | <<< | 98 | 1 | <<< | RF_0639 |
|  | 89 | RF_0646 | >>> | 28 | 693172 | 693381 | >>> | 209 | -9 | >>> | RF_0647 |
|  | 90 | RF_0674 | <<< | 18 | 720914 | 720948 | >>> | 34 | 268 | <<< | RF_0675 |
|  | 91 | RF_0674 | <<< | 46 | 720942 | 721030 | >>> | 88 | 186 | <<< | RF_0675 |
|  | 92 | RF_0674 | <<< | 64 | 720960 | 721044 | <<< | 84 | 172 | <<< | RF_0675 |
|  | 93 | RF_0674 | <<< | 221 | 721117 | 721190 | <<< | 73 | 26 | <<< | RF_0675 |
|  | 94 | RF_0674 | <<< | 46 | 720942 | 721161 | >>> | 219 | 55 | <<< | RF_0675 |
|  | 95 | RF_0696 | >>> | 1 | 754992 | 755129 | >>> | 137 | -21 | >>> | RF_0697 |
|  | 96 | RF_0713 | >>> | 17 | 772969 | 773056 | >>> | 87 | 81 | <<< | RF_0714 |
|  | 97 | RF_0725 | >>> | 5 | 788304 | 788425 | >>> | 121 | 86 | <<< | RF_0726 |
|  | 98 | RF_0725 | >>> | 66 | 788365 | 788494 | <<< | 129 | 17 | <<< | RF_0726 |
|  | 99 | RF_0730 | >> | 1 | 792699 | 792946 | >> | 247 | -25 | >>> | RF_0731 |
|  | 100 | RF_0764 | >>> | 106 | 821918 | 821979 | >>> | 61 | 418 | >>> | RF_0765 |
|  | 101 | RF_0806 | >>> | 16 | 855022 | 855166 | >>> | 144 | 100 | >>> | RF_0807 |
|  | 102 | RF_0808 | >>> | 322 | 857628 | 857779 | >>> | 151 | -22 | <<< | RF_0809 |


| $\stackrel{\rightharpoonup}{\infty}$ | 103 | RF_0813 | >>> | 27 | 862241 | 862355 | >>> | 114 | 201 | >>> | RF_0814 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 104 | RF_0826 | >>> | 183 | 873945 | 874046 | <<< | 101 | 2 | <<< | RF_0827 |
|  | 105 | RF_0828 | >>> | 59 | 875243 | 875341 | <<< | 98 | 162 | <<< | RF_0829 |
|  | 106 | RF_0828 | >>> | 14 | 875198 | 875283 | >>> | 85 | 220 | <<< | RF_0829 |
|  | 107 | RF_0841 | <<< | 159 | 891113 | 891324 | <<< | 211 | 109 | <<< | RF_0842 |
|  | 108 | RF_0847 | <<< | 265 | 895895 | 896010 | <<< | 115 | 9 | <<< | RF_0848 |
|  | 109 | RF_0855 | <<< | 54 | 907702 | 907834 | <<< | 132 | 0 | <<< | RF_0856 |
|  | 110 | RF_0859 | >>> | 1 | 912621 | 912873 | >>> | 252 | -9 | >>> | RF_0860 |
|  | 111 | RF_0870 | <<< | 244 | 925942 | 926037 | <<< | 95 | 180 | <<< | RF_0871 |
|  | 112 | RF_0878 | >>> | 72 | 935933 | 936062 | >>> | 129 | 609 | >>> | RF_0879 |
|  | 113 | RF_0879 | >>> | 15 | 937029 | 937099 | <<< | 70 | 281 | <<< | RF_0880 |
|  | 114 | RF_0887 | >>> | 127 | 950375 | 950500 | >>> | 125 | 439 | <<< | RF_0888 |
|  | 115 | RF_0887 | >>> | 189 | 950437 | 950634 | <<< | 197 | 305 | <<< | RF_0888 |
|  | 116 | RF_0887 | >> | 127 | 950375 | 950479 | >>> | 104 | 460 | <<< | RF_0888 |
|  | 117 | RF_0887 | >>> | 230 | 950478 | 950634 | <<< | 156 | 305 | <<< | RF_0888 |
|  | 118 | RF_0887 | >> | 127 | 950375 | 950538 | >>> | 163 | 401 | <<< | RF_0888 |
|  | 119 | RF_0887 | >>> | 127 | 950375 | 950662 | >>> | 287 | 277 | <<< | RF_0888 |
|  | 120 | RF_0887 | >>> | 340 | 950588 | 950634 | <<< | 46 | 305 | <<< | RF_0888 |
|  | 121 | RF_0887 | >>> | 127 | 950375 | 950632 | >>> | 257 | 307 | <<< | RF_0888 |
|  | 122 | RF_0929 | >>> | 164 | 989664 | 989810 | >>> | 146 | 346 | >>> | RF_0930 |
|  | 123 | RF_0929 | >>> | 402 | 989902 | 989976 | >>> | 74 | 180 | >>> | RF_0930 |
|  | 124 | RF_0939 | <<< | 103 | 996968 | 997098 | <<< | 130 | 5 | <<< | RF_0940 |
|  | 125 | RF_0940 | <<< | 142 | 998116 | 998150 | <<< | 34 | 168 | $\lll$ | RF_0941 |
|  | 126 | RF_0979 | >> | 151 | 1038529 | 1038694 | <<< | 165 | 3 | <<< | RF_0980 |
|  | 127 | RF_0990 | >>> | 17 | 1053533 | 1053859 | >>> | 326 | 131 | >>> | RF_0991 |
|  | 128 | RF_0995 | >>> | 64 | 1057788 | 1057929 | >>> | 141 | 79 | >>> | RF_RNA30 |


| 129 | RF_0995 | >>> | 64 | 1057788 | 1057897 | >> | 109 | 111 | >>> | RF_RNA30 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 130 | RF_1018 | >>> | 249 | 1079597 | 1079706 | <<< | 109 | 4 | <<< | RF_1019 |
| 131 | RF_1036 | <<< | 65 | 1099649 | 1099903 | <<< | 254 | 22 | <<< | RF_1037 |
| 132 | RF_1045 | <<< | 186 | 1106205 | 1106307 | <<< | 102 | 27 | <<< | RF_1046 |
| 133 | RF_1074 | >> | 38 | 1142079 | 1142314 | >> | 235 | 3 | <<< | RF_1075 |
| 134 | RF_1093 | >>> | 23 | 1163897 | 1164049 | >>> | 152 | -3 | >>> | RF_1094 |
| 135 | RF_1098 | >>> | 321 | 1168483 | 1168527 | <<< | 44 | 367 | <<< | RF_1099 |
| 136 | RF_1098 | >>> | 295 | 1168457 | 1168543 | >>> | 86 | 351 | <<< | RF_1099 |
| 137 | RF_1098 | >>> | 371 | 1168533 | 1168646 | <<< | 113 | 248 | <<< | RF_1099 |
| 138 | RF_1098 | >>> | 359 | 1168521 | 1168575 | >> | 54 | 319 | $\lll$ | RF_1099 |
| 139 | RF_1098 | >>> | 464 | 1168626 | 1168707 | >>> | 81 | 187 | <<< | RF_1099 |
| 140 | RF_1098 | >>> | 464 | 1168626 | 1168686 | >>> | 60 | 208 | <<< | RF_1099 |
| 141 | RF_1098 | >>> | 484 | 1168646 | 1168714 | <<< | 68 | 180 | <<< | RF_1099 |
| 142 | RF_1105 | >>> | 83 | 1174383 | 1174427 | >>> | 44 | 322 | <<< | RF_1106 |
| 143 | RF_1105 | >>> | 87 | 1174387 | 1174597 | <<< | 210 | 152 | <<< | RF_1106 |
| 144 | RF_1121 | >> | 21 | 1190664 | 1190784 | >>> | 120 | 84 | >>> | RF_RNA32 |
| 145 | RF_1126 | >>> | 23 | 1195161 | 1195250 | >>> | 89 | 203 | >>> | RF_1127 |
| 146 | RF_1126 | >> | 5 | 1195143 | 1195412 | >>> | 269 | 41 | >>> | RF_1127 |
| 147 | RF_1134 | >>> | 1 | 1202319 | 1202393 | >>> | 74 | 396 | >>> | RF_1135 |
| 148 | RF_1144 | >>> | 21 | 1213996 | 1214097 | <<< | 101 | 220 | <<< | RF_1145 |
| 149 | RF_1144 | >> | 17 | 1213992 | 1214062 | >> | 70 | 255 | <<< | RF_1145 |
| 150 | RF_1144 | >> | 166 | 1214141 | 1214317 | <<< | 176 | 0 | <<< | RF_1145 |
| 151 | RF_1146 | <<< | 250 | 1223011 | 1223361 | <<< | 350 | 342 | $\lll$ | RF_1147 |
| 152 | RF_1146 | <<< | 670 | 1223431 | 1223692 | <<< | 261 | 11 | <<< | RF_1147 |
| 153 | RF_1186 | <<< | 176 | 1255047 | 1255177 | <<< | 130 | 11 | <<< | RF_1187 |
| 154 | RF_1230 | <<< | 87 | 1295321 | 1295652 | <<< | 331 | 95 | <<< | RF_1231 |


| 155 | RF_RNA34 | <<< | 231 | 1299279 | 1299415 | <<< | 136 | 105 | <<< | RF_1234 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 156 | RF_RNA34 | <<< | 410 | 1299458 | 1299508 | <<< | 50 | 12 | <<< | RF_1234 |
| 157 | RF_1239 | >>> | 2 | 1306083 | 1306296 | >>> | 213 | 87 | >>> | RF_1240 |
| 158 | RF_1243 | >>> | 140 | 1310473 | 1310592 | <<< | 119 | 9 | <<< | RF_1244 |
| 159 | RF_1249 | >>> | 37 | 1321868 | 1322031 | >>> | 163 | 43 | >>> | RF_1250 |
| 160 | RF_1260 | <<< | 115 | 1338282 | 1338344 | <<< | 62 | 7 | <<< | RF_ 1261 |
| 161 | RF_1285 | >>> | 40 | 1365709 | 1365971 | >>> | 262 | 28 | >>> | RF_1286 |
| 162 | RF_1293 | >>> | 56 | 1378419 | 1378503 | <<< | 84 | 17 | <<< | RF_1294 |
| 163 | RF_1300 | <<< | 129 | 1386973 | 1387022 | <<< | 49 | 231 | <<< | RF_1301 |
| 165 | RF_1312 | >>> | 140 | 1400537 | 1400817 | >>> | 280 | 9 | $\lll$ | RF_1313 |
| 166 | RF_1312 | >>> | 366 | 1400763 | 1400811 | <<< | 48 | 15 | <<< | RF_1313 |
| 167 | RF_1322 | >>> | 26 | 1407546 | 1407669 | >>> | 123 | 85 | >>> | RF_1323 |
| 168 | RF_1334 | >>> | 41 | 1420724 | 1420872 | >>> | 148 | 168 | >>> | RF_1335 |
| 169 | RF_1334 | >>> | 41 | 1420724 | 1420851 | >>> | 127 | 189 | >>> | RF_1335 |
| 170 | RF_1334 | >>> | 41 | 1420724 | 1420949 | >>> | 225 | 91 | >>> | RF_1335 |
| 171 | RF_1335 | >> | 1 | 1421462 | 1421547 | >> | 85 | 81 | >>> | RF_1336 |
| 172 | RF_1336 | >>> | 7 | 1422974 | 1423101 | >>> | 127 | 86 | <<< | RF_1337 |
| 173 | RF_1336 | >> | 94 | 1423061 | 1423150 | <<< | 89 | 37 | <<< | RF_1337 |
| 174 | RF_1338 | <<< | 245 | 1425945 | 1426055 | <<< | 110 | 1 | <<< | RF_1339 |
| 175 | RF_1353 | >>> | 101 | 1443167 | 1443217 | <<< | 50 | 730 | <<< | RF_1354 |
| 176 | RF_1353 | >> | 231 | 1443297 | 1443367 | <<< | 70 | 580 | <<< | RF_1354 |
| 177 | RF_1353 | >>> | 213 | 1443279 | 1443337 | >> | 58 | 610 | <<< | RF_1354 |
| 178 | RF_1397 | <<< | 469 | 1482020 | 1482147 | <<< | 127 | 112 | <<< | RF_1398 |
| 179 | RF_0986 | >> | 14 | 1046043 | 1046148 | >> | 105 | 24 | >>> | RF_0987 |
| 180 | RF_RNA30 | >>> | 121 | 1058207 | 1058346 | <<< | 139 | 134 | >>> | RF_0996 |
| 181 | RF_0009 | >>> | 161 | 10602 | 10803 | >>> | 201 | 142 | >>> | RF_0010 |


| 182 | RF_0205 | $\ggg$ | 1 | 224942 | 225011 | $\ggg$ | 69 | 585 | $\ggg$ | RF_0206 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 183 | RF_0205 | $\ggg$ | 173 | 225114 | 225154 | $\lll$ | 40 | 442 | $\ggg$ | RF_0206 |
| 184 | RF_0212 | $\lll$ | 200 | 236710 | 236755 | $\lll$ | 45 | 338 | $\lll$ | RF_0213 |
| 185 | RF_0238 | $\ggg$ | 110 | 267037 | 267174 | $\lll$ | 137 | 47 | $\lll$ | RF_0239 |
| 186 | RF_0523 | $\ggg$ | 167 | 558282 | 558325 | $\lll$ | 43 | 47 | $\ggg$ | RF_0524 |
| 187 | RF_0552 | $\ggg$ | 752 | 590706 | 590851 | $\lll$ | 145 | 13 | $\lll$ | RF_0553 |
| 188 | RF_0627 | $\lll$ | 18 | 672253 | 672325 | $\ggg$ | 72 | 158 | $\lll$ | RF_0628 |
| 189 | RF_0723 | $\lll$ | 53 | 783050 | 783249 | $\ggg$ | 199 | 238 | $\ggg$ | RF_0724 |
| 190 | RF_0873 | $\lll$ | 16 | 931019 | 931125 | $\lll$ | 106 | 3 | $\lll$ | RF_0874 |

Rickettsia heilongjiangensis SIPHT Predictions


| 25 | Rh054_00600 | >> | 9 | 95325 | 95465 | >>> | 140 | 40 | >>> | Rh054_00605 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 26 | Rh054_00605 | >>> | 89 | 97809 | 97853 | >>> | 44 | 320 | <<< | Rh054_00610 |
| 27 | Rh054_00630 | >>> | 16 | 102624 | 102772 | >>> | 148 | 153 | <<< | Rh054_00635 |
| 28 | Rh054_00685 | >>> | 56 | 118561 | 118617 | >>> | 56 | 70 | >>> | Rh054_00690 |
| 29 | Rh054_00830 | >>> | 1 | 139818 | 139940 | >>> | 122 | -7 | >>> | Rh054_00835 |
| 30 | Rh054_00985 | >>> | 8 | 171833 | 171967 | >>> | 134 | 33 | >>> | Rh054_00990 |
| 31 | Rh054_01015 | >>> | 1 | 176533 | 176673 | >>> | 140 | 18 | >>> | Rh054_01020 |
| 32 | Rh054_01040 | $\ggg$ | 1 | 180918 | 181088 | $\ggg$ | 170 | 98 | $\ggg$ | Rh054_01045 |
| 33 | Rh054_01065 | >>> | 16 | 188580 | 188639 | >>> | 59 | 183 | >>> | Rh054_01070 |
| 34 | Rh054_01070 | >> | 1 | 192943 | 193341 | >>> | 398 | -1 | <<< | Rh054_01075 |
| 35 | Rh054_01160 | >>> | -4 | 212938 | 213082 | <<< | 144 | 231 | <<< | Rh054_01165 |
| 36 | Rh054_01180 | <<< | 85 | 217236 | 217287 | <<< | 51 | 102 | <<< | Rh054_01185 |
| 37 | Rh054_01330 | <<< | 57 | 239929 | 240035 | <<< | 106 | 0 | <<< | Rh054_01335 |
| 38 | Rh054_01415 | >>> | 1 | 257320 | 257405 | >>> | 85 | 347 | <<< | Rh054_01420 |
| 39 | Rh054_01415 | >>> | $24$ | 257343 | 257752 | <<< | 409 | 0 | <<< | Rh054_01420 |
| 40 | Rh054_01415 | >> | 241 | 257560 | 257752 | <<< | 192 | 0 | <<< | Rh054_01420 |
| 41 | Rh054_01415 | >>> | 1 | 257320 | 257618 | >>> | 298 | 134 | <<< | Rh054_01420 |
| 42 | Rh054_01425 | >> | $115$ | 259401 | 259452 | >>> | 51 | 93 | <<< | Rh054_01430 |
| 43 | Rh054_01425 | >>> | $108$ | 259394 | 259460 | <<< | 66 | 85 | <<< | Rh054_01430 |
| 44 | Rh054_01490 | >>> | 328 | 268549 | 268634 | >>> | 85 | 81 | <<< | Rh054_01495 |
| 45 | Rh054_01900 | >> | 14 | 340465 | 340556 | >>> | 91 | 31 | >> | Rh054_01905 |
| 46 | Rh054_01915 | >>> | 25 | 343742 | 343860 | <<< | 118 | 0 | <<< | Rh054_01920 |
| 47 | Rh054_01945 | >> | 10 | 350927 | 351056 | >> | 129 | 107 | >> | Rh054_01950 |
| 48 | Rh054_02245 | >>> | 1 | 396888 | 396999 | >>> | 111 | 39 | >> | Rh054_02250 |
| 49 | Rh054_02355 | >>> | 102 | 419927 | 420062 | >>> | 135 | 164 | >>> | Rh054-02360 |
| 50 | Rh054_02455 | <<< | 81 | 435571 | 435659 | <<< | 88 | 18 | <<< | Rh054_02460 |


| 51 | Rh054_02565 | >>> | 74 | 447776 | 447882 | <<< | 106 | 5 | <<< | Rh054_02570 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 52 | Rh054_02565 | >>> | 33 | 447735 | 447834 | >>> | 99 | 53 | <<< | Rh054_02570 |
| 53 | Rh054_02595 | >>> | 1 | 452760 | 452953 | >>> | 193 | 119 | <<< | Rh054_02600 |
| 54 | Rh054_02620 | >>> | 6 | 457137 | 457308 | >>> | 171 | 85 | >>> | Rh054_02625 |
| 55 | Rh054_02695 | <<< | 78 | 471046 | 471255 | <<< | 209 | 0 | <<< | Rh054_02700 |
| 56 | Rh054_02755 | >>> | $1$ | 482294 | 482439 | >>> | 145 | 107 | <<< | Rh054_02760 |
| 57 | Rh054_02850 | >>> | 84 | 498208 | 498333 | >>> | 125 | 493 | >>> | Rh054_02855 |
| 58 | Rh054_02900 | $\ggg$ | 1 | 506498 | 506596 | $\ggg$ | 98 | 39 | $\ggg$ | Rh054_02905 |
| 59 | Rh054_02925 | >>> | 21 | 512178 | 512323 | >>> | 145 | 51 | <<< | Rh054_02930 |
| 60 | Rh054_02925 | >>> | 104 | 512261 | 512366 | <<< | 105 | 8 | <<< | Rh054_02930 |
| 61 | Rh054_02970 | >>> | 265 | 517473 | 517789 | <<< | 316 | 22 | <<< | Rh054_02975 |
| 62 | Rh054_02970 | >> | 274 | 517482 | 517675 | >>> | 193 | 136 | <<< | Rh054_02975 |
| 63 | Rh054_02970 | >>> | 274 | 517482 | 517645 | >>> | 163 | 166 | <<< | Rh054_02975 |
| 64 | Rh054_03010 | >>> | 9 | 526718 | 526945 | >>> | 227 | -25 | >>> | Rh054_03015 |
| 65 | Rh054_03165 | >>> | $41$ | 557249 | 557298 | >>> | 49 | 99 | >>> | Rh054_03170 |
| 66 | Rh054_03165 | >> | 41 | 557249 | 557342 | >>> | 93 | 55 | >>> | Rh054_03170 |
| 67 | Rh054_03205 | >>> | 1 | 564231 | 564330 | >>> | 99 | 36 | <<< | Rh054_03210 |
| 68 | Rh054_03295 | >> | $1$ | 578572 | 578672 | >>> | 100 | $58$ | >>> | Rh054_03300 |
| 69 | Rh054_03305 | >>> | $102$ | 581973 | 582083 | >>> | 110 | $311$ | <<< | Rh054_03310 |
| 70 | Rh054_03310 | <<< | 196 | 582750 | 582797 | <<< | 47 | 158 | <<< | Rh054_03315 |
| 71 | Rh054 03395 | $\lll$ | 77 | 594867 | 594953 | <<< | 86 | 0 | <<< | Rh054_03400 |
| 72 | Rh054_03406 | <<< | 213 | 598584 | 598702 | <<< | 118 | 0 | <<< | Rh054_03407 |
| 73 | Rh054_03435 | >>> | $478$ | 601861 | 601996 | >>> | 135 | $318$ | <<< | Rh054_03436 |
| 74 | Rh054_03436 | <<< | 49 | 603402 | 603436 | >>> | 34 | 95 | <<< | Rh054_03450 |
| 75 | Rh054 03436 | $\lll$ | 95 | 603448 | 603531 | <<< | 83 | 0 | <<< | Rh054_03450 |
| 76 | Rh054_03436 | <<< | 49 | 603402 | 603518 | >>> | 116 | 13 | <<< | Rh054_03450 |



| $\stackrel{\rightharpoonup}{\mathrm{a}}$ | 103 | Rh054_04950 | >>> | 18 | 854741 | 854894 | >>> | 153 | 31 | >>> | Rh054_04955 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 104 | Rh054_05055 | >>> | 281 | 876271 | 876568 | >>> | 297 | 46 | <<< | Rh054_05060 |
|  | 105 | Rh054_05090 | <<< | 38 | 881848 | 881985 | <<< | 137 | 0 | <<< | Rh054_05095 |
|  | 106 | Rh054_05150 | >>> | 250 | 888475 | 888635 | >>> | 160 | 3 | <<< | Rh054_05155 |
|  | 107 | Rh054_05160 | >>> | 5 | 890467 | 890643 | <<< | 176 | 10 | <<< | Rh054_05165 |
|  | 108 | Rh054_05160 | >>> | 1 | 890463 | 890531 | >>> | 68 | 122 | <<< | Rh054_05165 |
|  | 109 | Rh054_05240 | >>> | 1 | 906049 | 906344 | >>> | 295 | 33 | <<< | Rh054_05245 |
|  | 110 | Rh054_05275 | >>> | 12 | 915748 | 915815 | >>> | 67 | 117 | <<< | Rh054_05280 |
|  | 111 | Rh054_05275 | >>> | 12 | 915748 | 915834 | >>> | 86 | 98 | <<< | Rh054_05280 |
|  | 112 | Rh054_05290 | >>> | 12 | 917973 | 918080 | >>> | 107 | 178 | >>> | Rh054_05295 |
|  | 113 | Rh054_05290 | >>> | 12 | 917973 | 918233 | >>> | 260 | 25 | >>> | Rh054_05295 |
|  | 114 | Rh054_05315 | <<< | 545 | 922302 | 922683 | <<< | 381 | 220 | <<< | Rh054_05320 |
|  | 115 | Rh054_05325 | <<< | 1172 | 926034 | 926196 | <<< | 162 | 561 | <<< | Rh054_05345 |
|  | 116 | Rh054_05375 | >>> | 5 | 932159 | 932504 | >>> | 345 | 443 | <<< | Rh054_05390 |
|  | 117 | Rh054_05395 | >>> | 932 | 934570 | 934843 | >>> | 273 | 231 | >>> | Rh054_05400 |
|  | 118 | Rh054_05400 | >>> | 663 | 935960 | 936280 | <<< | 320 | 312 | <<< | Rh054_t07526 |
|  | 119 | Rh054_05400 | >>> | 605 | 935902 | 936085 | >>> | 183 | 507 | <<< | Rh054_t07526 |
|  | 120 | Rh054_05605 | >>> | 215 | 959075 | 959166 | <<< | 91 | 42 | <<< | Rh054_05610 |
|  | 121 | Rh054_05635 | <<< | 33 | 965890 | 966003 | <<< | 113 | 6 | <<< | Rh054_05640 |
|  | 122 | Rh054_05765 | >>> | 37 | 983662 | 983805 | >>> | 143 | 1407 | <<< | Rh054_05785 |
|  | 123 | Rh054_05765 | >>> | 140 | 983765 | 983881 | <<< | 116 | 1331 | <<< | Rh054_05785 |
|  | 124 | Rh054_05765 | >>> | 213 | 983838 | 983881 | <<< | 43 | 1331 | <<< | Rh054_05785 |
|  | 125 | Rh054_05820 | >>> | -4 | 990973 | 991107 | <<< | 134 | 6 | <<< | Rh054_05825 |
|  | 126 | Rh054_05910 | >>> | 128 | 1005830 | 1006091 | >>> | 261 | -49 | <<< | Rh054_05915 |
|  | 127 | Rh054 05977 | <<< | 330 | 1023376 | 1023443 | <<< | 67 | 0 | <<< | Rh054 06005 |
|  | 128 | Rh054_05977 | <<< | 235 | 1023281 | 1023426 | >>> | 145 | 17 | <<< | Rh054_06005 |


| $\underset{y}{u}$ | 129 | Rh054_06005 | <<< | 46 | 1028443 | 1028624 | <<< | 181 | 187 | <<< | Rh054_06010 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 130 | Rh054_06035 | >>> | 1 | 1033129 | 1033287 | >>> | 158 | -41 | <<< | Rh054_06040 |
|  | 131 | Rh054_06245 | >>> | 56 | 1064614 | 1064739 | <<< | 125 | 14 | <<< | Rh054_06250 |
|  | 132 | Rh054_06475 | >>> | 125 | 1099660 | 1099747 | >>> | 87 | 70 | >>> | Rh054_06480 |
|  | 133 | Rh054_06510 | <<< | 118 | 1105420 | 1105525 | <<< | 105 | 129 | <<< | Rh054_06515 |
|  | 134 | Rh054_06555 | >>> | 1 | 1113047 | 1113147 | >>> | 100 | 60 | >>> | Rh054_06560 |
|  | 135 | Rh054_06655 | >> | 1 | 1141123 | 1141232 | >>> | 109 | -12 | >>> | Rh054_06660 |
|  | 136 | Rh054_06700 | <<< | 57 | 1149749 | 1149812 | <<< | 63 | 0 | <<< | Rh054_06705 |
|  | 137 | Rh054_06745 | <<< | 64 | 1162121 | 1162212 | <<< | 91 | 1222 | <<< | Rh054_06750 |
|  | 138 | Rh054_06830 | >> | 106 | 1174015 | 1174110 | >>> | 95 | 1067 | <<< | Rh054 06845 |
|  | 139 | Rh054_06830 | >>> | 106 | 1174015 | 1174067 | >>> | 52 | 1110 | <<< | Rh054_06845 |
|  | 140 | Rh054_06830 | >>> | 96 | 1174005 | 1174442 | <<< | 437 | 735 | <<< | Rh054_06845 |
|  | 141 | Rh054_06960 | >>> | 40 | 1198462 | 1198595 | >>> | 133 | 223 | <<< | Rh054_06965 |
|  | 142 | Rh054_06960 | >> | 40 | 1198462 | 1198559 | >>> | 97 | 259 | <<< | Rh054_06965 |
|  | 143 | Rh054_06960 | $\ggg$ | 40 | 1198462 | 1198805 | >>> | 343 | 13 | <<< | Rh054_06965 |
|  | 144 | Rh054_06960 | >> | 331 | 1198753 | 1198818 | <<< | 65 | 0 | <<< | Rh054_06965 |
|  | 145 | Rh054_07075 | >>> | 62 | 1216981 | 1217142 | >>> | 161 | 1392 | >>> | Rh054_07090 |
|  | 146 | Rh054_07175 | <<< | 157 | 1234390 | 1234466 | <<< | 76 | 1 | <<< | Rh054_07180 |
|  | 147 | Rh054_07450 | >> | 1 | 1274145 | 1274215 | >>> | 70 | 1769 | <<< | Rh054_07465 |
|  | 148 | Rh054_07450 | >> | 1 | 1274145 | 1274197 | >>> | 52 | 1787 | <<< | Rh054_07465 |
|  | 149 | Rh054_07450 | >> | 390 | 1274534 | 1274889 | >>> | 355 | 1095 | <<< | Rh054_07465 |
|  | 150 | Rh054_07450 | >> | 1265 | 1275409 | 1275629 | <<< | 220 | 355 | <<< | Rh054_07465 |
|  | 151 | Rh054_07070 | >> | 137 | 1215633 | 1215673 | $\lll$ | 40 | 0 | >>> | Rh054_07075 |
|  | 152 | Rh054_00755 | >> | 47 | 129967 | 130061 | <<< | 94 | 14 | >>> | Rh054_00760 |
|  | 153 | Rh054_00830 | >> | 1 | 139818 | 139910 | >>> | 92 | 23 | >>> | Rh054_00835 |
|  | 154 | Rh054_01095 | >>> | 99 | 199722 | 199769 | <<< | 47 | 95 | <<< | Rh054_01100 |


| 155 | Rh054_03005 | $\ggg$ | 87 | 525351 | 525394 | $\lll$ | 43 | 33 | $\ggg$ | Rh054_03010 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 157 | Rh054_t07508 | $\ggg$ | -38 | 698183 | 698436 | $\lll$ | 253 | 185 | $\ggg$ | Rh054_04000 |
| 158 | Rh054_04475 | $\lll$ | 16 | 777708 | 777814 | $\lll$ | 106 | 61 | $\lll$ | Rh054_04480 |
| 159 | Rh054_04995 | $\ggg$ | 2 | 863221 | 863634 | $\ggg$ | 413 | -41 | $\ggg$ | Rh054_05010 |

Rickettsia japonica SIPHT Predictions

| $\vec{U}_{0}$ | sRNAName | UpGENEnumber | Direction | Distance | sRNAstart | sRNAend | Direction | Length | Distance | DnGENEdir. | DnGENEnumber |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | RJP_0009 | <<< | 3473 | 12368 | 12450 | >>> | 82 | 141 | <<< | RJP_0010 |
|  | 2 | RJP_0071 | >>> | 585 | 98307 | 98494 | >>> | 187 | 432 | <<< | RJP_0072 |
|  | 3 | RJP_0291 | <<< | 430 | 372082 | 372344 | >>> | 262 | 754 | <<< | RJP_0292 |
|  | 4 | RJP_0349 | <<< | 1 | 450600 | 450657 | >>> | 57 | 49 | <<< | RJP_0350 |
|  | 5 | RJP_0413 | >> | 402 | 528332 | 528537 | >> | 205 | 766 | >> | RJP_0414 |
|  | 6 | RJP_0458 | <<< | 16 | 589113 | 589173 | >>> | 60 | 138 | >>> | RJP_0459 |
|  | 7 | RJP_0721 | <<< | 751 | 925236 | 925432 | >> | 196 | 569 | >>> | RJP_0722 |
|  | 8 | RJP_0728 | <<< | 15 | 933403 | 933521 | >>> | 118 | 110 | <<< | RJP_0729 |
|  | 9 | RJP_0818 | <<< | 1230 | 1039414 | 1039494 | >>> | 80 | 183 | <<< | RJP_0819 |
|  | 10 | RJP_0994 | >> | 242 | 1261706 | 1261784 | <<< | 78 | 27 | >>> | RJP_0995 |
|  | 11 | RJP_0986 | >> | -24 | 1255326 | 1255561 | <<< | 235 | 133 | <<< | RJP_0987 |
|  | 12 | RJP_0616 | >> | 1628 | 789792 | 789942 | <<< | 150 | 1576 | >>> | RJP_0617 |
|  | 13 | RJP_0561 | >>> | 688 | 717968 | 718286 | <<< | 318 | 3105 | >>> | RJP_0562 |
|  | 14 | RJP_0524 | >> | 1099 | 680216 | 680304 | <<< | 88 | 542 | >> | RJP_0525 |
|  | 15 | RJP_0517 | <<< | 583 | 671652 | 671740 | <<< | 88 | 247 | >>> | RJP_0519 |
|  | 16 | RJP_0452 | >> | 491 | 583867 | 584288 | <<< | 421 | 143 | <<< | RJP_0453 |
|  | 17 | RJP_0443 | >>> | 1860 | 566944 | 567170 | <<< | 226 | 3785 | <<< | RJP_0444 |
|  | 18 | RJP_0328 | >>> | 1124 | 422715 | 422761 | <<< | 46 | 2331 | <<< | RJP_0329 |
|  | 19 | RJP_0295 | <<< | 1918 | 378439 | 378503 | <<< | 64 | 1105 | >>> | RJP_0296 |
|  | 20 | RJP_0180 | >> | 732 | 236330 | 236561 | <<< | 231 | 685 | <<< | RJP_0181 |
|  | 21 | RJP_0107 | >> | 84 | 137769 | 137874 | <<< | 105 | 25 | >>> | RJP_0108 |
|  | 22 | RJP_0015 | >>> | 1 | 26094 | 26209 | >>> | 115 | -4 | >>> | RJP_0016 |
|  | 23 | RJP 0022 | <<< | 18 | 31971 | 32061 | <<< | 90 | 0 | <<< | RJP 0023 |
|  | 24 | RJP_0031 | >>> | 55 | 45114 | 45451 | <<< | 337 | 3223 | <<< | RJP_0032 |



| $\stackrel{\rightharpoonup}{\imath}$ | 51 | RJP_0199 | >>> | 25 | 258489 | 258623 | <<< | 134 | 358 | <<< | RJP_0200 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 52 | RJP_0199 | >>> | 217 | 258681 | 258764 | >>> | 83 | 217 | <<< | RJP_0200 |
|  | 53 | RJP_0199 | >>> | 242 | 258706 | 258783 | <<< | 77 | 198 | <<< | RJP_0200 |
|  | 54 | RJP_0201 | >>> | 115 | 260546 | 260597 | >>> | 51 | 1673 | <<< | RJP_0202 |
|  | 55 | RJP_0201 | >>> | 108 | 260539 | 260641 | <<< | 102 | 1629 | <<< | RJP_0202 |
|  | 56 | RJP_0202 | <<< | 2852 | 267541 | 267585 | <<< | 44 | 2268 | <<< | RJP_0203 |
|  | 57 | RJP_0202 | <<< | 3883 | 268572 | 268855 | <<< | 283 | 998 | <<< | RJP_0203 |
|  | 58 | RJP_0236 | >>> | 2481 | 311791 | 312185 | >>> | 394 | 48 | <<< | RJP_0237 |
|  | 59 | RJP_0263 | >>> | 14 | 341702 | 341793 | >>> | 91 | 31 | >>> | RJP_0264 |
|  | 60 | RJP 0266 | >>> | 25 | 344979 | 345097 | <<< | 118 | 0 | <<< | RJP_0267 |
|  | 61 | RJP_0272 | >>> | 10 | 352167 | 352296 | >>> | 129 | 107 | >>> | RJP_0273 |
|  | 62 | RJP_0288 | >>> | 15 | 368651 | 368762 | >>> | 111 | 383 | >>> | RJP_0289 |
|  | 63 | RJP_0299 | <<< | 81 | 386870 | 386970 | <<< | 100 | 1 | <<< | RJP_0300 |
|  | 64 | RJP_0311 | >>> | 1 | 398685 | 398796 | >>> | 111 | 39 | >>> | RJP_0312 |
|  | 65 | RJP_0328 | >>> | 117 | 421708 | 421828 | >>> | 120 | 3264 | <<< | RJP_0329 |
|  | 66 | RJP_0348 | >>> | 153 | 446684 | 446739 | <<< | 55 | 2515 | <<< | RJP_0349 |
|  | 67 | RJP_0348 | >>> | 2612 | 449143 | 449253 | <<< | 110 | 1 | <<< | RJP_0349 |
|  | 68 | RJP_0348 | >>> | 2577 | 449108 | 449201 | >>> | 93 | 53 | <<< | RJP_0349 |
|  | 69 | RJP_0355 | >>> | 8 | 458506 | 458675 | >>> | 169 | 425 | >>> | RJP_0356 |
|  | 70 | RJP_0366 | <<< | 958 | 472459 | 472668 | <<< | 209 | 0 | <<< | RJP_0367 |
|  | 71 | RJP 0376 | >>> | 499 | 483709 | 483854 | >>> | 145 | 107 | <<< | RJP_0377 |
|  | 72 | RJP_0400 | >>> | 1 | 508032 | 508130 | >>> | 98 | 39 | >>> | RJP_0401 |
|  | 73 | RJP_0404 | >>> | 21 | 513696 | 513841 | >>> | 145 | 2779 | <<< | RJP_0405 |
|  | 74 | RJP_0404 | >>> | 104 | 513779 | 513894 | <<< | 115 | 2726 | <<< | RJP_0405 |
|  | 75 | RJP_0405 | <<< | 153 | 517719 | 517996 | <<< | 277 | 1033 | <<< | RJP_0406 |
|  | 76 | RJP_0413 | >>> | 9 | 527939 | 528166 | >>> | 227 | 1137 | >>> | RJP_0414 |






Rickettsia massiliae SIPHT Predictions

|  | sRNAName | UpGENEnumber | Direction | Distance | sRNAstart | sRNAend | Direction | Length | Distance | DnGENEdir. | DnGENEnumber |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | RMA_0010 | <<< | 1 | 11500 | 11924 | >>> | 424 | 104 | <<< | RMA_RNA01 |
|  | 2 | RMA_0462 | <<< | 1 | 458964 | 459021 | >>> | 57 | 49 | <<< | RMA_0463 |
|  | 3 | RMA_0608 | <<< | 1 | 599068 | 599128 | >>> | 60 | 138 | >>> | RMA_0609 |
|  | 4 | RMA_0832 | <<< | 54 | 825682 | 825799 | >>> | 117 | 1049 | <<< | RMA_0833 |
|  | 5 | RMA_1368 | >>> | 255 | 1336501 | 1336795 | >> | 294 | -24 | <<< | RMA_1369 |
|  | 6 | RMA_1108 | >>> | 85 | 1086295 | 1086449 | <<< | 154 | 23 | >>> | RMA_1109 |
|  | 7 | RMA_0955 | <<< | 108 | 952091 | 952175 | <<< | 84 | 0 | <<< | RMA_0956 |
|  | 8 | RMA_0926 | >>> | 105 | 924338 | 924435 | <<< | 97 | 22 | >>> | RMA_0927 |
|  | 9 | RMA_0683 | <<< | 582 | 680358 | 680449 | <<< | 91 | 251 | >>> | RMA_0684 |
|  | 10 | RMA_0602 | >> | 519 | 594035 | 594115 | <<< | 80 | 273 | <<< | RMA_0603 |
| の | 11 | RMA_0375 | <<< | 64 | 381876 | 382034 | <<< | 158 | 132 | <<< | RMA_0376 |
|  | 12 | RMA_0356 | <<< | 1081 | 364762 | 364836 | <<< | 74 | 1 | >>> | RMA_0357 |
|  | 13 | RMA_0304 | >>> | 565 | 310473 | 310519 | <<< | 46 | 0 | >>> | RMA_0305 |
|  | 14 | RMA_0265 | >>> | -53 | 271024 | 271257 | <<< | 233 | 4 | <<< | RMA_0266 |
|  | 15 | RMA_0009 | >> | 106 | 10563 | 10916 | <<< | 353 | 300 | <<< | RMA_0010 |
|  | 16 | RMA_0063 | >> | 116 | 55706 | 55767 | <<< | 61 | 61 | <<< | RMA_0064 |
|  | 17 | RMA_0079 | >>> | 36 | 70682 | 70765 | >> | 83 | 64 | >>> | RMA_0080 |
|  | 18 | RMA_0086 | >>> | 4 | 75990 | 76065 | >>> | 75 | 115 | <<< | RMA_0087 |
|  | 19 | RMA_0105 | >> | 1 | 96402 | 96526 | >>> | 124 | 1090 | <<< | RMA_0106 |
|  | 20 | RMA_0105 | >> | 860 | 97261 | 97539 | <<< | 278 | 77 | <<< | RMA_0106 |
|  | 21 | RMA_0110 | >> | 16 | 102059 | 102191 | >>> | 132 | 175 | <<< | RMA_0111 |
|  | 22 | RMA_0117 | >> | 76 | 108745 | 108878 | <<< | 133 | 402 | >>> | RMA_0118 |
|  | 23 | RMA_0121 | >> | 60 | 117852 | 117908 | >>> | 56 | 70 | >>> | RMA_0122 |
|  | 24 | RMA_0122 | >>> | 123 | 119032 | 119090 | <<< | 58 | 386 | >>> | RMA_0123 |





| 103 | RMA_0984 | >> | 561 | 980464 | 980561 | >> | 97 | 670 | <<< | RMA_0985 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 104 | RMA_0984 | >>> | 578 | 980481 | 980669 | <<< | 188 | 562 | <<< | RMA_0985 |
| 105 | RMA_0984 | >>> | 561 | 980464 | 980525 | >>> | 61 | 706 | <<< | RMA_0985 |
| 106 | RMA_0984 | >>> | 657 | 980560 | 980675 | >>> | 115 | 556 | <<< | RMA_0985 |
| 107 | RMA_0984 | >> | 680 | 980583 | 980669 | <<< | 86 | 562 | <<< | RMA_0985 |
| 108 | RMA_0988 | >>> | 1 | 989476 | 989554 | >>> | 78 | 171 | <<< | RMA_0989 |
| 109 | RMA_0988 | >>> | 1 | 989476 | 989573 | >>> | 97 | 152 | <<< | RMA_0989 |
| 110 | RMA_0991 | >>> | 6 | 991722 | 991905 | >>> | 183 | 26 | >>> | RMA_0992 |
| 111 | RMA_0996 | <<< | 371 | 997504 | 997765 | <<< | 261 | 326 | <<< | RMA_0997 |
| 112 | RMA 1001 | <<< | 96 | 1002361 | 1002491 | <<< | 130 | 2 | $\lll$ | RMA_1002 |
| 113 | RMA_1005 | <<< | 605 | 1004886 | 1004947 | <<< | 61 | 0 | <<< | RMA_1006 |
| 114 | RMA_1012 | >>> | 234 | 1009825 | 1009877 | >> | 52 | 190 | <<< | RMA_1013 |
| 115 | RMA_1013 | <<< | 207 | 1010605 | 1010757 | >>> | 152 | 829 | <<< | RMA_RNA27 |
| 116 | RMA_1013 | <<< | 549 | 1010947 | 1011021 | <<< | 74 | 565 | <<< | RMA_RNA27 |
| 117 | RMA_1013 | <<< | 207 | 1010605 | 1011072 | >> | 467 | 514 | <<< | RMA_RNA27 |
| 118 | RMA_1013 | <<< | 958 | 1011356 | 1011394 | >>> | 38 | 192 | <<< | RMA_RNA27 |
| 119 | RMA_1050 | >>> | 226 | 1034013 | 1034103 | <<< | 90 | 47 | <<< | RMA_1051 |
| 120 | RMA_1050 | >>> | 189 | 1033976 | 1034063 | >>> | 87 | 87 | <<< | RMA_1051 |
| 121 | RMA_1053 | <<< | 408 | 1038240 | 1038330 | <<< | 90 | 3 | <<< | RMA_1054 |
| 122 | RMA_1063 | >>> | 195 | 1048214 | 1048299 | >>> | 85 | 75 | >>> | RMA_1064 |
| 123 | RMA_1083 | >> | 5 | 1066099 | 1066252 | <<< | 153 | 0 | <<< | RMA_1084 |
| 124 | RMA_1083 | >> | 10 | 1066104 | 1066159 | >> | 55 | 93 | <<< | RMA_1084 |
| 125 | RMA_1103 | >> | 69 | 1080638 | 1080760 | >>> | 122 | 89 | <<< | RMA_1104 |
| 126 | RMA_1108 | >> | 7 | 1086217 | 1086306 | >> | 89 | 166 | >>> | RMA_1109 |
| 127 | RMA_1108 | >> | 7 | 1086217 | 1086348 | >> | 131 | 124 | >>> | RMA_1109 |
| 128 | RMA_1112 | >>> | 32 | 1090736 | 1090805 | >>> | 69 | 109 | >>> | RMA_1113 |


| 129 | RMA_1117 | <<< | 156 | 1098472 | 1098563 | >>> | 91 | 14 | <<< | RMA_1118 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 130 | RMA_1117 | <<< | 193 | 1098509 | 1098577 | <<< | 68 | 0 | <<< | RMA_1118 |
| 131 | RMA_1118 | <<< | 42 | 1103588 | 1103771 | <<< | 183 | 78 | <<< | RMA_1119 |
| 132 | RMA_1166 | >>> | 57 | 1138258 | 1138398 | <<< | 140 | 326 | <<< | RMA_1167 |
| 134 | RMA_1183 | >>> | 1 | 1150737 | 1150883 | >>> | 146 | 12 | <<< | RMA_1184 |
| 135 | RMA_1183 | >>> | 1 | 1150737 | 1150856 | >>> | 119 | 39 | <<< | RMA_1184 |
| 136 | RMA_1199 | >>> | 103 | 1167251 | 1167507 | <<< | 256 | 457 | <<< | RMA_1200 |
| 137 | RMA_1206 | >>> | 125 | 1173241 | 1173328 | >>> | 87 | 69 | >>> | RMA_1207 |
| 138 | RMA_1208 | >>> | 48 | 1176379 | 1176593 | <<< | 214 | 0 | <<< | RMA_1209 |
| 139 | RMA 1208 | >> | 1 | 1176332 | 1176635 | >> | 303 | -42 | <<< | RMA_1209 |
| 140 | RMA_1224 | >>> | 132 | 1191069 | 1191219 | <<< | 150 | 0 | >>> | RMA_1225 |
| 141 | RMA_1306 | >> | 18 | 1279233 | 1279391 | >>> | 158 | 223 | <<< | RMA_1307 |
| 143 | RMA_1306 | >> | 333 | 1279548 | 1279614 | <<< | 66 | 0 | <<< | RMA_1307 |
| 144 | RMA_1318 | <<< | 96 | 1289480 | 1289610 | <<< | 130 | 348 | <<< | RMA_1319 |
| 145 | RMA_1324 | >> | 1 | 1296233 | 1296302 | >>> | 69 | 66 | >>> | RMA_1325 |
| 146 | RMA_1326 | >> | 63 | 1299736 | 1299848 | >> | 112 | 553 | >> | RMA_1327 |
| 147 | RMA_1347 | >>> | 1 | 1321955 | 1322065 | >>> | 110 | 65 | >>> | RMA_RNA37 |
| 148 | RMA_1382 | >> | 3 | 1353403 | 1353509 | >>> | 106 | 183 | >>> | RMA_1383 |
| 149 | RMA_1386 | <<< | 512 | 1357398 | 1357617 | <<< | 219 | 400 | <<< | RMA_1387 |
| 150 | RMA_1386 | <<< | 535 | 1357421 | 1357482 | >>> | 61 | 535 | <<< | RMA_1387 |
| 151 | RMA_1386 | <<< | 542 | 1357428 | 1357617 | <<< | 189 | 400 | <<< | RMA_1387 |
| 152 | RMA_0122 | >> | 37 | 118946 | 119035 | >> | 89 | 441 | >> | RMA_0123 |
| 153 | RMA_0223 | >>> | 6 | 230662 | 230915 | >>> | 253 | 122 | <<< | RMA_0224 |
| 154 | RMA_0249 | <<< | 141 | 253925 | 254051 | <<< | 126 | 814 | <<< | RMA_0250 |
| 155 | RMA_0364 | >> | 7 | 371426 | 371508 | >>> | 82 | 27 | >> | RMA_0365 |
| 156 | RMA_0545 | >>> | 87 | 536053 | 536097 | <<< | 44 | 0 | >>> | RMA_0546 |


| 157 | RMA_RNA17 | $\ggg$ | -38 | 767051 | 767299 | $\lll$ | 248 | 47 | $\ggg$ | RMA_0761 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 158 | RMA_0855 | $\lll$ | 7 | 853514 | 853621 | $\lll$ | 107 | 228 | $\lll$ | RMA_0856 |
| 159 | RMA_0969 | $\lll$ | 92 | 962825 | 963035 | $\ggg$ | 210 | 37 | $\lll$ | RMA_0970 |

Rickettsia peacockii SIPHT Predictions

| sRNAName | UpGENEnumber | Direction | Distance | sRNAstart | sRNAend | Direction | Length | Distance | DnGENEdir. | DnGENEnumber |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | RPR_00205 | <<< | 246 | 31463 | 31552 | >>> | 89 | 594 | >>> | RPR_00210 |
| 2 | RPR_00380 | <<< | 1068 | 69661 | 70206 | >>> | 545 | 1015 | <<< | RPR_00420 |
| 3 | RPR_02035 | <<< | 532 | 332464 | 332518 | >>> | 54 | 1110 | <<< | RPR_02050 |
| 4 | RPR_02300 | >>> | 883 | 386381 | 386643 | >>> | 262 | 754 | <<< | RPR_02325 |
| 5 | RPR_02575 | >> | 116 | 435561 | 435707 | >> | 146 | 436 | <<< | RPR_02585 |
| 6 | RPR_02850 | >>> | 2528 | 494355 | 494484 | >>> | 129 | 566 | >>> | RPR_02885 |
| 7 | RPR_04730 | >> | 3131 | 809690 | 809954 | >>> | 264 | 4685 | <<< | RPR_04800 |
| 8 | RPR_04970 | <<< | 1045 | 862212 | 862452 | >>> | 240 | 4 | <<< | RPR_04980 |
| 9 | RPR_06535 | >>> | 273 | 1097311 | 1097524 | >>> | 213 | 1255 | >> | RPR_06550 |
| 10 | RPR 07615 | >> | 233 | 1267419 | 1267497 | <<< | 78 | 27 | >>> | RPR_07620 |
| 11 | RPR_07555 | >> | -24 | 1261440 | 1261672 | <<< | 232 | 668 | <<< | RPR_07575 |
| 12 | RPR_07080 | >>> | 49 | 1183937 | 1183995 | <<< | 58 | 0 | >>> | RPR_07085 |
| 13 | RPR_06420 | >> | 238 | 1082277 | 1082339 | <<< | 62 | 1641 | >>> | RPR_06445 |
| 14 | RPR_05550 | <<< | 138 | 946667 | 946729 | <<< | 62 | 14 | >> | RPR_05555 |
| 15 | RPR_05135 | >> | 4759 | 892589 | 892765 | <<< | 176 | 369 | >>> | RPR_05175 |
| 16 | RPR_03760 | >>> | 1514 | 631176 | 631488 | <<< | 312 | 18 | <<< | RPR_03775 |
| 17 | RPR_03560 | >>> | 110 | 599030 | 599127 | <<< | 97 | 36 | >>> | RPR_03565 |
| 18 | RPR_03380 | >>> | 171 | 569469 | 569699 | <<< | 230 | 117 | >>> | RPR_03390 |
| 19 | RPR_02850 | >> | 2062 | 493889 | 494356 | <<< | 467 | 694 | >>> | RPR_02885 |
| 20 | RPR_02820 | >>> | 84 | 474852 | 474957 | <<< | 105 | 25 | >> | RPR_02825 |
| 21 | RPR 02725 | >> | 522 | 465750 | 466222 | <<< | 472 | 244 | >> | RPR 02750 |
| 22 | RPR_02285 | >>> | 440 | 384646 | 384763 | <<< | 117 | 230 | >>> | RPR_02300 |
| 23 | RPR_00350 | <<< | 388 | 64629 | 65098 | <<< | 469 | 2 | <<< | RPR_00365 |
| 24 | RPR_00060 | <<< | 512 | 13394 | 13761 | <<< | 367 | 152 | <<< | RPR_00090 |



| 51 | RPR_01290 | >>> | 2044 | 214105 | 214173 | <<< | 68 | 0 | <<< | RPR_01315 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 52 | RPR_01345 | >>> | 1 | 223851 | 224009 | >>> | 158 | -41 | <<< | RPR_01350 |
| 53 | RPR_01475 | >>> | 1 | 240651 | 240786 | >>> | 135 | -11 | >>> | RPR_01480 |
| 54 | RPR_01735 | >>> | 72 | 279802 | 279879 | >>> | 77 | 2894 | <<< | RPR_01775 |
| 55 | RPR_01735 | >>> | 88 | 279818 | 280162 | <<< | 344 | 2611 | <<< | RPR_01775 |
| 56 | RPR_01735 | >>> | 72 | 279802 | 279922 | >>> | 120 | 2851 | <<< | RPR_01775 |
| 57 | RPR_01855 | >> | 58 | 297983 | 298130 | <<< | 147 | 1255 | <<< | RPR_01870 |
| 58 | RPR_01855 | >>> | 1 | 297926 | 298023 | >>> | 97 | 1362 | <<< | RPR_01870 |
| 59 | RPR_01985 | >>> | 97 | 323761 | 323846 | <<< | 85 | 2171 | <<< | RPR_02005 |
| 60 | RPR_01985 | >>> | 6 | 323670 | 323801 | >>> | 131 | 2216 | <<< | RPR_02005 |
| 61 | RPR_02010 | >>> | 156 | 327707 | 327893 | <<< | 186 | 0 | <<< | RPR_02015 |
| 62 | RPR_02010 | >>> | 1 | 327552 | 327765 | >>> | 213 | 128 | <<< | RPR_02015 |
| 63 | RPR_02010 | >>> | 1 | 327552 | 327894 | >>> | 342 | -1 | <<< | RPR_02015 |
| 64 | RPR_02075 | >> | 15 | 341277 | 341422 | >>> | 145 | 15 | >>> | RPR_02080 |
| 65 | RPR_02085 | >> | 1 | 345853 | 345972 | >> | 119 | 43 | >> | RPR_02090 |
| 66 | RPR_02145 | >>> | 12 | 355975 | 356082 | >>> | 107 | 123 | >> | RPR_02150 |
| 67 | RPR_02160 | >> | 25 | 359366 | 359482 | <<< | 116 | 0 | <<< | RPR_02165 |
| 68 | RPR_02190 | >>> | 39 | 366582 | 366682 | >> | 100 | 152 | >> | RPR_02195 |
| 69 | RPR_02245 | >> | 19 | 376835 | 376967 | >> | 132 | 25 | >> | RPR_02250 |
| 70 | RPR_02280 | >> | 45 | 382993 | 383113 | >> | 120 | 336 | >> | RPR_02285 |
| 71 | RPR 02300 | >> | 1557 | 387055 | 387124 | >> | 69 | 273 | <<< | RPR 02325 |
| 72 | RPR_02350 | >> | 116 | 394856 | 394917 | <<< | 61 | 62 | <<< | RPR_02355 |
| 73 | RPR_02430 | >> | 42 | 409691 | 409774 | >> | 83 | 65 | >> | RPR_02435 |
| 74 | RPR_02535 | >> | 1700 | 428485 | 428616 | >> | 131 | -10 | <<< | RPR_02555 |
| 75 | RPR_02575 | >> | 340 | 435785 | 436053 | <<< | 268 | 90 | <<< | RPR_02585 |
| 76 | RPR_02605 | >> | 5 | 440581 | 440740 | >> | 159 | 152 | <<< | RPR_02610 |





| 156 | RPR_06445 | >> | 37 | 1084267 | 1084410 | >> | 143 | 2501 | <<< | RPR_06485 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 157 | RPR_06445 | >>> | 140 | 1084370 | 1084487 | <<< | 117 | 2424 | <<< | RPR_06485 |
| 158 | RPR_06500 | >>> | -4 | 1091693 | 1091846 | <<< | 153 | 0 | <<< | RPR_06505 |
| 159 | RPR_06605 | >>> | 38 | 1105868 | 1105989 | >>> | 121 | 198 | <<< | RPR_06610 |
| 160 | RPR_06730 | >> | 1391 | 1132679 | 1132827 | >> | 148 | 3278 | <<< | RPR_06790 |
| 161 | RPR_06730 | >>> | 2589 | 1133877 | 1134151 | >>> | 274 | 1954 | <<< | RPR_06790 |
| 162 | RPR_06795 | >>> | 104 | 1138568 | 1138654 | <<< | 86 | 4 | <<< | RPR_06800 |
| 163 | RPR_06945 | >>> | 2 | 1161873 | 1161947 | >>> | 74 | 112 | >>> | RPR_06950 |
| 164 | RPR_07030 | <<< | 102 | 1175936 | 1176056 | <<< | 120 | 34 | <<< | RPR_07035 |
| 165 | RPR 07085 | >> | 76 | 1185416 | 1185494 | <<< | 78 | 1311 | <<< | RPR 07100 |
| 166 | RPR_07085 | >>> | 7 | 1185347 | 1185474 | >>> | 127 | 1331 | <<< | RPR_07100 |
| 167 | RPR_07180 | >>> | 1563 | 1203446 | 1203543 | >>> | 97 | 683 | <<< | RPR_07220 |
| 168 | RPR_07180 | >>> | 1563 | 1203446 | 1203507 | >>> | 61 | 719 | <<< | RPR_07220 |
| 169 | RPR_07180 | >> | 1580 | 1203463 | 1203652 | <<< | 189 | 574 | <<< | RPR_07220 |
| 170 | RPR_07180 | >>> | 1563 | 1203446 | 1203667 | >>> | 221 | 559 | <<< | RPR_07220 |
| 171 | RPR_07180 | >> | 1676 | 1203559 | 1203652 | <<< | 93 | 574 | <<< | RPR_07220 |
| 172 | RPR_07235 | >>> | 1 | 1211854 | 1211932 | >>> | 78 | 164 | <<< | RPR_07240 |
| 173 | RPR_07235 | >> | 1 | 1211854 | 1211951 | >> | 97 | 145 | <<< | RPR_07240 |
| 174 | RPR_07250 | >> | 12 | 1214111 | 1214218 | >>> | 107 | 178 | >>> | RPR_07255 |
| 175 | RPR_07250 | >>> | 12 | 1214111 | 1214371 | >>> | 260 | 25 | >>> | RPR_07255 |
| 176 | RPR_07260 | >> | 282 | 1216754 | 1216890 | <<< | 136 | 1367 | <<< | RPR 07270 |
| 177 | RPR_07260 | >>> | 1181 | 1217653 | 1218036 | <<< | 383 | 221 | <<< | RPR_07270 |
| 178 | RPR_07275 | <<< | 1690 | 1221907 | 1222038 | <<< | 131 | 292 | <<< | RPR_07305 |
| 179 | RPR_07305 | <<< | 633 | 1223360 | 1223421 | <<< | 61 | 0 | <<< | RPR_07315 |
| 180 | RPR_07330 | >> | 776 | 1227561 | 1227899 | <<< | 338 | 401 | <<< | RPR_07360 |
| 181 | RPR_07460 | <<< | 1401 | 1244665 | 1244741 | <<< | 76 | 1 | <<< | RPR_07480 |


| 182 | RPR_t07838 | $\lll$ | 91 | 1276490 | 1276582 | $\lll$ | 92 | 0 | $\lll$ | RPR_07690 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 183 | RPR_07695 | $\lll$ | 126 | 1277232 | 1277325 | $\lll$ | 93 | 0 | $\lll$ | RPR_07700 |
| 184 | RPR_07700 | $\lll$ | 969 | 1280128 | 1280633 | $\lll$ | 505 | 819 | $\lll$ | RPR_07730 |
| 185 | RPR_07700 | $\lll$ | 2085 | 1281244 | 1281279 | $\lll$ | 35 | 173 | $\lll$ | RPR_07730 |
| 186 | RPR_05895 | $\lll$ | 35 | 1006857 | 1006899 | $\ggg$ | 42 | 86 | $\lll$ | RPR_05900 |
| 187 | RPR_06730 | $\ggg$ | 212 | 1131500 | 1131550 | $\ggg$ | 50 | 4555 | $\lll$ | RPR_06790 |
| 188 | RPR_00180 | $\lll$ | 139 | 29012 | 29089 | $\lll$ | 77 | 594 | $\ggg$ | RPR_00200 |
| 189 | RPR_02280 | $\ggg$ | 45 | 382993 | 383076 | $\ggg$ | 83 | 373 | $\ggg$ | RPR_02285 |
| 190 | RPR_02825 | $\ggg$ | 1 | 477402 | 477494 | $\ggg$ | 92 | 23 | $\ggg$ | RPR_02830 |
| 191 | RPR_07796 | $\ggg$ | -38 | 504030 | 504270 | $\lll$ | 240 | 130 | $\ggg$ | RPR_02945 |
| 192 | RPR_04980 | $\lll$ | 1 | 863703 | 863742 | $\ggg$ | 39 | 137 | $\lll$ | RPR_04985 |

Rickettsia peacockii Plasmid pRPR SIPHT Predictions

| sRNAName | UpGENEnumber | Direction | Distance | sRNAstart | sRNAend | Direction | Length | Distance | DnGENEdir. | DnGENEnumber |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | RPR_p11 | $\ggg$ | 470 | 14750 | 14809 | $\lll$ | 59 | 1003 | $\ggg$ | RPR_p12 |
| 2 | RPR_p11 | $\ggg$ | 309 | 14589 | 14809 | $\lll$ | 220 | 1003 | $\ggg$ | RPR_p12 |

## Rickettsia rickettsii strain Iowa SIPHT Predictions

182

| sRNAName | UpGENEnumber | Direction | Distance | sRNAstart | sRNAend | Direction | Length | Distance | DnGENEdir. | DnGENEnumber |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | RrIowa_0535 | <<< | 1 | 445800 | 445857 | >>> | 57 | 49 | <<< | RrIowa_0536 |
| 2 | RrIowa_0707 | <<< | 12 | 585447 | 585507 | >>> | 60 | 138 | >>> | RrIowa_0708 |
| 3 | RrIowa_0757 | >>> | 1 | 623870 | 623962 | >> | 92 | 22 | >>> | RrIowa_0758 |
| 4 | RrIowa_0902 | <<< | 82 | 733449 | 733911 | >>> | 462 | -13 | <<< | RrIowa_0904 |
| 5 | RrIowa_1212 | <<< | 1 | 954409 | 954781 | >>> | 372 | 128 | <<< | RrIowa_1213 |
| 7 | RrIowa_1502 | >>> | 187 | 1189803 | 1190018 | <<< | 215 | 78 | <<< | RrIowa_1503 |
| 8 | RrIowa_1310 | <<< | 55 | 1033410 | 1033452 | <<< | 42 | 257 | <<< | RrIowa_1312 |
| 9 | RrIowa_1064 | >>> | 110 | 845704 | 845824 | <<< | 120 | 13 | >>> | RrIowa_1065 |
| 10 | RrIowa_0978 | >>> | 144 | 787122 | 787646 | <<< | 524 | 629 | >>> | RrIowa_0979 |
| 11 | RrIowa_0808 | <<< | 581 | 667860 | 667951 | <<< | 91 | 244 | >>> | RrIowa_0809 |
| 12 | RrIowa_0700 | >> | 514 | 580211 | 580569 | <<< | 358 | 3 | <<< | RrIowa_0701 |
| 13 | RrIowa_0177 | >>> | 84 | 134491 | 134607 | <<< | 116 | 14 | >>> | RrIowa_0178 |
| 14 | RrIowa_0079 | >>> | 116 | 55252 | 55313 | <<< | 61 | 52 | <<< | RrIowa_0080 |
| 15 | RrIowa_0097 | >> | 42 | 69858 | 69941 | >> | 83 | 65 | >>> | RrIowa_0098 |
| 16 | RrIowa_0115 | >>> | 1 | 86371 | 86575 | >>> | 204 | 117 | >>> | RrIowa_0116 |
| 17 | RrIowa_0127 | <<< | 36 | 95132 | 95408 | <<< | 276 | 78 | <<< | RrIowa_0128 |
| 18 | RrIowa_0132 | >>> | 1 | 99920 | 100083 | >>> | 163 | 151 | <<< | RrIowa_0133 |
| 19 | RrIowa_0145 | >>> | 70 | 115879 | 115947 | >> | 68 | 59 | >>> | RrIowa_0146 |
| 20 | RrIowa_0178 | >>> | 1 | 137041 | 137163 | >> | 122 | -7 | >> | RrIowa_0179 |
| 21 | RrIowa_0222 | >>> | 377 | 181042 | 181395 | >>> | 353 | 215 | >>> | RrIowa_0223 |
| 22 | RrIowa_0224 | >> | 1 | 190110 | 190509 | >>> | 399 | -1 | <<< | RrIowa_0225 |
| 23 | RrIowa_0274 | >>> | 153 | 233349 | 233404 | <<< | 55 | 205 | <<< | RrIowa_0275 |
| 24 | RrIowa_0296 | >> | 24 | 255696 | 256014 | <<< | 318 | 0 | <<< | RrIowa_0297 |
| 25 | RrIowa_0296 | >>> | 1 | 255673 | 255758 | >>> | 85 | 256 | <<< | RrIowa_0297 |






Rickettsia rickettsii strain Sheila Smith

|  | sRNAName | UpGENEnumber | Direction | Distance | sRNAstart | sRNAend | Direction | Length | Distance | DnGENEdir. | DnGENEnumber |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | A1G_00840 | >>> | 2615 | 153966 | 154095 | >>> | 129 | 92 | >>> | A1G_00865 |
|  | 2 | A1G_02535 | <<< | 1 | 445766 | 445823 | >>> | 57 | 49 | <<< | A1G_02540 |
|  | 3 | A1G_03335 | <<< | 12 | 585464 | 585524 | >>> | 60 | 138 | >>> | A1G_03340 |
|  | 4 | A1G_03580 | >>> | 1 | 623051 | 623143 | >>> | 92 | 22 | >>> | A1G_03585 |
|  | 5 | A1G_04290 | <<< | 1699 | 732781 | 733099 | >>> | 318 | -13 | <<< | A1G_04305 |
|  | 6 | A1G_05625 | <<< | 13 | 943463 | 943835 | >>> | 372 | 128 | <<< | A1G_05630 |
|  | 7 | A1G_05980 | >>> | 152 | 998087 | 998270 | >>> | 183 | -14 | >>> | A1G_05985 |
|  | 9 | A1G_07310 | >>> | -24 | 1231351 | 1231582 | <<< | 231 | 0 | <<< | A1G_07315 |
| $\infty$ | 1 | A1G_06100 | >>> | 1112 | 1021849 | 1022030 | $\lll$ | 181 | 15 | >>> | A1G_06105 |
| $\stackrel{\sim}{\square}$ | 11 | A1G_04940 | >>> | 110 | 834328 | 834448 | $\lll$ | 120 | 13 | >>> | A1G_04945 |
|  | 12 | A1G_03840 | <<< | 593 | 667011 | 667102 | $\lll$ | 91 | 244 | >>> | A1G_03845 |
|  | 13 | A1G_00810 | >>> | 84 | 134392 | 134508 | $\lll$ | 116 | 14 | >>> | A1G_00815 |
|  | 14 | A1G_00060 | >>> | 136 | 10332 | 10386 | $\lll$ | 54 | 1110 | <<< | A1G_00065 |
|  | 15 | A1G_00275 | >>> | 55 | 44569 | 44777 | $\lll$ | 208 | 126 | <<< | A1G_00280 |
|  | 16 | A1G_00380 | >>> | 116 | 55260 | 55321 | <<< | 61 | 52 | <<< | A1G_00385 |
|  | 17 | A1G_00470 | >>> | 42 | 69891 | 69974 | >>> | 83 | 65 | >>> | A1G_00475 |
|  | 18 | A1G_00560 | >>> | 1 | 86370 | 86574 | >>> | 204 | 601 | >>> | A1G_00565 |
|  | 19 | A1G_00600 | >>> | 47 | 95132 | 95408 | <<< | 276 | 78 | <<< | A1G_00605 |
|  | 20 | A1G_00625 | >>> | 1 | 99921 | 100084 | >>> | 163 | 151 | <<< | A1G_00630 |
|  | 21 | A1G_00680 | >>> | 70 | 115787 | 115855 | >>> | 68 | 59 | >>> | A1G_00685 |
|  | 22 | A1G_00815 | >>> | 1 | 136942 | 137064 | >>> | 122 | -7 | >>> | A1G_00820 |
|  | 23 | A1G_00955 | >>> | 18 | 168895 | 168996 | >>> | 101 | 33 | >>> | A1G_00960 |
|  | 24 | A1G_00985 | >>> | 1 | 173565 | 173703 | >>> | 138 | 18 | >>> | A1G_00990 |


| $\underset{\infty}{\infty}$ | 25 | A1G_01030 | >>> | 377 | 180949 | 181302 | >>> | 353 | 215 | >>> | A1G_01035 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 26 | A1G_01040 | >>> | 1 | 190017 | 190416 | >>> | 399 | -1 | <<< | A1G_01045 |
|  | 27 | A1G_01260 | >>> | 153 | 233255 | 233310 | <<< | 55 | 205 | <<< | A1G_01265 |
|  | 28 | A1G_01380 | >>> | 24 | 255611 | 255929 | <<< | 318 | 0 | <<< | A1G_01385 |
|  | 29 | A1G_01380 | >>> | 1 | 255588 | 255673 | >>> | 85 | 256 | <<< | A1G_01385 |
|  | 30 | A1G_01380 | >>> | 151 | 255738 | 255929 | <<< | 191 | 0 | <<< | A1G_01385 |
|  | 31 | A1G_01380 | >>> | 1 | 255588 | 255796 | >>> | 208 | 133 | <<< | A1G_01385 |
|  | 32 | A1G_01390 | >>> | 108 | 257572 | 257673 | <<< | 101 | 0 | <<< | A1G_01395 |
|  | 33 | A1G_01390 | >>> | 1 | 257465 | 257630 | >>> | 165 | 43 | <<< | A1G_01395 |
|  | 34 | A1G_01475 | >>> | 314 | 266893 | 266982 | >>> | 89 | 86 | <<< | A1G_01480 |
|  | 35 | A1G_01615 | <<< | 129 | 291538 | 291622 | <<< | 84 | 0 | <<< | A1G_01620 |
|  | 36 | A1G_01700 | >>> | 1428 | 308557 | 308636 | <<< | 79 | 48 | <<< | A1G_01725 |
|  | 37 | A1G_t07539 | >>> | 1 | 323675 | 323863 | >>> | 188 | 237 | >>> | A1G_01805 |
|  | 38 | A1G_01905 | >>> | 8 | 338137 | 338248 | >>> | 111 | 123 | >>> | A1G_01910 |
|  | 39 | A1G_01905 | >>> | 8 | 338137 | 338290 | >>> | 153 | 81 | >>> | A1G_01910 |
|  | 40 | A1G_01920 | >>> | 25 | 341526 | 341641 | <<< | 115 | 0 | <<< | A1G_01925 |
|  | 41 | A1G_01950 | >>> | 10 | 348712 | 348842 | >>> | 130 | 142 | >>> | A1G_01955 |
|  | 42 | A1G_02015 | >>> | 23 | 358806 | 358934 | >>> | 128 | 24 | >>> | A1G_02020 |
|  | 43 | A1G_02165 | <<< | 83 | 382989 | 383089 | <<< | 100 | 1 | <<< | A1G_02170 |
|  | 44 | A1G_02350 | >>> | 58 | 417859 | 418038 | >>> | 179 | 165 | >>> | A1G_02355 |
|  | 45 | A1G_02445 | <<< | 84 | 432758 | 432852 | <<< | 94 | 18 | <<< | A1G_02450 |
|  | 46 | A1G_02575 | >>> | 36 | 453720 | 453861 | >>> | 141 | 88 | >>> | A1G_02580 |
|  | 47 | A1G_02675 | <<< | 258 | 474253 | 474295 | <<< | 42 | 46 | <<< | A1G_02680 |
|  | 48 | A1G_02695 | >>> | 487 | 478887 | 479037 | >>> | 150 | 101 | <<< | A1G_02715 |
|  | 49 | A1G_02795 | >>> | 32 | 491028 | 491121 | >>> | 93 | 70 | <<< | A1G_02800 |
|  | 50 | A1G_02795 | >>> | 32 | 491028 | 491103 | >>> | 75 | 88 | <<< | A1G_02800 |



| $\stackrel{\rightharpoonup}{0}$ | 77 | A1G_03875 | >>> | 1466 | 673428 | 673695 | >>> | 267 | 9 | >>> | A1G_03895 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 78 | A1G_03940 | >>> | 2 | 679636 | 679762 | >>> | 126 | 31 | >>> | A1G_03945 |
|  | 79 | A1G_04040 | >>> | 63 | 693090 | 693173 | >>> | 83 | 82 | <<< | A1G_04045 |
|  | 80 | A1G_04090 | >>> | 23 | 700848 | 700907 | >>> | 59 | 166 | >>> | A1G_04095 |
|  | 81 | A1G_04110 | <<< | 95 | 707471 | 707520 | <<< | 49 | 876 | <<< | A1G_04115 |
|  | 82 | A1G_04280 | <<< | 4 | 730250 | 730500 | <<< | 250 | 0 | <<< | A1G_04285 |
|  | 83 | A1G_04450 | >>> | 564 | 753151 | 753353 | >>> | 202 | 219 | <<< | A1G_04465 |
|  | 84 | A1G_04525 | >>> | 1 | 764746 | 764865 | >>> | 119 | 38 | <<< | A1G_04530 |
|  | 85 | A1G_04525 | >>> | 1 | 764746 | 764905 | >>> | 159 | -2 | <<< | A1G_04530 |
|  | 86 | A1G_04570 | >>> | 1 | 772760 | 772828 | >>> | 68 | 51 | >>> | A1G_04575 |
|  | 87 | A1G_04625 | <<< | 54 | 783987 | 784090 | <<< | 103 | 0 | <<< | A1G_04630 |
|  | 88 | A1G_04645 | >>> | 44 | 786240 | 786396 | >>> | 156 | -35 | <<< | A1G_04650 |
|  | 89 | A1G_04720 | >>> | 111 | 796585 | 796694 | <<< | 109 | 0 | <<< | A1G_04725 |
|  | 90 | A1G_04725 | <<< | 280 | 797935 | 798015 | <<< | 80 | 317 | <<< | A1G_04730 |
|  | 91 | A1G_04745 | <<< | 44 | 802970 | 803268 | <<< | 298 | 0 | <<< | A1G_04750 |
|  | 92 | A1G_04840 | <<< | 227 | 814750 | 815031 | <<< | 281 | 0 | <<< | A1G_t07567 |
|  | 93 | A1G_t07571 | >>> | 1 | 831509 | 831604 | >>> | 95 | 17 | <<< | A1G_04925 |
|  | 94 | A1G_05030 | <<< | 65 | 849602 | 849724 | <<< | 122 | 19 | <<< | A1G_05035 |
|  | 95 | A1G_05160 | >>> | 1 | 869413 | 869761 | >>> | 348 | 15 | <<< | A1G_05165 |
|  | 96 | A1G_05165 | <<< | 216 | 871844 | 872014 | <<< | 170 | 6 | <<< | A1G_05170 |
|  | 97 | A1G_05250 | >>> | 459 | 888479 | 888578 | >>> | 99 | 150 | >>> | A1G_05255 |
|  | 98 | A1G_05250 | >>> | 459 | 888479 | 888540 | >>> | 61 | 188 | >>> | A1G_05255 |
|  | 99 | A1G_05250 | >>> | 459 | 888479 | 888698 | >>> | 219 | 30 | >>> | A1G_05255 |
|  | 10 | A1G_05280 | >>> | 13 | 896883 | 896949 | >>> | 66 | 164 | <<< | A1G_05285 |
|  | 101 | A1G_05300 | >>> | 3 | 899107 | 899223 | >>> | 116 | 178 | >>> | A1G_05305 |
|  | 102 | A1G_05300 | >>> | 3 | 899107 | 899376 | >>> | 269 | 25 | >>> | A1G_05305 |


| $\stackrel{\odot}{\odot}$ | 103 | A1G_05315 | <<< | 699 | 902684 | 903041 | <<< | 357 | 220 | <<< | A1G_05320 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 104 | A1G_05385 | >>> | 131 | 912537 | 912661 | >>> | 124 | 432 | <<< | A1G_05400 |
|  | 105 | A1G_05420 | <<< | 402 | 916778 | 916916 | <<< | 138 | 553 | <<< | A1G_t07573 |
|  | 106 | A1G_05420 | <<< | 466 | 916842 | 916916 | <<< | 74 | 553 | <<< | A1G_t07573 |
|  | 107 | A1G_05615 | <<< | 91 | 940545 | 940755 | <<< | 210 | 45 | <<< | A1G_05620 |
|  | 108 | A1G_05635 | <<< | 33 | 946513 | 946626 | <<< | 113 | 5 | <<< | A1G_05640 |
|  | 109 | A1G_05765 | >>> | 24 | 963029 | 963185 | >>> | 156 | 264 | >>> | A1G_05775 |
|  | 110 | A1G_05820 | >>> | -4 | 970472 | 970625 | <<< | 153 | 0 | <<< | A1G_05825 |
|  | 111 | A1G_05875 | >>> | 2834 | 982324 | 982550 | >>> | 226 | 190 | >>> | A1G_05905 |
|  | 112 | A1G_05920 | >>> | 174 | 984298 | 984420 | >>> | 122 | 200 | <<< | A1G_05925 |
|  | 113 | A1G_05920 | >>> | 342 | 984466 | 984612 | <<< | 146 | 8 | <<< | A1G_05925 |
|  | 114 | A1G_06015 | <<< | 1246 | 1002431 | 1002499 | <<< | 68 | 0 | <<< | A1G_06030 |
|  | 115 | A1G_06060 | >>> | 1 | 1012070 | 1012228 | >>> | 158 | -41 | <<< | A1G_06065 |
|  | 116 | A1G_06165 | >>> | 1 | 1028913 | 1029048 | >> | 135 | -11 | >> | A1G_06170 |
|  | 117 | A1G_t07583 | >>> | 1 | 1035818 | 1036168 | >>> | 350 | 314 | <<< | A1G_06210 |
|  | 118 | A1G_06265 | >>> | 57 | 1042220 | 1042345 | <<< | 125 | 127 | <<< | A1G_06270 |
|  | 119 | A1G_06375 | >>> | 1 | 1054495 | 1054615 | >>> | 120 | 38 | <<< | A1G_06380 |
|  | 120 | A1G_06510 | >>> | 123 | 1076882 | 1076969 | >>> | 87 | 70 | >>> | A1G_06515 |
|  | 121 | A1G_06540 | <<< | 118 | 1082653 | 1082692 | <<< | 39 | 193 | <<< | A1G_06545 |
|  | 122 | A1G_06735 | <<< | 57 | 1125452 | 1125515 | <<< | 63 | 0 | <<< | A1G_06740 |
|  | 123 | A1G_06780 | <<< | 67 | 1137835 | 1137921 | <<< | 86 | 0 | <<< | A1G_06785 |
|  | 124 | A1G_06880 | >>> | 117 | 1149921 | 1150003 | >> | 82 | 1060 | >> | A1G_06890 |
|  | 125 | A1G_06880 | >> | 117 | 1149921 | 1149960 | >> | 39 | 1103 | >> | A1G_06890 |
|  | 126 | A1G_07040 | >>> | 45 | 1179131 | 1179210 | >>> | 79 | 356 | <<< | A1G_07045 |
|  | 127 | A1G_07040 | >>> | 415 | 1179501 | 1179566 | <<< | 65 | 0 | <<< | A1G_07045 |
|  | 128 | A1G_t07593 | <<< | 85 | 1246358 | 1246450 | <<< | 92 | 0 | <<< | A1G_07460 |


| 129 | A1G_07480 | $\ggg$ | 1 | 1250716 | 1250932 | $\ggg$ | 216 | -27 | $\lll$ | A1G_07485 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 130 | A1G_07495 | $\ggg$ | 3 | 1253599 | 1253667 | $\ggg$ | 68 | 1161 | $\lll$ | A1G_07510 |
| 131 | A1G_00815 | $\ggg$ | 1 | 136942 | 137034 | $\ggg$ | 92 | 23 | $\ggg$ | A1G_00820 |
| 132 | A1G_01215 | $\ggg$ | 222 | 228632 | 228671 | $\ggg$ | 39 | 437 | $\lll$ | A1G_01220 |
| 133 | A1G_02050 | $\ggg$ | 45 | 364956 | 365040 | $\ggg$ | 84 | 179 | $\ggg$ | A1G_02055 |
| 134 | A1G_02990 | $\ggg$ | 87 | 522430 | 522473 | $\lll$ | 43 | 33 | $\ggg$ | A1G_02995 |
| 135 | A1G_04195 | $\lll$ | 582 | 719400 | 719655 | $\ggg$ | 255 | -38 | $\lll$ | A1G_t07559 |
| 136 | A1G_04605 | $\lll$ | 16 | 781253 | 781359 | $\lll$ | 106 | 50 | $\lll$ | A1G_04610 |

Rickettsia prowazekii strain Madrid E SIPHT Predictions

| sRNAName | UpGENEnumber | Direction | Distance | sRNAstart | sRNAend | Direction | Length | Distance | DnGENEdir. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | DnGENEnumber 1 D


| 25 | RP703 | $\ggg$ | 1648 | 881002 | 881242 | $\ggg$ | 240 | 21 | $\lll$ | RP704 |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 27 | RP723 | $\lll$ | 97 | 912290 | 912349 | $\lll$ | 59 | 214 | $\lll$ | RP724 |

Rickettsia prowazekii strain Breinl SIPHT Predictions

|  | sRNAName | UpGENEnumber | Direction | Distance | sRNAstart | sRNAend | Direction | Length | Distance | DnGENEdir. | DnGENEnumber |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | H375_4260 | >> | 434 | 534507 | 534174 | <<< | 333 | 1,932 | <<< | H375_4280 |
|  | 2 | H375_1190 | <<< | 466 | 163641 | 163556 |  | 85 | 418 | >>> | H375_1200 |
|  | 3 | H375 7520 | >>> | 101 | 915603 | 915519 | <<< | 84 | 373 | >>> | H375_t110 |
|  | 4 | H375_7430 | <<< | 63 | 902196 | 902265 | >>> | 69 | 112 | >> | H375_7440 |
|  | 5 | H375_5310 | <<< | 1,268 | 659158 | 659057 | <<< | 101 | 514 | <<< | H375_5320 |
|  | 6 | H375_5220 | <<< | 204 | 644329 | 644199 | <<< | 130 | 131 | <<<< | H375_5230 |
|  | 7 | H375_4260 | >>> | 434 | 534507 | 534174 | <<< | 333 | 1,932 | <<< | H375_4280 |
|  | 8 | H375-4230 | >>> | 210 | 530135 | 530172 | >>> | 37 | 1,514 | <<< | H375 4240 |
|  | 9 | H375_3620 | >>> | 51 | 456876 | 457001 | >>> | 125 | 48 | >>> | H375_3630 |
|  | 10 | H375_2870 | <<< | 499 | 371859 | 371506 | <<< | 353 | 354 | <<< | H375_2880 |
| $\bigcirc$ | 11 | H375_2330 | >>> | 622 | 308324 | 308042 | <<< | 282 | 391 | >>> | H375_2340 |
|  | 12 | H375_2320 | >> | 2 | 305924 | 306070 | >>> | 146 | 686 | >>> | H375_2330 |
|  | 13 | H375_2260 | <<< | 96 | 296630 | 296494 | <<< | 136 | 821 | <<< | H375_2270 |
|  | 14 | H375_1950 | >>> | 1,966 | 262900 | 262810 | <<< | 90 | 1,135 | <<< | H375_1960 |
|  | 15 | H375_1890 | <<< | 362 | 252443 | 252231 | <<< | 212 | 214 | <<< | H375_1900 |
|  | 16 | H375_1740 | >>> | 2 | 236766 | 236976 | >>> | 210 | 61 | >>> | H375_1750 |
|  | 17 | H375_1660 | <<< | 588 | 228312 | 228135 | <<< | 177 | 241 | <<< | H375_1670 |
|  | 18 | H375_t290 | <<< | 210 | 128257 | 128393 | >>> | 136 | 18 | >>> | H375_950 |
|  | 19 | H375_590 | >>> | 1,143 | 82284 | 82435 | >>> | 151 | 18 | >>> | H375_600 |
|  | 20 | H375 540 | >>> | -149 | 66876 | 67075 | >>> | 199 | 49 | >>> | H375 550 |
|  | 21 | H375_t10 | >>> | 395 | 47542 | 47692 | >>> | 150 | 1,418 | >>> | H375_410 |
|  | 22 | H375_120 | <<< | 1,100 | 10482 | 10278 | <<< | 204 | 740 | <<< | H375_130 |
|  | 23 | H375 9210 | >>> | 1,082 | 1105018 | 1104959 | <<< | 59 | 425 | >>> | H375 r20 |
|  | 24 | H375 8560 | <<< | 512 | 1039473 | 1039278 | <<< | 195 | 275 | <<< | H375 8570 |
|  | 25 | H375_8270 | >>> | 261 | 998167 | 997927 | <<< | 240 | 1,888 | <<< | H375_8280 |


| 27 | H375_7980 | $\ggg$ | 273 | 966633 | 966574 | $\lll$ | 59 | 156 | $\ggg$ | H375_7990 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Rickettsia typhi SIPHT Predictions

| sRNAName | UpGENEnumber | Direction | Distance | sRNAstart | sRNAend | Direction | Length | Distance | DnGENEdir. | DnGENEnumber |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | RT0298 | >>> | 448 | 379632 | 379747 | >>> | 115 | 1201 | >>> | RT0299 |
| 2 | RT0476 | <<< | 336 | 608966 | 609053 | >>> | 87 | 384 | >>> | RT0478 |
| 3 | RT0663 | >>> | 204 | 839741 | 840183 | >>> | 442 | 1353 | >>> | RT0664 |
| 4 | RT0757 | <<< | 285 | 961257 | 961342 | >>> | 85 | 19 | <<< | RT0758 |
| 5 | RT0563 | <<< | 229 | 729224 | 729549 | <<< | 325 | 326 | <<< | RT0564 |
| 6 | RT0038 | <<< | 920 | 50655 | 50954 | <<< | 299 | 62 | <<< | RT0039 |
| 7 | RT0118 | >>> | 1 | 153571 | 153713 | >>> | 142 | 16 | >>> | RT0119 |
| 8 | RT0213 | <<< | 1026 | 276200 | 276466 | <<< | 266 | 68 | <<< | RT0214 |
| 9 | RT0246 | <<< | 42 | 310544 | 310668 | <<< | 124 | 6 | <<< | RT0247 |
| 10 | RT0421 | <<< | 58 | 532921 | 533148 | <<< | 227 | 8 | <<< | RT0422 |
| 11 | RT0429 | >>> | 464 | 542199 | 542289 | >>> | 90 | 75 | >>> | RT0430 |
| 12 | RT0457 | >>> | 67 | 587356 | 587475 | >>> | 119 | 205 | >>> | RT0458 |
| 13 | RT0559 | >>> | 1 | 724753 | 724945 | >>> | 192 | 48 | <<< | RT0560 |
| 14 | RT0710 | <<< | 96 | 908099 | 908160 | <<< | 61 | 243 | <<< | RT0711 |
| 15 | RT0719 | >>> | 161 | 916472 | 916839 | >>> | 367 | 653 | >>> | RT0720 |

## Additional File 2. Common Target Genes.

|  | sRNA candidate name | Total number of target genes predicted by TargetRNA2 | Total number of target genes predicted by CopraRNA | Number of common targets predicted by both programs | List of target genes predicted by both programs | Protein name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 39 | 47 | 5 | H375_7250 H375_7510 H375_8730 H375_8330 H375_5250 | NADH dehydrogenase subunit G 3-oxoacyl-[acyl-carrier-protein] synthase 3 50S ribosomal protein L3 Bicyclomycin resistance protein hypothetical protein |
| $\stackrel{\rightharpoonup}{\infty}$ | 2 | 3 | 43 | 2 | $\begin{aligned} & \text { H375_8960 } \\ & \text { H375 } 1610 \end{aligned}$ | 30S ribosomal protein S13 hypothetical protein |
|  | 3 | 4 | 40 | 2 | $\begin{aligned} & \text { H375_1880 } \\ & \text { H375_1280 } \end{aligned}$ | 3'-5' exonuclease hypothetical protein |
|  | 4 | 11 | 23 | 0 |  |  |
|  | 5 | 27 | 50 | 2 | $\begin{aligned} & \text { H375_1570 } \\ & \text { H375_2460 } \end{aligned}$ | Isopentenyl-diphosphate delta-isomerase Apolipoprotein N -acyltransferase |
|  | 6 | 21 | 49 | 6 | H375_480 H375_1770 H375_6340 H375_8550 H375_390 H375_3220 | Cell division protein FtsL <br> Succinyl-CoA ligase [ADP-forming] subunit alpha-2 <br> Coproporphyrinogen-III oxidase aerobic <br> Exodeoxyribonuclease III <br> Protein translocase subunit SecA <br> Hypothetical protein |
|  | 7 | 0 | 53 | 0 |  |  |
|  | 8 | 8 | 37 | 0 |  |  |
|  | 9 | 19 | 43 | 0 |  |  |
|  | 10 | 32 | 49 | 5 | H375_5120 H375_9140 H375_4430 H375_1600 H375_230 | GTPase Era 2-acylglycerophosphoethanolamine acyltransferase 2-oxoglutarate dehydrogenase E1 component Lon protease hypothetical protein |
|  | 11 | 17 | 49 | 2 | $\begin{aligned} & \text { H375_4380 } \\ & \text { H375_3930 } \end{aligned}$ | protease DO hypothetical protein |
|  | 12 | 11 | 44 | 1 | H375_3680 | Cell division protein FtsQ |
|  | 13 | 17 | 49 | 3 | H375_6140 | 190 kDa antigen |


|  |  |  |  |  | $\begin{aligned} & \text { H375_3520 } \\ & \text { H375_6960 } \end{aligned}$ | Isocitrate dehydrogenase hypothetical protein |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 14 | 13 | 37 | 2 | H375_6840 H375_5400 | Single-stranded DNA-binding protein hypothetical protein |
|  | 15 | 25 | 50 | 5 | H375_1110 H375_3700 H375_3020 H375_9070 H375_2300 | tRNA pseudouridine synthase B UDP- N -acetylenolpyruvoylglucosamine reductase Guanosine polyphosphate pyrophosphohydrolase/synthetase Guanosine-3',5'-bis(Diphosphate) 3'-pyrophosphohydrolase hypothetical protein |
|  | 16 | 12 | 45 | 2 | $\begin{aligned} & \hline \text { H375_7470 } \\ & \text { H375_2240 } \end{aligned}$ | DNA polymerase I Holliday junction DNA helicase RuvB |
|  | 17 | 18 | 51 | 3 | H375_4200 H375_8970 H375_8730 | Chaperone protein HscA DNA-directed RNA polymerase subunit alpha 50S ribosomal protein L3 |
|  | 18 | 2 | 54 | 0 |  |  |
|  | 19 | 9 | 45 | 1 | H375_3150 | sugar phosphate isomerase |
|  | 20 | 10 | 39 | 0 |  |  |
|  | 21 | 12 | 39 | 0 |  |  |
| $\overline{6}$ | 22 | 14 | 46 | 6 | H375_1000 H375_1850 H375_4260 H375_6700 H375_3980 H375_7980 | Ribonucleoside-diphosphate reductase <br> Phosphatidate cytidylyltransferase <br> Bifunctional penicillin-binding protein 1C <br> Sua5 <br> Threonine--tRNA ligase <br> hypothetical protein |
|  | 23 | 10 | 45 | 0 |  |  |
|  | 24 | 24 | 54 | 4 | H375_7950 H375_2830 H375_3260 H375_4700 | Dephospho-CoA kinase Thioredoxin peroxidase 1 VirB10 protein hypothetical protein |
|  | 25 | 29 | 36 | 0 |  |  |
|  | 27 | 6 | 37 | 0 |  |  |

Additional File 3. List of small RNAs found within the Rickettsia prowazekii genome.

| $R p_{\text {_ }}$ SR | Approximate Start | Approximate Stop | $\begin{aligned} & \text { Size } \\ & \text { (bp) } \end{aligned}$ | Strand | Type of sRNA | Homology | Strand Orientation | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10482 | 10278 | 204 | R | Trans | TG | <l<1< | Predicted as SIPHT \#22 |
| 2 | 10774 | 11003 | 230 | F | Trans | Rp | <1>\|< | Identified by RNA-seq |
| 3 | 14215 | 13984 | 232 | R | Cis | Rp | H375_160 | Identified by RNA-seq |
| 4 | 15459 | 15203 | 257 | R | Cis | TG, TRG, SFG | H375_160 | Identified by RNA-seq |
| 5 | 19850 | 19622 | 229 | R | Trans | TG, TRG | >/<1> | Identified by RNA-seq |
| 6 | 22107 | 22298 | 192 | F | Trans | Rp | </>1> | Identified by RNA-seq |
| 7 | 24935 | 25206 | 272 | F | Cis | TG, TRG, SFG | H375_230 | Identified by RNA-seq |
| 8 | 47692 | 47542 | 150 | F | Trans | Rp | >/>1> | Predicted as SIPHT \#21 |
| 9 | 48035 | 48200 | 166 | F | Trans | Rp | >1>1> | Identified by RNA-seq |
| 10 | 48620 | 48834 | 215 | F | Trans | Rp | >1>1> | Identified by RNA-seq |
| 11 | 71739 | 72043 | 305 | F | Cis | TG, TRG, SFG | H375_570 | Identified by RNA-seq |
| 12 | 76189 | 76452 | 264 | F | Cis | AG, TG, TRG | H375_570 | Identified by RNA-seq |
| 13 | 77115 | 77335 | 221 | F | Trans | Rp | </>\|< | Identified by RNA-seq |
| 14 | 78259 | 78513 | 255 | F | Trans | Rp | <\|>|> | Identified by RNA-seq |
| 15 | 88423 | 88616 | 194 | F | Trans | Rp | >/>1< | Identified by RNA-seq |
| 16 | 100282 | 99698 | 585 | R | Cis | TG, TRG, SFG | H375_740 | Identified by RNA-seq |
| 17 | 105748 | 105486 | 263 | R | Trans | Rp | >/</> | Identified by RNA-seq |
| 18 | 116363 | 116200 | 164 | R | Cis | TG | H375_870 | Identified by RNA-seq |
| 19 | 132593 | 132781 | 189 | F | Trans | Rp | </>\|> | Identified by RNA-seq |
| 20 | 163641 | 163556 | 85 | R | Trans | AG, TG | <1<1> | Predicted as SIPHT \#2 |
| 21 | 173793 | 173974 | 182 | F | Cis | TG, TRG, SFG | H375_1300 | Identified by RNA-seq |
| 22 | 177789 | 178118 | 330 | F | Cis | TG, SFG | H375_1330 | Identified by RNA-seq |
| 23 | 185267 | 185484 | 218 | F | Cis | TG, TRG, SFG | H375_1400 | Identified by RNA-seq |
| 24 | 218432 | 218657 | 226 | F | Cis | TG, TRG, SFG | H375_1610 | Identified by RNA-seq |
| 25 | 257587 | 257856 | 270 | F | Cis | TG, TRG, SFG | H375_1930 | Identified by RNA-seq |
| 26 | 261134 | 261341 | 208 | F | Trans | Rp | >>1< | Identified by RNA-seq |
| 27 | 262322 | 262601 | 280 | F | Trans | Rp | >/>1< | Identified by RNA-seq |
| 28 | 275336 | 275043 | 294 | R | Cis | TG, TRG | H375_2050 | Identified by RNA-seq |
| 29 | 306070 | 305924 | 146 | F | Trans | Rp | >/>1> | Predicted as SIPHT \#12 |
| 30 | 308324 | 308042 | 282 | R | Trans | TG | $>1<1<$ | Predicted as SIPHT \#11 |
| 31 | 308652 | 308848 | 197 | F | Trans | Rp | >/>1< | Identified by RNA-seq |
| 32 | 309308 | 309564 | 257 | F | Cis | TG, TRG, SFG | H375_2350 | Identified by RNA-seq |
| 33 | 315408 | 315772 | 365 | F | Cis | TG, TRG, SFG | H375_2380 | Identified by RNA-seq |
| 34 | 326339 | 326637 | 299 | F | Cis | TG, TRG, SFG | H375_2470 | Identified by RNA-seq |


|  | 35 | 334531 | 334333 | 199 | R | Cis | TG, TRG, SFG | H375_2560 | Identified by RNA-seq |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 36 | 342505 | 342292 | 214 | R | Cis | TG, TRG, SFG | H375_2630 | Identified by RNA-seq |
|  | 37 | 344054 | 343930 | 125 | R | Trans | Rp | >1<1< | Identified by RNA-seq |
|  | 38 | 366166 | 366242 | 77 | F | Trans | Rp | $>1>1>$ | Identified by RNA-seq |
|  | 39 | 371859 | 371506 | 353 | R | Trans | TG | >1<1< | Predicted as SIPHT \#10 |
|  | 40 | 373780 | 373983 | 204 | F | Cis | TG, TRG, SFG | H375_2910 | Identified by RNA-seq |
|  | 41 | 378222 | 378333 | 112 | F | Cis | TG, TRG, SFG | H375_2940 | Identified by RNA-seq |
|  | 42 | 407851 | 407640 | 212 | R | Trans | Rp | >1<1< | Identified by RNA-seq |
|  | 43 | 427133 | 426907 | 227 | R | Trans | Rp | $>1<1>$ | Identified by RNA-seq |
|  | 44 | 457001 | 456876 | 125 | F | Trans | TG | $>1>1>$ | Predicted as SIPHT \#9 |
|  | 45 | 458370 | 458555 | 227 | R | Trans | TG | >1<1> | Identified by RNA-seq |
|  | 46 | 462025 | 462293 | 268 | F | Cis | TG, TRG, SFG | H375_3670 | Identified by RNA-seq |
|  | 47 | 481518 | 481833 | 316 | F | Cis | TG, TRG, SFG | H375_3890 | Identified by RNA-seq |
|  | 48 | 494600 | 494387 | 214 | R | Trans | Rp | <1<1< | Identified by RNA-seq |
|  | 49 | 504250 | 504506 | 256 | F | Trans | Rp | $>1>1>$ | Identified by RNA-seq |
|  | 50 | 514132 | 513893 | 240 | R | Trans | TG | <1<1< | Identified by RNA-seq |
|  | 51 | 531332 | 531187 | 146 | R | Trans | Rp | $>1<1<$ | Identified by RNA-seq |
|  | 52 | 535456 | 535256 | 201 | R | Trans | Rp | $>1<1<$ | Identified by RNA-seq |
|  | 53 | 558930 | 558719 | 212 | R | Trans | Rp | $>1<1<$ | Identified by RNA-seq |
| N | 54 | 644329 | 644199 | 130 | R | Trans | Rp | <1<1< | Predicted as SIPHT \#6 |
| $\bigcirc$ | 55 | 659164 | 659057 | 107 | R | Trans | Rp | <1<1< | Predicted as SIPHT \#5 |
|  | 56 | 669521 | 669772 | 252 | F | Trans | Rp | >/>1< | Identified by RNA-seq |
|  | 57 | 697106 | 696934 | 173 | R | Trans | Rp | >1<1< | Identified by RNA-seq |
|  | 58 | 812662 | 812412 | 251 | R | Trans | Rp | <1<1< | Identified by RNA-seq |
|  | 59 | 830223 | 830416 | 194 | F | Trans | Rp | $>1>1<$ | Identified by RNA-seq |
|  | 60 | 844283 | 844606 | 324 | F | Trans | Rp | $>1>1>$ | Identified by RNA-seq |
|  | 61 | 859237 | 859436 | 200 | F | Trans | Rp | >1>1> | Identified by RNA-seq |
|  | 62 | 909871 | 910281 | 411 | F | Cis | TG, TRG, SFG | H375_7470 | Identified by RNA-seq |
|  | 63 | 925625 | 925929 | 305 | F | Trans | Rp | </>\|< | Identified by RNA-seq |
|  | 64 | 958095 | 957827 | 269 | R | Trans | Rp | <1<1< | Identified by RNA-seq |
|  | 65 | 968393 | 968664 | 272 | F | Trans | Rp | $>1>1>$ | Identified by RNA-seq |
|  | 66 | 973818 | 973352 | 467 | R | Trans | TG | $>1<1>$ | Identified by RNA-seq |
|  | 67 | 998167 | 997927 | 240 | R | Trans | Rp | $>1<1<$ | Predicted as SIPHT \#25 |
|  | 68 | 1039473 | 1039278 | 195 | R | Trans | Rp | <1<1< | Predicted as SIPHT \#24 |
|  | 69 | 1046344 | 1046671 | 328 | F | Trans | Rp | $<1>1<$ | Identified by RNA-seq |
|  | 70 | 1105018 | 1104959 | 59 | F | Trans | Rp | >1>1> | Predicted as SIPHT \#23 |

${ }^{a}$ RNA sequencing data demonstrates that $R$. prowazekii strain Breinl encodes for at least 58 candidate sRNAs. Each of these candidates are listed here. The sRNA number, the approximate start location based on the start of the RNA sequencing reads, the approximate stop location based again on the RNA sequencing reads, the nucleotide size, the sRNA carrying strand, the nature of sRNA, and its to other Rickettsia species are shown. The column labeled as "Strand Orientation" refers to the orientation of the upstream gene, the trans-acting sRNA, and downstream gene. For cis-acting sRNAs, the corresponding ORF is listed in this column ( $\mathrm{F}=$ forward; $\mathrm{R}=$ reverse; $\mathrm{Rp}=R$. prowazekii only; $\mathrm{TG}=$ typhus group (both $R$. prowazekii and $R$. typhi); TRG=transitional group; $\mathrm{SFG}=$ spotted fever group; $>=$ sense strand; $<=$ anti-sense strand). Sequences may not be found in all species of a particular group.

Additional File 4. Complete list of predicted targets by TargetRNA2 and IntaRNA.
The complete list of predicted targets by TargetRNA2 and IntaRNA for $R p \_$sR17, $R p \_$sR60, and $R p \_$sR67. Only those targets with a $\mathrm{P} \leq 0.05$ were included for analysis.

## $R p \_$sR17

TargetRNA2

| Rank | Synonym | Energy | Pvalue | sRNA_start | sRNA_stop | mRNA_start | mRNA stop |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | H375_4030 | -12.25 | 0.006 | 127 | 141 | 7 | 20 |
| 2 | H375_4670 | -11.51 | 0.01 | 86 | 100 | -10 | 5 |
| 3 | H375_1770 | -10.95 | 0.014 | 76 | 92 | -79 | -62 |
| 4 | H375_1820 | -10.67 | 0.017 | 106 | 119 | -60 | -47 |
| 5 | H375_8570 | -10.25 | 0.021 | 89 | 100 | -67 | -56 |
| 6 | H375_1570 | -9.97 | 0.024 | 18 | 31 | -65 | -52 |
| 7 | H375_1330 | -9.89 | 0.025 | 138 | 146 | -80 | -72 |
| 8 | H375_4570 | -9.73 | 0.027 | 4 | 18 | -63 | -49 |
| 9 | H375_6540 | -9.43 | 0.031 | 115 | 128 | -75 | -62 |
| 10 | H375_4140 | -9.39 | 0.031 | 138 | 150 | -73 | -61 |
| 11 | H375_9000 | -9.23 | 0.034 | 34 | 48 | -3 | 11 |
| 12 | H375_5880 | -8.99 | 0.037 | 91 | 99 | -78 | -70 |
| 13 | H375_1940 | -8.95 | 0.038 | 14 | 29 | -77 | -61 |
| 14 | H375_7090 | -8.67 | 0.043 | 36 | 44 | 4 | 12 |
| 15 | H375_290 | -8.64 | 0.043 | 35 | 48 | -50 | -38 |
| 16 | H375_3060 | -8.64 | 0.043 | 112 | 128 | -49 | -32 |
| 17 | H375_5480 | -8.53 | 0.045 | 111 | 121 | -68 | -58 |
| 18 | H375_6750 | -8.49 | 0.046 | 119 | 132 | -27 | -14 |
| 19 | H375_8160 | -8.38 | 0.048 | 161 | 170 | 2 | 11 |

## IntaRNA

| p-value | fdr value | Target | Position | Position | Energy |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.000292 | 0.26862 | H375_7580 | $92--148$ | $43--86$ | -15.4219 |
| 0.00182 | 0.40004 | H375_5880 | $95--114$ | $37--54$ | -13.4649 |
| 0.001938 | 0.40004 | H375_4030 | $71--102$ | $121--154$ | -13.3933 |
| 0.0020459 | 0.40004 | H375_900 | $140--148$ | $39--47$ | -13.3313 |
| 0.0021741 | 0.40004 | H375_5240 | $7--36$ | $27--72$ | -13.2615 |
| 0.0026978 | 0.41366 | H375_5900 | $131--144$ | $4--17$ | -13.0113 |
| 0.0035863 | 0.47135 | H375_6990 | $121--148$ | $71--100$ | -12.6755 |
| 0.0048452 | 0.5572 | H375_3580 | $28--40$ | $5-17$ | -12.3134 |
| 0.0092242 | 0.85907 | H375_4740 | $136--146$ | $103--113$ | -11.5124 |
| 0.0097439 | 0.85907 | H375_4400 | $93--135$ | $55--103$ | -11.4425 |
| 0.0113355 | 0.85907 | H375_150 | $66--77$ | $102--113$ | -11.2481 |
| 0.0113645 | 0.85907 | H375_7180 | $91--103$ | $3--15$ | -11.2448 |
| 0.012139 | 0.85907 | H375_290 | $25--34$ | $6--15$ | -11.1594 |
| 0.0149482 | 0.95753 | H375_6880 | $6--24$ | $153--173$ | -10.887 |
| 0.0208462 | 0.95753 | H375_6680 | $60--83$ | $29--48$ | -10.4428 |
| 0.0222944 | 0.95753 | H375_1740 | $17--56$ | $13--61$ | -10.3517 |
| 0.0224259 | 0.95753 | H375_4750 | $99--107$ | $5--13$ | -10.3437 |


| 0.0225713 | 0.95753 | H375_8450 | $120--130$ | $5--15$ | -10.3349 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0241892 | 0.95753 | H375_5420 | $5--13$ | $4--12$ | -10.2404 |
| 0.0268507 | 0.95753 | H375_4570 | $15--26$ | $5--16$ | -10.0969 |
| 0.0278154 | 0.95753 | H375_5050 | $114--132$ | $4--21$ | -10.0481 |
| 0.0301504 | 0.95753 | H375_5680 | $82--92$ | $5--15$ | -9.93612 |
| 0.0307797 | 0.95753 | H375_6370 | $131--141$ | $46--56$ | -9.9073 |
| 0.031912 | 0.95753 | H375_2400 | $18--34$ | $156--171$ | -9.85678 |
| 0.0320834 | 0.95753 | H375_8410 | $43--61$ | $27--45$ | -9.84928 |
| 0.0336721 | 0.95753 | H375_5790 | $53--62$ | $33--42$ | -9.78142 |
| 0.0349641 | 0.95753 | H375_8080 | $130--146$ | $1--16$ | -9.72836 |
| 0.0368166 | 0.95753 | H375_9020 | $106--146$ | $5--42$ | -9.65532 |
| 0.0377172 | 0.95753 | H375_3690 | $53--73$ | $27--47$ | -9.62102 |
| 0.0383444 | 0.95753 | H375_5440 | $136--149$ | $100--113$ | -9.59757 |
| 0.0385662 | 0.95753 | H375_8180 | $128--136$ | $5--13$ | -9.58936 |
| 0.0397341 | 0.95753 | H375_5060 | $108--138$ | $41--75$ | -9.54683 |
| 0.0406908 | 0.95753 | H375_8870 | $34--102$ | $4--64$ | -9.51283 |
| 0.0409879 | 0.95753 | H375_5540 | $128--145$ | $37--54$ | -9.50242 |
| 0.0427328 | 0.95753 | H375_2270 | $122--139$ | $150--167$ | -9.44263 |
| 0.0428752 | 0.95753 | H375_2490 | $110--140$ | $139--167$ | -9.43785 |
| 0.0440463 | 0.95753 | H375_2540 | $60--85$ | $25--49$ | -9.39907 |
| 0.0441044 | 0.95753 | H375_3590 | $12--49$ | $39--75$ | -9.39717 |
| 0.045589 | 0.95753 | H375_2940 | $143--149$ | $38--44$ | -9.34939 |
| 0.0489416 | 0.95753 | H375_3030 | $93--134$ | $26--65$ | -9.24648 |

## Rp_sR60

## TargetRNA2

| Rank | Synonym | Energy | Pvalue | sRNA_start | sRNA_stop | mRNA_start | mRNA_stop |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | H375_7590 | -12.13 | 0.007 | 79 | 92 | -35 | -22 |
| 2 | H375_4430 | -10.49 | 0.018 | 80 | 93 | -37 | -24 |
| 3 | H375_4980 | -10.45 | 0.019 | 63 | 75 | -20 | -8 |
| 4 | H375_1260 | -10.27 | 0.02 | 22 | 37 | -16 | -1 |
| 5 | H375_3340 | -10.18 | 0.021 | 5 | 16 | -49 | -38 |
| 6 | H375_1680 | -10.14 | 0.022 | 7 | 16 | 10 | 19 |
| 7 | H375_3020 | -9.93 | 0.024 | 83 | 97 | -44 | -30 |
| 8 | H375_7240 | -9.88 | 0.025 | 11 | 22 | -4 | 8 |
| 9 | H375_2400 | -9.84 | 0.025 | 36 | 49 | -78 | -65 |
| 10 | H375_4120 | -9.73 | 0.027 | 5 | 19 | -1 | 15 |
| 11 | H375_80 | -9.49 | 0.03 | 32 | 45 | -60 | -47 |
| 12 | H375_1850 | -9.39 | 0.031 | 39 | 51 | -2 | 11 |
| 13 | H375_3390 | -9.34 | 0.032 | 11 | 25 | -7 | 8 |
| 14 | H375_4320 | -9.15 | 0.035 | 90 | 98 | -47 | -39 |
| 15 | H375_7400 | -9.07 | 0.036 | 37 | 45 | -76 | -68 |
| 16 | H375_1880 | -9.06 | 0.036 | 77 | 93 | -6 | 15 |
| 17 | H375_8280 | -8.99 | 0.037 | 79 | 89 | -16 | -6 |
| 18 | H375_1840 | -8.92 | 0.039 | 6 | 17 | -53 | -43 |


| 19 | H375_6310 | -8.8 | 0.041 | 22 | 34 | 6 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 20 | H375_8880 | -8.73 | 0.042 | 59 | 74 | -66 | -52 |
| 21 | H375_4660 | -8.68 | 0.043 | 39 | 51 | -44 | -32 |
| 22 | H375_4140 | -8.58 | 0.044 | 71 | 89 | -80 | -63 |
| 23 | H375_1220 | -8.52 | 0.045 | 42 | 55 | -69 | -56 |

IntaRNA

| p-value | fdr value | Target | Position | Position | Energy |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0004006 | 0.23136 | H375 7670 | 132--150 | 79 -- 99 | -16.4559 |
| 0.0005074 | 0.23136 | H375 7550 | $66-92$ | 72 -- 99 | -16.1203 |
| 0.0012762 | 0.38796 | H375_8740 | $11-41$ | 68 -- 93 | -14.7801 |
| 0.0031426 | 0.71652 | H375_6080 | $39-96$ | 47 -- 99 | -13.4238 |
| 0.0051069 | 0.74743 | H375 4620 | 132--146 | $83-97$ | -12.6729 |
| 0.0051886 | 0.74743 | H375_6370 | 117--144 | $70-97$ | -12.6481 |
| 0.0057368 | 0.74743 | H375_5790 | 127--149 | $54-76$ | -12.4908 |
| 0.0067875 | 0.77377 | H375_4980 | $57-67$ | $64-74$ | -12.226 |
| 0.0095703 | 0.91081 | H375 8880 | $11-26$ | $58-73$ | -11.6792 |
| 0.0116703 | 0.91081 | H375 5600 | 118--150 | 74 -- 99 | -11.3598 |
| 0.0121839 | 0.91081 | H375 5090 | 126--144 | 82 -- 97 | -11.2901 |
| 0.0130033 | 0.91081 | H375_1850 | 14 -- 99 | 27 -- 99 | -11.1845 |
| 0.0131976 | 0.91081 | H375 3420 | $21-35$ | $80-94$ | -11.1604 |
| 0.014019 | 0.91081 | H375 5930 | $35-56$ | $77-99$ | -11.0621 |
| 0.0149804 | 0.91081 | H375 8110 | 103--115 | $80-93$ | -10.9538 |
| 0.016865 | 0.94584 | H375_300 | 1-38 | $62-97$ | -10.7595 |
| 0.0187961 | 0.94584 | H375 4840 | 16--28 | $80-92$ | -10.5808 |
| 0.0232714 | 0.94584 | H375 5870 | 117 -- 127 | $63-74$ | -10.226 |
| 0.0234785 | 0.94584 | H375 9210 | $1-14$ | 77 -- 90 | -10.2112 |
| 0.0247598 | 0.94584 | H375_7620 | 103--125 | $80-99$ | -10.1223 |
| 0.0254668 | 0.94584 | H375 3880 | 124--144 | $77-96$ | -10.0751 |
| 0.0271228 | 0.94584 | H375_3020 | $33-45$ | 84--97 | -9.96923 |
| 0.0298539 | 0.94584 | H375 2040 | 128--148 | $68-84$ | -9.80733 |
| 0.0313134 | 0.94584 | H375_7590 | $42-53$ | $80-91$ | -9.72647 |
| 0.0316496 | 0.94584 | H375 6720 | 118--133 | 80-- 100 | -9.70835 |
| 0.0320754 | 0.94584 | H375_9010 | $2-15$ | $86-97$ | -9.68566 |
| 0.0331266 | 0.94584 | H375_1340 | 118--127 | $61-70$ | -9.63084 |
| 0.0337198 | 0.94584 | H375_650 | $83-99$ | $83-97$ | -9.60063 |
| 0.0337451 | 0.94584 | H375_50 | 139-- 150 | 88--99 | -9.59935 |
| 0.0357489 | 0.94584 | H375 5950 | 92 -- 104 | $86-98$ | -9.50094 |
| 0.0359822 | 0.94584 | H375_4070 | 131--148 | $70-92$ | -9.48982 |
| 0.0360294 | 0.94584 | H375_7720 | 113--123 | $60-70$ | -9.48758 |
| 0.0373636 | 0.94584 | H375_680 | 94--126 | $50-85$ | -9.42535 |
| 0.0432702 | 0.94584 | H375_8130 | $61-89$ | $70-96$ | -9.17281 |
| 0.0450156 | 0.94584 | H375 9060 | $126-149$ | 69 -- 97 | -9.10438 |
| 0.0482611 | 0.94584 | H375_8370 | 107--149 | $66-100$ | -8.9835 |


| 0.048511 | 0.94584 | H375_2790 | $101--131$ | $68--94$ | -8.97451 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.0486718 | 0.94584 | H375_2850 | $103--119$ | $77--93$ | -8.96875 |
| 0.0492938 | 0.94584 | H375_7180 | $86--98$ | $63--75$ | -8.94663 |
| 0.0504248 | 0.94584 | H375_8280 | $51--69$ | $80--95$ | -8.90707 |

## Rp_sR67

TargetRNA2

| Rank | Synonym | Energy | Pvalue | sRNA_start | sRNA_stop | mRNA_start | mRNA_stop |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | H375 2780 | -11.58 | 0.01 | 77 | 85 | -27 | -19 |
| 2 | H375_2910 | -11.29 | 0.012 | 21 | 37 | -6 | 10 |
| 3 | H375_4170 | -11.17 | 0.012 | 172 | 184 | -64 | -53 |
| 4 | H375_980 | -11.06 | 0.013 | 151 | 164 | -71 | -58 |
| 5 | H375_5470 | -10.94 | 0.014 | 96 | 113 | -6 | 13 |
| 6 | H375_8490 | -10.64 | 0.017 | 153 | 169 | 6 | 20 |
| 7 | H375_6610 | -10.35 | 0.02 | 210 | 224 | -7 | 7 |
| 8 | H375_4810 | -10.13 | 0.022 | 206 | 221 | -71 | -56 |
| 9 | H375_7880 | -10.12 | 0.022 | 1 | 16 | -13 | 6 |
| 10 | H375_8130 | -10.11 | 0.022 | 6 | 23 | 2 | 19 |
| 11 | H375-6770 | -10.04 | 0.023 | 151 | 162 | -31 | -20 |
| 12 | H375_7690 | -9.98 | 0.024 | 154 | 165 | -22 | -11 |
| 13 | H375_4660 | -9.91 | 0.024 | 154 | 169 | -44 | -29 |
| 14 | H375_9020 | -9.6 | 0.028 | 136 | 148 | -80 | -68 |
| 15 | H375_8420 | -9.57 | 0.029 | 176 | 186 | -76 | -66 |
| 16 | H375_8110 | -9.55 | 0.029 | 176 | 190 | -55 | -41 |
| 17 | H375_7440 | -9.32 | 0.032 | 170 | 184 | -80 | -69 |
| 18 | H375_1440 | -9.22 | 0.034 | 216 | 230 | -59 | -45 |
| 19 | H375 2540 | -9.11 | 0.035 | 135 | 145 | 5 | 15 |
| 20 | H375_8560 | -9.03 | 0.037 | 204 | 215 | -79 | -68 |
| 21 | H375_2550 | -8.96 | 0.038 | 169 | 185 | -2 | 15 |
| 22 | H375_1110 | -8.88 | 0.039 | 117 | 126 | -77 | -68 |
| 23 | H375_5400 | -8.75 | 0.041 | 58 | 72 | -79 | -65 |
| 24 | H375_3710 | -8.73 | 0.042 | 113 | 130 | -77 | -62 |
| 25 | H375_5520 | -8.69 | 0.042 | 177 | 187 | -26 | -16 |
| 26 | H375_3730 | -8.67 | 0.043 | 154 | 170 | -61 | -44 |
| 27 | H375_5860 | -8.62 | 0.044 | 128 | 141 | -74 | -61 |
| 28 | H375_1350 | -8.55 | 0.045 | 149 | 163 | -38 | -24 |
| 29 | H375_8360 | -8.53 | 0.045 | 192 | 204 | -54 | -42 |
| 30 | H375_6090 | -8.36 | 0.049 | 220 | 230 | 7 | 18 |

## IntaRNA

| p-value | fdr value | Target | Position | Position | Energy |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.000252 | 0.16965 | H375_6400 | $111--148$ | $3--44$ | -14.3456 |


| 0.000369 | 0.16965 | H375_6200 | 112--122 | 119 -- 129 | -13.9723 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.00196 | 0.32499 | H375_8180 | 122--136 | 18 -- 32 | -12.238 |
| 0.001967 | 0.32499 | H375_8870 | 5 -- 54 | 14 -- 66 | -12.2343 |
| 0.002077 | 0.32499 | H375_5660 | 3--15 | 201-- 213 | -12.1752 |
| 0.002274 | 0.32499 | H375_6530 | $41-70$ | 48--75 | -12.0757 |
| 0.002473 | 0.32499 | H375_4890 | 111--148 | 37--72 | -11.9831 |
| 0.003836 | 0.4411 | H375_1080 | 134--143 | 194--203 | -11.4913 |
| 0.005731 | 0.54303 | H375_6100 | 88--143 | 133--174 | -11.0299 |
| 0.005903 | 0.54303 | H375_3950 | 42 -- 70 | 45--74 | -10.9955 |
| 0.008803 | 0.69301 | H375_1120 | $2-25$ | 111--130 | -10.5238 |
| 0.009166 | 0.69301 | H375_7880 | $64-78$ | $2-15$ | -10.4754 |
| 0.010211 | 0.69301 | H375_6690 | 6--18 | 124--136 | -10.3456 |
| 0.010546 | 0.69301 | H375_750 | 112--149 | 42 -- 79 | -10.3067 |
| 0.0135 | 0.77869 | H375_5040 | $2-28$ | 194--219 | -10.0058 |
| 0.013543 | 0.77869 | H375_2780 | $50-56$ | 78 -- 84 | -10.0019 |
| 0.01612 | 0.82701 | H375_4810 | $2-25$ | 119 -- 150 | -9.78657 |
| 0.016181 | 0.82701 | H375_1960 | $5-45$ | 138--173 | -9.78193 |
| 0.019375 | 0.86033 | H375_3760 | 118--134 | 1 -- 15 | -9.55654 |
| 0.020038 | 0.86033 | H375_3840 | 95--134 | 28-- 74 | -9.51415 |
| 0.020128 | 0.86033 | H375_7710 | 102--122 | 113--131 | -9.50851 |
| 0.020573 | 0.86033 | H375_5460 | 98--111 | 204-- 219 | -9.48088 |
| 0.024148 | 0.92157 | H375_680 | $23-43$ | 200-- 217 | -9.27723 |
| 0.024284 | 0.92157 | H375_560 | 87--137 | 3--56 | -9.27006 |
| 0.025862 | 0.92157 | H375_1660 | $71-91$ | 127--147 | -9.18937 |
| 0.029352 | 0.92157 | H375_5830 | $67-87$ | $44-64$ | -9.02598 |
| 0.029354 | 0.92157 | H375_1200 | 47--74 | 149--174 | -9.0259 |
| 0.029978 | 0.92157 | H375_540 | 111--139 | $20-49$ | -8.99858 |
| 0.030143 | 0.92157 | H375_3710 | $2-9$ | 119 -- 126 | -8.99148 |
| 0.032466 | 0.92157 | H375_3900 | $31-58$ | $55-82$ | -8.89472 |
| 0.033558 | 0.92157 | H375_6090 | 139--149 | 191--201 | -8.85145 |
| 0.034589 | 0.92157 | H375_5110 | $60-74$ | 135--148 | -8.81176 |
| 0.038618 | 0.92157 | H375_80 | 97--108 | 119--130 | -8.66646 |
| 0.039296 | 0.92157 | H375_1420 | $26-50$ | 146--171 | -8.64342 |
| 0.041053 | 0.92157 | H375_940 | 1 -- 9 | $31-39$ | -8.58528 |
| 0.041566 | 0.92157 | H375_3910 | 108--124 | $36-53$ | -8.56876 |
| 0.042279 | 0.92157 | H375_5580 | 3 -- 9 | 78 -- 84 | -8.54607 |
| 0.042715 | 0.92157 | H375_1700 | $64-79$ | 1 -- 15 | -8.53238 |
| 0.042834 | 0.92157 | H375_8760 | 120--133 | 15--29 | -8.52867 |
| 0.044145 | 0.92157 | H375_2890 | 98--132 | $98-135$ | -8.48834 |
| 0.044149 | 0.92157 | H375_120 | $47-67$ | 108--128 | -8.48823 |
| 0.044663 | 0.92157 | H375_1090 | 105--116 | 102--114 | -8.47273 |


| 0.045763 | 0.92157 | H375_5470 | $70--87$ | $97--113$ | -8.44007 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0.047108 | 0.92157 | H375_600 | $6--18$ | $3--15$ | -8.40112 |
| 0.048604 | 0.92157 | H375_3590 | $22--32$ | $72-82$ | -8.35898 |
| 0.049233 | 0.92157 | H375_4330 | $64-79$ | $1--16$ | -8.34161 |
| 0.049434 | 0.92157 | H375_2550 | $80-87$ | $172-179$ | -8.33612 |
| 0.049996 | 0.92157 | H375_3670 | $134--141$ | $1-8$ | -8.32083 |

## Additional File 5. Predicted secondary structure of novel sRNAs.

Predicted secondary structures for $R p_{-}$sR17, $R p_{-}$sR34, $R p_{-}$sR60, and $R p \_$sR67 as determined by RNAfold. Color represents base-pairing probability from 0 to 1 (purple to red).



## Additional File 6. Rickettsia prowazekii small RNAs ( $R p_{-} s R$ ) identified in HMEC and AAE2.

RNA sequencing data from AAE2 and HMEC infected cell lines demonstrate that R. prowazekii strain Breinl encodes for at least 150 candidate sRNAs. Each of these candidates are listed here. The sRNA number, the approximate start location based on the start of the RNA sequencing reads, the approximate stop location based again on the RNA sequencing reads, the nucleotide size, the sRNA carrying strand, the type of sRNA, and its model host of infection are shown here. The column labeled as "Strand Orientation" refers to the orientation of the upstream gene, the trans-acting sRNA, and downstream gene. For cis-acting sRNAs, the corresponding ORF is listed in this column ( $\mathrm{F}=$ forward; $\mathrm{R}=$ reverse; $>=$ sense strand; $<=$ anti-sense strand).

|  | $R p$ sR | Apporximate Start | Approximate Stop | $\begin{aligned} & \text { Size } \\ & \text { (bp) } \end{aligned}$ | Strand | Strand Orientation | Type of sRNA | Model | Reference |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 10482 | 10278 | 204 | R | $<1<1<$ | Trans | HMEC | Schroeder, et al., 2015 |
|  | 2 | 10774 | 11003 | 230 | F | </>\|< | Trans | HMEC | Schroeder, et al., 2016 |
|  | 3 | 14215 | 13984 | 232 | R | H375_160 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 4 | 15459 | 15203 | 257 | R | H375_160 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 5 | 19850 | 19622 | 229 | R | >/<1> | Trans | HMEC | Schroeder, et al., 2016 |
| N | 6 | 22107 | 22298 | 192 | F | </>\|> | Trans | HMEC | Schroeder, et al., 2016 |
|  | 7 | 24935 | 25206 | 272 | F | H375_230 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 8 | 47692 | 47542 | 150 | F | >/>1> | Trans | HMEC | Schroeder, et al., 2015 |
|  | 9 | 48035 | 48200 | 166 | F | >\|>|> | Trans | HMEC | Schroeder, et al., 2016 |
|  | 10 | 48620 | 48834 | 215 | F | >/>1> | Trans | HMEC | Schroeder, et al., 2016 |
|  | 11 | 71739 | 72043 | 305 | F | H375_570 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 12 | 76189 | 76452 | 264 | F | H375_570 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 13 | 77115 | 77335 | 221 | F | < $1>1<$ | Trans | HMEC | Schroeder, et al., 2016 |
|  | 14 | 78259 | 78513 | 255 | F | <\|>|> | Trans | HMEC | Schroeder, et al., 2016 |
|  | 15 | 88423 | 88616 | 194 | F | >/>1< | Trans | HMEC | Schroeder, et al., 2016 |
|  | 16 | 100282 | 99698 | 585 | R | H375_740 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 17 | 105748 | 105486 | 263 | R | >1<1> | Trans | HMEC | Schroeder, et al., 2016 |
|  | 18 | 116363 | 116200 | 164 | R | 375_870 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 19 | 132593 | 132781 | 189 | F | </>/> | Trans | HMEC | Schroeder, et al., 2016 |
|  | 20 | 163641 | 163556 | 85 | R | </<1> | Trans | HMEC | Schroeder, et al., 2015 |
|  | 21 | 173793 | 173974 | 182 | F | H375_1300 | Cis | HMEC | Schroeder, et al., 2016 |


|  | 22 | 177789 | 178118 | 330 | F | H375_1330 | Cis | HMEC | Schroeder, et al., 2016 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 23 | 185267 | 185484 | 218 | F | H375_1400 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 24 | 218432 | 218657 | 226 | F | H375_1610 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 25 | 257587 | 257856 | 270 | F | H375_1930 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 26 | 261134 | 261341 | 208 | F | >1>1< | Trans | HMEC | Schroeder, et al., 2016 |
|  | 27 | 262322 | 262601 | 280 | F | >>1< | Trans | HMEC | Schroeder, et al., 2016 |
|  | 28 | 275336 | 275043 | 294 | R | H375_2050 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 29 | 306070 | 305924 | 146 | F | >\|>1> | Trans | HMEC | Schroeder, et al., 2015 |
|  | 30 | 308324 | 308042 | 282 | R | >1<1< | Trans | HMEC | Schroeder, et al., 2015 |
|  | 31 | 308652 | 308848 | 197 | F | >1>1< | Trans | HMEC | Schroeder, et al., 2016 |
|  | 32 | 309308 | 309564 | 257 | F | H375_2350 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 33 | 315408 | 315772 | 365 | F | 375_2380 | Cis | HMEC | Schroeder, et al., 2016 |
| ) | 34 | 326339 | 326637 | 299 | F | H375_2470 | Cis | HMEC | Schroeder, et al., 2016 |
| N | 35 | 334531 | 334333 | 199 | R | H375_2560 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 36 | 342505 | 342292 | 214 | R | H375_2630 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 37 | 344054 | 343930 | 125 | R | >1<1< | Trans | HMEC | Schroeder, et al., 2016 |
|  | 38 | 366166 | 366242 | 77 | F | >1>> | Trans | HMEC | Schroeder, et al., 2016 |
|  | 39 | 371859 | 371506 | 353 | R | >1<k | Trans | HMEC | Schroeder, et al., 2015 |
|  | 40 | 373780 | 373983 | 204 | F | H375_2910 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 41 | 378222 | 378333 | 112 | F | H375_2940 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 42 | 407851 | 407640 | 212 | R | >1<1< | Trans | HMEC | Schroeder, et al., 2016 |
|  | 43 | 427133 | 426907 | 227 | R | >\|<|> | Trans | HMEC | Schroeder, et al., 2016 |
|  | 44 | 457001 | 456876 | 125 | F | >>> | Trans | HMEC | Schroeder, et al., 2015 |
|  | 45 | 458370 | 458555 | 227 | R | >1<1> | Trans | HMEC | Schroeder, et al., 2016 |
|  | 46 | 462025 | 462293 | 268 | F | H375_3670 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 47 | 481518 | 481833 | 316 | F | H375_3890 | Cis | HMEC | Schroeder, et al., 2016 |
|  | 48 | 494600 | 494387 | 214 | R | <1<1< | Trans | HMEC | Schroeder, et al., 2016 |
|  | 49 | 504250 | 504506 | 256 | F | >\|>|> | Trans | HMEC | Schroeder, et al., 2016 |


|  | 50 | 514132 | 513893 | 240 | R | <1<k | Trans | HMEC | Schroeder, et al., 2016 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 51 | 531332 | 531187 | 146 | R | >1<1< | Trans | HMEC | Schroeder, et al., 2016 |
|  | 52 | 535456 | 535256 | 201 | R | >1<k | Trans | HMEC | Schroeder, et al., 2016 |
|  | 53 | 558930 | 558719 | 212 | R | >1<k | Trans | HMEC | Schroeder, et al., 2016 |
|  | 54 | 644329 | 644199 | 130 | R | <1<k | Trans | HMEC | Schroeder, et al., 2015 |
|  | 55 | 659164 | 659057 | 107 | R | <1<k | Trans | HMEC | Schroeder, et al., 2015 |
|  | 56 | 669521 | 669772 | 252 | F | >1>1< | Trans | HMEC | Schroeder, et al., 2016 |
|  | 57 | 697106 | 696934 | 173 | R | >1<k | Trans | HMEC | Schroeder, et al., 2016 |
|  | 58 | 812662 | 812412 | 251 | R | <1<1< | Trans | HMEC | Schroeder, et al., 2016 |
|  | 59 | 830223 | 830416 | 194 | F | >1>1< | Trans | HMEC | Schroeder, et al., 2016 |
|  | 60 | 844283 | 844606 | 324 | F | >>1> | Trans | HMEC | Schroeder, et al., 2016 |
|  | 61 | 859237 | 859436 | 200 | F | >>1> | Trans | HMEC | Schroeder, et al., 2016 |
| , | 62 | 909871 | 910281 | 411 | F | H375_7470 | Cis | HMEC | Schroeder, et al., 2016 |
| $\cdots$ | 63 | 925625 | 925929 | 305 | F | </>\|< | Trans | HMEC | Schroeder, et al., 2016 |
|  | 64 | 958095 | 957827 | 269 | R | <1<1< | Trans | HMEC | Schroeder, et al., 2016 |
|  | 65 | 968393 | 968664 | 272 | F | >.\|>1> | Trans | HMEC | Schroeder, et al., 2016 |
|  | 66 | 973818 | 973352 | 467 | R | >1<1> | Trans | HMEC | Schroeder, et al., 2016 |
|  | 67 | 998167 | 997927 | 240 | R | >1<k | Trans | HMEC | Schroeder, et al., 2015 |
|  | 68 | 1039473 | 1039278 | 195 | R | <1<k | Trans | HMEC | Schroeder, et al., 2015 |
|  | 69 | 1046344 | 1046671 | 328 | F | <\|>| | Trans | HMEC | Schroeder, et al., 2016 |
|  | 70 | 1105018 | 1104959 | 59 | F | >\|>1> | Trans | HMEC | Schroeder, et al., 2015 |
|  | 71 | 34024 | 33655 | 369 | R | <1<1< | Trans | AAE2 | This Study |
|  | 72 | 52729 | 53096 | 367 | F | H375_0430 | Cis | AAE2 | This Study |
|  | 73 | 118628 | 118261 | 367 | R | H375_0880 | Cis | AAE2 | This Study |
|  | 74 | 122578 | 122328 | 250 | R | >1>1< | Trans | AAE2 | This Study |
|  | 75 | 127781 | 127541 | 240 | R | >1<1< | Trans | AAE2 | This Study |
|  | 76 | 189364 | 189678 | 314 | F | <1>k | Trans | AAE2 | This Study |
|  | 77 | 222332 | 222551 | 219 | F | H375_1620 | Cis | AAE2 | This Study |


|  | 78 | 241272 | 241565 | 293 | F | H375_1790 | Cis | AAE2 | This Study |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 79 | 267602 | 268133 | 531 | F | H375_1990 | Cis | AAE2 | This Study |
|  | 80 | 284574 | 285043 | 469 | F | H375_2130 | Cis | AAE2 | This Study |
|  | 81 | 286154 | 285747 | 407 | R | H375_2140 | Cis | AAE2 | This Study |
|  | 82 | 295757 | 296248 | $491$ | F | H375_2250 | Cis | AAE2 | This Study |
|  | 83 | 361118 | 361612 | $494$ | F | </>1< | Trans | AAE2 | This Study |
|  | 84 | 391263 | 391442 | 179 | F | H375_3070 | Cis | AAE2 | This Study |
|  | 85 | 425033 | 424623 | 410 | R | H375_3360 | Cis | AAE2 | This Study |
|  | 86 | 427133 | 426907 | 227 | R | >\|</> | Trans | AAE2 | This Study |
|  | 87 | 477214 | 477426 | 212 | F | H375_3850 | Cis | AAE2 | This Study |
|  | 88 | 489258 | 488950 | 308 | R | H375_3950 | Cis | AAE2 | This Study |
|  | 89 | 500073 | 500490 | 417 | F | H375_4040 | Cis | AAE2 | This Study |
| $\pm$ | 90 | 539542 | 539873 | 331 | F | </>1< | Trans | AAE2 | This Study |
|  | $91$ | 584699 | 584545 | $154$ | R | H375_4730 | Cis | AAE2 | This Study |
|  | 92 | 595553 | 596109 | 556 | F | H375_4840 | Cis | AAE2 | This Study |
|  | 93 | 599387 | 599922 | $535$ | F | </>\|< | Trans | AAE2 | This Study |
|  | 94 | 602516 | 603103 | 587 | F | H375_4880 | Cis | AAE2 | This Study |
|  | 95 | 622277 | 622493 | 216 | F | H375_5060 | Cis | AAE2 | This Study |
|  | 96 | 628340 | 628515 | 175 | F | H375_5100 | Cis | AAE2 | This Study |
|  | 97 | 630555 | 630851 | 296 | F | H375_5130 | Cis | AAE2 | This Study |
|  | 98 | 633733 | 634011 | 278 | F | H375_5170 | Cis | AAE2 | This Study |
|  | 99 | 634851 | 635100 | 249 | F | </>1< | Trans | AAE2 | This Study |
|  | $100$ | 636193 | 636573 | $380$ | F | H375_5200 | Cis | AAE2 | This Study |
|  | 101 | 638310 | 638501 | 191 | F | H375_5210 | Cis | AAE2 | This Study |
|  | 102 | 655081 | 655278 | 197 | F | H375_5270 | Cis | AAE2 | This Study |
|  | 103 | 658089 | 658416 | 327 | F | </>1< | Trans | AAE2 | This Study |
|  | 104 | 683020 | 682557 | 463 | R | H375_5560 | Cis | AAE2 | This Study |


|  | 105 | 697487 | 697795 | 308 | F | H375_5680 | Cis | AAE2 | This Study |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 106 | 704302 | 704573 | 271 | F | H375_5740 | Cis | AAE2 | This Study |
|  | 107 | 705082 | 705369 | 287 | F | H375_5760 | Cis | AAE2 | This Study |
|  | 108 | 707777 | 708027 | 250 | F | H375_5770 | Cis | AAE2 | This Study |
|  | 109 | 730523 | 730271 | 252 | R | H375_5960 | Cis | AAE2 | This Study |
|  | 110 | 737433 | 737109 | 324 | R | H375_6020 | Cis | AAE2 | This Study |
|  | 111 | 738771 | 738453 | 318 | R | >\|<1> | Trans | AAE2 | This Study |
|  | 112 | 739152 | 738831 | 321 | R | >\|<|> | Trans | AAE2 | This Study |
|  | 113 | 765006 | 765327 | 321 | F | H375_6260 | Cis | AAE2 | This Study |
|  | 114 | 770496 | 769890 | 606 | R | H375_6320 | Cis | AAE2 | This Study |
|  | 115 | 778258 | 777992 | 266 | R | H375_6400 | Cis | AAE2 | This Study |
|  | 116 | 789170 | 789007 | 163 | R | H375_6520 | Cis | AAE2 | This Study |
| ur | 117 | 803483 | 803249 | 234 | R | H375_6630 | Cis | AAE2 | This Study |
|  | 118 | 805321 | 804858 | 463 | R | H375_6650 | Cis | AAE2 | This Study |
|  | 119 | 807020 | 806844 | 176 | R | H375_6670 | Cis | AAE2 | This Study |
|  | 120 | 819723 | 820502 | 779 | F | H375_6770 | Cis | AAE2 | This Study |
|  | 121 | 830189 | 829961 | 228 | R | H375_6840 | Cis | AAE2 | This Study |
|  | 122 | 838741 | 839229 | 488 | F | H375_6960 | Cis | AAE2 | This Study |
|  | 123 | 843915 | 843653 | 262 | R | >1<1> | Trans | AAE2 | This Study |
|  | 124 | 849025 | 848559 | 466 | R | $\begin{aligned} & \text { H375_7030 } \\ & \text { H375_7040 } \end{aligned}$ | Cis | AAE2 | This Study |
|  | 125 | 853045 | 852638 | 407 | R | H375_7070 | Cis | AAE2 | This Study |
|  | 126 | 855770 | 855961 | 191 | F | </>1< | Trans | AAE2 | This Study |
|  | 127 | 860556 | 860192 | 364 | R | H375_7160 | Cis | AAE2 | This Study |
|  | 128 | 863840 | 862996 | 844 | R | H375_7160 | Cis | AAE2 | This Study |
|  | 129 | 864742 | 864313 | 429 | R | >\|>1> | Trans | AAE2 | This Study |
|  | 130 | 865797 | 866550 | 753 | R | >\|<|> | Trans | AAE2 | This Study |


|  | 131 | 886013 | 886309 | 296 | F | H375_7320 | Cis | AAE2 | This Study |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 132 | 889427 | 889686 | 259 | F | H375_7360 | Cis | AAE2 | This Study |
|  | 133 | 891055 | 891525 | 470 | F | H375_7370 | Cis | AAE2 | This Study |
|  | 134 | 904918 | 904686 | 232 | R | H375_7450 | Cis | AAE2 | This Study |
|  | 135 | 914970 | 914376 | 594 | R | >\|<|> | Trans | AAE2 | This Study |
|  | 136 | 915777 | 915587 | 190 | R | >\|<1> | Trans | AAE2 | This Study |
|  | 137 | 919393 | 919072 | 321 | R | H375_7550 | Cis | AAE2 | This Study |
|  | 138 | 945764 | 945294 | 470 | R | H375_7800 | Cis | AAE2 | This Study |
|  | 139 | 950181 | 950583 | 402 | F | >1>1< | Trans | AAE2 | This Study |
|  | 140 | 954943 | 954625 | 318 | R | H375_7880 | Cis | AAE2 | This Study |
|  | 141 | 956931 | 957132 | 201 | F | H375_7890 | Cis | AAE2 | This Study |
|  | 142 | 972717 | 972412 | 305 | R | >\|</> | Trans | AAE2 | This Study |
| ふ | 143 | 976190 | 975674 | 516 | R | H375_8030 | Cis | AAE2 | This Study |
|  | 144 | 981480 | 981209 | 271 | R | H375_8090 | Cis | AAE2 | This Study |
|  | 145 | 982025 | 981793 | 232 | R | H375_8100 | Cis | AAE2 | This Study |
|  | 146 | 992543 | 992331 | 212 | R | >\|<|> | Trans | AAE2 | This Study |
|  | 147 | 993107 | 992826 | 281 | R | >\|<|> | Trans | AAE2 | This Study |
|  | 148 | 993723 | 993433 | 290 | R | H375_8270 | Cis | AAE2 | This Study |
|  | 149 | 995664 | 995482 | 182 | R | H375_8270 | Cis | AAE2 | This Study |
|  | 150 | 1001532 | 1001813 | 281 | F | H375_8280 | Cis | AAE2 | This Study |
|  | 151 | 1007564 | 1007770 | 206 | F | H375_8330 | Cis | AAE2 | This Study |
|  | 152 | 1010238 | 1010386 | 148 | F | H375_8370 | Cis | AAE2 | This Study |
|  | 153 | 1015702 | 1015344 | 358 | R | >\|<1> | Trans | AAE2 | This Study |
|  | 154 | 1017292 | 1016581 | 711 | R | H375_8410 | Cis | AAE2 | This Study |
|  | 155 | 1018205 | 1017776 | 429 | R | >1<1< | Trans | AAE2 | This Study |
|  | 156 | 1022112 | 1022334 | 222 | F | H375_8450 | Cis | AAE2 | This Study |
|  | 157 | 1038622 | 1038869 | 247 | F | </>\|< | Trans | AAE2 | This Study |


| 158 | 1039987 | 1040438 | 451 | F | H375_8570 | Cis | AAE2 | This Study |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| 159 | 1046344 | 1046671 | 328 | F | $</>/<$ | Trans | AAE2 | This Study |
| 160 | 1059802 | 1059493 | 309 | R | H375_8730 | Cis | AAE2 | This Study |
| 161 | 1062616 | 1062298 | 318 | R | H375_8790 | Cis | AAE2 | This Study |
| 162 | 1069032 | 1068730 | 302 | R | H375_8930 | Cis | AAE2 | This Study |
| 163 | 1070608 | 1070315 | 293 | R | H375_8950 | Cis | AAE2 | This Study |

## Additional File 7. CopraRNA predicted targets for $\boldsymbol{R p}$ sR60.

The complete list of predicted targets by CopraRNA for $R p \_$sR60. Only those targets with a $\mathrm{P} \leq 0.05$ were included for analysis.

| Rank | CopraRNA p-value | Locus Tag | Annotation |
| :---: | :---: | :---: | :---: |
| 1* | 0.001253 | h375_8740 | 50S ribosomal protein L3 |
| 2* | 0.002567 | h375_7670 | uncharacterized protein |
| 3* | 0.00319 | h375_1650 | 2-hydroxy-6-oxo-6-phenylhexa-2 4-dienoate hydrolase |
| 4* | 0.003375 | h375_2860 | DNA topoisomerase 1 |
| 5* | 0.003515 | h375_7680 | uncharacterized protein |
| 6* | 0.004535 | h375_1040 | tRNA dimethylallyltransferase |
| 7* | 0.005017 | h375_6080 | Uncharacterized protein |
| 8* | 0.006133 | h375_8760 | 50S ribosomal protein L23 |
| 9* | 0.006635 | h375_420 | Chaperone protein HscA |
| 10* | 0.006775 | h375_2090 | Soluble lytic murein transglycosylase |
| 11 | 0.007708 | h375_9210 | sensor histidine kinase NtrY-like protein |
| 12 | 0.01089 | h375_8890 | 50S ribosomal protein L18 |
| 13 | 0.01155 | h375_370 | Holo-[acyl-carrier-protein] synthase |
| 14 | 0.01169 | h375_8110 | glutamine amidotransferase-like protein |
| 15 | 0.01178 | h375_7090 | Maf-like protein |
| 16 | 0.01262 | h375_1430 | Porphobilinogen deaminase |
| 17 | 0.01521 | h375_4920 | 50S ribosomal protein L7/L12 |
| 18 | 0.01612 | h375_2890 | uncharacterized protein |
| 19 | 0.0177 | h375_3140 | Thymidylate synthase ThyX |
| 20 | 0.01772 | h375_8880 | 30S ribosomal protein S8 |
| 21 | 0.01777 | h375_250 | Protein MurJ |
| 22 | 0.01783 | h375_770 | reductase |
| 23 | 0.01794 | h375_2780 | UDP-glucose 4-epimerase |
| 24 | 0.01867 | h375_800 | Uncharacterized protein |
| 25 | 0.01903 | h375_5790 | Uncharacterized protein |
| 26 | 0.01917 | h375_4980 | Elongation factor G |
| 27 | 0.01967 | h375_120 | transporter |
| 28 | 0.02008 | h375_2730 | Glycosyltransferase |
| 29 | 0.02223 | h375_2710 | glycosyltransferase |
| 30 | 0.02275 | h375_8020 | DNA ligase |


| 31 | 0.02611 | h375_3690 | UDP-N-acetylenolpyruvoylglucosamine reductase |
| :---: | :---: | :---: | :---: |
| 32 | 0.02672 | h375_5610 | Deoxycytidine triphosphate deaminase |
| 33 | 0.02725 | h375_2510 | Uncharacterized protein |
| 34 | 0.02731 | h375_3820 | Regulatory component of sensory transduction system |
| 35 | 0.02824 | h375_7620 | reductase |
| 36 | 0.03014 | h375_830 | Predicted membrane protein COG5346 |
| 37 | 0.03149 | h375_4430 | 2-oxoglutarate dehydrogenase E1 component |
| 38 | 0.03152 | h375_4620 | Ribosome association toxin RatA |
| 39 | 0.03153 | h375_3450 | Cytochrome b |
| 40 | 0.03185 | h375_7880 | Poly-beta-hydroxybutyrate polymerase |
| 41 | 0.03302 | h375_6920 | Opacity protein and surface antigens COG3637 |
| 42 | 0.03347 | h375_480 | Cell division protein FtsL |
| 43 | 0.03348 | h375_1850 | Phosphatidate cytidylyltransferase |
| 44 | 0.04017 | h375_2430 | ABC-type uncharacterized transport system permease component |
| 45 | 0.04196 | h375_3420 | Translation factor GUF1 |
| 46 | 0.04197 | h375_2330 | Malate dehydrogenase |
| 47 | 0.04339 | h375_4840 | uncharacterized protein |
| 48 | 0.04418 | h375_6370 | 50S ribosomal protein L33 |
| 49 | 0.04494 | h375_1570 | Isopentenyl-diphosphate delta-isomerase |
| 50 | 0.04751 | h375_2640 | Outer membrane assembly protein |
| 51 | 0.04761 | h375_3760 | CDP-diacylglycerol--serine Ophosphatidyltransferase |
| 52 | 0.04982 | h375_3000 | HlyD family secretion protein |
| 53 | 0.04983 | h375_3230 | Type IV secretion system protein VirD4 |

## Bibliography

Albrecht, M., Sharma, C.M., Reinhardt, R., Vogel, J. and Rudel, T. (2010) Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Res. 38: 868-877.
Alexeyev, M.F. and Winkler, H.H. (1999) Membrane topology of the Rickettsia prowazekii ATP/ADP translocase revealed by novel dual pho-lac reporters. J. Mol. Biol. 285: 1503-1513.
Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic local alignment search tool. J. Mol. Biol. 215: 403-410.
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.
Ammerman, N.C., Gillespie, J.J., Neuwald, A.F., Sobral, B.W. and Azad, A.F. (2009) A typhus group-specific protease defies reductive evolution in rickettsiae. $J$. Bacteriol. 191: 7609-7613.
Andersson, S.G.E., Zomorodipour, A., Andersson, J.O., Sicheritz-Pontén, T., Alsmark, U.C.M. and Podowski, R.M. (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133-143.
Argaman, L., Hershberg, R., Vogel, J., Bejerano, G., Wagner, E.G., Margalit, H., et al. (2001) Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr. Biol. 11: 941-950.
Audia, J.P., Patton, M.C. and Winkler, H.H. (2008) DNA microarray analysis of the heat shock transcriptome of the obligate intracytoplasmic pathogen Rickettsia prowazekii. Appl. Environ. Microbiol. 74: 7809-7812.
Azad, A.F. and Beard, C.B. (1998) Rickettsial pathogens and their arthropod vectors. Emerging Infect. Dis. 4: 179-186.
Azad, A.F., Sacci, J.B., Nelson, W.M., Dasch, G.A., Schmidtmann, E.T. and Carl, M. (1992) Genetic characterization and transovarial transmission of a typhus-like Rickettsia found in cat fleas. Proc. Natl. Acad. Sci. U. S. A. 89: 43-46.
Badiaga, S. and Brouqui, P. (2012) Human louse-transmitted infectious diseases. Clin. Microbiol. Infect. 18: 332-337.
Bandara, A.B., Sriranganathan, N., Schurig, G.G. and Boyle, S.M. (2005) Carboxylterminal protease regulates Brucella suis morphology in culture and persistence in macrophages and mice. J. Bacteriol. 187: 5767-5775.
Barrick, J.E., Sudarsan, N., Weinberg, Z., Ruzzo, W.L. and Breaker, R.R. (2005) 6S RNA is a widespread regulator of eubacterial RNA polymerase that resembles an open promoter. RNA 11: 774-784.
Basu, D., Khare, G., Singh, S., Tyagi, A., Khosla, S. and Mande, S.C. (2009) A novel nucleoid-associated protein of Mycobacterium tuberculosis is a sequence homolog of GroEL. Nucleic Acids Res. 37: 4944-4954.
Bechah, Y., Capo, C., Mege, J.L. and Raoult, D. (2008a) Epidemic typhus. Lancet Infect. Dis. 8: 417-426.

Bechah, Y., Capo, C., Mege, J.L. and Raoult, D. (2008b) Rickettsial diseases: from Rickettsia-arthropod relationships to pathophysiology and animal models. Future Microbiol. 3: 223-236.
Blanc, G., Ogata, H., Robert, C., Audic, S., Suhre, K., Vestris, G., et al. (2007) Reductive genome evolution from the mother of Rickettsia. PLoS Genet. 3: e14.
Bobrovskyy, M., Vanderpool, C.K. and Richards, G.R. (2015) Small RNAs regulate primary and secondary metabolism in Gram-negative bacteria. Microbiology Spectrum 3.
Boisset, S., Geissmann, T., Huntzinger, E., Fechter, P., Bendridi, N., Possedko, M., et al. (2007) Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev. 21: 1353-1366.
Bozeman, F.M., Masiello, S.A., Williams, M.S. and Elisberg, B.L. (1975) Epidemic typhus rickettsiae isolated from flying squirrels. Nature 255: 545-547.
Busch, A., Richter, A.S. and Backofen, R. (2008) IntaRNA: efficient prediction of bacterial sRNA targets incorporating target site accessibility and seed regions. Bioinformatics 24: 2849-2856.
Caldelari, I., Chao, Y., Romby, P. and Vogel, J. (2013) RNA-mediated regulation in pathogenic bacteria. Cold Spring Harb. Perspect. Med. 3: a010298.
Chabelskaya, S., Gaillot, O. and Felden, B. (2010) A Staphylococcus aureus small RNA is required for bacterial virulence and regulates the expression of an immuneevasion molecule. PLoS Path. 6: e1000927.
Chan, Y.G., Cardwell, M.M., Hermanas, T.M., Uchiyama, T. and Martinez, J.J. (2009) Rickettsial outer-membrane protein B (rOmpB) mediates bacterial invasion through Ku 70 in an actin, c-Cbl, clathrin and caveolin 2-dependent manner. Cell. Microbiol. 11: 629-644.
Chao, Y. and Vogel, J. (2010) The role of Hfq in bacterial pathogens. Curr. Opin. Microbiol. 13: 24-33.
Childs, J.E. and Paddock, C.D. (2002) Passive surveillance as an instrument to identify risk factors for fatal Rocky Mountain spotted fever: is there more to learn? Am. J. Trop. Med. Hyg. 66: 450-457.
Clark, T.R., Noriea, N.F., Bublitz, D.C., Ellison, D.W., Martens, C., Lutter, E.I., et al. (2015) Comparative genome sequencing of Rickettsia rickettsii strains that differ in virulence. Infect. Immun. 83: 1568-1576.
Crooks, G.E., Hon, G., Chandonia, J.M. and Brenner, S.E. (2004) WebLogo: a sequence logo generator. Genome Res. 14: 1188-1190.
Darby, A.C., Cho, N.H., Fuxelius, H.H., Westberg, J. and Andersson, S.G. (2007) Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet. 23: 511-520.
DebRoy, S., Gebbie, M., Ramesh, A., Goodson, J.R., Cruz, M.R., van Hoof, A., et al. (2014) A riboswitch-containing sRNA controls gene expression by sequestration of a response regulator. Science 345: 937-940.
DiChiara, J.M., Contreras-Martinez, L.M., Livny, J., Smith, D., McDonough, K.A. and Belfort, M. (2010) Multiple small RNAs identified in Mycobacterium bovis BCG are also expressed in Mycobacterium tuberculosis and Mycobacterium smegmatis. Nucleic Acids Res. 38: 4067-4078.

Drexler, N.A., Dahlgren, F.S., Heitman, K.N., Massung, R.F., Paddock, C.D. and Behravesh, C.B. (2016) National surveillance of spotted fever group Rickettsioses in the United States, 2008-2012. Am. J. Trop. Med. Hyg. 94: 26-34.
Driskell, L.O., Yu, X.J., Zhang, L., Liu, Y., Popov, V.L., Walker, D.H., et al. (2009) Directed mutagenesis of the Rickettsia prowazekii pld gene encoding phospholipase D. Infect. Immun. 77: 3244-3248.
Dugar, G., Herbig, A., Förstner, K.U., Heidrich, N., Reinhardt, R., Nieselt, K., et al. (2013) High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates. PLoS Genet. 9: e1003495.
El Karkouri, K., Pontarotti, P., Raoult, D. and Fournier, P.-E. (2016) Origin and evolution of Rickettsial plasmids. PLoS One 11: e0147492.
Ellison, D.W., Clark, T.R., Sturdevant, D.E., Virtaneva, K. and Hackstadt, T. (2009) Limited transcriptional responses of Rickettsia rickettsii exposed to environmental stimuli. PLoS One 4: e5612.
Ellison, D.W., Clark, T.R., Sturdevant, D.E., Virtaneva, K., Porcella, S.F. and Hackstadt, T. (2008) Genomic comparison of virulent Rickettsia rickettsii Sheila Smith and avirulent Rickettsia rickettsii Iowa. Infect. Immun. 76: 542-550.
Eremeeva, M.E., Dasch, G.A. and Silverman, D.J. (2003) Evaluation of a PCR assay for quantitation of Rickettsia rickettsii and closely related spotted fever group Rickettsiae. J. Clin. Microbiol. 41: 5466-5472.
Farhang-Azad, A., Traub, R. and Baqar, S. (1985) Transovarial transmission of murine typhus rickettsiae in Xenopsylla cheopis fleas. Science 227: 543-545.
Faucher, S.P., Friedlander, G., Livny, J., Margalit, H. and Shuman, H.A. (2010) Legionella pneumophila 6S RNA optimizes intracellular multiplication. Proc. Natl. Acad. Sci. U. S. A. 107: 7533-7538.
Feng, L., Rutherford, Steven T., Papenfort, K., Bagert, John D., van Kessel, Julia C., Tirrell, David A., et al. (2015) A Qrr noncoding RNA deploys four different regulatory mechanisms to optimize quorum-sensing dynamics. Cell 160: 228-240.
Fournier, P.E., El Karkouri, K., Leroy, Q., Robert, C., Giumelli, B., Renesto, P., et al. (2009) Analysis of the Rickettsia africae genome reveals that virulence acquisition in Rickettsia species may be explained by genome reduction. BMC Genomics 10: 166.
Fujita, H., Fournier, P.E., Takada, N., Saito, T. and Raoult, D. (2006) Rickettsia asiatica sp. nov., isolated in Japan. Int. J. Syst. Evol. Microbiol. 56: 2365-2368.
Fuxelius, H.-H., Darby, A., Min, C.-K., Cho, N.-H. and Andersson, S.G.E. (2007) The genomic and metabolic diversity of Rickettsia. Res. Microbiol. 158: 745-753.
Gautheret, D. and Lambert, A. (2001) Direct RNA motif definition and identification from multiple sequence alignments using secondary structure profiles. J. Mol. Biol. 313: 1003-1011.
Georgiades, K., Merhej, V., El Karkouri, K., Raoult, D. and Pontarotti, P. (2011) Gene gain and loss events in Rickettsia and Orientia species. Biol. Direct 6: 6.
Georgiades, K. and Raoult, D. (2011) Genomes of the most dangerous epidemic bacteria have a virulence repertoire characterized by fewer genes but more toxin-antitoxin modules. PLoS One 6: e17962.

Gillespie, J.J., Ammerman, N.C., Dreher-Lesnick, S.M., Rahman, M.S., Worley, M.J., Setubal, J.C., et al. (2009) An anomalous type IV secretion system in Rickettsia is evolutionarily conserved. PLoS One 4: e4833.
Gillespie, J.J., Beier, M.S., Rahman, M.S., Ammerman, N.C., Shallom, J.M., Purkayastha, A., et al. (2007) Plasmids and rickettsial evolution: insight from Rickettsia felis. PLoS One 2: e266.
Gillespie, J.J., Joardar, V., Williams, K.P., Driscoll, T., Hostetler, J.B., Nordberg, E., et al. (2012) A Rickettsia genome overrun by mobile genetic elements provides insight into the acquisition of genes characteristic of an obligate intracellular lifestyle. J. Bacteriol. 194: 376-394.
Gillespie, J.J., Kaur, S.J., Rahman, M.S., Rennoll-Bankert, K., Sears, K.T., Beier-Sexton, M., et al. (2015) Secretome of obligate intracellular Rickettsia. FEMS Microbiol. Rev. 39: 47-80.
Gillespie, J.J., Williams, K., Shukla, M., Snyder, E.E., Nordberg, E.K., Ceraul, S.M., et al. (2008) Rickettsia phylogenomics: unwinding the intricacies of obligate intracellular life. PLoS One 3: e2018.
Gómez-Lozano, M., Marvig, R.L., Tulstrup, M.V. and Molin, S. (2014) Expression of antisense small RNAs in response to stress in Pseudomonas aeruginosa. BMC Genomics 15: 1-11.
Gong, H., Vu, G.P., Bai, Y., Chan, E., Wu, R., Yang, E., et al. (2011) A Salmonella small non-coding RNA facilitates bacterial invasion and intracellular replication by modulating the expression of virulence factors. PLoS Path. 7: e1002120.
Gottesman, S. and Storz, G. (2011) Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb. Perspect. Biol. 3: a003798a003798.
Grieshaber, N.A., Grieshaber, S.S., Fischer, E.R. and Hackstadt, T. (2006) A small RNA inhibits translation of the histone-like protein Hc1 in Chlamydia trachomatis. Mol. Microbiol. 59: 541-550.
Gripenland, J., Netterling, S., Loh, E., Tiensuu, T., Toledo-Arana, A. and Johansson, J. (2010) RNAs: regulators of bacterial virulence. Nat. Rev. Microbiol. 8: 857-866.

Guillier, M. and Gottesman, S. (2006) Remodelling of the Escherichia coli outer membrane by two small regulatory RNAs. Mol. Microbiol. 59: 231-247.
Hansen, A.K. and Degnan, P.H. (2014) Widespread expression of conserved small RNAs in small symbiont genomes. ISME Journal 8: 2490-2502.
Harley, C.B. and Reynolds, R.P. (1987) Analysis of E. coli promoter sequences. Nucleic Acids Res. 15: 2343-2361.
Hindley, J. (1967) Fractionation of 32p-labelled ribonucleic acids on polyacrylamide gels and their characterization by fingerprinting. J. Mol. Biol. 30: 125-\&.
Hofacker, I.L., (2002) RNA secondary structure analysis using the Vienna RNA package. In: Current Protocols in Bioinformatics. John Wiley \& Sons, Inc., pp.
Hoge, R., Laschinski, M., Jaeger, K.E., Wilhelm, S. and Rosenau, F. (2011) The subcellular localization of a C-terminal processing protease in Pseudomonas aeruginosa. FEMS Microbiol. Lett. 316: 23-30.
Holste, D., Weiss, O., Grosse, I. and Herzel, H. (2000) Are noncoding sequences of Rickettsia prowazekii remnants of "neutralized" genes? J. Mol. Biol. 51: 353-362.

Huerta, A.M. and Collado-Vides, J. (2003) Sigma70 promoters in Escherichia coli: specific transcription in dense regions of overlapping promoter-like signals. $J$. Mol. Biol. 333: 261-278.
Janion, C. (2008) Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. Int. J. Biol. Sci. 4: 338-344.
Khandige, S., Kronborg, T., Uhlin, B.E. and Møller-Jensen, J. (2015) sRNA-mediated regulation of P-fimbriae phase variation in uropathogenic Escherichia coli. PLoS Path. 11: e1005109.
Kingsford, C.L., Ayanbule, K. and Salzberg, S.L. (2007) Rapid, accurate, computational discovery of Rho-independent transcription terminators illuminates their relationship to DNA uptake. Genome Biol. 8: R22.
Kroger, C., Dillon, S.C., Cameron, A.D., Papenfort, K., Sivasankaran, S.K., Hokamp, K., et al. (2012) The transcriptional landscape and small RNAs of Salmonella enterica serovar Typhimurium. Proc. Natl. Acad. Sci. U. S. A. 109: E1277-1286.
Lad, S.P., Yang, G., Scott, D.A., Wang, G., Nair, P., Mathison, J., et al. (2007) Chlamydial CT441 is a PDZ domain-containing tail-specific protease that interferes with the NF-kB pathway of immune response. J. Bacteriol. 189: 66196625.

Lafri, I., Leulmi, H., Baziz-Neffah, F., Lalout, R., Mohamed, C., Mohamed, K., et al. (2015) Detection of a novel Rickettsia sp. in soft ticks (Acari: Argasidae) in Algeria. Microb. Infect. 17: 859-861.
Langmead, B. and Salzberg, S.L. (2012) Fast gapped-read alignment with Bowtie 2. Nat. Methods 9: 357-359.
Lasa, I., Toledo-Arana, A., Dobin, A., Villanueva, M., de los Mozos, I.R., VergaraIrigaray, M., et al. (2011) Genome-wide antisense transcription drives mRNA processing in bacteria. Proc. Natl. Acad. Sci. U. S. A. 108: 20172-20177.
Lasa, I., Toledo-Arana, A. and Gingeras, T.R. (2012) An effort to make sense of antisense transcription in bacteria. RNA Biol. 9: 1039-1044.
Lawley, T.D., Klimke, W.A., Gubbins, M.J. and Frost, L.S. (2003) F factor conjugation is a true type IV secretion system. FEMS Microbiol. Lett. 224: 1-15.
Lee, E.J. and Groisman, E.A. (2010) An antisense RNA that governs the expression kinetics of a multifunctional virulence gene. Mol. Microbiol. 76: 1020-1033.
Lenz, D.H., Mok, K.C., Lilley, B.N., Kulkarni, R.V., Wingreen, N.S. and Bassler, B.L. (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118: 69-82.
Leroy, Q., Lebrigand, K., Armougom, F., Barbry, P., Thiery, R. and Raoult, D. (2010) Coxiella burnetii transcriptional analysis reveals serendipity clusters of regulation in intracellular bacteria. PLoS One 5: e15321.
Li, L., Huang, D., Cheung, M.K., Nong, W., Huang, Q. and Kwan, H.S. (2013) BSRD: a repository for bacterial small regulatory RNA. Nucleic Acids Res. 41: D233D238.
Liu, J.M. and Camilli, A. (2010) A broadening world of bacterial small RNAs. Curr. Opin. Microbiol. 13: 18-23.
Liu, X., Brutlag, D.L. and Liu, J.S. (2001) BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac. Symp. Biocomput.: 127-138.

Livny, J., Brencic, A., Lory, S. and Waldor, M.K. (2006) Identification of 17 Pseudomonas aeruginosa sRNAs and prediction of sRNA-encoding genes in 10 diverse pathogens using the bioinformatic tool sRNAPredict2. Nucleic Acids Res. 34: 3484-3493.
Livny, J., Teonadi, H., Livny, M. and Waldor, M.K. (2008) High-throughput, kingdomwide prediction and annotation of bacterial non-coding RNAs. PLoS One 3: e3197.
Lu, X., Goodrich-Blair, H. and Tjaden, B. (2011) Assessing computational tools for the discovery of small RNA genes in bacteria. RNA 17: 1635-1647.
Macke, T.J., Ecker, D.J., Gutell, R.R., Gautheret, D., Case, D.A. and Sampath, R. (2001) RNAMotif, an RNA secondary structure definition and search algorithm. Nucleic Acids Res. 29: 4724-4735.
Masse, E. and Gottesman, S. (2002) A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 99: 4620-4625.
Mathews, D.H., Moss, W.N. and Turner, D.H. (2010) Folding and finding RNA secondary structure. Cold Spring Harb. Perspect. Biol. 2: a003665.
McLeod, M.P., Qin, X., Karpathy, S.E., Gioia, J., Highlander, S.K., Fox, G.E., et al. (2004) Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J. Bacteriol. 186: 5842-5855.
Medina-Sanchez, A., Bouyer, D.H., Alcantara-Rodriguez, V., Mafra, C., Zavala-Castro, J., Whitworth, T., et al. (2005) Detection of a typhus group Rickettsia in Amblyomma ticks in the state of Nuevo Leon, Mexico. Ann. N. Y. Acad. Sci. 1063: 327-332.
Mellin, J.R., Koutero, M., Dar, D., Nahori, M.-A., Sorek, R. and Cossart, P. (2014) Sequestration of a two-component response regulator by a riboswitch-regulated noncoding RNA. Science 345: 940-943.
Mendoza-Vargas, A., Olvera, L., Olvera, M., Grande, R., Vega-Alvarado, L., Taboada, B., et al. (2009) Genome-wide identification of transcription start sites, promoters and transcription factor binding sites in E. coli. PLoS One 4: e7526.
Merhej, V., Angelakis, E., Socolovschi, C. and Raoult, D. (2014) Genotyping, evolution and epidemiological findings of Rickettsia species. Infect., Genet. Evol. 25: 122137.

Merhej, V., Notredame, C., Royer-Carenzi, M., Pontarotti, P. and Raoult, D. (2011) The rhizome of life: the sympatric Rickettsia felis paradigm demonstrates the random transfer of DNA sequences. Mol. Biol. Evol. 28: 3213-3223.
Merhej, V. and Raoult, D. (2011) Rickettsial evolution in the light of comparative genomics. Biological Reviews 86: 379-405.
Mitchell, J.E., Zheng, D.L., Busby, S.J.W. and Minchin, S.D. (2003) Identification and analysis of 'extended-10' promoters in Escherichia coli. Nucleic Acids Res. 31: 4689-4695.
Moody, M.J., Young, R.A., Jones, S.E. and Elliot, M.A. (2013) Comparative analysis of non-coding RNAs in the antibiotic-producing Streptomyces bacteria. BMC Genomics 14: 558.
Morita, T., Maki, K. and Aiba, H. (2012) Detection of sRNA-mRNA interactions by electrophoretic mobility shift assay. Methods Mol. Biol. 905: 235-244.

Mraheil, M.A., Billion, A., Mohamed, W., Mukherjee, K., Kuenne, C., Pischimarov, J., et al. (2011) The intracellular sRNA transcriptome of Listeria monocytogenes during growth in macrophages. Nucleic Acids Res. 39: 4235-4248.
Munderloh, U.G. and Kurtti, T.J. (1989) Formulation of medium for tick cell culture. Exp. Appl. Acarol. 7: 219-229.
Nakabachi, A., Yamashita, A., Toh, H., Ishikawa, H., Dunbar, H.E., Moran, N.A., et al. (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314: 267-267.
Nielsen, J.S., Larsen, M.H., Lillebaek, E.M., Bergholz, T.M., Christiansen, M.H., Boor, K.J., et al. (2011) A small RNA controls expression of the chitinase ChiA in Listeria monocytogenes. PLoS One 6: e19019.
Ogata, H., Audic, S., Renesto-Audiffren, P., Fournier, P.E., Barbe, V., Samson, D., et al. (2001) Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 293: 2093-2098.
Ogata, H., Renesto, P., Audic, S., Robert, C., Blanc, G., Fournier, P.E., et al. (2005) The genome sequence of Rickettsia felis identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLoS Biol. 3: e248.
Ogata, H., Scola, B., Audic, S., Renesto, P., Blanc, G. and Robert, C. (2006) Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. PLoS Genet. 2.
Oliva, G., Sahr, T. and Buchrieser, C. (2015) Small RNAs, 5' UTR elements and RNAbinding proteins in intracellular bacteria: impact on metabolism and virulence. FEMS Microbiol. Rev. 39: 331-349.
Ooi, W.F., Ong, C., Nandi, T., Kreisberg, J.F., Chua, H.H., Sun, G., et al. (2013) The condition-dependent transcriptional landscape of Burkholderia pseudomallei. PLoS Genet. 9: e1003795.
Openshaw, J.J., Swerdlow, D.L., Krebs, J.W., Holman, R.C., Mandel, E., Harvey, A., et al. (2010) Rocky Mountain spotted fever in the United States, 2000-2007: Interpreting contemporary increases in incidence. Am. J. Trop. Med. Hyg. 83: 174-182.
Östberg, Y., Bunikis, I., Bergström, S. and Johansson, J. (2004) The etiological agent of Lyme Disease, Borrelia burgdorferi, appears to contain only a few small RNA molecules. J. Bacteriol. 186: 8472-8477.
Otaka, H., Ishikawa, H., Morita, T. and Aiba, H. (2011) PolyU tail of rho-independent terminator of bacterial small RNAs is essential for Hfq action. Proc. Natl. Acad. Sci. U. S. A. 108: 13059-13064.
Ozsolak, F. and Milos, P.M. (2011) RNA sequencing: advances, challenges and opportunities. Nat. Rev. Genet. 12: 87-98.
Padalon-Brauch, G., Hershberg, R., Elgrably-Weiss, M., Baruch, K., Rosenshine, I., Margalit, H., et al. (2008) Small RNAs encoded within genetic islands of Salmonella typhimurium show host-induced expression and role in virulence. Nucleic Acids Res. 36: 1913-1927.
Pain, A., Ott, A., Amine, H., Rochat, T., Bouloc, P. and Gautheret, D. (2015) An assessment of bacterial small RNA target prediction programs. RNA Biol. 12: 509-513.

Papenfort, K. and Vanderpool, C.K. (2015) Target activation by regulatory RNAs in bacteria. FEMS Microbiol. Rev. 39: 362-378.
Parola, P., Paddock, C.D. and Raoult, D. (2005) Tick-borne rickettsioses around the world: emerging diseases challenging old concepts. Clin. Microbiol. Rev. 18.
Parulekar, R.S., Barage, S.H., Jalkute, C.B., Dhanavade, M.J., Fandilolu, P.M. and Sonawane, K.D. (2013) Homology modeling, molecular docking and DNA binding studies of nucleotide excision repair UvrC protein from M. tuberculosis. Protein J. 32: 467-476.
Philip, C.B. (1959) Some epidemiological considerations in Rocky Mountain spotted fever. Public Health Rep. 74: 595-600.
Philip, C.B., Hoogstraal, H., Reiss-Gutfreund, R. and Clifford, C.M. (1966) Evidence of rickettsial disease agents in ticks from Ethiopian cattle. Bull. W.H.O. 35: 127-131.
Pichon, C. and Felden, B. (2008) Small RNA gene identification and mRNA target predictions in bacteria. Bioinformatics 24: 2807-2813.
Raghavan, R., Groisman, E.A. and Ochman, H. (2011) Genome-wide detection of novel regulatory RNAs in E. coli. Genome Res. 21: 1487-1497.
Raghavan, R., Kacharia, F.R., Millar, J.A., Sislak, C.D. and Ochman, H. (2015) Genome rearrangements can make and break small RNA genes. Genome Biol. Evol. 7: 557-566.
Raghavan, R., Sloan, D.B. and Ochman, H. (2012) Antisense transcription is pervasive but rarely conserved in enteric bacteria. mBio 3.
Raoult, D., Dutour, O., Houhamdi, L., Jankauskas, R., Fournier, P.-E., Ardagna, Y., et al. (2006) Evidence for louse-transmitted diseases in soldiers of Napoleon's Grand Army in Vilnius. J. Infect. Dis. 193: 112-120.
Raoult, D., Woodward, T. and Dumler, J.S. (2004) The history of epidemic typhus. Infect. Dis. Clin. North Am. 18: 127-140.
Reeves, W.K., Murray, K.O., Meyer, T.E., Bull, L.M., Pascua, R.F., Holmes, K.C., et al. (2008) Serological evidence of typhus group Rickettsia in a homeless population in Houston, Texas. J. Vector Ecol. 33: 205-207.
Reiss-Gutfreund, R.J. (1966) The isolation of Rickettsia prowazeki and mooseri from unusual sources. Am. J. Trop. Med. Hyg. 15: 943-949.
Renesto, P., Rovery, C., Schrenzel, J., Leroy, Q., Huyghe, A., Li, W., et al. (2008) Rickettsia conorii transcriptional response within inoculation eschar. PLoS One 3: e3681.
Rieder, R., Reinhardt, R., Sharma, C. and Vogel, J. (2012) Experimental tools to identify RNA-protein interactions in Helicobacter pylori. RNA Biol. 9: 520-531.
Rivas, E. and Eddy, S.R. (2001) Noncoding RNA gene detection using comparative sequence analysis. BMC Bioinformatics 2: 8 .
Rogozin, I.B., Makarova, K.S., Natale, D.A., Spiridonov, A.N., Tatusov, R.L., Wolf, Y.I., et al. (2002) Congruent evolution of different classes of non-coding DNA in prokaryotic genomes. Nucleic Acids Res. 30: 4264-4271.
Roux, V., Rydkina, E., Eremeeva, M. and Raoult, D. (1997) Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the rickettsiae. Int. J. Syst. Bacteriol. 47: 252-261.

Rydkina, E., Sahni, A., Silverman, D.J. and Sahni, S.K. (2007) Comparative analysis of host-cell signalling mechanisms activated in response to infection with Rickettsia conorii and Rickettsia typhi. J. Med. Microbiol. 56: 896-906.
Rydkina, E., Silverman, D.J. and Sahni, S.K. (2005) Activation of p38 stress-activated protein kinase during Rickettsia rickettsii infection of human endothelial cells: role in the induction of chemokine response. Cell. Microbiol. 7: 1519-1530.
Rydkina, E., Turpin, L.C. and Sahni, S.K. (2010) Rickettsia rickettsii infection of human macrovascular and microvascular endothelial cells reveals activation of both common and cell type-specific host response mechanisms. Infect. Immun. 78: 2599-2606.
Sahni, S.K., Narra, H.P., Sahni, A. and Walker, D.H. (2013) Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol. 8: 1265-1288.
Sahni, S.K., Rydkina, E., Joshi, S.G., Sporn, L.A. and Silverman, D.J. (2003) Interactions of Rickettsia rickettsii with endothelial Nuclear Factor- $\kappa$ B in a "cell-free" system. Ann. N. Y. Acad. Sci. 990: 635-641.
Sahni, S.K., Van Antwerp, D.J., Eremeeva, M.E., Silverman, D.J., Marder, V.J. and Sporn, L.A. (1998) Proteasome-independent activation of nuclear factor kappaB in cytoplasmic extracts from human endothelial cells by Rickettsia rickettsii. Infect. Imтип. 66: 1827-1833.
Schroeder, C.L., Narra, H.P., Rojas, M., Sahni, A., Patel, J., Khanipov, K., et al. (2015) Bacterial small RNAs in the Genus Rickettsia. BMC Genomics 16: 1075.
Schroeder, C.L.C., Narra, H.P., Sahni, A., Rojas, M., Khanipov, K., Patel, J., et al. (2016) Identification and characterization of novel small RNAs in Rickettsia prowazekii. Front. Microbiol. 7.
Seo, J. and Darwin, A.J. (2013) The Pseudomonas aeruginosa periplasmic protease CtpA can affect systems that impact its ability to mount both acute and chronic infections. Infect. Immun. 81: 4561-4570.
Sharma, C. and Heidrich, N. (2012) Small RNAs and virulence in bacterial pathogens. RNA Biol. 9: 361-363.
Sharma, C.M., Hoffmann, S., Darfeuille, F., Reignier, J., Findeiss, S., Sittka, A., et al. (2010) The primary transcriptome of the major human pathogen Helicobacter pylori. Nature 464: 250-255.
Sharma, C.M. and Vogel, J. (2014) Differential RNA-seq: the approach behind and the biological insight gained. Curr. Opin. Microbiol. 19: 97-105.
Sharma, R., Arya, S., Patil, S.D., Sharma, A., Jain, P.K., Navani, N.K., et al. (2014) Identification of novel regulatory small RNAs in Acinetobacter baumannii. PLoS One 9: e93833.
Shinhara, A., Matsui, M., Hiraoka, K., Nomura, W., Hirano, R., Nakahigashi, K., et al. (2011) Deep sequencing reveals as-yet-undiscovered small RNAs in Escherichia coli. BMC Genomics 12: 428.
Smadel, J.E. (1959) Status of the Rickettsioses in the United States. Ann. Intern. Med. 51: 421-435.
Socolovschi, C., Mediannikov, O., Raoult, D. and Parola, P. (2009) The relationship between spotted fever group Rickettsiae and Ixodid ticks. Vet. Res. 40: 34.
Solovyey, V. and Salamov, A., (2010) Automatic annotation of microbial genomes and metagenomic sequences. In: Metagenomics and its Applications in Agriculture,

Biomedicine and Environmental Studies. R.W. Li (ed). Nova Science Publishers, pp. 61-78.
Soucy, S.M., Huang, J. and Gogarten, J.P. (2015) Horizontal gene transfer: building the web of life. Nat. Rev. Genet. 16: 472-482.
Sridhar, J., Sambaturu, N., Sabarinathan, R., Ou, H.Y., Deng, Z., Sekar, K., et al. (2010) sRNAscanner: a computational tool for intergenic small RNA detection in bacterial genomes. PLoS One 5: e11970.
Stazic, D. and Voss, B. (2016) The complexity of bacterial transcriptomes. J. Biotechnol. 232: 69-78.
Stubben, C.J., Micheva-Viteva, S.N., Shou, Y., Buddenborg, S.K., Dunbar, J.M. and Hong-Geller, E. (2014) Differential expression of small RNAs from Burkholderia thailandensis in response to varying environmental and stress conditions. BMC Genomics 15: 385.
Sun, X., Zhulin, I. and Wartell, R.M. (2002) Predicted structure and phyletic distribution of the RNA-binding protein Hfq. Nucleic Acids Res. 30: 3662-3671.
Thomason, M.K., Fontaine, F., De Lay, N. and Storz, G. (2012) A small RNA that regulates motility and biofilm formation in response to changes in nutrient availability in Escherichia coli. Mol. Microbiol. 84: 17-35.
Thorner, A.R., Walker, D.H. and Petri, W.A. (1998) Rocky Mountain spotted fever. Clin. Infect. Dis. 27: 1353-1359.
Tjaden, B. (2008) TargetRNA: a tool for predicting targets of small RNA action in bacteria. Nucleic Acids Res. 36: W109-113.
Toledo-Arana, A., Dussurget, O., Nikitas, G., Sesto, N., Guet-Revillet, H., Balestrino, D., et al. (2009) The Listeria transcriptional landscape from saprophytism to virulence. Nature 459: 950-956.
Trotochaud, A.E. and Wassarman, K.M. (2004) 6S RNA function enhances long-term cell survival. J. Bacteriol. 186: 4978-4985.
Tu, N., (2015) Characterization of two novel gene regulatory systems in the zoonotic bacterium Bartonella henselae. In. Tampa, FL: University of South Florida, pp. 112.

Updegrove, T.B., Shabalina, S.A. and Storz, G. (2015) How do base-pairing small RNAs evolve? FEMS Microbiol. Rev. 39: 379-391.
Van Houten, B. and Kad, N. (2014) Investigation of bacterial nucleotide excision repair using single-molecule techniques. DNA Repair 20: 41-48.
Wagner, E.G. and Simons, R.W. (1994) Antisense RNA control in bacteria, phages, and plasmids. Annu. Rev. Microbiol. 48: 713-742.
Wagner, E.G.H. and Romby, P., (2015) Small RNAs in Bacteria and Archaea: Who They Are, What They Do, and How They Do It. In: Adv. Genet. J.C.D. Theodore Friedmann and F.G. Stephen (eds). Academic Press, pp. 133-208.
Walker, D.H. (2003) Principles of the malicious use of infectious agents to create terror Reasons for concern for organisms of the genus Rickettsia. Ann Ny Acad Sci 990: 739-742.
Warrier, I., Hicks, L.D., Battisti, J.M., Raghavan, R. and Minnick, M.F. (2014) Identification of novel small RNAs and characterization of the 6S RNA of Coxiella burnetii. PLoS One 9: e100147.

Washietl, S., Hofacker, I.L. and Stadler, P.F. (2005) Fast and reliable prediction of noncoding RNAs. Proc. Natl. Acad. Sci. U. S. A. 102: 2454-2459.
Wassarman, K.M. (2002) Small RNAs in bacteria: diverse regulators of gene expression in response to environmental changes. Cell 109: 141-144.
Wassarman, K.M. (2007) 6S RNA: a small RNA regulator of transcription. Curr. Opin. Microbiol. 10: 164-168.
Wassarman, K.M. and Storz, G. (2000) 6S RNA regulates E. coli RNA polymerase activity. Cell 101: 613-623.
Waters, L.S. and Storz, G. (2009) Regulatory RNAs in bacteria. Cell 136: 615-628.
Weinert, L.A., Welch, J.J. and Jiggins, F.M. (2009a) Conjugation genes are common throughout the genus Rickettsia and are transmitted horizontally. Proc. R. Soc. B 276: 3619-3627.
Weinert, L.A., Werren, J.H., Aebi, A., Stone, G.N. and Jiggins, F.M. (2009b) Evolution and diversity of Rickettsia bacteria. BMC Biol. 7: 6.
Weissenmayer, B.A., Prendergast, J.G., Lohan, A.J. and Loftus, B.J. (2011) Sequencing illustrates the transcriptional response of Legionella pneumophila during infection and identifies seventy novel small non-coding RNAs. PLoS One 6: e17570.
Westermann, A.J., Gorski, S.A. and Vogel, J. (2012) Dual RNA-seq of pathogen and host. Nat. Rev. Microbiol. 10: 618-630.
Whitworth, T., Popov, V.L., Yu, X.J., Walker, D.H. and Bouyer, D.H. (2005) Expression of the Rickettsia prowazekii pld or tlyC gene in Salmonella enterica serovar Typhimurium mediates phagosomal escape. Infect. Immun. 73: 6668-6673.
Winkler, H.H. (1976) Rickettsial permeability. An ADP-ATP transport system. J. Biol. Chem. 251: 389-396.
Woodard, A. and Wood, D.O. (2011) Analysis of convergent gene transcripts in the obligate intracellular bacterium Rickettsia prowazekii. PLoS One 6: e16537.
Woodward, T.E. (1973) A historical account of the rickettsial diseases with a discussion of unsolved problems. J. Infect. Dis. 127: 583-594.
Woolfit, M., Algama, M., Keith, J.M., McGraw, E.A. and Popovici, J. (2015) Discovery of putative small non-coding RNAs from the obligate intracellular bacterium Wolbachia pipientis. PLoS One 10: e0118595.
Wright, P.R., Georg, J., Mann, M., Sorescu, D.A., Richter, A.S., Lott, S., et al. (2014) CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains. Nucleic Acids Res. 42: W119-123.
Wright, P.R., Richter, A.S., Papenfort, K., Mann, M., Vogel, J., Hess, W.R., et al. (2013) Comparative genomics boosts target prediction for bacterial small RNAs. Proc. Natl. Acad. Sci. U. S. A. 110: E3487-3496.
Xiao, B., Li, W., Guo, G., Li, B., Liu, Z., Jia, K., et al. (2009) Identification of small noncoding RNAs in Helicobacter pylori by a bioinformatics-based approach. Curr. Microbiol. 58: 258-263.
Zhang, J.Z., Hao, J.F., Walker, D.H. and Yu, X.J. (2006) A mutation inactivating the methyltransferase gene in avirulent Madrid E strain of Rickettsia prowazekii reverted to wild type in the virulent revertant strain Evir. Vaccine 24: 2317-2323.

## Vita

Mr. Casey Schroeder was born during 1983 in Iowa. He obtained a Bachelor of Science in clinical laboratory medicine from the University of Iowa and a Master of Science in biology from the University of Nebraska at Kearney. After graduating, Mr. Schroeder worked as a medical laboratory scientist at Mercy Medical Center in Des Moines, Iowa, earning specialist certifications in microbiology and laboratory safety from the American Society for Clinical Pathology (ASCP). Mr. Schroeder also served as a medical service corps officer in the Iowa Army National Guard.

## Education

2005: B.S., Microbiology, University of Iowa, Iowa City, IA
2008: B.S., Clinical Laboratory Sciences, University of Iowa, Iowa City, IA
2011: M.S., Biology, University of Nebraska at Kearney, Kearney, NE
2016: PhD, Pathology, University of Texas Medical Branch, Galveston, TX

Board Certifications
2008: Medical Laboratory Scientist (ASCP) ${ }^{\mathrm{CM}} \# 227146$
2011: Specialist in Microbiology (ASCP) ${ }^{\text {CM }} \# 3054$
2011: Specialist in Laboratory Safety (ASCP) ${ }^{\mathrm{CM}} \# 222$


[^0]:    Dean, Graduate School

[^1]:    ${ }^{1}$ Parts of this introduction may appear in Schroeder C. L., I. H. Chowdhury, H. P. Narra, J. Patel, A. Sahni, and S. K. Sahni. Human rickettsioses: host response and molecular pathogenesis. Rickettsiales: Epidemiology, Molecular Biology and Vaccine Development, 2016, Springer, New York [Invited book chapter - Submitted]. Springer allows a dissertation license that permits an advanced degree candidate to republish the requested material in his/her dissertation as per their instructions_(https://s100.copyright.com/help/rightslinkhelppages/Frequently_Asked_Questions_ Springer.htm)

[^2]:    2 The work mentioned in this chapter is based on the work published: Schroeder, C. L., H. P. Narra, M. Rojas, A. Sahni, J. Patel, K. Khanipov, et al. (2015). Bacterial small RNAs in the Genus Rickettsia. BMC Genomics 16(1), 1075. doi: 10.1186/s12864-015-2293-7. The Creative Commons License can be accessed at http://creativecommons.org/publicdomain/zero/1.0/

[^3]:    3 The work mentioned in this chapter is based on the work published: Schroeder, C. L., H. P. Narra, A. Sahni, M. Rojas, J. Patel, K. Khanipov, et al. (2016). Identification and characterization of novel small RNAs in Rickettsia prowazekii. Frontiers in Microbiology, 7:859. The Creative Commons License can be accessed at http://creativecommons.org/licenses/by/4.0/

