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The virtual screening of chemical databases against drug discovery targets with 

docking programs can enrich a database for bioactive compounds.  However, current 

virtual screening methods generate many false positives leading to extensive and 

expensive testing of ultimately inactive compounds.  In addition, the performance of 

virtual screening methods is dependent on the target system.  This work examines if 

coupling traditional docking based virtual screening methods with perturbation based 

mean field free energy of binding (MF-FEB) calculations to rescore docking generated 

poses will improve enrichment over traditional virtual screening methods.  MF-FEB 

calculations are computationally demanding requiring the distributed computing 

resources of IBM’s World Community Grid.  The work details three retrospective studies 

of MF-FEB using a 30 compound test set for binders and non-binders of the L99A T4 

lysozyme, the DUD estrogen agonist test set and the DUD trypsin test set. In addition, 

this work describes the active prospective drug discovery effort on World Community 

Grid Discovering Dengue Drugs-Together that utilizes MF-FEB rescoring.  The testing 

MF-FEB rescoring showed that while MF-FEB calculations can improve enrichment over 

traditional virtual screening methods it still has many of the same limitations as 

traditional virtual screening methods. 
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Chapter 1 Challenges in Computer-Aided Drug Discovery 

Drug discovery and development is an expensive and challenging process.  Over the past ten 

years the cost of drug research and development has approximately doubled while the average 

number of Food and Drug Administration (FDA) approved drugs is largely unchanged. (Paul, 

Mytelka et al. ; Service 2004; Aronovitz 2006)  The high cost of drug discovery has led to the so 

called “Block Buster” syndrome in which corporate drug discovery efforts focus on finding 

treatments for diseases with high profit values such as those that  require continuing treatment or 

that have a high occurrence in the developed world. (Mrazek and Mossialos 2003; Service 2004; 

Stirner 2008) The effect of the “Block Buster” syndrome is that many serious diseases in the 

developing world are not targeted for drug development. (Mrazek and Mossialos 2003; Service 

2004; Stirner 2008)  As an alternative to traditional drug discovery methods, computational drug 

discovery tools provide a potentially lower cost approach to drug discovery. Lower drug 

discovery costs allow academic and charitable organization to perform drug discovery projects 

focused on diseases with a greater humanitarian burden than profitability, such as malaria, 

leishmania, and dengue fever.  Additionally, lower drug discovery costs allow for increased 

corporate efficiency in drug development thereby increasing treatment options. (Trouiller, 

Olliaro et al. 2002; Nwaka and Ridley 2003; Stirner 2008)   

A good computational drug discovery tool should identify bioactive compounds from a 

chemical library, in a variety of different systems, in a timely and efficient manner.  The goal of 

this work is to improve computational drug discovery tools by improving the success rate in 

docking based virtual screening, focusing on the prediction of binding.  Improved success rates 

reduces the total number of compounds tested at the bench top, thus decreasing drug discovery 

cost and increasing the probability of lead generation and future drug development.   

This chapter introduces computer-aided drug discovery, or CADD, focusing on the 

computational approaches for predicting the binding of small drug-like molecules to protein 
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targets. Section 1.1 of this chapter summarizes the ways computational methods are integrated 

into drug discovery and development.  Section 1.2 focuses on docking programs, the tools for 

binding prediction, and explains different search methods and scoring functions used to make 

binding predictions.  Section 1.3 describes the effectiveness of virtually screening chemical 

libraries using docking programs.  Section 1.4 introduces statistical mechanics based methods for 

the calculation of free energy of binding (FEB), and discusses its uses as an alternative to the 

docking programs’ scoring functions.  Section 1.5 is a brief introduction to high performance 

computing and its use in drug discovery.  Finally, Section 1.6 states our hypothesis and outlines 

the rest of this work. 

1.1 COMPUTATIONAL METHODS IN DRUG DISCOVERY 

This section provides a general overview of CADD.  Section 1.1.1 outlines the process and 

challenges of how a chemical compound becomes a drug.  Section 1.1.2 introduces CADD 

methods and how they are used in each stage of the drug discovery process. Finally, Section 

1.1.3 concludes with an introduction to computational methods used to predict the free energy of 

binding (FEB). 

1.1.1 Brief Overview of Drug Discovery 

Drugs are generally small organic molecules (< 500 Da) (Lipinski, Lombardo et al. 2001) 

which agonizes, antagonizes, or inhibits a target molecule in a biological pathway producing a 

physiological response.  Most drugs targets are proteins, and the function of the target proteins 

vary from receptors, to enzymes, to ion channels.  (Drews 2000) 

The process of drug discovery and development is the identification, or creation, of a 

bioactive compound and its subsequent modification in to a drug, balancing both its potency and 

safety.  (Barril, Brough et al. 2005; Mitscher and Dutta 2006)  To discover and develop a new 

drug can take upwards of 10 to 15 years.  (Lipsky and Sharp 2001; Aronovitz 2006)  The path of 

drug discovery and development has four stages. (Baxter and Lockey 2001; Bleicher, Bohm et 
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al. 2003; Nwaka and Ridley 2003; Deprez-Poulain and Deprez 2004; Aronovitz 2006; Keseru 

and Makara 2006; Mitscher and Dutta 2006) 

The first stage in drug discovery is target selection.  (Baxter and Lockey 2001; Bleicher, 

Bohm et al. 2003; Nwaka and Ridley 2003; Deprez-Poulain and Deprez 2004; Aronovitz 2006; 

Keseru and Makara 2006; Mitscher and Dutta 2006)  Target selection starts with the basic 

science research required to understand the pathology of the disease to determine possible 

pharmacological interventions.  Once a target is selected, the data obtained on the target 

determines how drug discovery will proceed.  If there is an experimental structure of the target, 

then structure based drug discovery (SBDD) is used, where the discovery process is governed by 

the shape and chemistry of the target.  In other cases, if the structure of the target is unknown, 

but the structure of a ligand is known (Andricopulo, Salum et al. 2009),  then ligand based drug 

discovery is used, where drug discovery proceeds is based on modifying the structure and 

chemistry of a known ligand. 

The goal of the second stage of drug discovery is hit generation.  Hits are compounds that 

are “active” against the target. (Baxter and Lockey 2001; Bleicher, Bohm et al. 2003)  Hits are 

identified through methods such as high throughput screening (HTS) (Macarron 2006), fragrant 

screening (Fischer and Hubbard 2009), or virtual screening (Shoichet 2004).  In these methods, 

researchers screen chemical libraries to identify “active” compounds.  The activity of a 

compound is based on some predetermined threshold of potency, like binding or inhibition 

concentrations. (Mitscher and Dutta 2006)  A common metric for classifying a compound as a hit 

is that the compound has activity at low micromolar concentration.  (Baxter and Lockey 2001) 

In the third stage of drug discovery, researchers develop hits into lead compounds and 

then into candidate compounds for human trails.  Lead compounds are chemically modified hits 

with increased potency, usually in the high (>100) nanomolar range. (Baxter and Lockey 2001; 

Bleicher, Bohm et al. 2003) The lead compound’s absorption, distribution, metabolism, 
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excretion, and toxicity (ADME-Tox) are tested at this stage and the lead is modified to improve 

safety. (Hodgson 2001)  A lead compound becomes a candidate compound for human trial when 

it achieves safety and potency requirements. (Baxter and Lockey 2001; Bleicher, Bohm et al. 

2003) 

The final stage of drug discovery is the process of the candidate compound becoming a 

drug though clinical trials.   (Lipsky and Sharp 2001; Aronovitz 2006)  Clinical trials in the 

United States have three stages.  The first stage determines the drug’s safety in healthy adults.  

The second proves potency of the drug in a small study with hundreds of subjects.  The third 

stage test safety and potency of the drug in a large study with thousands of subjects.  If a drug 

passes all three stages, it then goes to market, during which its potency and safety is continuously 

monitored. (Lipsky and Sharp 2001; Aronovitz 2006) 

The probability of a hit becoming a candidate is significantly less than one percent, and 

of the candidate compounds that proceed to clinical trials four in five will fail.   (Paul, Mytelka et 

al. ; Baxter and Lockey 2001; Bleicher, Bohm et al. 2003; Gershell and Atkins 2003; Deprez-

Poulain and Deprez 2004; Aronovitz 2006; Federsel 2006) Reviews of the drug discovery 

process identify lead development as the weak link in the process. (Paul, Mytelka et al. ; Baxter 

and Lockey 2001; Hodgson 2001; Bleicher, Bohm et al. 2003; Gershell and Atkins 2003; 

Deprez-Poulain and Deprez 2004; Aronovitz 2006; Federsel 2006)  An FDA report states the 

problem as follows: 

“For medical technology, performance is measured in terms of product safety and 

effectiveness.  Not enough applied scientific work has been done to create new 

tools to get fundamentally better answers about how the safety and effectiveness 

of new products can be demonstrated, in faster time frames, with more certainty, 

and at lower costs. In many cases, developers have no choice but to use the tools 

and concepts of the last century to assess this century’s candidates.  As a result, 

the vast majority of investigational products that enter clinical trials fail.” 

(Aronovitz 2006) 

The failure of candidate compounds in clinical trials is very expensive leading to an overall 

decrease in the number of compounds entering clinical trials, even as budgets for research and 
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development have increased. (Paul, Mytelka et al. ; Service 2004; Aronovitz 2006)  Many 

solutions have been suggested to make drug discovery and development more effective including 

improved testing methods (Bleicher, Bohm et al. 2003; Deprez-Poulain and Deprez 2004), 

parallel potency and toxicity testing (Baxter and Lockey 2001), integrate production chemistry 

requirements in compound synthesis methods during lead development  (Federsel 2006),  and 

improving computational tools (Bleicher, Bohm et al. 2003).  Fundamentally, the challenge is to 

predict accurately the chemical and biological properties of lead compounds.  

1.1.2 Computers in Drug Discovery 

Computational tools play a central role in the pre-clinical design and development of 

drugs.  These tools come from a variety of scientific disciplines, such as chemistry, biology, 

physics and mathematics.  The collective employment of these tools in drug discovery is known 

as computer aided drug discovery/design/development or simply CADD.  The utilization of 

CADD tools has led to the identification of numerous bioactive compounds and new drugs, most 

famously saquinavir and related human immunodeficiency virus-1 (HIV-1) protease inhibitors. 

(Talele, Khedkar et al. 2010) Each stage of pre-clinical drug development utilizes a different set 

of CADD tools.  

The first stage of drug discovery, target selection, uses the computational tools developed 

in the fields of bioinformatics and structural biology.  Bioinformatics uses statistical based 

relationship determining methods to elucidate the complex genetic and molecular interactions in 

cells from data obtained through high-throughput in vivo and in vitro methods (i.e. gene array, 

etc.) and meta-studies of scientific publications. (Kitano 2002; You 2004)  These complex 

relationships can identify potential drug targets and predict adverse interactions. (Bhogal and 

Balls 2008; Schrattenholz and Soskic 2008)  Once targets are identified, computational methods 

play a central role in the determination and modeling of the target’s structure using data obtained 

from x-ray crystallography or NMR spectroscopy.  (Anderson 2003; Villoutreix, Eudes et al. 

2009)  Alternately, if a target’s structure cannot be determined experimentally, it can be modeled 
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from the macromolecular sequence alone, or by using homology modeling if similar structures 

have been determined. (Takeda-Shitaka, Takaya et al. 2004; Grant 2009)  While not ideal, 

modeled targets are proving effective in drug discovery.  (Bissantz, Bernard et al. 2003) 

The second stage of drug discovery, hit identification, makes use of computational 

methods to create, generate, or identify compounds that will interact with the selected target site.  

New compounds can be created rationally using the target structure to guide the synthesis of new 

compounds. (For example (Duff, Mudhivarthi et al. 2009))  This process is called de novo design 

and can be done computationally to generate a new compound by starting with a chemical 

scaffold and “growing” the compound by adding functional groups. (Jorgensen 2009)  More 

commonly, the virtual screening of virtual chemical libraries identifies hits.  (Jorgensen 2009; 

Villoutreix, Eudes et al. 2009) Virtual chemical libraries can contain the complete molecular 

structures (Zhou 2011), or can be composed of fragments that are later combined into a novel 

compound. (Guvench and MacKerell 2009)  Virtual screening relies on docking programs to 

determine the pose, the geometric relationship between the ligand and the target, and to 

determine the score, the “fitness”, of that pose. (Campbell, Gold et al. 2003; Kitchen, Decornez 

et al. 2004; Mohan, Gibbs et al. 2005; Leach, Shoichet et al. 2006)  In virtual screening, the 

docking scores are used to rank the compounds and identify hits. (Campbell, Gold et al. 2003; 

Kitchen, Decornez et al. 2004; Mohan, Gibbs et al. 2005; Leach, Shoichet et al. 2006)   

The third stage of drug discovery and development, lead optimization, uses the tools of 

chemoinformatics to predict the activity and ADME-Tox properties of compounds.  Researchers 

determine ADME-Tox properties by using a mathematical model describing the empirical 

relationship between a set of molecular descriptors and a given activity or property.    Examples 

of molecular descriptors include: directly measured or calculated physical properties (e.g., 

molecular weight, formal change, pKa, solubility); chemical properties of inter-molecular 

interaction (e.g., number H-bond donors/acceptors, hydrophobic/polar surface area); reactivity 

(e.g., electronegative, HOMO and LUMO locations and intensity); the structure of the molecule 
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(e.g., functional groups, atomic coordinates, patterns of atomic bonding); and data from 

biological assay (e.g., binding constants, toxicity). (Zhou ; Engel 2006)   Statistical and pattern 

recognition methods like linear regression, principle component analysis, machine learning, and 

evolutionary algorithms determine the quantitative relationship between the descriptors and the 

properties. (Engel 2006; Michielan and Moro 2010; Zhou 2011) The process of using the 

relationships of chemical descriptors to predict an activity or a property is known as a 

quantitative structure activity/property relationship (QSAR or QSPR).  (Engel 2006; Kortagere 

and Ekins 2010; Michielan and Moro 2010; Zhou 2011) 

Central to all the CADD tools used for drug discovery and development is the ability to 

predict the pharmacological and biophysical properties of compounds.  While CADD methods 

are successfully used (Talele, Khedkar et al. 2010), often their predictions are inaccurate, 

generating false positives (Stouch, Kenyon et al. 2003; Tetko, Bruneau et al. 2006; Warren, 

Andrews et al. 2006; Cross, Thompson et al. 2009; Kortagere and Ekins 2010; Zhang 2011).  

Accurate property predictions decrease the cost of drug development by guiding development 

efforts towards compounds most likely to become drugs, avoiding the costly development of 

compounds that will ultimately fail. (Jorgensen 2004; Jorgensen 2009; Zhang 2011)    Improving 

the predictive abilities of CADD tools can therefore decrease the cost of drug discovery 

permitting effective drug discovery projects targeting neglected diseases. 

1.1.3 Predicting Binding 

The binding of a ligand to its target is the central property of SBDD.  Reversible binding
1
 

is the non-covenant association of two chemical species; for this work, a small organic molecule, 

the ligand (L) and a protein target (P).  The chemical equation for simple stoichiometric 

reversible binding in an aqueous solution is written as 

  
1-1 

                                                 

1
 Binding in this works always refers to reversible binding. 
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where PL is the protein ligand complex and the aq subscript denotes that the species in aqueous 

solution.  The binding equilibrium constant for this reaction is  

 
 

1-2 

where Kb in the binding constant and [x] are the different equilibrium concentrations.  The 

absolute free energy of binding is defined as 

  
1-3 

where G is the change in Gibbs free energy (constant volume free energy), R is the ideal gas 

constant, T is the temperature of the system in Kelvin, and C
o
 is the standard concentrations 

(1M). 

The computational prediction of binding is based on developing approaches to calculate 

the Gbinding.  QSAR methods can establish functions for Gbinding as a weighted collection of 

chemical descriptors, but these functions lack robustness because they are limited to the chemical 

space defined by the training set.  The FEB is the global minimum of an energetic landscape. In 

SBDD, the energetic landscape is defined as a function of the spatial relationship of the atoms in 

the ligand and target.  There are a number of computational approaches to model the energy 

landscape and find the minimum.  SBDD methods are potentially more robust than the empirical 

QSAR methods as long as the binding energy landscape can be accurately determined.  

However, as discussed below, while current SBDD methods are able to identify binding 

compounds from a database, they are inaccurate generating false positives. (Warren, Andrews et 

al. 2006; Cross, Thompson et al. 2009; Kortagere and Ekins 2010)  This work therefore seeks to 

improve the computational methods for binding prediction in order to provide more effective 

drug discovery tools. 
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1.2 DOCKING PROGRAMS 

Docking programs are computational SBDD tools used to predict the binding of a ligand to 

a target. (Campbell, Gold et al. 2003; Kitchen, Decornez et al. 2004; Mohan, Gibbs et al. 2005; 

Leach, Shoichet et al. 2006)   A docking program is composed of two components: a scoring 

function, and a search method.  The scoring function approximates the FEB landscape.  The 

search method explores the energetic landscape defined by the scoring function, searching for the 

global minimum.  A docking program therefore predicts the pose, the geometric relationship of 

the ligand to the target, and the score, the energetic relationship between the ligand and the 

target. (Halperin, Ma et al. 2002; Campbell, Gold et al. 2003; Kitchen, Decornez et al. 2004; 

Cummings, DesJarlais et al. 2005)  Researchers optimize search methods and scoring functions 

of docking programs to explore the binding energy landscape as efficiently as possible. 

(Campbell, Gold et al. 2003)  There are a variety of docking programs, each with different search 

methods and scoring functions.  (Halperin, Ma et al. 2002; Campbell, Gold et al. 2003; Kitchen, 

Decornez et al. 2004; Mohan, Gibbs et al. 2005)  Section 1.2.1  and 1.2.2 introduces docking by 

examining the different classes of scoring functions and search methods respectively.  Section 

1.2.3 evaluates the current performance of docking programs. Section 1.2.4 concludes with a 

detailed description of the AutoDock4 docking program. 

1.2.1 Scoring Functions  

Scoring functions describe the binding energy landscape that the search methods explore.  

The goal of scoring functions is to provide quantitative discernment among docking poses.  

There are two categories of scoring functions: force field based scoring functions, and empirical 

scoring functions.  (Kitchen, Decornez et al. 2004; Mohan, Gibbs et al. 2005)  Sections 1.2.1.1 

describes force field based scoring functions and introduces force fields in general. Section 

1.2.1.2 describes empirical scoring functions.  Section 1.2.1.3 concludes with consensus scoring. 
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1.2.1.1 Force Field Based Scoring 

Molecular mechanics force fields define the total potential energy of a system as a 

function of atomic position.  (Kitchen, Decornez et al. 2004; Mohan, Gibbs et al. 2005; Guvench 

and MacKerell 2008)  As the position of the atoms change relative to each other the potential 

energy of the system changes.  Researchers first used force fields to simulate a variety of 

chemical phenomena starting with the properties of the ideal gases.  Later, condensed phase 

simulations lead to the development of force fields used to stimulate proteins and other 

macromolecules.  Force fields are used for docking as well as for free energy of binding 

calculations, as described below. This section is divided into two parts: the first describing force 

fields generally, and the second describing specific uses of force fields as scoring functions. 

1.2.1.1.1 Force Fields in General
2
 

The potential energy of a system can be determined as a function of the position of each 

body in that system in relation to the force field acting upon it.  The way that the bodies and the 

forces are defined differentiates molecular mechanics force fields.  The granularity of a force 

field refers to how it models each body, from atomistic fine-grain models, to course-gain models 

where each body may represent a chemical functional group or an amino acid.  The phenomena 

being studied, as well are the computational power available, determines the granularity used for 

simulations.  For docking, researchers use fine grain atomistic force fields originally designed to 

                                                 

2
 In this section the generic force field equations were taken from a review by Guvench, 

O. and A. D. MacKerell, Jr. (2008). "Comparison of protein force fields for molecular dynamics 

simulations." Methods Mol Biol 443: 63-88.  For additional reading on force fields, see 

Mackerell, A. D., Jr. (2004). "Empirical force fields for biological macromolecules: overview 

and issues." J Comput Chem 25(13): 1584-604. Ponder, J. W. and D. A. Case (2003). "Force 

fields for protein simulations." Adv Protein Chem 66: 27-85. 
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study macromolecules like AMBER (Cornell, Cieplak et al. 1995), OPLS (Jorgensen and 

Tiradorives 1988) and CHARMM (MacKerell, Bashford et al. 1998; MacKerell Jr, Brooks III et 

al. 1998). 

In atomistic force fields, each atom is assigned a type and a partial charge.  Force fields 

classify atoms not only by their element but also by their bond order and chemistry, hence its 

type.  For example, aliphatic and aromatic carbon atoms each have different properties and are 

treated as different types.  Another example would be primary, secondary, tertiary, and aromatic 

amines each of which provides a different numbers of hydrogen bond donors or acceptors.  Force 

fields generally explicitly define all heavy atoms, however the treatment of protons differ.  “All 

atom” force fields treat all protons explicitly, both polar and non-polar.  “Unified” force fields 

treat the protons implicitly combining them with the heavy atom with which they are bond.  

Some unified force fields treat only polar protons explicitly, combining non-polar protons with 

their heavy atom binding partner.  As with protons, some force fields treat lone pairs explicitly, 

though this is not common. 

In addition to type, each atom is assigned a partial charge.  Physically the distribution of 

charge in a molecule can be envisioned as massive positively changed nuclei in negative clouds 

of electrons.  Computationally however, in molecular mechanics force fields, each atom is 

modeled at a single point in three-dimensional space, and therefore each body is assigned a value 

to represent its charge at that point combining nucleus and electron cloud.  Unless the atom is an 

ion, each atom is assigned value from < 1 to > -1 corresponding to the distribution of elections 

around each nucleus, hence its partial charge.  The sum of all partial charges is equal to the 

formal charge of the molecule.  Partial charges can be assigned corresponding to atom type, but 

they are most often calculated using a variety of quantum mechanical models and statistical 

models. Different methods for determining partial charge can affect the outcome of simulations. 

(Mobley, Dumont et al. 2007) 
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The general form of the force field function is 

  
1-4 

where Etotal is the total energy of a system defined using the force field, and Ebonding and Enonbonding 

are the energetic contributions of the bonding and non-bonding forces. (Guvench and MacKerell 

2008)  Eother is an optional term representing other energetic contributions not described by the 

bonding and non-bonding forces, and frequently describes solvation forces in implicit solvent 

models.  (Wang, Donini et al. 2001; Mackerell 2004; Guvench and MacKerell 2008)  Each of the 

terms in equation 1-4 is the sum of their component energies, as described below.  Each 

component energy is the sum of forces acting on each body in the system.  Overall, the Etotal in 

an atomistic force field is the potential energy for a given conformation of atoms.  

The bonding energies in the force field are described as   

 

 
1-5 

where Ebonding is the sum of the sums of the energies from the bond lengths, bond angles, and 

dihedrals in the system.  (Guvench and MacKerell 2008)  The first two terms model the potential 

energy as bonds vibrate and pairs of connected bonds vibrate relative to each other as springs 

using Hook’s Law.  In the “bonds” sum in equation 1-5, b represents the bond length, b0 

representing equilibrium bond length, and Kb representing the spring constant.  In the “angles” 

sum,  represents the angle between the two bonds. 0 and are the equilibrium angle and the 

spring constant respectively.  The periodic change in potential energy as the dihedral bond 

rotates is modeled using a harmonic function.   In the “dihedrals” sum,  is the angle of rotation 

around the central bond.   , , and  define the frequency, wavelength and potential energy 

barrier height as the atoms on opposite sides of the dihedral bond overlap and separate during the 

rotation.  Other common terms used by force fields to define the energy of bonding interactions 

include improper torsion, used to maintain chirality, and ring bending terms. 
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The nonbonding energies are calculated by: 

 

 

1-6 

where  is the sum of energy of all pair-wise (i,j) non-bonding interactions between 

each body in the system as a function of distance,  .  (Guvench and MacKerell 2008)  In 

equation 1-6 the two non-bonding interactions are defined.  The first is the van der Waals (VdW) 

interactions using the classic 6-12 relationship.   and  are the constants defining the 

distance and depth of the energy minimum and are determined for each atom type pairing.   The 

second interaction is charge-charge interactions modeled using Coulomb’s Law.   and  are 

the partial charges on each body and  is the dielectric constant.  Other non-bonding terms 

sometimes used in force fields include hydrogen bonds, modeled with an H-bonding 10-12 

relationship, dipole, and multi-pole interactions.  

1.2.1.1.2 Force Fields in Docking 

Force fields are employed to describe the binding energy landscape as potential energy 

function of the pose of the ligand.  Docking programs such as DOCK 4.0 (Ewing, Makino et al. 

2001), ADAM&EVE (Mizutani and Itai 2004), and EUDOC (Pang, Perola et al. 2001) use the 

AMBER force field for scoring.   Theoretically, a good force field based on first principles 

should be sufficiently robust to simulate any system and be used for any calculation.  In practice, 

force fields used to score docking, such as AMBER and CHARMM, were built for the 

simulation of macromolecules and are empirically parameterized using experimental data. 

(Guvench and MacKerell 2008)  These force fields are designed to model the movement of 

amino acids in the target and not the small molecules of the ligand. Some force fields have been 

expanded to include generalized parameters for all organic compounds, such as Generalized 

AMBER Force Field, or GAFF. (Wang, Wolf et al. 2004) Additionally, while spectroscopic, 

thermodynamic, and crystallographic data is used for parameterization of the force fields, 
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binding data is not. (Guvench and MacKerell 2008)  Thus, the direct use of force fields for 

scoring binding extends their use beyond their parameterization. 

To overcome the limitations imposed by force field parameterization, docking programs 

use two approaches.  In the first approach, programs such as Glide use the OPLS-AA force field 

only for minimization and MC, for which it was designed, but not final scoring.  (Friesner, Banks 

et al. 2004)    The second approach is to parameterize force fields using binding data.  The 

scoring function is then the sum of the intermolecular interactions potential as defined in MM 

force fields with each term weighted based on binding parameterization.  These scoring functions 

are known as empirical force field based scoring functions (EFFBSF).  ROSETTA (Davis and 

Baker 2009), Gold (Jones, Willett et al. 1997) and AutoDock (Morris, Goodsell et al. 1998; 

Huey, Morris et al. 2007) use these scoring functions.  The AutoDock scoring function has also 

been used in other docking programs like SODOCK (Chen, Liu et al. 2007) and ISE-Dock 

(Gorelik and Goldblum 2008), and will be described in more detail below. 

Even with simplified EFFBSF, force fields are the sum of pair-wise interactions and can 

be computationally expensive.  In order to decrease the computational cost of scoring, docking 

programs like AutoDock4 (Morris, Goodsell et al. 1998; Huey, Morris et al. 2007) and DOCK 

4.0 (Ewing, Makino et al. 2001) use prebuilt scoring grids. Scoring grids are built by 

incrementally translating a probe atom through the predefined search volume on the target and 

scoring the probe at each point.  A collection of grids are built for each atom type used by the 

scoring function which provides look-up tables for the docking program.  However, the density 

of the point on the grid limits the approximation of the binding energy landscape by the scoring 

function. 

1.2.1.2 Empirical Based Scoring Functions 

Empirical scoring functions are linear equations that describe the binding energy.  Like 

QSAR, fitting the scoring function to experimental data determines the weight of each of the 
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energy terms. (Kitchen, Decornez et al. 2004; Mohan, Gibbs et al. 2005)   The basic equation is a 

sum of the free energy terms. (Bohm 1994)  Each of the weighted terms may describe a type of 

intermolecular interaction between the ligand and its target, a change in conformation, the 

environment of the ligand, or the target on binding. (Eldridge, Murray et al. 1997; Bohm 1998; 

Kramer, Rarey et al. 1999; Wang, Lai et al. 2002)  These differ from EFFBSF in that they are not 

refinements of MM force fields, but are independently determined and often include a wider 

variety of terms.  Common intermolecular interactions terms include: ionic interaction (Rarey, 

Kramer et al. 1996; Kramer, Rarey et al. 1999), hydrogen bonding (Rarey, Kramer et al. 1996; 

Eldridge, Murray et al. 1997; Bohm 1998; Kramer, Rarey et al. 1999; Wang, Lai et al. 2002), 

interactions with aromatic groups (Rarey, Kramer et al. 1996; Bohm 1998; Kramer, Rarey et al. 

1999), lipophilic interactions (Rarey, Kramer et al. 1996; Eldridge, Murray et al. 1997; Bohm 

1998; Kramer, Rarey et al. 1999),  van der Waals interactions (Wang, Lai et al. 2002)
3
 and 

interactions with metals (Eldridge, Murray et al. 1997).   Other terms include desolvation (Bohm 

1998; Wang, Lai et al. 2002) and ligand deformation (Wang, Lai et al. 2002).  Entropy is 

modeled as a binding penalty for each rotamer in the ligand.  (Rarey, Kramer et al. 1996; 

Eldridge, Murray et al. 1997; Bohm 1998; Kramer, Rarey et al. 1999)  Each term is composed of 

the weight in the form of a free energy and a contribution function describing the degree to 

which each term is present or absent in a given ligand.  (Bohm 1994)  For example, the 

contributing functions for interactions are the pair-wise sums of the interactions between the 

ligand and target.  These interactions are described spatially, based on the atomic coordinates, 

but unlike force fields, the atoms are not described in terms of interaction potential but in the 

types of the interactions they participate in.  The contributing functions select which interactions 

are present based on the distance and angle between each atom and the concavity or convexity of 

                                                 

3
 LUDI uses only the repulsion portion, Bohm, H. J. (1998). "Prediction of binding 

constants of protein ligands: a fast method for the prioritization of hits obtained from de novo 

design or 3D database search programs." J Comput Aided Mol Des 12(4): 309-23. 
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the binding site.  (Eldridge, Murray et al. 1997; Bohm 1998; Kramer, Rarey et al. 1999; Wang, 

Lai et al. 2002)  Contributing functions can be as simple as counting the number of rotatable 

bonds. (Rarey, Kramer et al. 1996; Eldridge, Murray et al. 1997; Bohm 1998; Kramer, Rarey et 

al. 1999)  Because empirical scoring functions are linear equations, they contain a correction 

term, or y intercept. (Rarey, Kramer et al. 1996; Eldridge, Murray et al. 1997; Bohm 1998; 

Kramer, Rarey et al. 1999; Wang, Lai et al. 2002) 

There are many empirical scoring functions, each with a different combination of terms, 

but they are generally derived for Bohm’s original equation. (Kitchen, Decornez et al. 2004; 

Mohan, Gibbs et al. 2005)  Examples of empirical scoring functions include LUDI (Bohm 1998), 

ChemScore (Eldridge, Murray et al. 1997), X-SCORE (Wang, Lai et al. 2002), and FlexX’s 

scoring function (Rarey, Kramer et al. 1996; Kramer, Rarey et al. 1999).  Some examples of 

docking programs that use empirical scoring functions include: GOLD which uses a ChemScore 

variant (Verdonk, Cole et al. 2003), Glide which uses ChemScore for a final scoring of the pose 

determined using force fields (Friesner, Banks et al. 2004; Halgren, Murphy et al. 2004), and 

Vina which uses an X-SCORE variant (Trott and Olson 2010).  

Knowledge-based scoring functions are similar to empirical scoring functions in that they 

rely on a training set to determine the weight of different parameters.  Only in this case, the 

training sets are the crystal structures and the scoring function is parameterized to reproduce the 

binding pose and not the free energy of binding. (Kitchen, Decornez et al. 2004)  ROSETTA, in 

ROSETTALIGAND, uses a weighted knowledge-based scoring function. (Davis and Baker 

2009)  ROTA  (Hartmann, Antes et al. 2009) was used originally for side-chain optimization, but 

was extended to protein ligand interaction using potentials of mean force (PMF) based on the 

ratio of the mean probability of the distance of two atom types from both a binder and a decoy 

set. 
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Ideal for docking, empirical scoring functions are quick to solve and specifically 

parameterized to predict the FEB, or pose.  However, two factors limit them.  First, as with all 

empirical approaches, the training set biases the scoring function to a region chemical space 

defined by the ligands and target systems used for parameterization.  Secondly, there is 

uncertainty in which terms to include in the scoring function.  Including too many terms may 

lead to over fitting the data, thereby decreasing the predictive power of the scoring function. 

Selecting too few terms may limit the robustness of the scoring function, as different systems are 

dependent on different terms.  

1.2.1.3 Consciences Scoring Methods 

Conscience scoring is the combining of different scoring functions. (Charifson, Corkery 

et al. 1999; Kitchen, Decornez et al. 2004)  Examples include CScore, which combines existing 

docking scoring functions from DOCK, GOLD, and FlexX, and PMF scoring to rescore poses 

(Clark, Strizhev et al. 2002), and MOSFOM, which uses both energy score and contact scores 

during the docking process. (Li, Zhang et al. 2009)  Conscience scoring methods try to utilize the 

best of each scoring functions, however they can amplify shared limitations.  While individual 

scoring functions may outperform consciences scoring in specific systems, on average 

consciences scoring perform better over multiple systems. (Verdonk, Berdini et al. 2004)  

1.2.2 Search Methods 

The goal of search methods is to find the global minimum of the binding energy 

landscape defined by the scoring function as quickly and efficiently as possible. (Campbell, Gold 

et al. 2003)  Search methods can be classified into three general approaches: iterative, stochastic, 

and simulation based. (Kitchen, Decornez et al. 2004)  The following sections described and 

evaluated each general approach on its ability to explore the binding energy landscape. 
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1.2.2.1 Iterative Search Methods 

Iterative, or systematic, search methods attempt to map fully the binding energy 

landscape by enumerating and evaluating all degrees of freedom.  (Kitchen, Decornez et al. 

2004)  For example, the EUDOC program translates a rigid ligand through the search volume in 

user defined steps, usually 1.0 to 0.5 Å. (Pang, Perola et al. 2001) At each point, the ligand is 

rotated along all three axis of rotation in 2 to 10 degree steps. (Pang, Perola et al. 2001)  EUDOC 

calculates the potential energy of the system at each point by using the AMBER force field and 

returns the lowest energy pose as the docking result. (Pang, Perola et al. 2001) Ligand flexibility 

is modeled by individually docking each conformer. 

The advantage of a systematic search is that it fully maps the binding energy landscape to 

within the resolution of the step size, thus increasing the probability of finding a true global 

minimum for the search volume.  The challenge with iterative search methods is combinatorial 

explosion. (Kitchen, Decornez et al. 2004)  An increases in search volume or ligand flexibly, or a 

decrease in search step size, will geometrically increase the number of scoring evaluations 

needed to fully explore the energy landscape, thereby increasing the time to identify the global 

minimum.  All other search methods, including stochastic and simulation-based methods, are 

designed to overcome this problem of combinatorial explosion by finding the global minimum 

without defining the whole energy landscape. 

One approach to avoid combinational explosion is to change the model of the ligand and 

the receptor from an atomic model.  Changing the model is similar to changing the scoring 

function in that the approximation of the binding energy landscape is changed, but differs in that 

the search components are also changed.  For example, DOCK describes the ligand and the 

negative space of the target’s site as a set of spheres, defining the molecular surfaces of each. 

(Kuntz, Blaney et al. 1982; Ewing, Makino et al. 2001)  DOCK geometrically matches the ligand 

spheres to the target site spheres. (Kuntz, Blaney et al. 1982; Ewing, Makino et al. 2001)  

Another example of a simplified model is ADAM&EVE, which models only h-bonding 
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interactions. (Mizutani and Itai 2004)  Changing the model can only reduce the search time if the 

new model is simpler, but the model still needs to be robust.  The sphere model used in DOCK is 

effective as it reduces the number of ligand poses that need to be iteratively checked by reducing 

the number of locations that the ligand can be placed. (Kuntz, Blaney et al. 1982; Ewing, Makino 

et al. 2001)  However, the simpler model of ADAM&EVE is only useable in systems highly 

dependent on H-bonding. 

Another approach is hierarchical systematic searches in which the granularity and focus 

of the search is refined over a series of searches.  For example, Glide uses a hierarchical 

systematic search method (Friesner, Banks et al. 2004; Halgren, Murphy et al. 2004), which 

starts by performing an exhaustive enumeration of the ligand’s rotamer space, selecting 

minimum energy conformations that are then screened in the binding site. (Friesner, Banks et al. 

2004; Halgren, Murphy et al. 2004)  An advantage of the initial ligand rotamer selection is that it 

is independent of the target and can be done once for any ligand and then reused for different 

targets.  Hierarchical methods effectively reduce search time by making each search additive 

instead of multiplying the search with each new degree of freedom.  However, each search 

partitions the binding energy landscape explored, which may lead the search away from the true 

global minimum.  

First developed for de novo ligand design, incremental construction methods build a 

ligand by incrementally extending a base structure with new functional groups. (Jorgensen 2009)  

Incremental construction methods are a type of hierarchical systematic searches as the search is 

divided into steps, the most common implementation being root-branch methods.  For example, 

FlexX is designed to model ligand flexibility by utilizing a root-branch incremental construction 

method. (Rarey, Kramer et al. 1996; Kramer, Rarey et al. 1999) FlexX divides a ligand into 

fragments at acyclic single bonds.  The base, or root, fragment is docked into the target, and the 

original ligand is rebuilt by adding back the remaining fragments, allowing them to rotate on 

their connecting bonds. (Rarey, Kramer et al. 1996; Kramer, Rarey et al. 1999)  Another example 
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is DOCK 4.0, which uses the space matching method described above to place the base fragment 

that is then extended to rebuild the ligand. (Ewing, Makino et al. 2001)  Incremental construction 

methods suffer the same binding landscape partitioning limitations as hierarchical methods, but 

gain the advantage of decreased search times.  Additionally, placement of the root can limit the 

accuracy of root-branch methods.  The method assumes that the position root in the binding site 

corresponds to its lowest energy pose.  This assumption is not always valid, as the lowest energy 

pose of the whole ligand might not correspond with the lowest energy pose of the root. 

1.2.2.2 Stochastic Search Methods 

Stochastic, or random, methods explore the binding energy landscape by making random 

perturbations and evaluating those perturbations to determine the next set of perturbations. 

(Kitchen, Decornez et al. 2004)  The goal of random search methods is not to exhaustively 

explore the binding energy landscape like systematic methods, but to follow the surface of the 

binding energy landscape to the global minimum.  Following the surface can significantly reduce 

the search time, as only the local area around each perturbation needs to be calculated.  However, 

because the binding energy landscape is not completely explored, it is not known whether the 

minimum found is the true global minimum.  Additionally, the found minimum are biased by the 

initial conditions, the number of scoring evaluations allowed (or steps taken), and the selection 

criteria for each step.  To overcome biasing, random search method results are based on the 

consensus of multiple searches using different initial conditions.  

Docking programs use a variety of random search methods including methods like Monte 

Carlo (MC), particle swarm optimization, and genetic or evolutionary methods. (Kitchen, 

Decornez et al. 2004)  While MC methods are stochastic methods, they are also simulation 

methods and are discussed below.  SODOCK uses particle swarm optimization to explore pose 

space using particles that are assigned vectors that describe a ligand pose based on the scoring 

function. (Chen, Liu et al. 2007)  The vectors, treated as velocities, are accelerated using 

weighted random steps to explore local and global pose space. (Chen, Liu et al. 2007)  The 
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optimum, lowest energy pose is determined by the consensus of neighboring particles in the 

swarm. (Chen, Liu et al. 2007)  Genetic algorithms are used by docking programs like MolDock 

(Thomsen and Christensen 2006; De Azevedo 2010), ISE-Dock (Gorelik and Goldblum 2008), 

GOLD (Jones, Willett et al. 1997; Verdonk, Cole et al. 2003), and AutoDock3 and AutoDock4 

(Morris, Goodsell et al. 1998; Morris, Huey et al. 2009). Genetic algorithms utilize the principles 

of natural selection to explore pose space.  Each pose is defined as a gene to which random 

mutations are made, changing the pose. The fitness of the new gene is then evaluated based on a 

scoring function; the best gene becomes the foundation for the next generation. 

All random search methods suffer the limitation of becoming stuck in local minima or not 

finding the global minimum as described above.  However, due the dependence on censuses 

results, most docking programs using random search methods give a collection of poses for 

results as opposed to one global minimum pose.  The multiple results can give insight to 

different binding poses that the ligand may adopt, as binding is dynamic. 

1.2.2.3 Simulation Based Search Methods 

Simulation-based search methods are based on the molecular simulation methods of 

molecular dynamics (MD), Monte Carlo (MC), molecular minimization, and simulated 

annealing. (Kitchen, Decornez et al. 2004)  MD simulations model molecular and atomic motion 

using Newtonian physics.  While MD simulations are extensively used in CADD (Alonso, 

Bliznyuk et al. 2006), its inability to cross high energy barriers make it a poor tool for fully 

exploring the binding energy, and is not commonly used as a search method. (Kitchen, Decornez 

et al. 2004)   However, MC simulations can cross high-energy barriers, and therefore are used 

more commonly as a search method.  MC is a stochastic method in which atom and molecules 

are randomly perturbed and the perturbations are accepted or rejected based on selection criteria, 

often an energy score.  Grand Canonical MC simulations have been used to add ligands to a 

system. (Clark, Guarnieri et al. 2006; Clark, Meshkat et al. 2009)  Minimization and simulated 
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annealing methods search for local minima in the binding energy landscape as determined by the 

gradient of the landscape’s slope. 

Some examples of docking programs that use simulation based search method are 

ROSETTALIGAND, Glide, AutoDock2 and Vina.  ROSETTALIGAND uses MC and 

minimization to refine ligand and side-chain packing, utilizing rotamer libraries for the side-

chain movement, followed by quasi-Newton minimization. (Meiler and Baker 2006; Davis and 

Baker 2009)  Glide uses MC and minimization to refine its systematic search results. (Friesner, 

Banks et al. 2004; Halgren, Murphy et al. 2004)   AutoDock2 uses a simulated annealing method 

to search for binding poses. (Goodsell and Olson 1990)  Vina uses a gradient following 

minimization with multiple initial poses. (Trott and Olson 2010)  Addtionally, simulation-based 

search methods are commonly used to locally refine a pose as opposed to global searches 

because of their computational intensity. 

1.2.2.4 Combining Search Methods 

Docking programs commonly combine multiple search methods to increase the 

granularity for the search, and to take advantage of the strengths of different methods.  Many 

docking programs use local minimization to refine a pose identified by iterative or random 

search methods. Programs such as SODOCK (Chen, Liu et al. 2007), DOCK 4.0 (Ewing, 

Makino et al. 2001), and AutoDock4. (Morris, Goodsell et al. 1998; Huey, Morris et al. 2007; 

Morris, Huey et al. 2009), utilize this method. Another approach is hierarchical multistage 

searches. ROSETTALIGAND is an example of a multistage method beginning with a course-

grain random search that is refined by using MC and then gradient minimization. (Davis and 

Baker 2009) Glide uses MC and then minimization to refine its systematic search results as well. 

(Friesner, Banks et al. 2004; Halgren, Murphy et al. 2004)  Finally, consciences docking poses 

can be generated using multiple docking programs.  ConsDock uses hierarchical clustering to 

select a consciences pose from poses generated by DOCK 4.0, FlexX, and Gold. (Paul and 
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Rognan 2002)  Combining search methods can increase search speed by optimally using each 

search function’s strengths, however, each search method used will bias the results. 

1.2.3 Docking Performance  

Docking programs combine search and scoring functions in a variety of ways, but, after 

many studies, no single program has significantly distinguished itself for its predictive qualities 

in all target systems (Bursulaya, Totrov et al. 2003; Kellenberger, Rodrigo et al. 2004; 

Kontoyianni, McClellan et al. 2004; Kontoyianni, Sokol et al. 2005; Chen, Lyne et al. 2006; 

Warren, Andrews et al. 2006; Cross, Thompson et al. 2009), nonetheless, some trends have 

appeared.  For example, incremental build programs underperform when compared to other 

programs (Kellenberger, Rodrigo et al. 2004), and consciences scoring performs better on 

average (Verdonk, Berdini et al. 2004), yet the performance of a docking program is dependent 

on the target system. (Kellenberger, Rodrigo et al. 2004; Verdonk, Berdini et al. 2004; Warren, 

Andrews et al. 2006; Cross, Thompson et al. 2009)  Generally, all docking programs share the 

same strengths and limitations.  The studies show that docking programs are able to reproduce 

experimentally determined docking poses, but their scores do not correlate with experientially 

determined binding affinities. (Best shown in Warren et. al. (Warren, Andrews et al. 2006))   

Docking programs can accurately, within a RMSD of 2 Å, reproduce experimentally 

determined binding poses (Kellenberger, Rodrigo et al. 2004; Chen, Lyne et al. 2006; Warren, 

Andrews et al. 2006; Cross, Thompson et al. 2009), however, the accuracy of pose prediction can 

be limited by both the ligand and the target.  Pose prediction can be biased by the starting pose of 

a ligand. (Kellenberger, Rodrigo et al. 2004)   Pose predictions started with experimentally 

determined binding poses are more accurate, by about 1 Å, than automatically generated or 

minimized poses because they start in the ideal binding conformation. (Cross, Thompson et al. 

2009) Similarly, the conformation of the target can bias the docking results. 
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In addition, most modern docking programs treat ligands flexibly, either by allowing 

bond rotations during searching (e.g., AutoDock), or by rotating added fragments in incremental 

build docking (e.g. FlexX).  However, ligand flexibility is generally limited to dihedral bond 

rotation.  The more flexible the ligand and the functional groups are, the more degrees of 

freedom that need to be searched, thus decreasing the likelihood of finding the global minimum. 

(Chen, Lyne et al. 2006; Warren, Andrews et al. 2006) (Cross, Thompson et al. 2009) 

While there is no correlation between the quality of the docking pose and the 

experimental resolution of the target structures  (Chen, Lyne et al. 2006), the conformation of the 

receptor affects the quality of the docking pose. (Murray, Baxter et al. 1999)  Most docking 

programs incorrectly treat the target as ridged.  Different approaches have been applied to model 

receptor flexibility, though no single method is generally used.  One approach is to allow for 

side-chain movement.  AutoDock4 allows for selected side-chains to be treated flexibly. (Huey, 

Morris et al. 2007; Morris, Huey et al. 2009)  ROSETTALIGNAD uses MC and minimization to 

allow side-chain movement and ligand repacking. (Davis and Baker 2009) Some programs, for 

example ADAM, “soften” the penalty of steric clashes by using an offset or soft interaction grid 

(Mizutani, Takamatsu et al. 2006).  While allowing side-chain movement can improve docking 

pose, it is computationally more demanding and misses target conformational changes in the 

backbone.  Multiple docking runs can be made against multiple static receptor conformations 

obtained experimentally or by modeling. (Totrov and Abagyan 2008)  The challenge is selecting 

biologically relevant conformations and scoring the different target conformations relative to 

each other.  The most common practice is to dock into the experimental structure that comes 

from a co-crystal, providing an open or bonded conformation for the target.  In addition to 

flexibility, waters and cofactors that share the binding site can affect binding pose. (Verdonk, 

Chessari et al. 2005)  

While the scoring functions are able to predict pose, they do not correlate with FEB 

(Warren, Andrews et al. 2006).  This is likely because the scoring functions are evaluated on the 
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interactions of a single static pose between the ligand and the receptor, modeling enthalpic 

contributions to FEB, but not entropic contributions from either solvation or movement. Some 

scoring functions include terms to model both entropy and solvation, but often these estimates 

are inaccurate.  For example, assigning a fixed entropic penalty to each rotatable bond, assuming 

they are fixed upon binding, overestimates the entropic penalty for ligands with more than two 

rotatable bonds.  (Singh and Warshel 2010)  FEB is an emergent property of the complex and the 

dynamic interactions between the ligand and its receptor, and therefore is most effectively 

modeled dynamically. (Mobley and Dill 2009) 

1.2.4 Example Program: AutoDock4 

AutoDock4 combines a global random search function with a simulation-based local 

search, and scores with a semiempirical force field based scoring function. (Morris, Goodsell et 

al. 1998; Huey, Morris et al. 2007)  AutoDock4’s search method and scoring functions were 

originally developed for AutoDock3, but have been extended to allow for limited amino acid 

side-chain flexibility and a more robust scoring function.   We used AutoDock4 for all our 

docking studies in this work.  We selected AutoDock4 because it is freely available and widely 

used.  Additionally, we selected it because it employs an empirical force field based scoring 

function.  Most importantly, it was selected because of its satisfactory performance in testing.  

Using AutoDock4 provides a single program that can represent, in a limited way, a baseline for 

the current state of docking technology. This section provides a description of AutoDock4 to 

serve both as an introduction for future discussions and as an example of how a docking 

program’s search and scoring functions work together. 

AutoDock4 uses a semiempirical force field based scoring function. (Huey, Morris et al. 

2007)  The free energy of binding is defined by the scoring function as 
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where V is the sum of potential energy scores for each state’s atomic pair-wise interactions and 

Sconf is the conformational entropy.  L stands for ligand and P for protein.  The L-L and P-P 

potentials model the intramolecular interactions, while P-L models the intermolecular 

interactions.  The assumption is made that the distance between the ligand and the protein in the 

unbound state is sufficiently large enough for there to be no interaction, and therefore  

is set to zero.  Sconf is defined as 

  1-8 

where Ntors is the number of torsion angles and Wconf is the empirically derived weight of the 

term.  Overall, the free energy of binding, defined by the scoring function, is the sum of the 

change in energy for both the change in ligand and protein conformation upon binding, the 

interaction energy between the ligand and the protein upon binding, and an entropy potential.   

The equation for the interaction potentials is  
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where the terms are the sums of the energy contributions of each atom’s pairs (i, j) in the system 

for the VdW interaction, hydrogen bond interactions, electrostatic interactions, and solvation, 

respectively.  In all terms, r is the distance between each atom pair.  The first term models VdW 

interactions using the standard 6-12 relationship.  The AMBER force field provides the A and B 

constants for each atom pair type.  The second term models H-bonding interactions using a 12-10 

relationship.  E(t) scales the 12-10 energy as the i, j angle varies from ideal.  C and D determine 

the energy-well depth.  The third term models electrostatic interactions using Coulombs’ law as 

described in Section 1.2.1.1.1.  The final term models the desolvation based on the volume of the 

atom, V, and the solvation parameter, S.   is the weighted distance factor.  W is the empirically 

determined weight of each term as determined by a training set of 288 protein ligand complexes, 
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of which 100 are HIV-1 protease complexes.  To decrease computational time AutoGrid4 is used 

to build scoring grids for each atom type.  

AutoDock4’s search function combines a Lamarckian genetic algorithm for a global search 

with Solis-Wets minimization (Solis and Wets 1981) for local optimization. (Morris, Goodsell et 

al. 1998)  As with all genetic algorithms, the pose of the ligand, or phenotype, is described as a 

series of genes.  AutoDock4 uses three genes: (1) the Cartesian coordinates of the geometric 

center of the ligand in the same reference frame as the target, (2) quaternion to describe the 

orientation of the ligand, and (3) one gene describing each rotatable bond and its torsion angle.  

The search function begins by assigning random starting poses to each individual in a 

population.  Each individual’s fitness is evaluated using the scoring function described above, 

then a portion of the fittest from the population is minimized. The pose generated by the 

minimization is rescored and returned to the population.  In this process, the phenotype 

becoming a new genotype is based on Lamarck’s discredited evolutional theory, hence the name 

Lamarckian genetic algorithm.  After minimization and rescoring, a portion of the fittest 

members of the population becomes the basis for the next generation.  The children are derived 

by randomly mutating each gene.  As part of the child generation process, a number of crossover 

events are allowed to expand the search.  At the same time, a number of elite poses are passed on 

to the next generation with no mutations to focus the search.  The cycle of fitness selection with 

minimization continues until that population converges, having found a minimum, or after a user 

defined limit of energy calculations have been made (energy calculation being the most 

computational demanding step in the docking process).  Due to the limitation of random search 

methods (biases inherent in the starting poses and the incomplete exploration for the binding 

energy landscape), AutoDock4 performs multiple searches using new starting populations.  The 

results of each run are clustered based on pose to generate a list of scored possible poses. 
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1.3 VIRTUAL SCREENING  

The goal of this work is to improve structure-based virtual screening.  In general, virtual 

screening is the process of ranking a virtual chemical library according a metric.  In structure 

based virtual screening, each member of a virtual chemical library is docked into a selected 

target generating a pose and a score.  The scores form the metric that ranks the compounds with 

the assumption that better scoring compounds are more likely to bind to the target.  This section 

begins with a discussion in Section 1.3.1 on virtual compound libraries in the context of virtual 

screening, looking at their sources, compound preparation, filtering, and library biases.  This 

section concludes in Section 1.3.2 with an evaluation of the performance of virtual screening.  

1.3.1 Virtual Chemical Libraries 

Chemical libraries are essential to the drug discovery process, as they are the source of 

lead compounds.  (Zhou 2011)  Their goal is to represent portions of chemical space, be that as 

diverse or focused as a drug discovery projects needs.  Virtual chemical libraries, or compound 

databases, mimic their physical counterparts as collections of compounds sharing the same goals.  

There are a variety of methods ranging in complexity and information content used to represent 

compounds and their structures. (Zhou 2011)  An example of a simple representation is SMILES 

(Simplified Molecular Input Line Entry Systems) which represent the chemical structures as a 

string using specific characters to represent bonds and groupings. (Weininger 1988; Weininger, 

Weininger et al. 1989; Weininger 1990)  Examples of more complex representations are the .mol 

and .mol2 file types that have information on the coordinates of each atom in the structure, the 

bonds between the atoms and the order of each bond, and other relevant chemical information.  

In virtual screening, compound databases provide the library against which the target is screened. 

Chemical libraries are obtained from a variety of sources including chemical venders or 

public databases.  Some commonly used libraries for virtual screening include the Cambridge 

structural database (Allen 2002), ZINC (Irwin and Shoichet 2005), NCI diversity set 

(http://dtp.nci.nih.gov/docs/3d_database/Structural_information/structural_data.html), and 

http://dtp.nci.nih.gov/docs/3d_database/Structural_information/structural_data.html
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PubChem (http://pubchem.ncbi.nlm.nih.gov/).  Regardless of the compound database’s source, 

each compound in the library needs to be compatible with the docking program selected for the 

virtual screening.  Commonly, libraries are stored as SMILES or as 2D structures.  Docking 

programs generally require 3D atomic coordinates for each compound.  If not experimentally 

determined, structures can be generated automatically with programs like CORINA, 

CATALYST, OMEGA, and RUBICON. (Knox, Meegan et al. 2005)  Compounds in the library 

need to be correctly protonated, depending on the pH of the target’s environment or local 

conditions at the target site in order to generate accurate poses. (Knox, Meegan et al. 2005)  

Other compound preparations may be required for docking and virtual screening, for example the 

assignment of partial charges, indicating rotatable bonds, or building conformer libraries.  A 

correctly prepared database is critical to an effective virtual screening, as incorrect preparation 

can generate bad poses and incorrect scoring. (Knox, Meegan et al. 2005)  An example of a 

compound database designed specifically for virtual screening is the ZINC database. (Irwin and 

Shoichet 2005)  ZINC is a collection of over 6 million commercially available compounds. 

(Irwin and Shoichet 2005)  3D coordinates are available for each compound for multiple 

protonation states with pre-assigned partial charges. (Irwin and Shoichet 2005)  Compounds are 

stored as SMILES, mol2, 3D SDF, and DOCK flexibase formats. (Irwin and Shoichet 2005) 

Chemical libraries are designed to be diverse, representing as much of chemical space as 

possible, or are focused on a specific subset of chemical space to obtain desired properties. 

(Zhou 2011)  Compound databases can be focused by filtering for specific properties.  Two 

common filters are “lead-like” and “drug-like”.  Drug-like compounds are filtered based on 

Lipinski’s Rule of Five, which is based on a study of all drugs to select for optimum absorption. 

(Lipinski, Lombardo et al. 2001)  Lipinski’s Rule of Five is that poor absorption occurs where 

there are more than 5 H-bond donors, 10 H-bond acceptors, a molecular weight above 500 

Daltons, and a calculated LogP (permeability) of greater than 5. (Lipinski, Lombardo et al. 2001)  

Because most compounds identified through virtual screening or high through-put screening are 

http://pubchem.ncbi.nlm.nih.gov/


30 

likely to be synthetically modified, Opera developed the lead-like rules (e.g., 450 Daltons, 

CLogP between 4.5 and -3.5, no more the 4 rings, 10 non-terminal single bonds, 5 H-bond 

donors and 8 H-bond acceptors) based on known lead compounds. (Teague, Davis et al. 1999; 

Oprea, Davis et al. 2001; Oprea, Allu et al. 2007)  Other filters may be target specific, such as 

only uncharged compounds, or only compounds with a specific functional group.  Filtering a 

library, however, introduces bias by limiting the chemical space searched. (Verdonk, Berdini et 

al. 2004)  Filtering can aid in a virtual screening by focusing the search to only compounds of 

interest, thereby reducing the computational time required for the screening.  However, reducing 

the chemical space explored inhibits the identification of novel and potentially more potent leads.  

Ultimately, the degree to which a compound database is filtered is a balance between project 

requirements and computational resources.  

1.3.2 Virtual Screening Performance 

Virtual screening has successfully identified many bioactive compounds, has lead to the 

development of drugs (Villoutreix, Eudes et al. 2009; Talele, Khedkar et al. 2010), and has been 

extensively evaluated (Bursulaya, Totrov et al. 2003; Kellenberger, Rodrigo et al. 2004; 

Kontoyianni, McClellan et al. 2004; Kontoyianni, Sokol et al. 2005; Chen, Lyne et al. 2006; 

Warren, Andrews et al. 2006; Cross, Thompson et al. 2009).  Virtual screening performance is 

based on a docking program’s performance. As discussed in Section 1.2.3, docking programs can 

accurately reproduce experimentally determined binding poses (Kellenberger, Rodrigo et al. 

2004; Chen, Lyne et al. 2006; Warren, Andrews et al. 2006; Cross, Thompson et al. 2009), but 

their scoring functions do not correlate with experimental binding data. (Warren, Andrews et al. 

2006)  Nevertheless, virtual screening can enrich compound databases for active compounds. 

(Bursulaya, Totrov et al. 2003; Kellenberger, Rodrigo et al. 2004; Kontoyianni, McClellan et al. 

2004; Kontoyianni, Sokol et al. 2005; Chen, Lyne et al. 2006; Warren, Andrews et al. 2006; 

Cross, Thompson et al. 2009)  In other words, the distribution of active compounds near the top 

of the rank order compound database is greater than a random distribution.  Enrichment is plotted 
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with the percent database screened on the x-axis and the percent binders found on the y-axis.  An 

ideal enrichment would be a curve shifted to the far left, while a random enrichment is the y=x 

line.   The area under the curve (AUC) is a common numeric representation of the curve, with ~1 

as ideal and 0.5 as random.  Mean AUC for virtual screening is between 0.55 and 0.72, therefore 

better than random. (Cross, Thompson et al. 2009) 

Virtual screening suffers from two general problems.  The first problem is the lack of 

robustness of the docking programs.  Virtual screening performance is highly dependent on the 

target system and no docking program performs better than the rest. (Kellenberger, Rodrigo et al. 

2004; Kontoyianni, McClellan et al. 2004; Warren, Andrews et al. 2006; Cross, Thompson et al. 

2009)  Additionally, virtual screening performance improves with expert involvement (Warren, 

Andrews et al. 2006; Cross, Thompson et al. 2009)  The problem requires that each virtual 

screening project needs to first determine which docking program will work best for its system, 

and that in their current state of development docking programs cannot be used as a “black box”.  

The second major problem that virtual screening suffers is the large number of false positives it 

generates. (Bursulaya, Totrov et al. 2003; Kellenberger, Rodrigo et al. 2004; Kontoyianni, 

McClellan et al. 2004; Kontoyianni, Sokol et al. 2005; Chen, Lyne et al. 2006; Warren, Andrews 

et al. 2006; Cross, Thompson et al. 2009)  While virtual screening can enrich a database, 

extensive testing is still required to find hits.  A common occurrence is to have only a few 

percent of tested compounds show activity from virtual screening project.  It is commonly 

thought that enrichment is dependent on the quality of pose prediction (Kellenberger, Rodrigo et 

al. 2004; Verdonk, Berdini et al. 2004), however, this has been shown not to always be the case 

(Warren, Andrews et al. 2006), suggesting that the main problem is the scoring function.  The 

goal of this work is to improve virtual screening, thus it will focus on improving the scoring 

functions, as docking programs generally produce good poses.  An improved scoring function is 

one that reduces the number of false positives and effectively discriminates between binders and 

non-binders in a variety of systems. 
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1.4 STATISTICAL MECHANICS BASED FREE ENERGY OF BINDING METHODS 

Scoring functions determine the FEB based on a single static pose.  With statistical 

mechanics (SM), the bulk of physical chemical properties, like FEB, are determined by the 

distribution of the microstates of the system.  The equation for the FEB based on statistical 

mechanics is  
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where P is the target, L is the ligand, PL is the complex, R is the gas constant, T is the absolute 

temperature, C
o
 is standard concentrations, r is internal coordinates of a system, U(r) is potential 

energy as a function of the coordinates of conformations with W(r) as the corresponding 

solvation energy.  (Gilson, Given et al. 1997; Gilson and Zhou 2007)  A simplified form of this 

equation is 
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where <> corresponds to the ensemble average or bulk property determined by the microstates.  

(Gilson and Zhou 2007)  This equation defines FEB as an emergent property of the changing 

interaction potentials of the ligand and the target as they move relative to each other and their 

respective environment.  Therefore SM based FEB calculations may resolve the challenges 

present in virtual screening.   

The microstates of systems can be determined via molecular mechanics methods (e.g., 

MD, MC), with the potential energies of each microstate determined by the force field.  While 

sampling all microstates is impossible, is it possible to sample a sufficient number of states to 

estimate accurately the FEB.  The ideal molecular FEB simulation would be to simulate the 

ligand and target in an explicate solvent, allowing sufficient runtime for the ligand and the target 

to associate and disassociate multiple times.   Currently, atomistic versions of the ideal 

simulation are virtually impossible, therefore a variety of methods are used to simplify the ideal 
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simulation, sampling only the key stages in the binding process.  These methods are categorized 

into two types: end point methods, and pathway methods. 

The goal of this section is to introduce the two different statistical mechanics 

computational approaches used to calculate the FEB using molecular mechanics methods 

(Sections 1.4.1, and 1.4.2), and examine their application to drug discovery (Section 1.4.3).  

Section 1.4.4 concludes with an introduction to the mean field free energy of binding (MF-FEB) 

method for calculating FEB. 

1.4.1 End Point Methods 

Because FEB is a state function, end point methods calculate FEB based on the 

difference in energy between the bound and unbound state.(Alonso, Bliznyuk et al. 2006; Gilson 

and Zhou 2007)  The energies of the states are determined using molecular mechanics 

approaches (i.e., MD simulations).  The two most commonly used end point methods are linear 

interaction energy (LIE), and the molecular mechanics and Poisson-Boltzmann surface area 

(MM-PBSA). Each method is reviewed below. 

1.4.1.1 LIE 

Originally developed by Aqvist et. al., the linear interaction energy, or LIE, method 

calculates the absolute free energy of binding based on an empirically solved linear equation.  

The equation is a function of the differences in average potential energy between MD or MC 

generated ensembles of the ligand bound to the target, and the ligand unbound. (Aqvist, Medina 

et al. 1994; Aqvist and Marelius 2001) The basic equation is 

  
1-12 

where <V-V>  is the difference in the ensemble average interaction potentials between the bound 

and unbound state based on the force field used to simulate the system.(Alonso, Bliznyuk et al. 

2006)  , , and  correspond to the slopes and intercept of the linear equation which are 

determined uniquely for each systems.   is about 0.5 corresponding to the first order 
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approximation for the electrostatic contribution to free energy of binding, but varies with the 

system. (Aqvist, Medina et al. 1994; Wang, Wang et al. 1999)   is unique for each system and 

correlates with non-polar desolvation. (Wang, Wang et al. 1999)   was not included in the 

original development of LIE to avoid over fitting (Aqvist and Marelius 2001), but was first 

added to account for solvent accessible surface areas (Smith, Jorgensen et al. 1998) and thus 

became a standard term, although it can go to 0 in some systems.  (Aqvist and Marelius 2001; 

Alonso, Bliznyuk et al. 2006)   

When compared to the SM-FEB equation, LIE utilizes its fitting to determine the 

energetic contributions from solvation, entropy, and ligand-target interactions not determined 

from the simulations.  Therefore, LIE is often of limited use in drug discovery because , , and 

 are determined empirically for each system requiring training sets of known binders (ideally 

with experimentally determined poses).  LIE cannot be used on binders for a “new” system in the 

early stages of drug discovery, but LIE is useful for the refinement of compounds once hits have 

been discovered, as long as the new compounds do not deviate from the chemical space defined 

by the training set.  When properly implemented, LIE performs well, predicting energies that 

correlate closely (r
2
 > 0.7) with experimental FEB.  LIE has been used to find bioactive 

compounds in many different targets.  Some more recent examples include adenosine deaminase 

(Kosugi, Nakanishi et al. 2009), tubulin (Alam and Naik 2009), HIV-1 reverse transcriptase 

(Carlsson, Boukharta et al. 2008; Nervall, Hanspers et al. 2008), neuraminidase (Park and Jo 

2010), and  MurD ligase (Perdih, Bren et al. 2009). 

1.4.1.2 MM-PBSA 

Originally developed by Kollman and his coworkers(Kollman, Massova et al. 2000), the 

molecular mechanics and Poisson-Boltzmann surface area (MM-PBSA) is an end point method 

that determines the free energy of binding based on either a single MD simulation of a ligand 

bound to its target, or three MD simulations: one of the complex, one of the ligand, and one of 
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the target. (Alonso, Bliznyuk et al. 2006; Gilson and Zhou 2007)  The overall equation to 

calculate the FEB using MM-PBSA is 

  
1-13 

based on an end point approach. (Alonso, Bliznyuk et al. 2006)  The equation for the average 

free energy contribution of each state is 

  
1-14 

where EMM is the average molecular mechanics energy from the simulation, Gsolvation is the free 

energy of solvation, and TS is the entropy term.(Kollman, Massova et al. 2000)  When only the 

ligand-target complex is simulated, the protein and ligand energy contribution are determined by 

reanalyzing the MD trajectories with the protein or ligand removed.  Average molecular 

mechanics energy is determined by 

  
1-15 

or the sum of the average contributions from energetic components of the molecular mechanics 

force field with no cutoff range used in the MD simulations. (Kollman, Massova et al. 2000)  

The free energy of solvation is determined using a numerical solution for Poisson-Boltzmann 

equations for the electrostatic contributions and an estimate of the solvent-accessible surface area 

for the non-polar contributions. (Kollman, Massova et al. 2000; Alonso, Bliznyuk et al. 2006)  

The entropic contribution is determined by using quasi-harmonic or normal mode analysis of the 

MD trajectory. (Kollman, Massova et al. 2000; Alonso, Bliznyuk et al. 2006)  A number of 

modifications exist for the MM-PBSA method, the most common being to replace the Poisson-

Boltzmann equations with a generalized Born model.  Some examples of other modification 

from recent works include the explicit and implicit solvation models (Jiao, Zhang et al. 2009), 

the addition polarizable force fields (Jiao, Zhang et al. 2009), and starting MD runs from a 

minimized system with no equilibration (Rastelli, Del Rio et al. 2010). 
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Equation 1-13 is identical in form to equation 1-11, therefore limitations in the MM-

PBSA method comes from the ability to accurately compute each component from the MD 

simulations.  Because entropy cannot be determined directly from the MD simulations, it is 

calculated separately, which can be computationally demanding and inaccurate. (Brown and 

Muchmore 2006)  Protein solvation calculations have been shown to need improvement. 

(Guimaraes and Mathiowetz 2010) Convergence may be difficult due to energy contributions 

from changes in the whole protein structure. (Gilson and Zhou 2007)  Despite some limitations 

researchers have successfully employed MM-PBSA calculations in a number of systems, a few 

examples include HIV protease (Chen, Yang et al. 2009; Chen, Zhang et al. 2009; Das, Koh et 

al. 2009), trypsin (Jiao, Zhang et al. 2009), RNA-protein binding (Kollman, Massova et al. 

2000), and plasmepsin 2 (Degliesposti, Kasam et al. 2009).  Additionally, in small 

developmental studies, the MM-PBSA methods can approximate FEB to about 1 to 2 kcal mol
-1

. 

(Alonso, Bliznyuk et al. 2006; Degliesposti, Kasam et al. 2009; Jiao, Zhang et al. 2009) 

1.4.2 Pathway Methods – Free Energy Perturbation 

FEB of binding can be defined as: 

  
1-16 

where  is the change is energy between two states (A and B), bound and unbound, and <> is 

the ensemble average over the initial state. (Gilson and Zhou 2007; Cossins, Foucher et al. 2009)  

While the ensemble average can be determined from a single MD/MC simulation (i.e., our ideal 

simulation), unless the initial and final states are similar, convergence is difficult. (Gilson and 

Zhou 2007)  To solve the convergence problem, intermediate steps are added thereby creating a 

path between the initial and final states. (Alonso, Bliznyuk et al. 2006; Gilson and Zhou 2007; 

Cossins, Foucher et al. 2009)  The perturbation along series of states is governed using a 

coupling parameter, , that is varied between 0 and 1. (Alonso, Bliznyuk et al. 2006; Gilson and 

Zhou 2007; Cossins, Foucher et al. 2009)   For each  step, the system can then be simulated and 

the  determined. (Gilson and Zhou 2007)  The FEB is calculated from the combination 
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of perturbations steps.  This method is referred to as free energy perturbation (FEP).  FEB is also 

calculated using thermodynamic integration (TI). TI integrates first derivatives of FEB that are 

determined from MD simulation over a path like FEP.   

The implementations of FEP vary more than the implementations of LIE or MM-PBSA, 

but can be divided roughly into four groups in two families. The first family is relative FEB 

methods, with the most common method being alchemical FEP. (Gilson and Zhou 2007; Deng 

and Roux 2009; Mobley and Dill 2009)  The relative FEB can be determined by perturbing or 

mutating one ligand into another.  These alchemical pathways require that both ligands differ by 

only a functional group. (Helms and Wade 1998)  The second family of methods is absolute FEB 

methods where the ligand is removed from the target using different pathways. (Gilson and Zhou 

2007; Deng and Roux 2009; Mobley and Dill 2009)  In an annihilation method, the simulation 

disappears or removes the ligand from the binding site over the perturbation path. (Jorgensen, 

Buckner et al. 1988)  By using the potential of mean force, the ligand is incrementally pulled 

away from the target. (Woo and Roux 2005)  The most common method is decoupling where the 

intermolecular interactions are turned off over the course of the perturbation. (Boresch, Tettinger 

et al. 2003; Deng and Roux 2006; Mobley, Chodera et al. 2007) 

In general, FEP methods can predict the FEB of ligands with errors ranging for 1 to 3 

kcal mol
-1

 for decoupling methods. (Deng and Roux 2006; Mobley and Dill 2009; Michel and 

Essex 2010) In a small test set, FEP decoupling methods have been shown to outperform DOCK 

scoring. (Mobley, Graves et al. 2007)  Additionally, in limited comparative testing, perturbation 

methods were shown to perform better then MM-PBSA. (Jiao, Zhang et al. 2009)  However, 

PMF methods can still have difficulty converging and can be dependent on force field 

parameterization. (Alonso, Bliznyuk et al. 2006; Deng and Roux 2009; Michel and Essex 2010)  

FEP’s main limitation is the need for extensive sampling which is computationally expensive. 

(Alonso, Bliznyuk et al. 2006; Michel and Essex 2010) 
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1.4.3 Application in Drug Discovery 

Because the MD and MC simulations are computationally expensive, statistical 

mechanics based FEB methods are not widely used in drug discovery alone, but are used to post-

process docking results. (Alonso, Bliznyuk et al. 2006)  By using LIE to rescore docking 

generated poses, predicted FEB can be correlated with experimental results. (Carlsson, 

Boukharta et al. 2008) MM-PBSA methods have been used to rescore docking results. (Brown 

and Muchmore 2006; Guimaraes and Cardozo 2008; Thompson, Humblet et al. 2008) For 

example, rescoring FlexX with the BEAR program that included MM-PBSA and MM-GBSA 

showed retrospectively significant enrichment of known binders from the rescoring of the top 

5000 hits of a one million compound database. (Degliesposti, Kasam et al. 2009)  However, 

while considered the most accurate and rigorous approach to calculate FEB, FEP methods have 

not been used to rescore docking outside of very small test sets. (Mobley, Graves et al. 2007)   

1.4.4 Mean Field Free Energy of Binding 

Roux and coworkers developed the mean field method of calculating the absolute free energy 

of binding (MF-FEB) between a ligand and a protein.(Woo and Roux 2005; Deng and Roux 

2006; Deng and Roux 2008)  In summary, MF-FEB is a double decoupling FEP method.  The 

binding free energy is calculated as the difference between the free energy of decoupling the 

ligand from its binding site and the free energy of decoupling the ligand from the solvent.  

Additionally, conformational and positional constraints that are later removed are placed on the 

ligand in the site.  The removal of the constraints on the ligand models the ligand regaining 

entropic freedom as it leaves the binding site.  This mean field approach aids in convergence by 

limiting the microstates that need to be sampled as the ligand is being decoupled because the 

ligand movement is constrained.  

MF-FEB is based on 

 

 

1-17 
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where Kb is the binding constant, and the integrals are conformational integrals based on the 

coordinates of the ligand(L) or the target and solvent (X).  The r in the equation represents the 

movement of the ligand from the binding site (rL) to an arbitrary location away from the target 

and in the bulk solvent (r
*
).  Additional conformational integrals may be added as long as the 

ratio of those integrals is one, such that 

 

 

1-18 

where uc is the potential energy from the restraint on the conformation of the ligand; ut and ur are 

the potential energy from the translation and rotational constraints, respectively, from the 

positional constraint on the ligand as defined by a line connecting three atoms in the ligand to 

three atoms in the site; U1 is the potential energy corresponding to the ligand in an interaction 

with the site or the bulk (as in  = 1); and U0 is the potential energy corresponding to the ligand 

decoupled from the site or the bulk (as in  = 0). Each added conformational integral ratio adds a 

step in the process of confining and releasing the ligand as it moves from the site to the bulk.  

The steps are: (1) applying the conformation constraint to the ligand in the site, (2) applying the 

translation constraint to the ligand in the site, (3) applying the rotational constraint to the ligand 

in the site, (4) decoupling the ligand from the site with the constraints on, (5) removing the 

rotational constraint from the ligand, (6) removing the translation constraint from the ligand, (7) 

coupling the ligand into the bulk, and (8) removing the conformation constraint from the ligand. 

Most of the conformational integrals can be expressed as ensemble averages as 
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where 
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and 
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where   and  are the translation and rotational factors.   and  can be solved directly with 

numeric integration schemes by simplifying them to where 

  
1-22 

and: 
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where  is the set of three angles for rigid body rotation, and  is the restraint potential.  

MF-FEB calculations are independent of restraining potentials values. (Deng and Roux 2006) 

By definition 

  
1-24 

And  can be expressed as 

  
1-25 

where 

  
1-26 
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where  is the free energy of moving the ligand from the site to the bulk where are 

the interaction energy between the ligand and the two systems 
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and 
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corresponds to the free energy costs of the positional  restraints, and 
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where 

 

 

1-30 

where  is the unbiased distribution of the RMSD of the ligand where “a” is site or bulk is 

the free energy of cost of the conformational restraints. 

MD based FEP methods are used to compute the ensemble averages.  The site is modeled 

as a 15 Å radius solvent drop sphere centered on the ligand in the target site using a generalized 

boundary potential to model the solvent and protein beyond the sphere.  The bulk is also 

modeled as a 15 Å radius solvent drop sphere centered on the ligand with explicate waters in the 

sphere and a solvent shell boundary potential.  The interaction energy between the ligand and the 

respected systems is computed by the decoupling, the turning off, the electrostatic interactions, 

and the VdW dispersion and VdW repulsions, separated using the Weeks-Chandler separation 

(Weeks, Chandler et al. 1971).  The constraint potentials are removed by perturbation in the site 

as outlined above.  The energy of each step of the perturbation is calculated using a weighted 

histogram analysis. (Kumar, Rosenberg et al. 1992) By using these methods, the average 

reported error for FEB calculations was ~1 kcal mol
-1

 for eleven hydrophobic binders of L99A 

T4 Lysozyme (Deng and Roux 2006), and eight FK506 binders. (Wang, Deng et al. 2006)  
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Additionally, one non-binder test within T4 Lysozyme had a FEB greater than -1 kcal mol
-1

. 

(Deng and Roux 2006) 

1.5 INTRODUCTION TO HIGH PERFORMANCE COMPUTING 

Predicting the properties of chemical compounds requires significant computational 

resources.  These requirements can be due to repeating the same computation many times on 

different systems, like in virtual screening, or due to a large computation carried out on one 

system, like in MD simulations.  High performance computers provide the required 

computational resources to predict the properties of chemical compounds. 

In this work, we employ two high performance computing architectures: supercomputers, 

and grid, or distributed, computing.  Section 1.5.1 introduces both architectures.  Section 1.5.2 

discusses the use of grid computing in drug discovery. 

1.5.1 Types of High Performance Computers 

Supercomputers are large computers housed in a single location.  Modern 

supercomputers are composed of nodes, which are a group of processers that share the same 

RAM, not unlike a single desktop computer.  High-speed networks connect each node together 

allowing all processors to work in parallel.  The nodes also share a common file system.  The 

supercomputer’s organization allows calculations, also called jobs, to be made on one or more 

nodes at a time. As the number of nodes increases the overall processing power increases, 

however, runtime is ultimately dependent on the bandwidth of the network connecting the nodes.  

The scalability of processing power makes supercomputers ideal for both single large jobs and 

similarly repeated smaller jobs. 

Grid computers are composites of a number of different member devices, usually 

dispersed geographically, but controlled by a central server creating a single virtual machine.  

Unlike supercomputers, the member devices of a grid computer can have different processors 

and even operating systems.  Each member device also works independently, getting its jobs 
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from the central server, often over the internet.   The independence of the member device means 

that large-scale calculations that take advantage of the parallel architecture of supercomputers do 

not work well on a grid computer.  However, grid computers are ideal for smaller jobs that can 

be run on a single processor.  Because grid computers are easily expanded by just adding new 

member devices, the amount of computation a grid computer can do is often more than a 

common supercomputer. (Tomlinson, Malmstrom et al. 2009) 

1.5.2 Drug Discovery with Grid Computing 

Grid computing has been effectively used in drug discovery, especially in highly 

parallelizable virtual screening projects.  Researchers employ two types of grid architecture, 

public and private.  Private grids are small in-house grids composed of the computers in a single 

institution.  Brown and coworkers, for example, built a small private grid at their company to 

rescore docking generated poses using MM-PBSA. (Brown and Muchmore 2006)  Hydra is an 

example of a program specifically developed to run virtual screening on a small grid. (Bullard, 

Gobbi et al. 2008)  Private grids can also extend between academic and government institutions, 

for example the EGEE grid, which is composed of supercomputers across Europe.  (Jacq, 

Salzemann et al. 2006; Jacq 2007)  A major project of the EGEE grid is WISDOM (Wide In-

Silico Docking On Malaria) that has successfully identified potential anti-malarial drugs through 

virtual screening and limited use of MM-PBSA. (Kasam, Zimmermann et al. 2007; Salzemann, 

Kasam et al. 2007; Degliesposti, Kasam et al. 2009; Kasam, Salzemann et al. 2009)  

 Private computer users have donated CPU time on their devices to form public grids.  The 

member devices receive work from a grid server.  The work is than run on the member devices 

while the computer is not being used thereby “harvesting” unused CPU cycles.  BOINC is an 

example of a program designed to set-up and run public grids. (boinc.berkeley.edu)  The 

Lifesaver Screensaver was an early example of a public grid virtual screening project.  (Richards 

2002)  Later, IBM developed World Community Grid, which IBM provides as a service to 

researchers.  Virtual screening projects on World Community Grid include Fight AIDS@Home 
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(Chang, Lindstrom et al. 2007), and Discovering Dengue Drugs-Together (Tomlinson, 

Malmstrom et al. 2009).  World Community Grid is described in Chapter 5. 

Grid computing provides significant computational resources and has been successfully 

used in drug discovery projects.   However, running a grid requires significant resources in both 

time and equipment.  Regardless of the grid’s architecture, a grid requires a server to handle 

work distribution and collection. Additionally, grids have to be set-up and maintained, which 

may require a researcher to spend time as an IT specialties in addition to being a scientist.  Public 

grids add the additional challenge of porting programs to different operating systems.  The most 

successful grid drug discovery projects, like WISDOM and Fight AIDS@Home, happen when 

the grid is maintained by a separate organization from that doing the research, thereby utilizing 

the expertise of IT specialists to maintain the grid and allowing the scientists to focus on the 

research.   

1.6 OVERVIEW OF WORK 

In the previous sections, we discussed the drug discovery and development process and 

how computers are used to predict chemical properties, particularly binding.  We examined 

docking programs showing how their search and scoring functions can accurately predict 

experimental binding poses, but fail to predict accurately experimental free energy of binding.  

We showed that while large-scale docking studies of compound databases (virtual screening) 

enriches databases for potential binders, they also generate large numbers of false positives due 

to the inaccuracy of the scoring functions.  In addition to scoring functions, we reviewed 

statistical mechanics methods of calculating the free energy of binding.  Statistical mechanics 

FEB methods were shown to be more accurate at reproducing experimental free energy of 

binding. However, the computational demands of these methods are too great to use in 

conjunction with pose and conformation search methods requiring predetermination of a ligand’s 

pose.  The last section concluded with a brief introduction to high performance computing. 
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The goal for work is to improve drug discovery tools, specifically virtual screening.  Our 

hypothesis is that enrichment in virtual screening can be improved over traditional scoring 

functions by rescoring docking generated poses with perturbation based statistical mechanics 

FEB calculations.  This combined docking and statistical mechanics FEB rescoring uses both 

methods optimally with the docking programs generating the ligand poses, and perturbation 

statistical mechanics FEB calculations rescoring the poses with, ideally, increased accuracy.   In 

order to make large-scale perturbation based FEB calculations, we employ the perturbation 

method of MF-FEB as described in the Section 1.4.4. The MF-FEB method is ideal for grid and 

supercomputing environments for two reasons.  First, each step in the perturbation process is an 

independent simulation allowing them to be run in parallel.  Second, the small size of the 

simulated system makes each job tractable on a common single processer device.  To perform 

larger scale virtual screening with MF-FEB rescoring, we used the computing power of both 

Texas Advanced Computing Center (TACC) and IBM’s World Community Grid. 

The balance of this work discusses tests and applications of virtual screening with MF-

FEB rescoring.  Chapter 2 describes the methods used to perform virtual screening with MF-FEB 

rescoring using TACC’s supercomputers. Chapter 3 examines the optimization of docking and 

MF-FEB calculations, and the filtering of virtual screening results. Chapter 4 covers a 

retrospective study of MF-FEB rescoring of AutoDock4 generated poses in a small test of known 

binders and non-binders to L99A T4 lysozyme.  This chapter shows that docking generated pose 

can be used for MF-FEB calculations, and MF-FEB rescoring can discriminate between binders 

and non-binders better than AutoDock4’s scoring function.  Chapter 5 discusses the application 

of the virtual screening with MF-FEB rescoring in two projects run on IBM’s World Community 

Grid, Discovering Dengue Drugs-Together (DDDT) and Influenza Anti-viral Drug Search 

(IADS). Chapter 6 describes the methods employed for virtual screening and MF-FEB 

calculation on World Community Grid.  Chapter 7 examines a second retrospective study of 

virtual screening with MF-FEB rescoring in two systems taken from the Database of Useful 
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Decoys (Huang, Shoichet et al. 2006), showing that while MF-FEB rescoring improves 

enrichment, ultimately, MF-FEB rescoring suffers from similar problems as scoring functions.  

Chapter 8 reviews the finding of this work and describes further work that can be derived from it. 
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Chapter 2 Methods for Docking, Virtual Screening, and Mean Field–Free 

Energy of Binding 

This chapter describes the methods for docking, virtual screening, and MF-FEB 

calculations using the high performance computers Ranger and Lonestar at the Texas Advanced 

Computing Center (TACC) to test if MF-FEB scoring will improve enrichment over 

AutoDock4’s scoring function.  Section 2.1 lists the software and hardware used in this work.  

Section 2.2 describes the standard method for preparing ligand and target files.  Section 2.3 

describes docking and virtual screening with AutoDock4. The chapter concludes with Section 

2.4 describing the methods used for MF-FEB calculations. 

This chapter uses two naming conventions for convenience and clarity.  First, in normal 

type, “ligand” refers to the small molecules used in binding simulations and calculations, and 

“target” refers the macromolecule the ligand is bound to.  In all cases, the target is a protein, 

even though the type of protein may be an enzyme, a receptor, etc.  Second, the italicized terms 

in file names are variable name components that are modified according to the work performed, 

yet are consistent in their usage.  For example, ligand is the location of ligand name or identifier 

in a file name.  

2.1 COMPUTATIONAL RESOURCES  

This section provides a description of the software and hardware used in this work, and 

introduces the .pdb and .mol2 file formats. 

2.1.1 Software 

This section described the software utilized in this work, and is subdivided by function. 

2.1.1.1 Docking 

We performed all docking simulations using the AutoDock4 package that contains both 

the AutoDock4 and AutoGrid4 programs. (Huey, Morris et al. 2007; Morris, Huey et al. 2009) 

AutoDock4 is available from autodock.scripps.edu under the GNU license.  During the course of 
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this research, AutoDock4 was under development and was updated from version 4.01 to 4.2.  

Version 4.2 was the default version used in this work.  We also used AutoGrid4 version 4.01, 

which was not updated.  Additionally, AutoDock Tools (ADT) (Morris, Huey et al. 2009), also 

obtained from autodock.scripps.edu, was used to prepare docking files. 

2.1.1.2 Molecular Simulation  

We used CHARMM c34a2 package (Brooks, Bruccoleri et al. 1983; MacKerell Jr, 

Brooks III et al. 1998) for all molecular simulation.  MF-FEB calculations required the 

development version of CHARMM due to its dependence on the CHEMPERT module.  

Additionally, MF-FEB calculations required an “extra-large” build option of CHARMM to 

provide sufficient memory allocation. 

A modified version of Antechamber (Wang, Wang et al. 2006) generated the CHAMM 

inputs for small organic molecules which were not provided in the CHARMM force field.  Dr. 

Deng (University of Chicago) extended Antechamber’s output to provide the ligand.crd, the 

molecular coordinates, in addition to the ligand.inp script files for CHARMM minimization, and 

ligand.rtf and ligand.prm files corresponding to the topology and force field parameters for the 

ligand. 

2.1.1.3 Molecular Visualization and Manipulation 

We employed three programs to visualize molecular structures: (1) PyMol 0.99 (DeLano 

2008) for general visualization, editing targets, and “hand building” small organic molecules; (2) 

ADT (Morris, Huey et al. 2009) for the preparation and  visualization of targets and ligands for 

docking simulation and reviewing docking simulation results; and (3) VMD 

(www.ks.uiuc.edu/Research/vmd/) for visualizing CHARMM .crd files and creating movies of 

MD trajectories. 

We used Openbabel (openbabel.org) to convert molecular file formats. 
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2.1.1.4 Statistics 

Microsoft Excel 2003 and 2007 performed all statistical calculations. Unless otherwise 

stated, all functions employed the default settings.  All t-tests were two-tailed with unequal 

variance.   

2.1.1.5 Scripting 

We wrote and developed all scripts presented in this work using the python programming 

language versions 2.4 and 2.6 (www.python.org).
4
   

2.1.2 Hardware 

Either the Lonestar or the Ranger supercomputer at the Texas Advanced Computing 

Center or IBM’s World Community Grid performed all calculations and simulations presented in 

this work.  The Lonestar high-performance cluster consisted of 1,300 dual-core 64-bit 2.66 GHz 

Xeon processors (Intel).  The Ranger high-performance cluster consisted of 15,744 2.3 GHz 

AMD Opteron quad-core 64-bit processor. World Community Grid is described in Section 5.2.  

Work and results were stored at TACC on the “Corral” storage system or at UTMB on a storage 

system on Random. 

2.1.3 Molecular File Types 

Multiple file formats exist to store the chemical and structural information of compounds.  

The .pdb and .mol2 are two common ASCII text based file formats used to store protein and 

small molecule structures respectively.  We choose to use these two file types based on the 

chemical information they stored, the requirements of the programs used in this work, and 

personal preference.  This subsection provides a brief introduction of both file types.  Full 

                                                 

4
 All scripts should be run using python version 2.6 to insure proper function. In addition, 

many of the scripts require the NUMERIC (sourceforge.net/projects/numpy/) python package 

that is not included in the standard python distribution. 

http://www.python.org/
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description of the .pdb and .mol2 file formats can be found at http://www.wwpdb.org/docs.html 

and http://tripos.com/data/support/mol2.pdf respectively. 

2.1.3.1 The .pdb File Format 

The .pdb file format was developed to store the experimentally determined coordinates of 

macromolecular structures in Protein Data Bank (PDB).  .pdb files store data based on a fixed 

format.  Each line of the .pdb starts with a tag describing the data stored on that line, and 

implying the format of that data.  Following the tag, each line contains data in a fixed format 

with each line position containing specified data. 

The overall format for a .pdb file starts with the “header” lines containing the title of the 

structure, details on the experimental method used to determine the structure, the sequence of the 

structure, the names of any other chemical species resolved in the structure, disulfide bonds for 

protein structures, and other information.  The body of the file contains lines describing the 

macromolecule’s structure with one atom entry per line. 

Three body line types are of particular interest to this work the ATOM, HETATM, and 

CONNECT lines.  ATOM and HETATM share the same format and contain information on each 

atom in the structure.  These lines contain a unique ID number for each atom, the atom name, 

which residue the atom is a part of, the Euclidian coordinates, the occupancy and b-factor from 

crystal structures, as well as other information.  The difference between the two tags is that 

ATOM refers to atoms in the macromolecular structure (i.e., the protein), and HETATM refers to 

everything else (i.e., crystallographic waters/solvent, cofactors, ligands).  The CONNECT line 

contains information on the bonding between HETATM atoms.  These lines are placed at the end 

of the .pdb file.  These lines contain no information on bond order and only list bonded atoms by 

a unique numerical identification corresponding to a HETATM line.  Bonds between atoms in 

the ATOM lines are implied based on amino acid residue and standard atom naming conventions 

for each residue. (e.g., The alpha, beta carbons in amino acid) 

http://www.wwpdb.org/docs.html
http://tripos.com/data/support/mol2.pdf
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2.1.3.2 The .mol2 File Format 

The .mol2 file format is a proprietary file format developed by Tripos for its Insight 

molecular visualization and modeling software. (http://tripos.com/data/support/mol2.pdf ) It has 

become a standard format for storing organic small molecule structures.  Unlike the .pdb files, 

.mol2 files presents data in a flexible or “free” format.  The .mol2 file is divided into sections 

beginning with a header and followed by data which is presented using a standard format.  The 

format is defined by the use of white space rather than character position on a line. For example 

@<TRIPOS>MOLECULE section contains the name of the molecule on one line followed by 

information on composition and formal charge on a second line separated by white spaces. 

@<TRIPOS>ATOM and @<TRIPOS>BOND sections contain the principle structural 

information.  These sections contain lines similar to the ATOM and CONNECT lines in the .pdb 

file with two differences.  First, the lines storing atom position in @<TRIPOS>ATOM contain 

information on atom type and charge.  Second, the lines describing bonding in the 

@<TRIPOS>BOND section gives the bond order.
5
 

2.2 PREPARING THE LIGAND AND THE RECEPTOR  

The goal of this section is to review the preparation of the ligand and the target files for 

docking simulation and MF-FEB calculations.  Preparation began by obtaining the 3D structures 

of each molecule and processing the information into the .mol2 file format for the ligands and 

the .pdb file format for the target.  We used these two file formats to generate the input files for 

both AutoDock4 and CHARMM.  While the input files for AutoDock4 and CHARMM are 

                                                 

5
 While the white space between data can be a space or a tab, some programs will only 

correctly read .mol2 files with only one type of white space.  It is therefore possible for a 

correctly formatted .mol2 file to raise an error in program not properly designed.  Best practice is 

to use tabs between data when writing the @<TRIPOS>ATOM and @<TRIPOS>BOND.  This 

practice makes for easier human reading and greater compatibility. 

http://tripos.com/data/support/mol2.pdf
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different (requiring different protonation states, atom types, and partial charge assignment) a 

unified approach to ligand and target preparation provides a common start for both programs and 

helps avoid errors due to differences in preparation.  This section is divided into two parts. 

Section 2.2.1 covers ligand preparation. Section 2.2.2 covers target preparation.  

2.2.1 Ligand Prep 

The goal of ligand preparation was to generate a correctly prepared ligand.mol2 file of 

the ligand molecule data that was ready for input into both AutoDock4 and CHARMM.   A 

correctly prepared ligand.mol2 file would containe the 3D coordinates for the ligand, was 

properly protonated, and each atom and bond was correctly typed and uniquely identified. 

The procedure for preparing the ligand.mol2 is explained in the follow two sections.  

Section 2.2.1.1 discusses the different methods used to obtain coordinates for the ligands.  

Section 2.2.1.2 outlines methods used to prepare the ligand.mol2 files for each ligand. 

2.2.1.1 Obtaining Ligand Coordinates 

The first step in ligand preparation was to obtain or generate the 3D atomic coordinates 

of the ligand.  This section examines the three methods used to obtain coordinates, from co-

crystal structures, from compound databases, or built by hand.   

2.2.1.1.1 Ligand Source: Co-crystal structures 

Co-crystal structures refer to heterogeneous crystal structures such as a ligand bound to a 

protein, a protein bond to DNA, or a multiple protein complex.  For this work, co-crystal ligands 

refer specifically to small organic molecules bound to a protein obtained from co-crystal 

structures.  We obtained co-crystal structures from the PDB. Atomic coordinates for a ligand 

were then obtained from the co-crystal .pdb by removing their corresponding HETATM lines 

using a text editor and generating a new ligand.pdb file for the ligand.   

Co-crystal ligands were used to testing the ability of docking programs to reproduce 

experimentally verified ligand poses.  The main advantage of co-crystal ligands is that their 
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coordinates have been experimentally determined and are therefore accurate within the 

resolution of the structure.  If the crystallographic resolution is > 1 Å most hydrogen locations 

are indeterminable, requiring them to be added by hand as describe below.  Using low-resolution 

co-crystal ligand structures limits RMSD calculations when comparing docking generated poses 

to experimentally determined poses to only the heavy atoms.  Additionally, the starting ligand 

conformation biases the pose prediction in docking simulations using incremental rotations to 

model ligand flexibility as it pre-defines the conformational space explored.  Starting with a 

bond conformation therefore overestimates the ability of docking programs to reproduce 

experimentally determined structures compared to random or minimized starting conformations.  

Finally the ligand.pdb file format does not contain information on bond order in the CONNECT 

line. 

2.2.1.1.2 Ligand Source: Compound Databases   

As described in Section 1.3.1, different compound databases are available for virtual 

screening.  In this work, we obtained the majority of ligands from the ZINC database (Irwin and 

Shoichet 2005), including those from the DUD test set (Huang, Shoichet et al. 2006).  Ligands 

obtained from ZINC were downloaded as ligand.mol2 files, which were ready for use with both 

AutoDock4 and CHARMM. 

Compounds obtained from databases are often correctly protonated, minimized, and 

contain correct bond order information.  However, compound databases have disadvantages.  

Often, 3D coordinates and other properties are automatically determined due to the large size of 

the databases.  While a vast major of the properties are generated correctly, a small portion of 

ligands may be incorrect.  Also due to the databases’ large size, incorrectly prepared ligands are 

difficult to curate.  In general, we found compounds from the ZINC database to be of good 

quality. 
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Some compound databases do not enumerate tautomers and stereoisomers for each 

compound.  The ZINC database treated stereoisomers as unique compounds.  ZINC stores 

tautomers as multiple molecular entries in same ligand.mol2 file.  We spilt tautomer containing 

files into separate files, one for each tautomeric state, for use with CHARMM and AutoDock4.  

This separating of files required the addition of a four number tag to the end of all ZINC 

compound file names to identify the different tautomeric states.  Therefore, we identified all 

ZINC compounds as ZINC########-####. 

2.2.1.1.3 Ligand Source: Hand-Built  

When compounds were not available as co-crystal ligands or in compound databases, we 

built the ligand by hand with PyMol’s builder function using the standards outlined in Section 

2.2.1.2.  While hand-building ligands allow any compound to be generated, it is time consuming; 

therefore, we hand-built only the ligands required for specific calculations.  In addition, PyMol 

could not save files in the propriety .mol2 format; therefore, we saved PyMol generated ligands 

as a ligand.mol file and then converted them to ligand.mol2 using openbabel. 

2.2.1.2 Preparing Ligand .mol2 

In order to generate input files for AutoDock4 and CHARMM, we prepared each ligand 

as a ligand.mol2 file to the following standards.  Each ligand was protonated to physiological 

pH, each atom was uniquely named, and each bond was assigned the correct bond order.  This 

section covers the implementation of each of these standards for coordinates obtained from the 

sources described in Section 2.2.1.1, with focus on the co-crystal and hand-build sources.   

2.2.1.2.1 Ligand Protonation 

While ligands for the ZINC database were correctly protonated, hand-built ligands and 

those from low-resolution co-crystal structures required the addition of protons.  Unless 

otherwise noted, we protonated titratable function groups at physiological pH, and if multiple 

tautomeric forms existed at physiological pH, we generated each form.  Protons were added with 

the automatic protonation functions in ATD or PyMol, and, if needed, edited by hand in PyMol. 
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2.2.1.2.2 Ligand Atom Name Assignment 

While not necessary for AutoDock4, CHRAMM required that each atom in the ligand be 

uniquely named; therefore, we built all ligands to this standard.  Each atom was assigned a two-

part name stating with its elemental symbol followed by a two-digit integer.  For example, we 

labeled the carbon atoms as C01, C02, C03, and so on, while oxygen atoms were labeled O01 

and O02.  ZINC ligands used this same element-number nomenclature by default.  We fixed 

atom names by editing the ligand.mol2 file in a text editor or with ligand prep scripts. 

2.2.1.2.3 Ligand Bonds 

ADT depends on the bonding information in the ligand.mol2 file to correctly assign atom 

types for their respective force fields and for determining partial charges.  While, ZINC 

ligand.mol2 contain correct information on bonding, both hand-built and co-crystal ligand .mol2 

files did not automatically have this information.  Hand-built ligands gained their bonding 

information as the molecule was being built in PyMol.  We edited co-crystal ligands bonds using 

PyMol’s builder functions to assign correct bond order. 

2.2.2 Target Prep 

We obtained the 3D structures of protein targets from the PDB as a .pdb file.  We 

prepared the target.pdb files using the follow standards to generate inputs for CHARMM and 

AutoDock4.  The target.pdb files contained only coordinate lines with only one entry per atom.  

Missing atoms were added to amino acids with at least backbone atoms present in the determined 

structure.  The ends of each chain were caped as their ions.  The protein was protonated to 

physiological pH and the protons minimized.  The following sections detail these steps. 

2.2.2.1 Preparing the .pdb File 

When downloaded from the PDB, a .pdb file contained information not required for 

CHARMM or AutoDock4. We edited the file to contain only “ATOM” and “HETATM” lines 

with only one entry per atom.  Sometimes the downloaded .pdb file presented side-chains in 

multiple conformations due to multiple detectible conformations in the diffraction data.  For each 
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side-chain, we selected only one conformation based on the inspection of non-bonding 

interactions, particularly H-bonding.  If the structure did not suggest a conformation selection, 

then we selected the conformation with the highest occupancy value.  If all poses had the same 

occupancy, we selected the “A” conformation.  Generally selecting the “correct” conformation 

was not critical because we did not find multiple-conformation amino acids in the docking search 

volumes, and CHARMM minimized and equilibrated the target during the MF-FEB calculations.  

None of the targets used in this work contained co-factors.  We removed all other molecules 

from the target.pdb, with the exception of the crystallographic waters.  

2.2.2.2 Correcting Missing Atoms 

Amino acids were sometimes missing heavy atoms coordinates.  Missing atoms were 

most common for Lys and Arg residues on the surface of the protein, as their flexibility prevents 

atomic resolution diffraction.  We replaced missing heavy atoms using Pymol’s mutation module 

by “mutating” the amino acid to itself, thereby replacing the missing atoms.  The mutation 

module allowed for side chain conformation selection.  We therefore selected the most sterically 

favored conformation.  For MF-FEB calculations, all missing side-chains were fixed as they 

provided sources of long-range electrostatic interactions and need to be included in the 

calculation of the generalized solvent boundary potential. (See 2.4.2.1.2) 

2.2.2.3 Chain Termini 

We caped the ends of all amino acid changes in their ionic form. We protonated the N- 

terminal amine to the amide.  The C-terminus often required modification from an aldehyde to 

the carboxylic acid by changing the H to an O.  We performed the C-terminal modification, and 

N-terminal protonation using PyMol’s builder module.  In structures where sections of the 

protein were missing, for example NS2B in the dengue protease structures, we did not attempt to 

rebuild the missing section and ends were left in their ionic form. 
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2.2.2.4 Protonation 

We added protons to the target and crystallographic waters using ADT, because its proton 

name conventions corresponded to the naming conventions used by the CHARMM force field 

for amino acids; however, ADT fully protonated histidine to their cationic state.  Therefore, we 

removed one proton from each histidine using PyMol.  The default proton configuration was to 

leave the delta nitrogen proton, removing the eta nitrogen proton, unless the H-bonding patterns 

suggested otherwise.  After protons were added, CHARMM minimized the protons using 

adopted basis Newton-Raphson minimization. (Brooks, Bruccoleri et al. 1983; MacKerell Jr, 

Brooks III et al. 1998) 

2.3 DOCKING AND VIRTUAL SCREENING WITH AUTODOCK4 

This section describes the methods used for docking and virtual screening with 

AutoDock4.  Section 2.3.1 provides a systematic explanation of how the docking simulations 

were performed.  Section 2.3.2 describes the methods and scripts used to perform virtual 

screening on TACC’s supercomputers, including the preparation of compound databases. 

2.3.1 Docking with AutoDock4 

This section describes the steps used to perform a single docking simulation with the 

AutoDock4 package and ADT.
6
  The goal of this section is to outline the methods used for 

running single docking simulations and provide a context for future method descriptions and 

discussions. 

2.3.1.1 Stage 1: Ligand and Receptor File Generation 

Both AutoGrid4 and AutoDock4 required that the ligand and receptor be in the .pdbqt file 

format.  The .pdbqt file format is an extension of the .pdb file format.  In a .pdbqt file the ATOM 

and HETATM lines are modified by replacing the b-factor and occupancy fields with partial 

charge (hence “q”) and atom type.  The ligand form of the .pdbqt adds torsion (hence “t”) 

                                                 

6
 Full tutorials are provided for AutoDock4 and ADT at autodock.scripps.edu. 
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information about the ligand by representing the ligand as a root with a series of moveable 

branches.  The atoms contained in a root or branch section are grouped together in the file with 

lines before and after the group indicating where they stop and start, nesting groups as needed.  

Additionally, the header of the ligand .pdbqt file includes a list of all torsions indicating whether 

they are active, allowed to rotate in the docking simulation, or inactive.  We could automatically 

generate ligand.pdbqt using ADT with ligand.mol2 files prepared to the standards described in 

Section 2.2.1.  However, the target.pdb needed their crystallographic waters removed before we 

could generate target.pdbqt files with ADT. 

Sections 2.3.1.1.1 and 2.3.1.1.2 discuss the options for and the selections made in ligand 

and receptor preparation respectively. Section 2.3.1.1.3 is a brief discussion on AutoDock4 

receptor flexibility options. 

2.3.1.1.1 Preparing the Ligand for Docking 

ADT automatically processed the ligand.mol2 into a ligand.pdbqt by removing all non-

polar protons, assigning AutoDock4 atom types to each of the atoms, assigning Gasteiger partial 

charges to each atom, and identifying rotatable bonds.  AutoDock4 uses a semi-unified atom 

force field treating only polar protons explicitly; therefore, ADT removed all non-polar protons.  

The reason we added all protons in the ligand preparation was to maintain conformational 

consistency in protons between AutoDock4 and CHARMM, which uses an all-atom force field.  

Next, ADT assigned each atom an AutoDock4 atom type based on element and bonding 

arrangement.
7
  Then, ADT automatically assigned Gasteiger partial charges to a ligand.  For 

hand-built and co-crystal ligands, we used the automatic charging.  For compounds from the 

ZINC database, their native charges, assigned during ZINC preparation, were retained.  

According to the ligand.mol2 files from ZINC, ZINC ligands were assigned Gasteiger partial 

charges, using AMSOL, but upon comparing ADT and ZINC charges, significant difference 

                                                 

7
 After automatic processing, aromatic carbons (A) could be modified by hand in ADT. 
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were noted.  After assigning partial charges, ATD automatically detects rotatable bonds and 

builds a torsion tree for the ligand.  AutoDock4 can treat peptide bonds as rotatable bonds.  We 

made all ligand peptide bonds “inactive” and therefore treated them as non-rotatable.  All other 

bonds were assigned rotatable based on the ADT’s automatic preparation.  Finally, ATD wrote 

the ligand as a ligand.pdbqt file suitable for docking. 

2.3.1.1.2 Preparing the Target for Docking 

When loaded, ADT automatically processed the target.pdb file, with water removed, into 

in a target.pdbqt file.  The automatic processing started with ADT removing all non-polar 

protons from the target.  Due to this automation, it was important that the titratable amino acids 

were correctly protonated before being loaded, as ADT does not automatically add polar protons.  

After ADT removed all non-polar protons, it added Kollman partial charges to the atoms in the 

target.  Finally, ADT wrote the target as a target.pdbqt file, without any torsional information. 

2.3.1.1.3 Using AutoDock4 Receptor Flexibility  

AutoDock4 allowed selected amino acids to be treated flexibly, providing a limited 

model of target flexibility.  Receptor flexibility was implemented by treating selected amino acid 

side-chains as anchored ligands.  The selected side-chains would be added to a sidechain.pdbqt 

file and removed from the target.pdbqt file.   However upon testing, using the trypsin test set in 

Section 3.1.1.1, we found that allowing side-chain movement made no improvements in pose 

prediction, increased search times, and artificially lowed the docking score.  Therefore, we did 

not employ this feature of AutoDock4. 

2.3.1.2 Stage 2: Scoring Grid Generation 

AutoDock4 uses scoring grids to decrease the computational expenses of scoring and to 

define the search volume.  AutoGrid4 built a scoring grid for each atom type in a given ligand by 

incrementally moving each atom type through the search volume and scoring each point in the 

cubic volume.  The default grid spacing was ~1/3 Å.  We defined the search area using ADT, 

which allows for visualization of the search volume overlaid on the target.   We determined the 
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search volume by centering it on a co-crystal ligand or a binding site.  Then, we expanded or 

compressed the volume of the box to encompass the whole ligand and at least 2-3 Å beyond the 

ligand to insure that all target ligand interactions were included in the search volume.  For virtual 

screening, we extended the search volume to include key features of a binding site.  For example, 

with trypsin, we included the P1-P4 , P1’ pockets and the active site in the search volume.  These 

large search volumes were preferred for virtual screening because the intention of our viral 

screening projects was to find any compound that would bind in a given region of the target and 

not to reproduce known target-ligand interactions.  Once we defined the area, ADT generated the 

grid parameter file (job.gpf) which contained instructions for AutoGrid4 on how to construct the 

scoring grids. 

We ran AutoGrid4 through ADT or on the command line.  AutoGrid4 required the 

target.pdbqt, the job.gpf file, and a parameter file for the AutoDock4 force field 

(AD4_parameters.dat) to run.  The command to run AutoGrid4 was “autogrid4  -p job.gpf –l 

job.glg”.  AutoGrid4 generated one file for each atom type in the ligand, and a taraget.xyz file, 

all of which were required to run AutoDock4.  The job.glg was a log file that contained the 

output from AutoGrid4, and was used to check for and troubleshoot errors. 

2.3.1.3 Stage 3: Docking Simulation 

AutoDock4 performed the docking simulation, which we ran through ADT or on the 

command line.  AutoDock4 uses all the output files generated from AutoGrid4 except the job.glg 

file.  It also requires the ligand.pdbqt, target.pdbqt, and a parameter file for the AutoDock4 force 

field (AD4_parameters.dat).  Like AutoGrid4, AutoDock4 uses a parameter file for runtime 

instructions (job.dpf).  We generated the job.dfp using ATD.  The job.dfp included information 

on the ligand, target, the grid files, and the search parameters.  Docking simulations used the 

Lamarckian genetic search algorithm with a SW local optimization. (See Section 1.2.4) The 

default values were used for all parameters,  except, we used a population size of 200 members, a 

maximum number of energy evaluations (MNEE) of 1 million, and 100 GA runs.  The command 
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to run AutoDock4 was “autodock4  -p job.dpf –l job.dlg” with all the docking results written to 

the job.dlg. 

2.3.1.4 Stage 4: Results Analysis and Visualization 

AuotDock4 stored the docking results, the poses, and scores in the job.dlg file, which 

ATD could visualize. Additionally, AutoDock4 atomically performed cluster analysis on the 

docking results grouping similar poses, using an RMSD cutoff of 1 or 1.5 Å.  The job.dlg file 

contained the results of the cluster analysis. 

2.3.2 Virtual Screening with AutoDock4 

This section describes the methods and scripts used to perform virtual screening using 

AutoDock4 at TACC.  We used these methods to run virtual screening on the five DUD targets 

described in Chapter 3.  This section is divided into three sections.  Section 2.3.2.1 describes the 

preparation of the compound database for virtual screening. Section 2.3.2.2 describes how the 

virtual screenings were performed.  Section 2.3.2.3 describes how the results were extracted.  

2.3.2.1 Compound Databases – Source and Generation 

In order to perform viral screening using AutoDock4 we built compound databases of 

ligand.pdbqt files to the standards described in Section 2.3.1.1.1.  The source of these 

compounds was the ZINC database.  The files downloaded from ZINC came as multi-compound 

.mol2 files.  We divided multi-compound .mol2 files into individual compound ligand.mol2 files 

and then processed the ligand.mol2 files into ligand.pdbqt files.  The final product of the 

processing was two directories, one containing all the ligand.mol2 files and a second containing 

all the ligand.pdbqt files.  We used the ligand.pdbqt directory for virtual screening, but retained 

both directories for MF-FEB calculations as described in Chapter 6. 

The zincextractor3.py script took a single GNUziped multi-compound .mol2 file from 

ZINC and separated it into individual ligand.mol2 files.  The script processed each file 

separately, but individual scripts were executed as a single batch job on Lonestar or Ranger to 
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process multiple multi-compound .mol2 files.  The script worked by reading through the 

GNUziped multi-compound .mol2 file finding the start of each .mol2 file based on the standard 

.mol2 molecule tag and extracting the ligand.  The script wrote each extracted ligand.mol2 file to 

the output directory using the extended ZINC ID as described in Section 2.2.1.1.2.  Since ZINC 

does not uniquely name the tautomeric states, the script kept a list of all ligands extracted and 

would incrementally number the last four characters (0000, 0001, 0002 …) of the file name each 

time a ligands name in the GNUziped multi-compound .mol2 file appeared, thereby writing each 

tautomer as a separate file.  

The mol2topdbqt_v01.py script read each ligand.mol2 file from one directory and 

processed the file to write out a ligand.pdbqt file, ready for docking, into a new directory.  The 

script processed each compound by calling the same python modules used by ADT for ligand 

preparation.  These modules were the PyBabel, PyAutoDock, MolKit, and AutoDockTools 

modules from ATD, although only MolKit’s Read and AutoDockTools.MoleculePreparation’s 

AD4Ligand Preparation function were called directly from mol2topdbqt_v01.py.  The script 

processed the ligands as described in Section 2.3.1.1.1 . 

2.3.2.2 Virtual Screening at TACC 

To perform a virtual screening, the cf-100128.py script processed each compound in the 

ligand.pdbqt library into one complete docking job that was then run on Lonestar.  The cf-

100128.py script required two input directories.   The first was the compound database, named 

“cdb”.  The compounds in the compound database were grouped into alphabetic subdirectories 

(i.e., a,b,c, etc.) according to the size of the compound database.  The “a” group, for example, 

also contained a number of subdirectories corresponding to docking “jobs” which contained 

collections of ligands that were to be run at the same time.  The second directory, “wgsrc”, had a 

sub directory, named for the target system, containing the target.pdbqt, template versions of the 

job.gpf and job.dpf files, and the AD4_parameters.dat file.  The target.pdbqt was prepared as 

described in Section 2.3.1.1.2.  We made the template versions of the job.gpf and job.dpf by first 
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generating the files using ADT, consistent with the virtual screening parameters described in 

Section 3.1.1.3, for a ligand.   We then removed the ligand specific information from the job.gpf 

and job.dpf files generating the template versions. 

For each ligand.pdbqt file in the compound database input directory, cf-100128.py 

generated a new directory containing all required files and a shell script to run AutoGrid4 and 

AutoDock4.  To prepare docking runs, the cf-100128.py script first read in the target and 

parameter files generating an object.  The script gave the ligand object to generate the job.gpf 

and job.dpf files for each ligand.  The object then built a shell script to start all AutoGrid4 and 

AutoDock4 runs for each ligand and copied all required files into newly created job directory.  

The cf-100128.py script used the same python scripts the ADT used for generating job.gpf and 

job.dpf files, the PyBabel, PyAutoDock, MolKit, and AutoDockTools modules.  The script 

packaged all the docking job directories into a single .tar.gz file and wrote the job scripts for 

submitting a job on Lonestar. 

We performed virtual screening on Lonestar using the LSF_launcher, which runs 

multiple single processor jobs on a set of nodes.  Both Lonestar and Ranger have programs to run 

multiple single processor jobs on a set of nodes.  In both cases, the launcher programs required 

one file listing all the jobs to be run and a second script file with the job submission command.  

When the screening was complete, we copied the job.dlg files into a single directory for 

analysis. 

2.3.2.3 Results Processing 

The dlg_reader_05.py script processed virtual screening results.  The script read each 

job.dlg file and selected the best pose using the standard pose selection method described in 

Section 3.1.1.2.  As each job.dlg file was read in, the script built an object, using the 

docking_run.py module, containing the docking results.  The docking_run.py module was based 

on ADT results processing tools.  The module performed the cluster analysis anew when a 
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job.dlg was fully read in.  The script then wrote the best poses for each compound in the virtual 

screening into a tab delineated table text file with one compound record per line.  Each line 

contained the compound ID, cluster size, score breakdown, and the pose.  The pose was stored as 

the coordinates for the geometric center of the compound, the x, y, z translation for the 

compound with reference to the target, the axis angle rotation data for the compound, and the 

torsion angle for each rotatable bond.  The pose was not stored as atomic coordinates to save 

space and to facilitate MF-FEB calculations.      

2.4 MF-FEB CALCULATIONS 

This section describes the methods used to perform MF-FEB calculations using TACC’s 

high performance computers Lonestar and Ranger.  Section 2.4.1 describes the preparation of the 

ligand and target for MF-FEB calculations. Section 2.4.2 describes how to perform MF-FEB 

calculations using CHARMM.  Section 2.4.3 describes how MF-FEB calculations were run on 

Lonestar and Ranger. 

2.4.1 Target and Ligand Preparation 

In order to perform MF-FEB, we prepared the ligand and the target files to be used with 

CHARMM.  Section 2.4.1.1 describes ligand file preparation.  Section 2.4.1.2 describes target 

preparation.  Section 2.4.1.3 briefly describes the water model used in the simulations. 

2.4.1.1 Ligand Preparation 

To prepare the ligand files for MF-FEB calculations, we first generated ligand.mol2 files 

according to the standards outlined in Section 2.2.1.2, whose coordinates corresponded with the 

desired ligand pose, whether determined experimentally or generated from docking.  

Antechamber then processed the ligand.mol2 into CHARMM input files.  This section outlines 

the methods used to generate the correctly posed ligand.mol2 files and generate the CHRAMM 

input files. 
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We either generated correctly posed ligand.mol2 files automatically or built it by hand.  

The procedure for automatic generation is discussed in Chapter 6.  We used the methods 

described in Sections 2.2.1.1.1 and 2.2.1.2 for hand building the ligand.mol2 files for ligands 

with co-crystal structure poses.  To build by hand the ligand.mol2 from docking results, we 

removed the .pdb style coordinate lines for the desired pose from the job.dlg file using a text 

editor and saving the extracted lines to a ligand.pdb file.  We processed the ligand.pdb file in the 

same manner as a co-crystal pose.  In both cases, CHARMM minimized the ligand’s protons, but 

not the heavy atoms.  Additionally, we transposed the coordinates of the ligand so that the 

geometric center of the ligand was at the origin.  The adjustments used for the transposition were 

retained to transpose the target coordinates. 

The CHARMM force field was designed to simulate macromolecules and does not 

contain the force field parameters for the ligand molecules.  Therefore, to simulate the ligand in 

CHRAMM a ligand.mol2 needed to be parameterized and converted into the three input files 

required for CHARMM.  These input files were ligand.crd containing the atomic coordinates, a 

ligand.prm containing the force field parameters for the ligand, and a ligand.rtf containing the 

topological information for the ligand in the force field.  We prepared the CHARMM input files 

using the modified version of Antechamber, parameterizing the ligand with the CHARMM 

compatible generalized AMBER force field (Wang, Wolf et al. 2004), and to assign partial 

charges using the AM1-BCC charge method (Jakalian, Jack et al. 2002).   

2.4.1.2 Target Preparation 

The goal of receptor preparation is to generate the files need to simulate the receptor in 

CHARMM.  The files required include the receptor coordinates (target_xxxx_water.crd) and two 

CHARMM stream files that contain the amino acid sequence (squ.str), and di-sulfide bonds and 

chain caps information for adjusting the non-standard amino acids (disu.str).  This section 

presents the method and scripts used for generating the target file starting with target.pdb 

generated using the standards described in Section 2.2.2. 
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Before generating the CHARMM target inputs, we performed preparatory steps.  First, 

because the CHARMM force field treats each histidine tautomer as a unique amino acid, we 

determined and recorded the protonation states of each histidine residue.  Next, we returned the 

crystallographic waters to the target.pdb, if they had been removed for docking.  Then, we 

generated the disu.str in a text editor.  The disu.str contained the information for CHARMM to 

build the di-sulfide bonds and to modify chain ending amino acids.  Finally, we fixed the O in 

the C-terminal carboxylic acids and the N-terminal amine H names to correspond to naming 

convention used by the CHARMM force field.  

To prepare the taget_xxxx_water.crd and seq.str files, we developed the pdbtools.py 

module.  The module was called by other scripts to prepare target .pdb and .crd files as needed.  

The module first read the target.pdb file generating an object containing all the atoms in the 

target.  Then the object was passed to other module functions for modification.  First, the atom 

and residues were renumbered starting at one.  Then, the histidines were modified using a 

directory (i.e., hash table) of the residue number and histidine type prepared from the data collect 

during preparation.  Next, the coordinates were transposed according to the information obtained 

in ligand preparation.  Then, the protein sequence was extracted and written as the seq.str file.  

Finally, the rept_xxxx_water.crd was written.  The module had a function to prepare files for 

minimization of the target using CHRAMM.  The minimization outputs were used to test the 

CHARMM target input files for errors.  

2.4.1.3 Solvent 

We modeled all explicated waters as TIP3 waters as provided in the CHARMM force 

field files. (Mahoney and Jorgensen 2000) 

2.4.2 MF-FEB Calculations 

As described in Section 1.4.4, MF-FEB can calculate the FEB using molecular mechanics 

methods.  We employed two “generations” of CHARMM scripts to perform MF-FEB 



67 

simulations and calculations.  Drs. Deng and Roux of the University of Chicago kindly provide 

the original CHRAMM scripts used in their MF-FEB calculations.(Deng and Roux 2006; Deng 

and Roux 2008) These original scripts are referred to as the first generation scripts. We 

developed a second generation of scripts for performing MF-FEB calculations on World 

Community Grid.  The second generation simplified and refined the first generation CHARMM 

scripts and added check-pointing functions required for World Community Grid.   

This section describes performing MF-FEB calculations in CHARMM using the second 

generation of scripts and is divided into three subsections.  Section 2.4.2.1 describes the “site” 

portion of the MF-FEB calculations. Section 2.4.2.2 describes the “bulk” or “solvent” portion of 

the MF-FEB calculations. Finally, Section 2.4.2.3 describes the calculation of the FEB from the 

perturbation simulations.
8
  

2.4.2.1 Site 

The goal of the site simulations was to model the decoupling of the ligand from the site 

under positional and conformational constraints, and the subsequent release of those constraints. 

This section describes the methods used for site simulations in MF-FEB calculations.  Section 

2.4.2.1.1 describes the site system.  Section 2.4.2.1.2 describes the steps for preparing the system 

for perturbation simulations. Section 2.4.2.1.3 concludes with a description of the perturbation 

simulations. 

2.4.2.1.1 The System 

The site system modeled the ligand in the target’s binding site.  Figure 2-1 presents an 

image of the system.  We modeled the site as a solvent drop with a 18 Å radius centered on the 

ligand with all atoms within the radius treated explicitly and all atoms beyond the sphere 

represented using a generalized solvent boundary potential (GSBP). 

                                                 

8
 Parameters in these sections also apply to MF-FEB calculations on World Community 

Grid. 



 

Figure 2-1 – The “site” (left) and “bulk” (right) systems used for MF-FEB calculations for the binding of benzene to the L99A T4 

lysozyme engineered hydrophobic binding site.  The red spheres represent the locations of water molecules.  Some waters 

were removed to show ligand and target.  The mint green ribbon represents the backbone of the target.  The stick model in 

the center represents benzene with green for carbon atoms and white for hydrogen atoms. 
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2.4.2.1.2 System Preparation, Grand Canonical Monte Carlo and System Equilibration 

To prepare a site for perturbation simulations required three steps.  First, we constructed 

the GSBP.  Second, we equilibrated the number of waters in the site using a grand canonical 

Monte Carlo (GCMC) simulation.  Third, we equilibrated the site’s atoms using MD and selected 

the positional constraints. This section describes each of those steps. 

CHARMM used the instructions in the site_stup_gsbp.inp file to prepare the system and 

the GSBP.  The script required the following input files: target_xxxx_water.crd, seq.str, and 

disu.str files from target preparation; the ligand.crd, ligand.rtf, and ligand.prm files from ligand 

preparation; the par_all22_prot_cmap.inp and top_all22_prot_cmap.inp files containing the 

CHARMM force field; and the water_8000.crd_nocopy file containing an equilibrated 64 Å x 64 

Å x 64 Å water box.
9
  The first step in site_stup_gsbp.inp script was to calculate the long-range 

corrections for the VdW interaction.  To begin, CHRAMM built the site system using the .crd 

and force field parameter files.  It then added the water box and then removed all waters 

overlapping the target, the ligand, and the crystallographic waters.  Next, CHARMM determined 

the potential energy of the VdW interaction of the protein and ligand using a non-bond 

interaction cutoff of 1000 Å to include all interaction in the system.  Then, CHARMM removed 

all solvent atoms beyond 3 Å and all protein atoms beyond 7 Å from the GSBP radius.  

CHARMM calculated the VdW potential energy between the target and ligand atoms using a 

non-bonding cutoff equal to the GSBP sphere radius.  Finally, the difference in the two potential 

energies was the long-range correction value.  The second step calculated GSBP.  CHRAMM 

started by rebuilding the system as described above using the water box and deleting all 

overlapping molecules and all waters beyond the GSBP.  Next, it set the radii of the inner and 

outer shells, where the inner shell is where all atoms are explicit, and the outer shell is 7 Å 

                                                 

9
 The const_dihe.str file was included in this and all other steps for use in modeling 

symmetric ligands, but we did not utilize this function, therefore the file is not listed in later 

sections. 
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beyond where only target atoms are retained.  Then, CHARMM generated two fields using the 

GSBP function in the CHARMM Poisson-Boltzmann equation solver module.  The first field 

was the generalized reaction field, modeling the region between the inner and outer shell radii.  

The second field was the static external field, modeling everything beyond the outer shell radius.  

At the end of the GSBP set-up process CHARMM had generated several files. The first file was 

the fe_lrc_site file
10

 that contained the long-range correction used in determining the FEB.  Next 

were the files defining the GSBP.  These files include the target_ligand_gsbp_param_rad.str file 

containing the GSBP parameters; and the target_mij.dat and target_phi.dat binary files contain 

the reaction and static interaction grids respectively.  The final files, 

target_ligand_gsbp_rad_0.crd and target_ligand_gsbp_rad_0.psf, contained the coordinates and 

system information to quickly rebuild the system. 

CHARMM equilibrated the number of waters in the site by GCMC using the 

site_stup_gcmc.inp script.  This stage required the following input files: 

target_ligand_gsbp_rad_0.crd and target_ligand_gsbp_rad_0.psf files containing the system 

coordinates and information; the target_ligand_gsbp_param_rad.str, target_mij.dat, and 

target_phi.dat to set-up the GSBP; and the par_all22_prot_cmap.inp, top_all22_prot_cmap.inp, 

ligand.prm, and ligand.rtf files for the force field.  The GCMC equilibration began by rebuilding 

the system with the GSBP.  Then, CHARMM minimized the system using CHARMM’s steepest 

decent minimization method for 1000 steps. Next, CHARMM added ghost waters forming a 

reserve of waters for the GCMC.  Following reservoir construction, CHARMM carried out the 

GCMC simulations as previous described. (Deng and Roux 2008)  In short, the process began 

with the GCMC simulations where the waters in the system were equilibrated, where if space 

was sufficient to accept a new water, a ghost water would be add, or if the packing was too tight, 

a water would be removed, hence grand canonical.  A μ value of -4.25 kcal mol
-1

 determined the 

acceptance or rejection of a water addition or removal.  After 10,000 MC steps, CHARMM 

                                                 

10
 This is a txt file with no extension. 



71 

equilibrated the system using Langevin MD for 10 ps at 300K with 2 fs time steps and the non-

bond cutoff equal to the radius of the GSBP sphere.  CHARMM repeated the MC/MD cycle 10 

(or 50) times to equilibrate the waters.  The output files target_ligand_gsbp_rad_1.crd and 

target_ligand_gsbp_rad_1.psf contained the water-equilibrated system. 

The final stage of site preparation was MD equilibration of the system followed by ligand 

constant selection and RMSD fluctuation calculation.  The site_stup_eqlb.inp and the pick.str 

scripts contained the CHARMM instructions for this stage, which required the following input 

files:  target_ligand_gsbp_rad_1.crd and target_ligand_gsbp_rad_1.psf for the system; 

target_ligand_gsbp_param_rad.str, target_mij.dat and target_phi.dat to set-up the GSBP; and 

the par_all22_prot_cmap.inp, top_all22_prot_cmap.inp, ligand.prm, and ligand.rtf files to define 

the force field.  After the system was constructed, CHARMM minimized the system with 1,000 

step steepest decent minimization followed by 1,000 step adopted basis Newton-Raphson 

minimization. (Brooks, Bruccoleri et al. 1983; MacKerell Jr, Brooks III et al. 1998) Then, 

Langevin MD simulations ran for 200 ps at 300 K with a 2 fs time step to equilibrate the system 

with a non-bond cutoff distance equal to the GSBP sphere radius.  Next, CHARMM selected the 

ligand’s positional restraints by randomly selecting atoms in the ligand and target to serve as 

points of constraint.  CHARMM accepted or rejected the randomly selected constraints based on 

the relative geometry between the three selected points in the ligand and the three selected points 

in the target.   Finally, CHARMM determined the average position for the center of mass of the 

ligand and its RMSD fluctuation for the last 180 ps of MD trajectories.  CHARMM outputted the 

constraint definitions as the const_para_target_ligand_equ.str and restr_def.str stream files.  

Additionally, the output target_ligand_gsbp_rad_2.crd file constrained the final pose of the 

system after MD simulations and target_ligand_ave.crd contained the average system 

coordinates from the MD run.  The output target_ligand_ave_lig.crd and 

target_ligand_eq_lig.crd files contained the average and equilibrium coordinates for the ligand 
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respectively.  In addition, the target_ligand_rmsd_fluc.rmsd and target_ligand_para_fluc.rmsd 

contained the ligand RMSD fluctuation data. 

2.4.2.1.3 Perturbation Simulations 

The goal of the perturbation stage was to obtain the microstate potential energies from 

MD simulations as CHARMM decoupled the ligand from the site.  For site simulations, the 

decoupled properties were electrostatic interactions, VdW dispersion, VdW repulsion, positional 

constraints, and conformational constraint. The lambda steps for decoupling the electrostatic 

interaction were: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.  The lambda steps for 

decoupling for the VdW dispersion interaction were: 0.0, 0.25, 0.5, 0.75 and 1.  The lambda 

steps for decoupling the VdW repulsion interaction were 0 and 1, but soft-core potentials were 

used which were varied in steps of: 0.0 to 0.2, 0.2 to 0.3, 0.3 to 0.4, 0.4 to 0.5, 0.5 to 0.6, 0.6 to 

0.7, 0.7 to 0.8, 0.8 to 0.9, and 0.9 to 1.0.  The lambda steps for removing the positional 

constraints were: 0.0, 0.0025, 0.005, 0.0075, 0.01, 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8, 

and 1.  The steps for removing the conformational constraint on the ligand corresponded to the 

allowed RMSD fluctuation of the ligand during the MD simulations.  The conformational 

constraint stages steps were: 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 Å.  For each step 

of each stage, we performed two MD simulations running the perturbation step first in one 

direction and then another. Therefore, we ran each perturbation stage from a lambda value of 0 to 

1 and then from 1 to 0. 

The goal of each perturbation step was to sample the energy of the microstates generated 

by a MD simulation for a single lambda step, or RMSD constraint.  The site_pert.inp script 

contained the CHARMM’s instructions for this phase.  The site_pert.inp script required the 

following input files: the target_ligand_gsbp_rad_1.psf and target_ligand_gsbp_rad_2.crd files 

for the system; the target_ligand_gsbp_param_rad.str, target_mij.dat, and target_phi.dat files to 

set-up the GSBP; the par_all22_prot_cmap.inp, top_all22_prot_cmap.inp, ligand.prm, and 

ligand.rtf files for the force field; the restr_def.str, const.str, target_ligand_ave_lig.crd, and 
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rstr_def_rms_fluc.str files for the constraints definitions; and for all perturbation steps except 

conformation constraints the target_stage_lambda.prt file containing the perturbation definitions.  

The perturbation simulations started by building the system and applying the positional and 

conformational constrains to the ligand.  After the system was constructed, CHARMM 

minimized the system with 1,000 step steepest decent minimization followed by a 1,000 step 

adopted basis Newton-Raphson minimization (Brooks, Bruccoleri et al. 1983; MacKerell Jr, 

Brooks III et al. 1998).  Next, CHARMM’s PERT module modified the system according to the 

stage and lambda step (i.e., electrostatic interaction at a lambda of 0.1).  We utilized the CHEM 

command from the PERT module. The CHEM command removes the need for additional 

vacuum simulations to calculate inter-molecular interaction in the ligand by maintaining the 

interactions during decoupling.  In the case of releasing conformation constraints, CHARMM 

modified the conformational constrains on the ligand according to the allowed RSMD 

fluctuation.  Following perturbation, Langevin MD simulations equilibrated and then sampled 

the microstates.  The Langevin MD ran for different lengths depending on the stage.  However, 

all MD simulation ran at 300 K, with a 2 fs time step, with a non-bond cutoff distance equal to 

the GSBP sphere radius, and with potential energies extracted every picosecond for analysis.  

The sampling times for site dispersion, repulsion, and electrostatic stages were 120 ps with 40 ps 

equilibration.  The sample times for positional and conformation constraint stages were 60 ps 

with 20 ps and 40 ps equilibration stages, respectively.  The only file retained from the 

perturbation stage was the target_ligand_stage_lambda.wham file, or the 

target_rmsd_lambda.rms file in the case of the conformation constraints, containing the sampled 

potential energies. 

2.4.2.2 Bulk 

The goal of the bulk, or solvent, simulations was to model the coupling of the ligand into 

the bulk solvent.   This section describes the methods used for the bulk simulations in MF-FEB 

calculations.  Section 2.4.2.2.1 describes the bulk system. Section 2.4.2.2.2 describes the 



74 

equilibration of the bulk system. Section 2.4.2.2.3 concludes with a description of the 

perturbation simulations. 

2.4.2.2.1 The System 

The bulk system modeled the ligand free in solvent.  Figure 2-1 presents an image of the 

system.  We modeled the bulk as a solvent drop with an 18 Å radius centered on the ligand with 

all atoms within the radius treated explicitly and the solvent beyond the radius with a spherical 

solvent boundary potential. 

2.4.2.2.2 System Equilibration 

CHARMM equilibrated the bulk system using the solv_stup_eqlb.inp script.  The 

solv_stup_eqlb.inp script required the following input files: the ligand.crd and water_400.crd 

files containing the atomic coordinate for the ligand and bulk solvent respectively; and the 

par_all22_prot_cmap.inp, top_all22_prot_cmap.inp, ligand.prm, and ligand.rtf files for the force 

field.  CHARMM built the bulk system by placing the ligand at the center of the pre-equilibrated 

water box defined by the water_400.crd file, removing waters that overlap the ligand or were 

outside the radius of the solvent drop, and adding the SSPB.  After the system was constructed, 

CHARMM minimized the system with 1,000 step steepest decent minimization followed by a 

1,000 step adopted basis Newton-Raphson minimization. (Brooks, Bruccoleri et al. 1983; 

MacKerell Jr, Brooks III et al. 1998) Then, Langevin MD simulations ran for 40 ps at 300 K 

with a 2 fs time step to equilibrate the system with a non-bond cut off equal to the SSPB radius.  

CHARMM saved the equilibrated bulk system as solv_ligand.psf and solv_ligand_eq.crd files.   

2.4.2.2.3 Perturbations 

The goal of the perturbation stage was to obtain the microstate potential energies for MD 

simulations as CHARMM decoupled the free ligand from the bulk solvent.  For bulk simulations, 

the decoupled properties were electrostatic, VdW dispersion, and VdW repulsion interactions.  

The lambda steps for decoupling the electrostatic interaction were: 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 

0.7, 0.8, 0.9 and 1.  The lambda steps for decoupling the VdW dispersion interaction were: 0.0, 
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0.25, 0.5, 0.75 and 1.  The lambda steps for decoupling the VdW repulsion interaction were 0 

and 1, but soft-core potentials were used which were very in steps of: 0.0 to 0.2, 0.2 to 0.3, 0.3 to 

0.4, 0.4 to 0.5, 0.5 to 0.6, 0.6 to 0.7, 0.7 to 0.8, 0.8 to 0.9, 0.9 to 1.0.  For each step of each stage, 

we performed two MD simulations running perturbation step in one direction and then another. 

Therefore, we ran each perturbation stage from a lambda value of 0 to 1 and then from 1 to 0. 

The goal of each perturbation step was to sample energy of the microstates generated by 

a MD simulation for a single lambda step.  The solv_pert.inp script contained the CHARMM’s 

instructions for this phase.  The solv_pert.inp script required the following input files: the 

solv_ligand.psf and solv_ligand_eq.crd files to define the system; the par_all22_prot_cmap.inp, 

top_all22_prot_cmap.inp, ligand.prm, and ligand.rtf files for the force field; (the const_dihe.str 

and const_para_ligand_target_equ.str for symmetric ligands); and the solv_stage_lambda.prt file 

containing the perturbation definitions.  After the system was constructed, CHARMM minimized 

the system with 1,000 step steepest decent minimization followed by a 1,000 step adopted basis 

Newton-Raphson minimization. (Brooks, Bruccoleri et al. 1983; MacKerell Jr, Brooks III et al. 

1998).  Next, CHARMM’s PERT module modified the system according to the stage and lambda 

step.  Following perturbation, Langevin MD simulations equilibrated, and then sampled the 

microstates.  The MD equilibrated the system for 40 ps and then sampled for 80 ps at 300 K, 

with a 2 fs time step, with a non-bond cut off equal to the SSBP radius, and with potential 

energies extracted every picosecond for analysis.  The only file retained from the pert stage was 

the solv_stage_lambda.wham file containing the sampled potential energies. 

2.4.2.3 Results 

We obtained the FEB from the MF-FEB simulations in four steps.  First, we used 

weighted histogram analysis method (WHAM) (Kumar, Rosenberg et al. 1992) to calculated the 

energy contribution to the FEB of the electrostatic, VdW dispersion, VdW repulsion, decoupling 

of the ligand from the site and bulk, and releasing the ligand’s positional constraints. CHARMM 

analyzed the complied .wham file outputs from each perturbation stage, checked for convergence 
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and calculated the energy.  Second, we determined Ft and Fr numerically.  We calculated energy 

from Ft by integrating, using a Simpson approximation, the change in force as defined in 

equation 1-22 as distance using the two angles defining the translation constants defined by the 

six selected constant atom and extended the distance to 100 Å and the angles rotated 180
o
.  We 

calculated energy from Fr using the same method as Ft only using the three angles that defined 

the rotational constants.  Third, we determined the energy contribution from conformational 

restraints by solving equation 1-23 using WHAM analyzed data from the MD data obtained from 

the conformation constraint stages.  Forth, we compiled all the energies obtained in the first three 

steps and the long-range VdW correction.  The FEB was the difference between the sum of 

energies from decoupling the charge-charge, VdW repulsion, and VdW dispersion interaction of 

the ligand and the site, the energy for releasing the ligand from the constants composed of the 

energy from the constraint simulations and Ft and Fr, and the long range VdW correction; and the 

sum of decoupling, the charge-charge, VdW repulsion, and VdW dispersion interaction of the 

ligand and the bulk. 

2.4.3 Scripts for MF-FEB Calculations on TACC 

This section describes the process of running MF-FEB calculations on the Ranger or 

Lonestar supercomputers.  We developed this process to utilize the first generation of CHARMM 

scripts, therefore the exact input and output files vary from those described in Section 2.4.2.  

However, the MF-FEB calculations are identical to those described in Section 2.4.2. Section 

2.4.3.1 describes using the dg_prep_launcher2_01.py script to build MF-FEB jobs for 

submission on Ranger or Lonestar. Section 2.4.3.2 describes running the jobs and processing the 

results. 

2.4.3.1 Building the Jobs 

We developed the dg_prep_launcher2_01.py script to prepare multiple MF-FEB 

calculations to run on Ranger or Lonestar.  The script processed three input directors containing 

the files required for the MF-FEB calculations and generated a new directory containing the MF-
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FEB jobs.  This section describes the preparation of the three source directories and the structure 

of the script’s output directory.   

The dg_prep_launcher2_01.py script required three input directors.  The first contained 

all files for running CHARMM.  For reference, the files were const.str, par_all22_prot_cmap.inp, 

pick.str, radius.str, restr_sel.str, rstr_def_rms_fluc.str, sitp_pert.inp, site_stup_eqlb.inp, 

site_stup_gcmc.inp, site_stup_gspb.inp, solv_pert.inp, solv_stup_eqlb.inp, 

top_all22_prot_cmap.inp, water_400.crd, water_8000.crd_nocopy, and wham.inp.  A second 

directory contained fe.pl, used for calculating the results.  The third directory, the “jobs” 

directory, contained subdirectories for each MF-FEB calculation.  Each subdirectory contained 

three items.  The “rep” directory containing the target_ligand_water.crd, seq.str, disu.str, and 

const_dihe.str generated during receptor preparation as described in Section 2.4.1.2.  The “lig” 

directory containing the ligand.crd, ligand.rtf, and ligand.prm generated during ligand 

preparation as described in Section 2.4.1.1.  The final item was job.xml file, whose named 

matched the MF-FEB calculation’s subdirectory name.  The job.xml file contains all the 

parameters for the MF-FEB calculations. 

The dg_prep_launcher2_01.py script built the MF-FEB jobs that corresponded to the jobs 

subdirectories, by build dictionaries, copying files, and writing out job submission and shell 

scripts.  The script required the xmltodir.py modules, which read in the job.xml file and 

processed it into a python dictionary object.  The dg_prep_launcher2_01.py script generated a 

single directory containing all the MF-FEB calculations and the scripts to run them.  The first 

level of the output directory contained one subdirectory for each MF-FEB calculation.  The 

directory also contained the scripts for submitting jobs and collecting the results.  Each 

subdirectory contained directories for site and bulk set-up; a directory for each perturbation stage 

for both systems; three source directories containing the CHARMM inputs, ligand information, 

and the GSBP file; and the scripts for running the MF-FEB calculations and determining FEB.  

The script created links between the source directories and the set-up and perturbation directories 
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to avoid multiple copies of some files. The perturbation and set-up directories contained all the 

files required to run CHARMM for all perturbation and set-up steps.  The directory also 

contained shell scripts to run each CHARMM simulation using the parameters in the job.xml 

file. 

2.4.3.2 Running and Processing the Results Collection 

As described in Section 2.3.2.2, Ranger and Lonestar had “launcher” programs that 

allowed the submission of multiple serial jobs to a set of nodes.  We designed the 

dg_prep_launcher2_01.py script to build job submission scripts and to create jobs that efficiently 

balanced the use of Ranger and Lonestar’s resources.  Running MF-FEB calculations took four 

steps. 

First, we ran the set-up stages for the site and bulk simulations.  We used two run scripts 

to submit all the jobs, one for the site systems and a second for the bulk systems.  The jobs were 

shell scripts that contain the commands to run CHARMM.  For example, the site set-up shell 

script would run the CHARMM scripts to generate the GSBP, run the GCMC water 

equilibration, and run the MD system equilibration.  In the case of 50 GCMC cycles, we divided 

the set-up shell script into two sequential parts each with 25 GCMC cycles due to the 24-hour 

run time limit on Ranger.  The dg_prep_launcher2_01.py script would build two site set-up run 

scripts of the spilt site set-up. 

The second and third stage was the perturbation simulation and WHAM calculations.  We 

handled job summations for both steps in the same way.  Each MF-FEB calculation had job 

scripts for site and bulk perturbation simulations and WHAM calculations, making four scripts in 

total.  Each of the job scripts ran shell scripts with the CHARMM commands for each 

perturbation step in the MF-FEB calculations. The first level of the dg_prep_launcher2_01.py 

script’s output directory contained shell scripts that would submit all the job scripts to Ranger or 

Lonestar. 
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 Finally, we generated the FEB from the WHAM results using the fe.pl script.  Dr. Deng 

(University of Chicago) developed the fe.pl to perform the same function of the 

dg_prep_launcher2_01.py script previously described.  The fe.pl script also contained the result 

calculating functions, therefore we used it to obtain the FEB from the MF-FEB calculations.  We 

used shell scripts generated by the dg_prep_launcher2_01.py script in each of the MF-FEB 

directories to compute FEB.  The dg_prep_launcher2_01.py script also built a master shell script 

to run the other results scripts.  The FEB was written to a text file named fe_binding. 
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Chapter 3 Optimizing Virtual Screening and Mean Field – Free Energy of 

Binding Calculations 

Before employing MF-FEB calculations for rescoring or AutoDock4 for virtual 

screening, we needed to optimize the runtime parameters for both supercomputer and grid 

computing environments.  This chapter describes the parameter selection process, and presents 

the data that lead to their selection. Section 3.1 describes selecting parameters for AutoDock4 for 

virtual screening and processing virtual screening results.  Section 3.2 describes preparing the 

MF-FEB calculations for rescoring virtual screening results.  

3.1 VIRTUAL SCREENING 

This section discusses the selection of parameters for AutoDock4 and the processing of 

docking results for virtual screening on World Community Grid.  We used the same parameters 

for virtual screening projects using TACC high performance computing resources as we did on 

World Community Grid.  Section 3.1.1 describes the optimization of single docking simulations 

for virtual screening.  Section 3.1.2 describes processing virtual screening results to select 

compounds for rescoring using MF-FEB calculations.  

3.1.1 Docking Parameters for Virtual Screening 

In order to use AutoDock4 effectively for virtual screening, we needed to address two 

questions.  The first question was  which of all the poses generated by AutoDock4 was closest to 

the experimental pose, as we were only rescoring one pose from a docking simulation due to 

limited computational resources?  The second question was what were the ideal search 

parameters for a virtual screening with AutoDock4, balancing runtime with an effective search of 

the binding energy landscape?  The goal of this section is to show how we arrived at the 

solutions to these questions.  Section 3.1.1.1 introduces the trypsin test set used to answer these 
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questions.  Section 3.1.1.2 discusses result pose selection.  Section 3.1.1.3 discusses the selection 

of search parameters for a virtual screening with AutoDock4. 

3.1.1.1 Trypsin Test Set  

As the dengue NS3 protease was our primary target for DDDT, we selected the well-

studied trypsin protease to serve as a test system to optimize AutoDock4 for virtual screening.  

Trypsin is similar to the dengue NS3 protease, as both proteins are serine protease cutting after 

di-basic residues.  However, trypsin’s binding site is more contoured and charged than dengue’s 

shallower binding site.  The training set, composed of ten trypsin inhibitors, was taken from the 

literature.  Each inhibitor had an experimentally determined pose, co-crystal, and experimentally 

determined Ki or FEB.  Table 3-1 contains a detailed list of inhibitors, including their structures, 

sources, and the FEB to trypsin.  The selected inhibitors covered a range of FEBs, between -10 

kcal mol
-1

 and -2 kcal mol
-1

, and a range of rotatable bonds, between1 to 7. 

The test set had two limitations.  First, 8 of the 10 inhibitors contained benzyl-diamine, 

which binds tightly to the P1 site in trypsin.  The remaining two were benzyl-monoamines, 

which also bind to the P1 site. Therefore, the compounds in the test set were chemically similar, 

limiting the chemical space defined by the test set.  Fortunately, the “tail” portions of the 

inhibitors, the part outside of the P1 pocket that interacts with other portions of trypsin, varied, 

increasing the chemical space defined by the test set.  The second limitation of the test set was 

that the Kis were obtained from a variety of different sources; therefore, experimental methods 

were not consistent.  Ideally, the properties of the compounds in a test set would  be measured 

using a consistent method in the same lab, but when the test set was compiled there was no 

single source that contained the same chemical variety as the test set from a single lab.  In most 

cases, the sources gave only a Ki for the compounds which we then converted to a FEB at 25
o
C. 
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Table 3-1 – The Trypsin Test Set (*Number of bonds allowed to rotate in AutoDock4 docking 

simulations) 

PDB 
G 

kcal/mol 

Number of 

Rotatable 

bonds 

(longest 

segment)* 

Ligand Ligand Structure 

1G36 -10.2 6(2) 

4-[[1-METHYL-5-(2-METHYL-

BENZOIMIDAZOL-1-YLMETHYL)-1H-

BENZOIMIDAZOL-2-YLMETHYL]-

AMINO]]BENZAMIDINE 

NH2

NH2

HN

N

N
N

HN

 

1PPC -8.4 9(3) 

N -(2-NAPHTHYL-SULPHONYL-

GLYCYL)-DL-P-

AMIDINOPHENYLALANYL-PIPERIDINE 

(NAPAP) H2N

NH2O

N

HN

NHS

O

O O

 

1EB2 -8.2 7(2) 
3-[(Z)-AMINO(IMINO)METHYL]-N-[2-(4-

BENZOYL-1-PIPERIDINYL)-2-OXO-1-

PHENYLETHYL]BENZAMIDE 

H2N

HN

HN

O

O

N

O
 

1PPH -8.1 7(3) 
P-TOLUENE SULFONATE, M-

AMIDINOPHENYLALANYL GROUP, 

PIPERDINE H2N

NH2

HN

O

N

S

O
O

 

1GI5 -7.6 3(1) 
2-(2-HYDROXY-5-METHOXY-PHENYL)-

1H-BENZOIMIDAZOLE-5-

CARBOXAMIDINE 

HO

N

H
N

NH2

H2N

O

 

1BTY -7.3 1(1) BENZYLDIAMINE 

NH

NH2

 

1XUI -6.4 4(2) 
BIS(5-AMIDINO-2-

BENZIMIDAZOLYL)METHANONE 

H2N

NH

N
H

N

NH2HN

HN

N

 

1TX7 -6.3 2(1) 
(4-CARBAMIMIDOYLPHENYL)-METHYL-

PHOSPHINIC ACID 
H2N

HN

P

O

OH

 

1UTN -4.7 2(2) BENZYLAMINE 

NH3
 

1UTP -2.0 5(4) 4-PHENYLBUTYLAMINE 

NH3
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3.1.1.2 Pose Selection 

As discussed in Section 1.2.3, docking programs can accurately reproduce experimentally 

determined binding poses. (Kellenberger, Rodrigo et al. 2004; Chen, Lyne et al. 2006; Warren, 

Andrews et al. 2006; Cross, Thompson et al. 2009)  However, AutoDock4 provided anywhere 

from 10 to 255 poses for the docking simulation of one ligand to one target due to repeated GA 

runs.  AutoDock4 then subjected resulting poses to cluster analysis, as described in Section 

2.3.2.3.  The cluster analysis provided two criteria for each pose: score and cluster size.  The 

challenge was to select systematically the “best” pose from all the docking results because we 

would be using only one pose for MF-FEB calculations.  The “best” pose was the pose most 

similar to the experimental, or co-crystal, pose as determined using RMDS.  To solve the 

problem of pose selection, we performed docking simulations on the trypsin test set using 

different docking parameters and target conformations.  We determined that selecting the lowest 

energy pose of the largest cluster was the most effective method for systematically selecting the 

best pose from AutoDock4’s results.  This section explains how we arrived at that conclusion. 

To determine a method for systematically selecting the best pose from the docking 

results, we ran two sets of docking simulations using the trypsin test set.  We employed the same 

search volume for all docking simulations.  The search volume was sufficiently large to include 

all ligands in the test set and corresponded in size to a virtual screening search volume as 

described in Section 2.3.1.2.  In the first simulations, we self-docked (docked into their own 

trypsin structure) all ten ligands, and then cross docked the test set into the trypsin structure 

1EB2.  We ran these docking simulations 200 times (i.e., 200 GA runs) for each ligand with a 

MNEE of 250,000.  In the second simulation set, we self-docked all ten ligands at 200 GA runs, 

running each docking at a MNEE of 250,000 and 1 million. 

Our first task was to determine which method using cluster size and score would select 

the “best” pose.  Because a cluster is composed of multiple poses, we selected the lowest scoring 

pose, which theoretically corresponds to the lowest energy pose, as the representative pose for a 
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cluster, and identified the pose by its score and the size of the cluster it represented.  Generally, 

the lowest scoring pose in a cluster approximates the experimental pose best by having the 

lowest RMSD relative to the experimental pose.  We examined four results selection criteria: 

first, the lowest scoring pose; second, the pose of the lowest scoring cluster; third, the pose of the 

lowest scoring cluster that also contained at least 5% of the results; and fourth, the largest cluster 

(the lower scoring of multiple matching cluster sizes).  The results of the different docking 

simulations are shown in Table 3-2. 

With all the selection criteria, the average RMSD was ~1 Å, slightly better than the 

general performance of docking programs (Kellenberger, Rodrigo et al. 2004; Chen, Lyne et al. 

2006; Warren, Andrews et al. 2006; Cross, Thompson et al. 2009); however, no selection criteria 

performed significantly better than any other selection criteria.  AutoDock4 was able to produce 

a pose with an average RMSD of 0.5 Å for all ligands; however, no selection criteria selected the 

“best” pose.  In addition, on average, there was no significant difference between self and cross-

docked poses, demonstrating the relatively static nature of the trypsin binding site.  We self-

docked 1EB2 in both simulation sets and showed a difference of 0.1 Å between docking 

simulation results. 

As expected, an increase in ligand flexibility correlated to an increase in RMSD.  Neither 

1pph nor 1ppc, which are both part of the same synthetic series and the most flexible inhibitors, 

generated any clusters, suggesting that the MNEE was insufficient to generate convergent 

results.  Encouragingly, the lowest energy poses for 1PPH and 1PPC had RMSDs less than 1.5 

Å. 

While no single selection criteria performed significantly better than any other, the best 

average performer was “largest cluster”.  Lowest scoring cluster selection criteria shared poses 

with either the largest cluster or lowest score; therefore, neither provided additional 

discrimination.  Interestingly, the lowest scored pose as defined by the scoring function, which 
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should be the nearest to the energetic minimum for the binding energy landscape, did not 

reproduce the best pose, and in the case of 1G36 selected a pose significantly different from the 

co-crystal pose. 

The selection criterion established by these results in Table 3-2 was to take the lowest 

energy pose of the largest cluster, selecting the lowest scoring cluster if multiple clusters were 

the same size, or the lowest scoring pose if no clusters were present.  We refer to this selection 

criterion as the “standard pose selection method.”  

In the previous docking simulations, neither 1pph nor 1ppc formed any clusters; 

therefore, we performed a second set of docking simulations increasing the MNEE from 250,000 

to 1 million to determine the impact on our result selection criterion.  The results of the second 

set of simulations are presented in Table 3-3.  The increase in MNEE generally decreased the 

number of resulting clusters.
11

  The number of clusters correlates (r = 0.7) to the number of 

rotatable bonds in each ligand.  Additionally, both 1PPH and 1PPC generated clusters at an 

MNEE of 1 million.  The average of the best overall poses was again 0.5 Å, which is consistent 

with the previous simulations. 

While largely consistent, variation in the 250,000 best pose column compared to Table 

3-1 was due to variation in the random number of seeds for each docking run, with differences 

between the tables being less than 0.1 Å.  At a MNEE of 250,000, there was no significant 

difference between the standard pose selection method and the lowest scoring pose, though the 

average RMSD of the standard pose selection method was less.  At an MNEE of 1 million, there 

was a significant deference between the two selection criteria (p= 0.04).  This increase in 

significance was caused by an increase in RMSD of the lowest scoring poses as the MNEE was 

increased.  An insignificant decrease in RMSD was seen using the standard pose selection 

                                                 

11
 In these results, 200 clusters corresponded to no clusters formed, or 200 clusters of one 

member each. 
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method.  These results supported the effectiveness of the standard pose selection method and 

suggested that a higher MNEE was required for good docking results. 

For AutoDock4, the standard pose selection method was shown to be the best method for 

systematically selecting poses from the results that best matched experimental poses.  

Interestingly, the lowest scoring poses did not correspond to the experimental poses.  

Additionally, with the increase in MNEE, the RMSD of the lowest scoring poses increased.  

These two observations show that the lowest minimum in the binding energy landscape, as 

reported by the scoring function, did not correspond to the experimental binding pose.  However, 

in the cases where the RMSD was greater than 2 Å the average difference in score was less than 

0.2 kcal mol
-1

.  Additionally, with 1GI5 and 1XUI, their lowest scoring poses varied less than 1Å 

while the average score decreased by greater than 1 kcal mol
-1

.  It is possible the AutoDock4 was 

finding multiple natural binding confirmations not seen in the co-crystal structures, however, 

with the reported error of the scoring function being ~2 kcal mol
-1 

(Huey, Morris et al. 2007), it 

is unlikely that the scoring function is sensitive enough to confidently accept this conclusion.  

More likely, the RMSD divergence was due to inaccuracies in AutoDock4’s scoring function 

approximation of the binding energy landscape.  AutoDock4’s scoring function is largely an 

enthalpic measurement focused on interaction energies.  It is possible that the global minimum in 

the enthalpic energy landscape do not correspond to the global minimum in the binding energy 

landscape.  Fortunately, the overall approximation of the landscape was sufficient that the 

consensus score was most often a good binding pose. 



 

Table 3-2 – The RSMD (Å) of AutoDock4 generated poses, selected using a variety of criteria, to the experimentally determined 

poses. 

 

System 

pdb ID 

Number 

of 

Rotatable 

Bonds in 

docking 

Largest 

Number 

of 

Continues 

Bonds 

Best RMSD Best Score 
Top Scoring 

Cluster 

Top Scoring 

Cluster With at 

Least 5% of 

Compounds 

Largest Cluster 

Self 

Dock 

Docked 

to 1eb2 

Self 

Dock 

Docked 

to 1eb2 

Self 

Dock 

Docked 

to 1eb2 

Self 

Dock 

Docked 

to 1eb2 

Self 

Dock 

Docked 

to 1eb2 

1BTY 1 1 0.20 0.14 0.25 0.55 0.28 0.26 0.28 0.26 0.28 0.26 

1TX7 2 1 0.14 0.40 0.53 0.77 0.35 0.73 0.35 0.73 0.35 0.73 

1UTN 2 2 0.61 0.45 0.70 0.64 0.73 0.62 0.73 0.62 0.73 0.62 

1GI5 3 1 0.42 0.41 1.37 0.79 1.72 0.78 0.56 1.54 0.56 0.54 

1XUI 4 2 0.42 0.41 1.37 0.79 1.72 0.78 0.56 1.54 0.56 0.54 

1UTP 5 4 1.03 0.95 1.67 2.83 1.64 3.11 1.27 1.80 1.27 1.80 

1G36 6 2 0.41 0.50 6.63 1.00 6.56 0.94 0.76 0.89 0.76 1.96 

1EB2 7 2 0.50 0.40 0.82 0.82 0.75 0.78 0.75 0.78 0.75 1.30 

1PPH 7 3 0.84 0.86 1.43 0.86 NA NA NA NA NA NA 

1PPC 9 3 0.71 0.85 0.71 1.37 NA NA NA NA NA NA 

Average 0.53 0.54 1.55 1.04 1.72 1.00 0.66 1.02 0.66 0.97 

 



 

Table 3-3 – Changes in RMSD between docking generated and experimentally determined ligand pose at different maximum number 

energy evaluations parameter settings. 

 

System 

pdb ID 

Number 

of 

Rotatable  

Bonds in 

docking 

Largest 

Number 

of 

Continues 

Bonds 

  

Lowest Score 

Pose 

Largest 

Cluster Pose 
Best Pose 

Number of 

Clusters 
RMSD (Å) RMSD (Å) RMSD (Å) 

250k 1m 250k 1m 250k 1m 250k 1m 

1BTY 1 1 1 1 0.25 0.28 0.25 0.28 0.20 0.23 

1TX7 2 1 2 2 0.53 0.59 0.53 0.59 0.14 0.18 

1UTN 2 2 2 2 0.70 0.78 0.70 0.78 0.61 0.69 

1GI5 3 1 92 33 0.93 1.05 0.52 0.45 0.34 0.40 

1XUI 4 2 118 60 1.37 1.36 0.64 0.87 0.42 0.47 

1UTP 5 4 120 43 1.67 3.29 1.77 1.57 1.01 1.23 

1G36 6 2 58 17 6.63 6.65 0.85 0.91 0.41 0.59 

1EB2 7 2 73 10 0.82 0.92 1.31 0.92 0.50 0.37 

1PPH 7 3 200 158 1.43 5.23 1.43 0.58 0.84 0.35 

1PPC 9 3 200 185 0.71 3.94 0.71 0.39 0.71 0.39 

Average 1.50 2.41 0.87 0.73 0.52 0.49 
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3.1.1.3 AutoDock4 Search Parameters for Virtual Screening  

Ideally, virtual screening parameters would exhaustively explore the binding energy 

landscape for every possible ligand-target combination.  However, the parameters to perform an 

exhaustive search in AutoDcok4 demand significant amounts of time making virtual screening 

onerous, and negating the advantage of a stochastic search method.  Therefore, we needed to 

determine a set of search parameters that effectively explore the binding energy landscape in a 

tractable amount of time.  Because we intended to use these virtual screening parameters on 

World Community Grid, we targeted a runtime of ~2 hours for each docking simulation.  We 

performed two tests to determine the optimal search parameters of AutoDock4.  The key 

parameters that determine the runtime for a docking simulation were the number of docking 

simulations pre-ligand, or genetic algorithm runs (GA runs), and the max number energy 

evaluations (MNEE).  We first screened multiple combinations for GA runs and MNEEs 

selecting 100 runs and 1millon MNEE as the ideal parameters, known herein as production 

parameters.  Secondly, the poses generated using production parameters were compared with 

pose generated against a “gold” standard parameter set to determine the quality of pose 

generation.  We show that there was no significant difference in pose quality between the two 

parameter sets.  This section presents the methods, data, and a discussion of these two tests. 

In order to find the optimal search parameters, we self-docked the members trypsin test 

set using a variety of MNEE from 100,000 to 2 million in five half log steps, and GA runs from 

10 to 200 in five ~50 run increments.   To avoid running all 25 combinations, we modified only 

one parameter at a time for a total of nine runs.  As an MNEE of 1 million and 100 GA runs was 

the midpoint of the two ranges, they were selected as the constant values while we varied the 

other parameter (i.e., MNEE runs were varied, but GA runs were kept at 100).  The results of the 

screen are presented in Table 3-4.  The average runtime of all compounds for both parameters 

scaled linearly, so it was reasonable to assume the overall surface generated by varying both 

parameters simultaneously would be a plain.  Conveniently, the center of the parameter screen, 
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MNEE of 1 million and 100 GA runs, also corresponded to our timing goal of ~2 hours at about 

1.5 ± 0.5 hours.  Therefore, we selected 100 GA runs and a MNEE of 1 million as our production 

standard.  Consistent with previous work, the RMSD of docking poses did not significantly vary 

with the changes in parameters.  However, the trends indicate that at least 50 GA runs will 

produce a better pose results than 10, as the difference in the averages is greater than the 0.10 Å 

difference caused by the random number error.  Additionally, the RMSD tends to increase with 

the increase in MNEE as discussed in Section 3.1.1.2. 

As an additional evaluation, we compared the pose and timing of self-docking the trypsin 

test set using the production standards to those of a “gold” standard, performing each docking 

simulation 3 times with different random number seeds.  The gold standard was a MNEE of 10 

million and 200 GA runs, or the max values of the ranges screened above.  The gold standard is 

short of AutoDock4’s maxim whose GA runs are limited to 255 and MNEE to at least 4.2 

billion.
12

  However, with predicted runtime reaching 40 hours, the gold standard represented the 

maxim reasonably testable runtime.  The times and pose RMSD for each ligand in the trypsin 

test set, using both the gold and production parameter sets, is shown in Table 3-5. 

There was a significant difference in average run time between the gold standard, at ~30 

hours, and the production standard, at ~2 hours.  The gold standard timing was consistent with 

the linear increase in time seen in the previous test, and strengthens the plainer assumption in 

varying both GA runs and MNEE.  As expected, the runtime for each ligand generally increased 

with the number of rotatable bonds.  Most importantly, there was no significant difference 

between the average RMSD for the selected poses between the production and gold parameters, 

and therefore no apparent advantage was gained from the more time consuming virtual screening 

parameters.  This supports the selection of the production parameters for virtual screening 

experiments. 

                                                 

12
 Assuming the variable was assigned as a long integer. 
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The trypsin test set has ligands with varying flexibility that provide a range of docking 

simulations of different complexity requiring a varied amount of runtime. Additionally, the 

compounds in the trypsin test set are drug-like.  Therefore, we could reasonably apply the 

production parameters to other compound databases, and expect the similar runtimes and pose 

quality. 

 

Table 3-4 – Average RMSD of AutoDock4 generated pose vs. experimental determined poses 

and average runtime for the trypsin test set using different docking parameters. 

 

Parameter 
Avg. RMSD to Crystal 

(Å) 

Avg. Timing 

(Hours) 

Number of  Runs 
  

200 1.51 + 0.87 2.91 + 1.11 

150 1.45 + 0. 71 2.17 + 0.82 

100 1.45 + 0.69 1.45 + 0.55 

50 1.46 + 0.64 0.73 + 0.28 

10 1.79 + 0.65 0.15 + 0.06 

Number of Energy 

Evaluations   

10,000,000 1.78 + 1.18 14.56 + 5.54 

5,000,000 1.72 + 1.17 7.27 + 2.77 

1,000,000 1.45 + 0.69 1.45 + 0.55 

500,000 1.08 + 0.32 0.73 + 0.27 

100,000 1.39 + 0.50 0.15 + 0.06 

 



 

Table 3-5 – Comparison of “Gold” and “Production” docking parameters average RMSD of AutoDock4 generated pose vs. 

experimental determined poses and average runtime for each compound in the trypsin test set. n=3 

 

Ligand (pdb ID) 

Number of 

Rotatable 

Bonds in 

docking 

Largest 

Number of 

Continuous 

Bonds 

RMSD to Crystal (Å) Timing (hours) 

Gold Production Gold Production 

1BTY 1 1 0.56 + 0.00 0.56 + 0.00 9.14 + 0.36 0.45 + 0.01 

1TX7 2 2 1.22 + 0.30 0.91 + 0.32 9.27 + 0.32 0.45 + 0.01 

1UTN 2 1 0.79 + 0.00 0.80 + 0.01 12.18 + 0.09 0.64 + 0.00 

1GI5 3 1 1.75 + 0.03 1.68 + 0.10 19.06 + 0.00 1.15 + 0.02 

1XUI 4 2 1.33 + 0.02 1.32 + 0.04 36.61 + 0.33 1.81 + 0.02 

1UTP 5 4 3.31 + 0.17 3.27 + 0.10 12.93 + 0.16 0.64 + 0.01 

1G36 6 2 6.65 + 0.01 3.66 + 2.49 42.79 + 0.54 2.14 + 0.01 

1EB2 7 2 0.86 + 0.01 0.88 + 0.00 47.55 + 0.44 2.36 + 0.04 

1PPH 7 3 0.62 + 0.07 0.45 + 0.07 40.20 + 0.58 1.99 + 0.03 

1PPC 9 3 0.47 + 0.15 0.99 + 0.88 57.14 + 0.34 2.85 + 0.01 
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3.1.2 Filtering Virtual Screening Results for MF-FEB Rescoring on World Community 

Grid 

Due to the time requirement of the free energy of binding calculations, rescoring all 2.3 

million compounds used for the AutoDock4 virtual screening was impractical even with the 

computational resources of World Community Grid.
13

  However, rescoring a few thousand 

compounds, which represents a tenth of one present of the whole database, was a practical 

option.  We therefore needed to establish a filtering method to select which compounds from 

AutoDock4’s virtual screening to rescore using the MF-FEB calculations.  As discussed in 

Section 1.3.2, virtual screening can enrich a compound database for binders.  Logically, we 

could have selected the lowest, “best” scoring compounds, however, AutoDock4’s results, 

processed using the standard pose selection method, have both a score and a clusters size.  

Additionally, as discussed in Section 3.1.1.2, cluster size was more important to pose selection 

than score.  Therefore, we asked if there was a combination of pose, cluster size, or both that 

would increase the probability of selecting true positives from the AutoDock4 virtual screening 

for rescoring using MF-FEB calculation. 

Using five targets from the DUD dataset we determined that best approach for compound 

selection was to take the first 2,000 lowest scoring compounds and the 2,000 largest cluster size 

compounds.  This section describes how we reached this conclusion.  Section 3.1.2.1 describes 

the test sets and methods used to select a filtering method.  Section 3.1.2.2 discusses the results 

of five virtual screening experiments and results using the filtering method. 

3.1.2.1 Methods and Test Set 

To determine the optimal filtering method for selecting which compounds to rescore, we 

selected five test sets from the DUD database. (Huang, Shoichet et al. 2006)  We selected: (1) 

estrogen receptor agonists (ERAG); (2) HIV-1 protease (HIVP); (3) HIV-1 reverse transcriptase 

                                                 

13
 See Chapter 5 and Chapter 6 for a discussion on our World Community Grid projects 

and grid implementation of AutoDock4. 
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(HIVR); (4) neuraminidase (NADU); and (5) trypsin (TRYP).  Table 3-6 contains the number of 

binders and decoys for each system, and the target pdb ID for each test set.   We selected targets 

that represented a variety of binding site architectures.  ERAG was selected because the binding 

site is not solvent exposed and the intermolecular interactions between the ligands protein are 

largely VdW interactions with a few key H-bonds.   We chose the agonist system over the 

antagonists due to its better performance and enrichment. (Huang, Shoichet et al. 2006; Cross, 

Thompson et al. 2009)  We selected HIVR because like ERAG its binding site was solvent 

excluded, but intermolecular interactions of binding were more dependent on electrostatic 

interactions and less on VdW interactions than ERAG.  HIVP was selected because the binding 

site is slightly solvent exposed though still largely defined by the protein.  TRYP and NADU 

were selected because of their use in DDDT and IADS, respectively.  Additionally, these 

systems’ binding sites were solvent exposed, and their bindings were defined largely by 

electrostatic interactions.  Therefore, each system would increasingly deviate from the L99A T4 

lysozyme system we used to originally test the MF-FEB calculations (See Chapter 4). 

 

Table 3-6 – Selected DUD targets. 

 

 

We performed compound database preparation, target preparation, virtual screening, and 

results collection as described in Section 2.3.2.  The compound database for each virtual 

screening included the co-crystal ligand preparation as described in Section 2.2.1.1.1 and 2.2.1.2. 

DUD System 
Number of 

Binders 

Number of 

Decoys 

Target Crystal 

Structure 

Estrogen Receptor (Agonists) 67 2,361 1L21 

HIV-1 Reverse Transcriptase 40 1,439 1RT1 

HIV-1 Protease 53 1,888 1HPX 

Neuraminidase 49 1,745 1A4G 

Trypsin 43 1,545 1BJU 
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3.1.2.2 Results and Discussion 

To identify a result filter, we plotted the docking results from each virtual screening 

experiment on a scatter plot with the docking score on the y-axis and the cluster size on the x-

axis, with binders and decoys differently colored to visualize their distribution.  Figure 3-1 

contains the scatter plots for all five DUD test sets.  Table 3-7 contains the averages and the 95% 

confidence intervals for the binders and decoys for all five test sets.  Additionally, Table 3-7 

contains the p-score from a Student t-test between the binder and decoy populations.  In general, 

as can be seen when comparing the scatter plot in Figure 3-1 and the summery statistics in Table 

3-7, the distribution of binders relative to decoys was different from test set to test set.  In the 

ERAG test set, we saw significant discrimination using both score and cluster size, with binders 

scoring lower and having larger cluster sizes.  In the HIVR test set, there was a significant 

discrimination in both score and cluster size.  However, unlike ERAG, the binders scored higher 

than the decoys, making the docking score an inverse indicator of binding.  In the HIVP test set, 

neither score nor cluster size significantly discriminated between the binders and the decoys.  For 

the NADU test set, only cluster size significantly discriminated between binders and decoys.  

Finally, with the TRYP test set, only cluster size significantly discriminated between binders and 

decoys, but inversely. 

 



 

Figure 3-1 – Scatter plots of docking results by docking score and cluster size for five DUD test sets. Yellow squares are binders and 

blue diamonds are decoys. 
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The enrichment rates’ dependence on system was consistent with previous virtual 

screening performance studies. (Kellenberger, Rodrigo et al. 2004; Kontoyianni, McClellan et al. 

2004; Warren, Andrews et al. 2006; Cross, Thompson et al. 2009)  Overall, AutoDock4 

underperformed for these five DUD test sets when compared to other docking programs. (Cross, 

Thompson et al. 2009)  However, the question of filtering criteria remained.  In reviewing the 

discrimination data, neither docking score nor cluster size consistently discriminated the binders 

from the decoys.  Additionally, in cases where a result metric population was statistically 

different, populations still overlapped producing the false positives results.  However, we 

expected the large number of false positives, hence the MF-FEB rescoring.   

By examining the scatter plots, we observed that as one selects compounds by rank order, 

by either cluster size or score, binders would be included in the first few percent of a least one of 

the two results metrics.  For example, while rank ordering the TRYP test set by score, taking the 

first few percent of the lowest scores would net no binders, but the cluster metric would.  In the 

case of ERAG, the first few percent of each metric would select a binder.  Of the two metrics, 

cluster size was the most likely to find binders, which was consistent with the standard pose 

selection method.  Additionally, the selection by one metric at a time was more likely to select 

binders than the lowest scoring and largest cluster results. 

We decided to filter the results by taking the first 2000 compounds ranked by cluster size 

and by score; neither list containing the same compounds.  The advantage of this approach was 

that we were more likely to get binders in the compounds that we could rescore.  However, in 

some cases the number of binders might be relatively small as compared to the number of 

compounds rescored, meaning that MF-FEB rescoring would need to be much more effective at 

discriminating binders from non-binders than AutoDock4’s scoring function, to find the binders.  

Additionally, we observed that in virtual screening some of the lowest and highest scoring 

compounds were often erroneous predictions due to errors in the ligand structures caused by 
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automatic database generation.   Therefore, a number of the compounds selected for rescoring 

based on docking score would likely be “bad” and cause errors in the MF-FEB calculations. 



 

Table 3-7 – Population statistics for score and clusters size for each DUD virtual screening. 

 

 

DUD System Result Metric Binders Decoys T-Test (p-score) 

Estrogen Receptor (Agonists) 
Score (kcal mol

-1
) -7.42 ± 0.23 -6.74 ± 0.03  0.0000003 

Cluster size  65 ± 7 57 ± 1  0.03 

HIV-1 Reverse Transcriptase 
Score (kcal mol

-1
) -5.85 ± 0.49 -7.32 ± 0.09  0.0000006 

Cluster size  47 ± 10 33.78 ± 1  0.01 

HIV-1 Protease 
Score (kcal mol

-1
) -7.96 ± 0.40 -7.57 ± 0.07  0.06 

Cluster size  6 ± 2 5.2 ± 0.2  0.1 

 Neuraminidase 
Score (kcal mol

-1
) -4.54 ± 0.51 -4.59 ± 0.08  0.8 

Cluster size  26 ± 5 14.4 ± 0.5  0.00004 

Trypsin 
Score (kcal mol

-1
) -4.91 ± 0.80 -7.75 ± 0.08  0.00000001 

Cluster size  7 ± 4 6.5 ± 03  0.9 
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3.2 MF-FEB CALCULATIONS 

To utilize the MF-FEB calculations, we optimized them for run time length and FEB 

prediction accuracy.  Section 3.2.1 describes the optimization of the system size and microstate 

sampling.  Section 3.2.2 describes the optimization of the GCMC simulations in the site set-up 

stage of the MF-FEB calculations. 

3.2.1 Local Run MF-FEB Optimization 

Before utilizing MF-FEB for rescoring, the calculation parameters needed to be 

optimized to provide accurate FEB prediction; however, with a total runtime of ~550 hours for a 

single MF-FEB calculation, only a limited number of parameters could be effectively optimized.  

Conveniently, Deng et al. had already optimized many of the MF-FEB calculation parameters. 

(Deng and Roux 2006; Wang, Deng et al. 2006)  Therefore, we asked three questions the 

previous works did not addressed.  First, what was the optimal size for the solvent drop?  

Second, were the perturbation MD run lengths sufficient for convergence?  Third, what was the 

variance in the energy contribution of each perturbation stage between perturbation runs started 

with different seed values for the random number generator?  This section explores the answer to 

these three questions.  Section 3.2.1.1 describes the methods used to answer the questions.  

Section 3.2.1.2 discusses optimal system size for MF-FEB calculations.  Section 3.2.1.3 

discusses the question of convergence.  Section 3.2.1.4 discusses the variation in energy due to 

different random number seeds. 

3.2.1.1 Methods 

The binding of hydrophobic small molecules to the engineered binding pocket of mutant 

L99A T4 lysozyme provides an ideal test system, as the experimental FEB were determined by 

one lab, and the developers of the MF-FEB method also utilized the same test system. (Morton, 

Baase et al. 1995; Morton and Matthews 1995; Deng and Roux 2006)  To answer our three 

questions, we calculated the free energy of binding benzene to the L99A T4 lysozyme mutant.  

The experimentally determined FEB of benzene to the engineered hydrophobic pocket of the 
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L99A T4 lysozyme mutant was -5.2 ± 0.2 kcal mol
-1

. (Morton, Baase et al. 1995)  We obtained 

the benzene-lysozyme co-crystal coordinates from Dr. Y. Deng (University of Chicago).  We 

performed the set-up stage for both the site and bulk systems for each ligand according to the 

methods described in Section 2.4.2, using the first generation scripts provided by Drs. Roux and 

Deng.  We ran the perturbation calculation four times using the same set-up stage results but 

varying the random number seed, and reported FEB as the average of the four runs with a 95% 

confidence interval. 

3.2.1.2 System Size 

Originally, Deng et al. selected a solvent drop size of 15 Å, using a non-bonding cutoff of 

12 Å, and calculated the FEB as -5.96 ± 0.19 (n=3), which was ~1 kcal mol
-1

 too low. (Deng and 

Roux 2006)  In order to determine the effect of drop size on the FEB, we varied the drop size to 

12, 15 and 18 Å, maintaining the 12 Å non-bonding cutoff distance.  Table 3-8 contains the 

results of those calculations.  

 

Table 3-8 – Comparison of free energy of binding calculations using MF-FEB for benzene 

binding to L99A T4 lysozyme with different solvent drop radii. n=4 

Solvent Drop Radius (Å) Gbinding (kcal mol-1) 

12 -3.58 ±0.50 

15 -7.33 ±1.12 

18 -5.01 ±0.36 

 

When comparing the FEB predictions of the original work at 15 Å, our FEB calculations 

were ~1 kcal mol
-1

 lower, though not significantly different.  This difference may have been due 

to the differences in the MF-FEB methods, as the previous work did bulk calculations using PBC 

and not SSBP.  The PBC could be the cause of the difference, as the difference between our free 

energy of solvation and the original was ~1 kcal mol
-1

, which is greater than the originally 

reported  ~0.1 kcal mol
-1

. (Deng and Roux 2006)  However, there was also variation in the free 



102 

energy from the site calculations of about ~2 kcal mol
-1

.  The most likely reason for the variation 

was that we used the GAFF force field for the ligand, whereas in the original study the ligand’s 

force field was cobbled together from parts of the CHARMM force field. (Deng and Roux 2006)   

Interestingly, when we extended the non-bonding cutoff distance to match the sphere radius of 

15 Å, the calculated FEB was -4.53 ± 0.96 kcal mol
-1

, a better FEB prediction than the original 

work.  When comparing the other sphere sizes to the experimental FEB, the 12 Å underestimates 

the FEB by ~1.5 kcal mol
-1

.  However, at an 18 Å sphere radius the prediction for FEB matched 

the experimental FEB.  These results hint at the importance of longer-range interactions in 

determining the FEB.  These interactions were more than 12 Å from the center of the ligand as 

they were either modeled explicitly or were accurately portrayed in the GSBP at the 15 or 18 Å 

sphere sizes. 

Based on these results, we selected a system size of 15 Å with the non-bond cutoff 

distance matching to the sphere radius.  Unfortunately, later in the work errors arose in the 

perturbation and GCMC calculations from amino acids moving into the GSBP, which crashed 

the simulation.  We therefore extended the system size to 18 Å, in addition to modifying the 

GSBP exclusion definitions.  

3.2.1.3 Perturbation Sampling Time 

Because FEP methods calculate the FEB based on the sampling of microstates from the 

MD simulations, we needed to determine if the perturbation steps of the MF-FEB calculations 

were sufficiently sampling the microstates.  We tested sampling efficiency by doubling the 

number of MD steps in the perturbation MD simulations, which slightly more than doubled the 

number of sampled states, as we did not extend the starting equilibration phase of the MD 

simulations.  Additionally, we performed the simulation using two different sphere sizes, setting 

the non-bonding cutoff distance equal to the sphere size.  Table 3-9 contains the results of the 

different runs. 
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Table 3-9 – Comparison of free energy of binding calculations using MF-FEB for benzene 

binding to L99A T4 lysozyme with two different solvent drop sizes and two different 

perturbation MD run times. n=4 

 

Solvent Drop Radius (Å) Perturbation MD length (ps) Gbinding (kcal mol
-1

) 

12 80 -3.78 ±0.50 

12 160 -3.79 ±0.58 

15 80 -4.53 ±0.96 

15 160 -4.81 ±1.03 

   

 

There was no significant difference in FEB due to increased sampling.  From the results, 

we concluded that the FEB had converged within the limitations of the MD simulations to 

explore conformational space both energetically and within a picoseconds time scale.  Although 

we applied this conclusion of convergence to all MD simulations, we did so with the 

understanding that as the complexity of the ligand increased, the conclusion’s validity would 

decrease.  Therefore, convergence was not guaranteed for all MF-FEB calculations performed on 

World Community Grid. 

3.2.1.4 Variation in Perturbation Stage Free Energies 

Throughout the optimization tests above, we observed that the confidence interval for the 

FEB ranged from 0.36 to 1.03 kcal mol
-1

.  These variations were large than originally reported 

by Deng et al. for the same system. (Deng and Roux 2006)  Therefore, we asked the question of 

where the variation was coming from.  Table 3-10 lists the free energy contributions and totals 

for each system and stage of the MF-FEB calculation for a 15 Å sphere with 15 Å non-bonding 

cutoff and an 80 ps sampling. 

As seen in Table 3-10, most of the variance in FEB came from one simulation.  

Removing that one simulation would make the FEB -5.09 ± 0.15.  For most of the MF-FEB runs 

in this section, one outlier caused the larger variation. The exception to the trend was the 15 Å 

sphere, with a 12 Å non-bonding cutoff distance that had two populations, one of -6.16 and -
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6.25, which was close to the previously published values, and a second of -8.80 and -8.00.  In all 

cases, the only difference between runs was the random number seed. 

As seen in Section 3.2.1.4, the MD simulations were generally convergent and in the 

individual runs, which were composed the average FEB, the divergent FEB values remained 

divergent even with increased sampling.  The original work varied by only the initial velocities 

of the MD simulations (Deng and Roux 2006), while in our work the random number seeds were 

varied, changing not only the MD simulations, but the pre-perturbation minimization, adding an 

additional degree of divergence between systems. It would be tempting to conclude that the 

minimization before the MD simulations moved the ligand into a different energy-well that MD 

simulations could not leave causing the divergent FEB calculations, because when comparing the 

free energy contributions from the different perturbation steps the greatest variance was in the 

repulsion and positional constraints energetic contributions.  Since the positional constraints 

were the same for each simulation, the different energy contributions may suggest different 

minimized poses. Additionally, different repulsion contributions would suggest slightly different 

steric interactions.  Moreover, the difference in energetic contributions of the divergent FEB 

calculations between repulsion and positional constraints was 6 kcal mol
-1

 while the other 

calculations only differed by 2 kcal mol
-1

.  However, to examine the energy-well conclusion 

fully, we would need to examine the MD trajectory files, which unfortunately were not preserved 

due to their size. 

The general conclusion from the variant results was that one MF-FEB simulation was 

insufficient to predict confidently the FEB.  Therefore, we elected to use multiple MF-FEB runs 

and determine the FEB as the average of multiple calculations when possible. 



 

Table 3-10 – Comparison of four MF-FEB calculation on benzene binding to L99A T4 lysozyme.  

 

Simulation 

System 
Stage 

Free Energy (kcal mol
-1

) Relative 

Confidence Run 1 Run 2 Run 3 Run 4 Average 

Site 

VdW Repulsion 6.73 8.73 15.56 8.08 9.78 ± 3.35 34.3% 

VdW Dispersion -18.97 -18.75 -17.48 -18.81 -18.50 ± 0.58 3.2% 

Electrostatic -0.99 -0.81 -0.76 -0.92 -0.87 ± 0.09 10.2% 

Positional  Constraints -3.87 -6.28 -14.51 -3.18 -6.96 ± 4.42 63.5% 

Conformation Constraints -0.01 -0.01 -0.01 -0.01 -0.01 ± 0.00 0.0% 

Total Free Energy -6.03 -5.61 -5.92 -3.64 -5.30 ± 0.95 17.9% 

Bulk 

VdW Repulsion 14.30 14.79 14.54 14.50 14.53 ± 0.17 1.2% 

VdW Dispersion -12.53 -12.68 -12.42 -12.51 -12.54 ± 0.09 0.7% 

Electrostatic -2.82 -2.71 -2.76 -2.79 -2.77 ± 0.04 1.4% 

Total Free Energy -1.05 -0.60 -0.64 -0.79 -0.77 ± 0.17 22.5% 

 Free Energy of Binding -4.98 -5.01 -5.28 -2.85 -4.53 ± 0.96 21.1% 
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3.2.2 Optimization of GCMC 

The objective of the GCMC stage in the set-up process for MF-FEB calculations is to 

equilibrate the number of waters in the binding site.  Unlike the SSBP, which keeps the solvent 

drop under constant pressure even if the density of the water molecules changed due to different 

interactions between the ligand and the bulk solvent, the GSBP was static, and therefore solvent 

waters may need to be added or removed depending on the ligand in the site.  During the 

optimization and grid implementation, two questions arose that required investigation.  First, we 

observed that the site solvent sphere was losing an abnormal number of waters and therefore we 

needed to know why this was occurring.  Secondly, the runtime for the GCMC simulations was 

~50 hours, and as the ideal work unit for World Community Grid was ~10 hours, we wanted to 

know if all 50 cycles were required.  

This section is divided into three parts.  Section 3.2.2.1 describes the general methods 

used in this section.   Section 3.2.2.2 answers the first question on water stabilization.  Section 

3.2.2.3 answers the second question on the required number of cycles. 

3.2.2.1 Methods 

To explore the two questions asked in this section, we used the L99A T4 lysozyme 

system (See Sections 3.2.1.1 and 4.1) and performed the MF-FEB calculations as described in 

Section 2.4. 

3.2.2.2 GCMC μ Scan 

During the site set-up stages for MF-FEB calculations, we equilibrated the number of 

waters solvating the ligand and the system using a GCMC simulation.  Before the GCMC, the 

waters within the GSBP were either crystallographic waters or waters added from the pre-

equilibrated water box as described in Section 2.4.2.1.2.  Therefore, at the start of the GCMC 

simulations the volume occupied by solvent within the GSBP was mostly full.  However, we 

observed that over the course of the GCMC simulations that the total number of waters 

decreased, leaving a vacuum within the GSBP that GCMC simulation should have filled with 
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water molecules.  In MC simulations, the acceptance or rejection of a move, or in the case of 

adding molecules in grand canonical simulations, is determined by the chemical potential, μ.  We 

concluded that most likely the default μ value was incorrect due to the density of water in the 

binding site, so we tested the effect of different μ values on the change in number of waters 

during GCMC equilibration.  

We performed GCMC simulations according the methods described in Section 2.4.2.1.2, 

including the MD equilibration, on the benzene-L99A T4 lysozyme system (See Section 3.2.1.1) 

using four μ values of -6.25 (the original value), -4.25, -2.25, and 0 kcal mol
-1

.  We ran the 

GCMC for 25 cycles to ensure that the systems reached equilibrium, and collected the number of 

waters 10 times per cycle.  Figure 3-2 is a plot of the number of waters versus the GCMC cycle.  

At a μ of -6.25 kcal mol
-1

, the number of waters in the GSBP shell decreased until it reached 

equilibrium at ~120 waters corresponding to the thin layer of water covering the protein and 

large voids in the solvent volume.  At μ’s of -4.25, -2.25, and 0 kcal mol
-1

 the system quickly 

reached equilibrium after 10 to 30 cycles, adding 40-50 waters to the system.  From the results, it 

was clear that a μ of -6.25 kcal mol
-1

 was causing the water to be lost.  However, we still needed 

to know which of the μ would correctly equilibrate the waters.  

We expected that the GCMC would add or remove only a small number of waters from 

the site system, as the system began the simulation mostly full of waters added from the 

equilibrated water box.  Therefore, we needed to select a μ value that would generate the 

expected behavior.  If we selected a μ value that was too low, we would see the number of waters 

in the system decrease, as was true with a μ of -6.25 kcal mol
-1

.  If we selected a μ that was too 

high, CHRAMM would add too many waters to the system, increasing the density as seen in the 

-2.25 and 0 kcal mol
-1

 runs.  It seemed that a μ of -4.25 kcal mol
-1

 was “just right,” with the 

waters equilibrating and freely moving in and out of the sphere over each GCMC/MD cycle, 

hence the saw-tooth pattern in the graph every 10 check points corresponding to the point of the 

MD simulations.  According to the literature, the appropriate μ values for adding water ranges 
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from -6.25 to -4.25 kcal mol
-1

. (Deng and Roux 2008)  We therefore selected a μ of -4.25 kcal 

mol
-1

 for our GCMC simulations. 

3.2.2.3 GCMC Cycles 

When implementing MF-FEB in a grid environment,
14

 we found that 50 cycles of GCMC 

were not practical.  The GCMC simulations were computationally demanding, thus limiting the 

number of member devices on the grid able to perform the GCMC simulations.  Additionally, the 

runtime for the GCMC calculations was ~50 hours, while the ideal job size for World 

Community Grid is 10 hours.  The long runtimes and demanding system requirements for the 

GCMC simulations meant either occupying the highest performance member devices for 50 

hours, or dividing the 50 cycles into 10 cycle jobs that would need to be run serially, greatly 

increasing the total runtime for one MF-FEB calculation on World Community Grid.  However, 

we observed when optimized for a μ value of -4.25 kcal mol
-1

 the system quickly equilibrated.  

Therefore, we asked the question of how many cycles the GCMC simulations needed to 

equilibrate the waters. 

To answer the question, we examined the number of waters as a function of cycle 

numbers for two ligands, a binder and non-binder, for the L99A T4 lysozyme test set described 

in Section 4.3.1.  Figure 3-3 is a plot of the number of waters at the end of each GMCM cycle.  

For both the binder and the non-binder, the plots show that after the first GCMC cycle the 

number for waters was within the total range of waters for all 50 cycles, indicating that the 

number of waters was very close to equilibrium or at equilibrium after only two or three cycles.  

Additionally, the number of cycles to equilibrium was independent of the experimentally 

determined binding of the ligand in these two cases.  We decided to perform 10 GCMC cycles 

for site preparation, which would create a 10-hour runtime work unit appropriate for World 

Community Grid.  However, while 10 cycles was more than sufficient for the L99A T4 

                                                 

14
 See Chapter 6 for a full description. 
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lysozyme system, we performed the MF-FEB calculations on other systems that might require 

more cycles to reach equilibrium. 

 



 

Figure 3-2 – The change in the number for waters in the site system over 25 GCMC cycles at different μ values (m = μ).  Each GCMC 

checkpoint is 1/10 of a GCMC cycle. nMax corresponds to the maximum water that could be added. 
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Figure 3-3 – Water count as a function of GCMC cycle for two systems with the first 10 cycles 

highlighted. 
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Chapter 4 Using Free energy of Binding Calculations to Improve the 

Accuracy of Virtual Screening Prediction 

Our hypotheses was that virtual screening could be improved by rescoring the docking 

generated poses using SM based FEB calculations.  Our rescoring method used the well-

established AutoDock4 (Huey, Morris et al. 2007; Morris, Huey et al. 2009)  program to initially 

compute poses and empirical force field based docking scores; and Roux’ mean-field pathway 

decoupling FEB (MF-FEB) approach (Deng and Roux 2006; Wang, Deng et al. 2006; Deng and 

Roux 2008) to subsequently calculate accurate binding free energies.  With virtual screening and 

MF-FEB methods established and optimized, this chapter contains a study comparing the 

accuracy of virtual screening based on FEB rescoring and empirical docking scores using a test 

set comprised of known binders and non-binders to the engineered hydrophobic binding pocket 

in the L99A T4 lysozyme. (Morton, Baase et al. 1995; Morton and Matthews 1995)  The L99A 

mutation in T4 lysozyme created a ~150 A
3
 void in center of a helix bundle that bound small 

hydrophobic molecules. (Eriksson, Baase et al. 1992)  The study asked two questions: first, could 

docking poses be accurately rescored using the MF-FEB calculations, and, second, could MF-

FEB rescoring discriminate between binders and non-binders?  Answering these two questions 

provided the proof-of-principle required to implement MF-FEB rescoring on a large scale. 

This chapter is divided into four sections. Section 4.1 describes the methods common to 

all docking simulations and MF-FEB calculations presented in this chapter.  Section 4.2 answers 

the question of using docking generated poses for MF-FEB calculations.  Section 4.3 answers the 

question of MF-FEB rescoring’s ability to discriminate between binders and non-binders.  

Sections 4.4 reviews and discusses the findings of this chapter. 

4.1 GENERAL METHODS 

This section describes the common methods used for calculations in this chapter. 
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4.1.1 Hardware 

All calculations were performed at the Texas Advanced Computing Center (TACC; 

Austin, TX) using the Lonestar high-performance cluster. (See Section 2.1.2) 

4.1.2 Atomic Coordinates  

Atomic coordinates for the L99A T4 lysozyme apo-enzyme and co-crystal structures 

were obtained from the Protein Data Bank.  The reference codes for the lysozyme co-crystal 

structures were: 2B6Y (apo-enzyme), 1NHB (ethybenzene ligand), 188L (o-xylene ligand), 187L 

(p-xylene ligand), 182L (benzofuran ligand), 185L (indole ligand), 186L (n-butlybenzene 

ligand), and 184L (isobulbenzene ligand). (Morton and Matthews 1995; Collins, Hummer et al. 

2005) The benzene-lysozyme co-crystal coordinates were obtained from Dr. Y. Deng (University 

of Chicago). 

4.1.3 Docking Calculations and MF-FEB Calculations 

We performed ligand and target generation, docking calculations, virtual screening, and 

MF-FEB calculations using the methods described in Chapter 2.  In addition, AutoGrid4 

parameters were used with default settings and the search areas were centered on the lysozyme 

binding pocket.  AutoDock4 parameters were optimized for large-scale virtual screening (as 

described in Section 3.1.1.3), with the number of genetic algorithm runs set to 100, the maximum 

number of energy evaluations set to one million, and the population size set to 200; all other 

docking parameters were set to default values.  The most likely ligand orientation and 

conformation (i.e., pose) from a docking simulation was determined using a pose-based cluster 

analysis and a 1.5 Å cutoff and the standard pose selection method.  MF-FEB calculations used 

the first generation CHARMM scripts with sampling time and GCMC cycles consistent with 

Roux and coworker previous work. (Deng and Roux 2006; Wang, Deng et al. 2006; Deng and 

Roux 2008) 
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4.2 ACCURACY OF MF-FEB CALCULATIONS USING AUTODOCK4-PREDICTED BINDING 

POSES 

In the original development of the MF-FEB, Deng et. al. used co-crystal structures to test 

the accuracy of the MF-FEB in predicting FEB, noting that different poses can change the FEB 

predictions. (Deng and Roux 2006)  Additionally, previous studies have shown that docking can 

reproduce experientially determined binding pose, but there was error in the predictions of < 2 Å. 

(Kellenberger, Rodrigo et al. 2004; Chen, Lyne et al. 2006; Warren, Andrews et al. 2006; Cross, 

Thompson et al. 2009)  Therefore, we asked if docking generated poses could be used for MF-

FEB calculations.  Section 4.2.1 describes the test set and tests used to answer the question.  

Section 4.2.2 discusses the results of the tests and how the results answer our question. 

4.2.1 Test Set and MF-FEB Calculations 

We used a “control set” to examine the accuracy of MF-FEB predictions beginning with 

AutoDock4 generated poses.  The control set consisted of eight lysozyme ligands (n-

butlybenzene, i-butlybenzene, ethylbenzene, benzofuran, benzene, indole, p-xylene, and o-

xylene), each with a known binding affinity and co-crystal structure. (Morton, Baase et al. 1995; 

Morton and Matthews 1995)  Experimental binding energies for the control set ranged from -

6.70 to -4.60 kcal mol
-1

. (Morton and Matthews 1995)  We performed three series of calculations 

using the control set to test the accuracy of MF-FEB using AutoDock4 generated binding poses.  

Each series of MF-FEB calculations were performed using coordinates from increasingly 

difficult docking scenarios.  The first series of MF-FEB calculations were completed using 

coordinates extracted from inhibitor-lysozyme co-crystal structures.  The second series used 

poses generated by docking the control set ligands into the binding site of their corresponding 

lysozyme structures using AutoDock4, or self-docking.  The third series used poses generated by 

docking the control set ligands into the apo lysozyme structure using AutoDock4. 
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4.2.2 Results and Discussion 

To minimize errors arising from inaccurate binding orientations between a ligand and a 

target protein, the first series of MF-FEB calculations were completed using coordinates 

extracted from inhibitor-lysozyme co-crystal structures (Table 4-1).  The implicit assumption 

was that these structures represented an ideal docking result, thus were good starting structures 

for MF-FEB calculations.  These MF-FEB calculations ( Gbinding) showed good agreement to 

experimental measurements ( Gbinding), with a linear correlation coefficient r = 0.85 and an 

average error of 1.26 kcal mol
-1

 (s.d. =0.99 kcal mol
-1

; n=3) between calculated and experimental 

free energies (Table 4-1).  During the molecular dynamics equilibration phase of the MF-FEB 

calculations, the initial ligand positions shifted on average ~0.7 Å relative to the crystal 

structures (Table 4-1).  The average position during equilibration was used as the reference pose 

for applying translation and conformation constraints to the ligand.  These calculations were 

more accurate than MF-FEB calculations performed with co-crystal structures as the constraint 

reference poses. (Wang, Deng et al. 2006)  

 

Table 4-1 – Comparison between MF-FEB calculations and experimental binding energies using 

inhibitor-lysozyme co-crystal structures as the starting poses for the Gbinding 

calculations. MF-FEB calculations were performed in triplicate. *Root-mean-square 

deviation (RMSD) reflects the displacement of heavy atom positions between final 

equilibrated pose and the starting structure. 

 

Ligands 

Experiment MF-FEB calculation 

Gbinding 

(kcal mol
-1

) 
RMSD* (Å) 

Gbinding  

(kcal mol
-1

) 

n-butylbenzene -6.7 ± 0.02 0.9 -7.8 ± 0.5 

i-butylbenzene -6.5 ± 0.06 0.9 -9.5 ± 0.6 

ethylbenzene -5.8 ± 0.07 1.3 -8.0 ± 0.2 

benzofuran -5.5 ± 0.03 0.3 -6.5 ± 0.4 

benzene -5.2 ± 0.2 0.8 -5.2 ± 1.0 

indole -4.9 ± 0.06 0.7 -3.9 ± 0.2 

p-xylene -4.7 ± 0.06 0.6 -5.5 ± 0.8 

o-xylene -4.6 ± 0.06 0.3 -5.3 ± 0.2 
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Previous studies had observed that conformational bias in the T4 lysozyme binding site 

could reduce the accuracy of FEB predictions. (Deng and Roux 2006; Mobley, Graves et al. 

2007) To determine the sensitivity of MF-FEB calculations to the initial coordinates of the 

ligand-protein structure, ligands of the control set were docked (or “self-docked”) into the 

binding site of their corresponding lysozyme structures using AutoDock4. This docking program 

has successfully predicted co-crystal conformations for a number of systems. (Huey, Morris et al. 

2007)  The ligands in this case were not energy minimized prior to the docking calculations and 

therefore the docking simulations inherited the information implicit in the co-crystal coordinates.  

Since Val 111 in the T4 lysozyme binding pocket was observed to adopt ligand-dependent 

conformations (Morton and Matthews 1995), self-docking was expected to reduce systematic 

bias arising from treating the protein binding site as a fixed structure.  

 

Table 4-2 – MF-FEB predictions performed with self-docked poses.  The root-mean-square 

deviation (RMSD) listed in the docking column compared AutoDock4-generated 

poses relative to the co-crystal structures.  Only non-hydrogen atoms were used to 

tabulate RMSD values. The MF-FEB calculations were repeated 3 times with 

different starting seeds.  The experimental binding data is repeated for ease of 

reference. 

 

Ligands 

Experimental Autodock MF-FEB 

Gbinding 

(kcal mol
-1

) 

rmsd* 

(Å) 

Score 

(kcal mol
-1

) 

rmsd* 

(Å) 
Gbinding 

(kcal mol
-1

) 

n-butylbenzene -6.7 ± 0.02 1.0 -5.24 1.2 -11.3 ± 1.2 

i-butylbenzene -6.5 ± 0.06 1.7 -4.97 0.4 -7.3 ± 0.1 

ethylbenzene -5.8 ± 0.07 1.3 -4.46 0.4 -5.9 ± 0.1 

benzofuran -5.5 ± 0.03 2.2 -4.77 2.1 -6.2 ± 0.5 

benzene -5.2 ± 0.16 1.1 -4.00 0.7 -4.4 ± 0.7 

indole -4.9 ± 0.06 1.5 -5.05 0.6 -3.8 ± 0.2 

p-xylene -4.7 ± 0.06 1.3 -4.54 0.6 -7.0 ± 0.6 

o-xylene -4.6 ± 0.06 1.1 -4.51 0.7 -6.4 ± 0.2 

 

Relative to the co-crystal structures, the AutoDock4 generated structures and the MF-

FEB constraint structures had average RMSD of 1.4 Å and 0.8 Å, respectively (Table 4-2).  

However, the constraint reference structures produced from either AutoDock4 or co-crystal 

starting structures differed by ~1 Å after the equilibration phase of the MF-FEB calculations.  
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AutoDock4 scores for each ligand-lysozyme complex showed little correlation with experimental 

Gbinding measurements (r = 0.52), while the MF-FEB Gbinding calculations correlated weakly 

with the experimental Gbinding measurements (r = 0.67) (Table 4-2). The average deviation 

between AutoDock4 scores and experimental Gbinding measurements were 0.86 “kcal mol
-1

”, 

whereas the average deviation between MF-FEB Gbinding and experimental Gbinding 

measurements were 1.53 kcal mol
-1

.  However, these differences in the average deviation were 

not statistical different (two-tailed Student T-test, p=0.23). These results implied that AutoDock4 

scores and MF-FEB calculations would likely be unable to rank-order ligands with less than 10-

fold differences in equilibrium dissociation constants.  

In more demanding trials, the apo lysozyme structure was used as a target for AutoDock4 

and MF-FEB calculations using the control set (Table 4-3).  These simulations were 

characteristic of approaches used for virtual screening where numerous ligand structures were 

tested for binding to a single protein conformation.  Similar to the above experiments with self-

docking starting conformations, the AutoDock4 program positioned the test ligands within the 

apo lysozyme structure in orientations that approximated the experimentally determined co-

crystal structures (average RMSD ~1.6 Å) (Table 4-3).  The MF-FEB molecular dynamics 

calculations typically adjusted the ligand positions so they more closely matched the co-crystal 

structures (average RMSD ~1.4 Å) (Table 4-3).  The observed displacements of the docked 

ligands relative to the corresponding X-ray structures were largely due to the conformation of 

Val 111 in the apo structure, which reduced the volume of the lysozyme apo binding site relative 

to the observed co-crystal structures.  MF-FEB calculations performed with the AutoDock4 

structures as a starting conformation differed an average of ~1.44 kcal mol
-1

 from the 

experimental Gbinding measurements (Table 4-3).  However, the set of individual MF-FEB 

calculations correlated poorly with experimental Gbinding measurements (r = -0.16). 

MF-FEB calculations initiated with either AutoDock4-generated or co-crystal ligand 

conformations generally produced similar values; therefore docking pose could be used for MF-
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FEB calculations.  On average, more accurate MF-FEB calculations occurred in cases where the 

AutoDock4 structures most closely reproduced the available co-crystal structures.  Docking 

against an apo protein that had binding site conformational differences relative to the co-crystal 

structure produced ligand structures and that were displaced from the co-crystal generally 

produced less accurate MF-FEB values relative to the co-crystal structures. 

 

Table 4-3 – MF-FEB prediction using an apo lysozyme protein structure as the docking target.  

For the MF-FEB calculations, three replicated calculations were performed.  The 

experimental binding data is repeated for ease of reference. 

 

Ligands 

Experimental Docking MF-FEB 

Gbinding 

(kcal mol
-1

) 

RMSD* 

(Å) 

Score 

(kcal mol
-1

) 

RMSD* 

(Å) 
Gbinding 

(kcal mol
-1

) 

n-butylbenzene -6.7 ± 0.02 1.6 -6.20 1.6 -3.5 ± 0.4 

i-butylbenzene -6.5 ± 0.06 1.7 -5.50 1.7 -3.9 ± 0.6 

ethylbenzene -5.8 ± 0.07 1.4 -4.84 0.9 -7.3 ± 0.2 

benzofuran -5.5 ± 0.03 2.1 -4.69 2.1 -5.5 ± 0.6 

benzene -5.2 ± 0.2 1.3 -3.72 0.5 -4.5 ± 1.1 

indole -4.9 ± 0.06 1.3 -5.03 1.6 -3.0 ± 0.2 

p-xylene -4.7 ± 0.06 1.4 -4.37 1.8 -4.4 ± 1.0 

o-xylene -4.6 ± 0.06 1.8 -4.50 0.8 -5.9 ± 2.4 

*relative to the co-crystal structure 

 

4.3 ENRICHMENT AND DISCRIMINATION CHARACTERISTICS OF MF-FEB BASED VIRTUAL 

SCREENING 

As discussed above, relatively accurate binding free energies could be calculated using 

the bound conformations produced by docking small flexible ligands to the apo-lysozyme.  The 

average errors for these calculations were ~1.5 kcal mol
-1

, which were not sufficiently accurate 

to produce high correlations to experimental binding energies that spanned a narrow range of 

values (2.1 kcal mol
-1

).  In contrast, for virtual screening experiments it is important to 

discriminate between molecules that bind to the target protein and molecules that do not bind to 

the target protein.  For virtual screening, the free energies could include both positive and 
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negative values and span a larger range of values than observed for the previously examined 

experimental binding energies. Therefore, we investigated if the accuracy of calculated free 

energies was sufficient to distinguish between binding and non-binding molecules.  To answer 

the question we performed a small-scale virtual screening.  Section 4.3.1 describes the compound 

database, or screening set, and virtual screening method used to answer our question.  Section 

4.3.2 discusses the results of the small-scale virtual screening.  

4.3.1 Test Set and MF-FEB Calculations 

We used a screening test set, to examine the ability of MF-FEB predictions to 

discriminate between L99A T4 lysozyme binders and non-binders in a small-scale virtual 

screening.  The screening set was a database of 30 compounds selected from the data of thermal 

shift experiments that categorized the compounds as either lysozyme binders (16 compounds) or 

non-binders (14 compounds). (Morton and Matthews 1995)  Experimental FEB for the known 

binders in the screening set ranged from -6.70 to -4.59 kcal mol
-1

. (Morton and Matthews 1995)  

We docked all ligands in the screening set in to the apo T4 lysozyme L99A and rescored the 

docking generated poses using the MF-FEB calculations. 

4.3.2 Results and Discussion 

A small scale virtual screening (SSVS) experiment was completed using apo L99A T4 

lysozyme as the target protein for screening a compound library of 16 known binders and 14 

known non-binders (Table 4-4).  In this experiment, a correlation coefficient could not be 

determined as the Gbinding for the non-binders was unknown.  The virtual screening experiment 

provided insight on enrichment, ligand discrimination, the responsiveness of the energy 

functions, and the role of solvation in binding predictions. 

The information in Table 4-4 was used to construct enrichment curves that compared the 

percent of binders relative to the energy-ranked virtual database (Figure 4-1).  Ranking the 

compound library by either AutoDock4 score or MF-FEB energy identified known lysozyme 

binders as the first two hits (Table 4-4, Figure 4-1).  Moreover, the top scoring hit in each 
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method corresponded to one of the strongest lysozyme binders in the test set.  However, after the 

initial three successful hits, the percentage of binders predicted by AutoDock4 scores began to 

approach a random distribution. In contrast, there were very few false positive hits using MF-

FEB energies, and the percentage of binders identified relative to percentage of hits examined 

closely followed an ideal distribution. 

 

Figure 4-1 – Enrichment curve showing docking-MFFEB enrichment compared to docking only 

enrichment in a virtual screening on a 30 member compound base with 16 known 

binders and 14 known non-binders. The ideal line represent the best case result 

where no false positives.  The random line corresponds with a random distribution of 

binders and non-binders. 

 

 

 

Both scoring methods predicted tert-butylbenezene to be a lysozyme binder; AutoDock4 

placed this ligand as its third best binder and MF-FEB placed it as the fourth best binder.  Tert-

butylbenezene was an interesting non-binding ligand since it was chemically similar to the two 



121 

strongest binders in the lysozyme test-set.  It is possible that tert-butylbenezene is a non-binder 

because it cannot enter the lysozyme binding site as opposed to having unfavorable interactions 

with the binding site.  This restriction on binding would not be recognized by the docking or MF-

FEB calculations. 

Overall, the library of lysozyme binders and non-binders was more highly enriched when 

ordered by MF-FEB energy instead of docking score.  It is difficult to compare the enrichment 

observed in this MF-FEB study to previous comparative enrichment studies of docking programs 

(Bursulaya, Totrov et al. 2003; Cummings, DesJarlais et al. 2005; Kontoyianni, Sokol et al. 

2005; Warren, Andrews et al. 2006) because the number of compounds in the lysozyme inhibitor 

test library was small and contained similar numbers of binders and non-binders. 

The ΔGbinding for ligands in the co-crystal test set spanned 2.1 kcal mol
-1

.  In the virtual 

screening experiment, the effective range of free energy values was greater since both non-

binders and binders were included. The docking calculations displayed similar distributions, with 

docking scores for the library compounds spanning ~4 kcal mol
-1

 (Table 4-4, Figure 4-2), and 

docking scores for the bound ligands spanning 2.5 kcal mol
-1

 (Table 4-4, Figure 4-2). The small 

response range of the docking scores was consistent with previous virtual screening experiences 

in our laboratory (data not shown).  In contrast, MF-FEB values calculated for the compound 

library spanned ~14 kcal mol
-1

, and the majority of non-binders were predicted to have “binding” 

energies less than -2 kcal mol
-1

 (Table 4-4, Figure 4-2).  MF-FEB energies were better than 

docking scores at discriminating between binders and non-binders. The average docking score 

for lysozyme binders and non-binders was -5.0±0.3 and -4.3±0.5 kcal mol
-1

, respectively. The p-

score between these two groups was 0.015, which suggested a weak statistically-relevant 

difference between the two groups. The average MF-FEB value for lysozyme binders and non-

binders was -5.7±0.7 and -1.6±1.6 kcal mol
-1

 respectively. The p-score between these groups 

was 0.00009, indicating the discrimination between the two groups based on MF-FEB energies 

was clearly significant.  
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Figure 4-2 – Energy distribution of ligands rank ordered by docking score (circles) or MF-FEB 

energy (squares).  Filled and unfilled markers represent lysozyme binders and non-

binders, respectively. 

 

 

 

The high degree of discrimination observed with the MF-FEB calculations may arise 

from an accurate treatment of solvation effects. The majority (11 of 14) of non-binder 

compounds in the test library were weakly polar, whereas the T4 lysozyme L99A binding site 

was predominantly hydrophobic.  The free energy of binding ( Gbinding) was the differential 

energy for the ligand interacting with the protein ( Gsite) and the solvent ( Gsolvation) (Table 4).  

The average Gsite for binders and non-binders was -7.6±0.9 and -6.2±1.8 kcal mol
-1

, and the p-

score between these groups was 0.096. The average Gsolvation for binders and non-binders was -

1.9±0.8 and -4.6±1.6 kcal mol
-1

, with a p-score of 0.005 between these groups.  Thus, it appeared 

that the discrimination between binders and non-binders observed with the MF-FEB calculations 

was largely driven by solvation calculations, which was consistent with the physical nature of 

ligands and binding site.  The test library contained three non-binders that lacked polar groups. 

Tert-butylbenezene, already discussed, ranked high (i.e., lower docking score or MF-FEB energy 
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relative to other ligands) in both docking and MF-FEB calculations.  Cyclohexane and azulene 

non-binders had unfavorable MF-FEB energies due to steric constraints that resulted in weak 

Gsite contributions.  The test library highlighted the importance of determining both solvation 

and interaction energy contributions for accurate calculations of the binding free energy.  In 

response to our opening question, rescoring docking generated poses with MF-FEB can 

distinguish between binders and non-binders in the L99A T4 lysozyme system. 
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Table 4-4 – Small-scale virtual screening results for all 30 ligand comparing experimental FEB 

to docking score and MF-FEB.  NB= Non-binder (experimentally determined)  

  

Ligand 

Experimental Docking MF-FEB 

Gbinding 

(kcal mol
-1

) 

Score 

(kcal mol
-1

) 
Gbinding 

(kcal mol
-1

) 

Gsite 

(kcal mol
-

1
) 

Gsolvation 

(kcal mol
-1

) 

n-butylbenzene -6.70 ± 0.02 -6.20 -3.5 ± 0.4 -4.6 ± 0.2 -1.0 ± 0.5 

propylbenzene -6.55 ± 0.02 -5.46 -8.3 ± 0.6 -9.1 ± 0.7 -0.8 ± 0.1 

isobutylbenzene -6.51 ± 0.06 -5.50 -3.9 ± 0.6 -5.3 ± 0.5 -1.4 ± 0.3 

ethylbenzene -5.76 ± 0.07 -4.84 -7.3 ± 0.2 -8.5 ± 0.3 -1.2 ± 0.2 

thianaphthene -5.71 ± 0.05 -5.07 -7.0 ± 0.5 -10.0 ± 0.2 -3.0 ± 0.4 

toluene -5.52 ± 0.04 -4.19 -6.4 ± 0.4 -7.6 ±  0.06 -1.1 ± 0.4 

benzofuran -5.46 ± 0.03 -4.69 -5.5 ± 0.6 -9.5 ± 0.5 -4.0 ± 0.2 

4-ethyltoluene -5.42 ± 0.01 -5.77 -7.3 ± 0.1 -8.6 ± 0.06 -1.2 ± 0.03 

benzene -5.19 ± 0.16 -3.72 -4.5 ± 1.1 -5.2 ± 1.2 -0.7 ± 0.2 

indene -5.13 ± 0.01 -5.03 -6.1 ± 1.0 -9.3 ± 0.3 -3.2 ± 0.6 

3-ethyltoluene -5.12 ± 0.02 -5.72 -6.6 ± 0.4 -7.7 ± 0.2 -1.1 ± 0.3 

indole -4.89 ± 0.06 -4.85 -3.0 ± 0.2 -10.2 ± 0.2 -7.2 ± 0.3 

m-xylene -4.75 ± 0.15 -4.33 -5.2 ± 0.4 -6.1 ± 0.2 -0.9 ± 0.3 

p-xylene -4.67 ± 0.06 -4.37 -4.2 ± 1.0 -5.3 ± 1.2 -1.1 ± 0.4 

o-xylene -4.60 ± 0.06 -4.50 -5.9 ± 2.4 -6.9 ± 2.5 -1.2 ± 0.4 

2-ethyltoluene -4.56 ± 0.06 -5.53 -6.9 ± 0.9 -7.9 ± 0.5 -1.0 ± 0.7 

pyridine NB -3.30 -1.0 ± 0.4 -5.4 ± 0.4 -4.4 ± 0.3 

phenol NB -4.10 -1.1 ± 0.4 -7.4 ± 0.3 -6.2 ± 0.2 

cyclohexane NB -4.07 -1.6 ± 1.1 -0.2 ± 1.6 1.4 ± 0.5 

p-cresol NB -4.55 -2.0 ± 0.3 -7.9 ± 0.6 -5.9 ± 0.3 

1,1-diethylurea NB -3.96 2.2 ± 0.5 -8.8 ± 0.4 -11.0 ± 0.8 

aniline NB -3.99 -3.0 ± 0.8 -8.7 ± 0.5 -5.7 ± 0.3 

benzyl alcohol NB -4.47 -0.02 ± 1.3 -7.4 ± 0.9 -7.4 ± 0.5 

trans-cinnamaldehyde NB -5.56 -1.8 ± 0.4 -8.0 ± 0.12 -6.3 ± 0.4 

tert-butylbenzene NB -5.09 -6.7 ± 1.3 -8.1 ± 1.2 -1.4 ± 0.3 

ethanol NB -2.13 5.6 ± 0.1 2.3 ± 0.2 -3.4 ± 0.3 

quinoline NB -5.01 -3.7 ± 0.5 -10.2 ± 0.7 -6.5 ± 0.2 

1-heptoanol NB -5.19 -4.8 ± 0.6 -8.0 ± 0.9 -3.3 ± 0.6 

azulene NB -5.38 -0.8 ± 0.3 -4.6 ± 0.3 -3.8 ± 0.1 

furan NB -2.76 -3.7 ± 0.3 -4.2 ± 0.2 -0.4 ± 0.1 
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4.4 CONCLUSIONS 

MF-FEB energies correlated strongly with experimental binding energies when accurate 

structures of the lysozyme-ligand complex were used to initiate the MF-FEB calculations.  As 

the deviation between the crystallographic and docked structures increased, the average error of 

the MF-FEB calculations increased.  However, small-scale virtual screening results showed that 

rank-ordering libraries based on MF-FEB energies of docking poses could provide significant 

enrichment relative to rank-ordering based on docking scores.  The MF-FEB rescoring provided 

significant discrimination between micromolar binders and non-binders.  These results suggest 

that the false positive rate of conventional virtual screening projects could be significantly 

reduced by coupling docking poses with MF-FEB calculations. 

Despite the promising discrimination observed with the lysozyme small scale virtual 

screen, the MF-FEB calculations suffered from many of the drawbacks common to all molecular 

calculations.  The available force fields were approximate, and could be improved by including 

polarizable force fields. (Mobley, Chodera et al. 2006; Deng and Roux 2009)  Convergence of 

the molecular dynamics was a concern, since the variations in replicate MF-FEB calculations 

suggested that some systems were not fully converged.  However, in spite of these limitations, 

the use of MF-FEB energies with preliminary AutoDock4-determined poses provided a powerful 

approach to discriminate between binders and non-binders. 

In addition, the sensitivity of these calculations to the initial docked structures was 

determined. Receptor binding site flexibility is a challenge for docking programs. (Teodoro and 

Kavraki 2003; Kitchen, Decornez et al. 2004; Ghosh, Nie et al. 2006; Leach, Shoichet et al. 

2006; Totrov and Abagyan 2008)  Some approaches have modeled receptor flexibility by 

combining docking calculations with receptor molecular dynamics (MD). (Alonso, Bliznyuk et 

al. 2006) However, the MD performed during the above MF-FEB calculations were not 

sufficiently lengthy to simulate changes in the receptor binding site conformation.  More 



126 

accurate FEB predictions may result from calculations that incorporate receptor flexibility.  

(Mobley, Chodera et al. 2007; Mobley, Graves et al. 2007)   Significantly, MF-FEB calculations 

initiated with either crystal structures or AutoDock4 poses were in good agreement with 

experimental measurements. In this limited virtual screening experiment, false-positive and 

enrichment rates are improved when compounds are evaluated with FEB rescoring as opposed to 

AutoDock4 scores. Moreover, rescoring allows micromolar binders to be separated from non-

binders. These results suggest that MF-FEB rescoring can be used to efficiently screen large 

virtual libraries for novel drug leads. 

Currently, the limited accuracy of MF-FEB calculations initiated from docking poses 

may prevent these calculations from being used to design ligands with incremental 

improvements (e.g., 1.5 kcal mol
-1

) in binding energies.  However, these calculations could 

discriminate between binders and non-binders, and thus provided significant enrichment of 

libraries.  The results of this study were encouraging and merit further testing against larger 

virtual libraries. 
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Chapter 5 Discovering Dengue Drugs-Together and Influenza Antiviral 

Drug Search 

Chapter 4 established that we could use MF-FEB calculations to rescore docking 

generated poses and that rescoring increased enrichment in a small test set.  However, to more 

fully test MF-FEB rescoring required the use of large drug-like test sets.  Large scale testing 

required significant computational power.  Both docking and MF-FEB calculations are amenable 

to grid computing as discussed in Section 1.6.  Therefore, we launched two projects on IBM’s 

World Community Grid: Discovering Dengue Drug-Together (DDDT), and Influenza Antiviral 

Drug Search (IADS).  These projects not only provided the computational power to test the MF-

FEB rescoring, but also allowed to us to utilize virtual screening with MF-FEB rescoring in an 

important drug discovery effort. 

This chapter describes DDDT and IADS.  Section 5.1 provides an overview of the 

process of virtual screening with MF-FEB rescoring.  Section 5.2 describes IBM’s World 

Community Grid.  Section 5.3 discusses DDDT.  Section 5.4 discusses IADS. 

5.1 VIRTUAL SCREENING WITH AUTODOCK4 AND MF-FEB RESCORING 

As discussed in Section 1.6, the central hypotheses of this work is that rescoring docking 

generated poses using MF-FEB calculations will improve enrichment over docking scoring 

functions alone.  To test and apply our hypotheses, we launched the DDDT and IADS drug 

discovery projects on World Community Grid.  Figure 5-1 shows the workflow used for the two 

drug discovery projects.  The drug discovery projects began with virtual screening using 

AutoDock4 followed by rescoring using MF-FEB calculations.  For convenience of 

implementation, we divided each project into two phases.  Phase 1 was the virtual screening 

using AutoDock4.  Phase 2 was the rescoring using MF-FEB calculations.  Sections 5.1.1 and 

5.1.2 provide an overview of Phase 1 and Phase 2 respectively.  Chapter 6 provides a detailed 

explanation of the methods used in Phase 1 and Phase 2. 
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5.1.1 Phase 1 

Phase 1 was the virtual screening phase, which generated poses and initial compound 

ranks using AutoDock4.  The compound database used for the virtual screening was obtained 

from the ZINC database (Irwin and Shoichet 2005) and contained ~2.3 million compounds.  The 

virtual screening targets were the protein drug targets selected for each drug discovery project.  

Each compound in the database was docked to each target using AutoDock4 (Morris, Goodsell et 

al. 1998; Huey, Morris et al. 2007)  using the docking parameters determined in Section 3.1.1.3.  

We selected a single result pose for each docking simulation using the standard selection method 

described in Section 3.1.1.2.  The docking results were filtered as described in Section 3.1.2 to 

obtain the top 2,000 compound by score and the top 2,000 compounds by cluster size.  

Additionally, we selected a small portion of the top ranked compounds from Phase 1 for early 

testing. 

5.1.2 Phase 2 

Phase 2 was the rescoring of the 4,000 selected docking poses from Phase 1 using MF-

FEB calculations developed by Roux et al. (Woo and Roux 2005; Deng and Roux 2006; Deng 

and Roux 2008)  While World Community Grid provided significant computational resources, it 

did not provide sufficient resources to rescore all 2.3 million compounds, thus we could only 

rescore a small fraction of the total virtual screening results.  A selected ligand and target from 

Phase 1 were first processed into inputs usable by CHARMM for the MF-FEB calculations.  We 

then performed the MF-FEB calculations using the parameters determined in Section 3.2 and re-

ranked the ligands based on the computed FEB.  The top ranking compounds were then tested 

for activity. 
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Figure 5-1 – Work flow diagram for virtual screening with AutoDock4 and MF-FEB rescoring. 

 

 

 

 

5.2 WORLD COMMUNITY GRID 

The World Community Grid’s mission is to “create the largest public computing grid to 

tackle projects that benefit humanity”. 

(http://www.worldcommunitygrid.org/about_us/viewAboutUs.do)  It is philanthropic effort of 

IMB that provides the resources and talent to build and maintain a global grid to aid researchers 

in porting their projects to the grid.  The grid itself is composed of over half a million members, 

http://www.worldcommunitygrid.org/about_us/viewAboutUs.do
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who donate processor time on over 1.7 million devices. 

(http://www.worldcommunitygrid.org/stat/viewProjects.do)   Each member device on the grid 

uses the BOINC (http://boinc.berkeley.edu/) client to receive and run work.  To date, members 

have donated over 466,000 years worth of CPU time to the projects of World Community Grid. 

(http://www.worldcommunitygrid.org/stat/viewProjects.do) 

Seventeen projects have run or are currently running on World Community Grid, 

including some of the following examples.  The Help Cure Muscular Dystrophy project uses 

protein-protein docking methods to identify potential drug targets among the more than 200 

genes involved in neuromuscular disease. 

(http://www.worldcommunitygrid.org/research/hcmd/overview.do)  The Nutritious Rice for the 

World project used protein-folding methods to help develop new rice strains. 

(http://www.worldcommunitygrid.org/research/rice/overview.do)  The Computing for Clean 

Water project uses MD simulations to study water flow to develop new nanotube based water 

filters. (http://www.worldcommunitygrid.org/research/c4cw/overview.do)  The 

FightAIDS@Home project uses AutoDock4 to find new drugs to treat HIV infections. 

(http://www.worldcommunitygrid.org/research/faah/overview.do) 

The architecture of World Community Grid is composed of three tiers.  The first tier is 

the member devices that donate CPU cycles to perform calculations for the projects using the 

grid.  The second tier is World Community Grid’s  servers that organizes and submits jobs to the 

member devices from work units generated by the third tier, and validates the results of the work 

units returned from the member devices and returning them to the third tier.  The third tier is the 

project servers that prepare work units for the grid, and evaluate the results of the calculations. 

We used World Community Grid for our DDDT and IADS projects.  We selected World 

Community Grid not only because it could provide the computational resources need for virtual 

screening with MF-FEB rescoring, but because they also provide the expertise to implement grid 

http://www.worldcommunitygrid.org/stat/viewProjects.do
http://boinc.berkeley.edu/
http://www.worldcommunitygrid.org/stat/viewProjects.do
http://www.worldcommunitygrid.org/research/hcmd/overview.do
http://www.worldcommunitygrid.org/research/rice/overview.do
http://www.worldcommunitygrid.org/research/c4cw/overview.do
http://www.worldcommunitygrid.org/research/faah/overview.do
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based projects.  While we implemented the projects on the project servers and were responsible 

for the analysis of the results, the experts at World Community Grid ported CHARMM and 

AutoDock4 to different operating systems, managed the workflow of submitting jobs to the 

member devices, and recruited new members to maintain and grow the grid.  In short, we did the 

drug discovery, and IMB ran the grid. 

5.3 DISCOVERING DENGUE DRUGS-TOGETHER 

This section describes our World Community Grid drug discovery project DDDT. 

Section 5.3.1outlines the purpose and goals of the project.  Section 5.3.2 discusses the drug 

discovery targets selected for the project.  Section 5.3.3 concludes the section with the status of 

the project. 

5.3.1 Project Goals 

Dengue is a mosquito-borne virus of the family Flaviviridae that infects humans causing 

dengue fever, dengue hemorrhagic fever and potentially fatal dengue shock syndrome. 

(Tomlinson, Malmstrom et al. 2009)  With about 2.5 billon people at risk of infection and 1.5 

million infected each year, there is currently no vaccine or antiviral treatment for dengue 

infections. (Tomlinson, Malmstrom et al. 2009)  While, viewed mainly as a tropical disease, 

dengue virus has begun to threaten the United States. (Morens and Fauci 2008)  The goal of 

DDDT was to identify compounds to develop into drugs to treat dengue viral infections, and the 

related viral infection of West Nile virus and HCV.  Based on our previous success with virtual 

screening to identify potential antiviral for dengue (Tomlinson, Malmstrom et al. 2009), we 

utilized the computational power of World Community Grid to perform virtual screening with 

MF-FEB rescoring against three viral protease targets and one control target.
15

 

                                                 

15
 We virtually screened an additional nine Leishmania targets as a pilot study for Dr. 

Muskus at the University of Columbia, Medellin, under DDDT, only performing the Phase 1 
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5.3.2 Virtual Screening Targets 

Flaviviruses are single-stranded positive-sense RNA viruses whose genome encodes a 

single poly-protein containing both structural proteins that form the virion, and non-structural 

proteins that are involved in the maturation of the virion and replication of the genome. 

(Tomlinson, Malmstrom et al. 2009; Noble, Chen et al. 2010)  The ribosome translates viral 

poly-protein into the ER membrane with different sections of the protein being on opposite sides. 

(Tomlinson, Malmstrom et al. 2009; Noble, Chen et al. 2010)  Cellular and viral proteases then 

process the poly-protein into its separate protein parts.  The viral serine protease is at the n-

terminus of the NS3 (Non-Structure) protein and cuts a basic residue, like trypsin, and requires a 

cofactor for activity, the NS2B for West Nile and dengue, and the NS4A for HCV. (Yusof, Clum 

et al. 2000; Erbel, Schiering et al. 2006; Tomlinson, Malmstrom et al. 2009)  The viral protease 

is required for viral replication and therefore is a potential drug target. (Tomlinson, Malmstrom 

et al. 2009; Noble, Chen et al. 2010)  Because crystal structures have been solved for the all three 

protease it is also an attractive target for SBDD.  Inhibitors have been identified for the West 

Nile protease (Tomlinson and Watowich 2008), dengue protease (Tomlinson, Malmstrom et al. 

2009; Frecer and Miertus 2010; Tomlinson and Watowich 2011), and extensive drug discovery 

and development work has been done to find protease inhibitors for HCV protease (Naggie, Patel 

et al. 2010).  We therefore selected the NS3 protease as our drug discovery target.   

We targeted the volume around the catalytic, P1, and P2 sites of the NS3 proteases for 

docking simulations.  For the dengue protease, we used the 2FOM structure of the apo-

NS2B/NS3 protease from dengue 2 and the 2VCB full NS3 from dengue 4.  For the West Nile 

protease, we used the 2FP7 and 2IJP structures of an inhibitor bound NS2B/NS3 protease.  For 

HCV protease, we used the 2A4R structure of the NS3 protease and NS4A cofactor. We also 

included the 1EB2 trypsin structure to identify any promiscuous ligands. 

                                                                                                                                                             

AutoDock4 virtual screenings.  All virtual screening were successful and the results given to Dr. 

Muskus for analysis. 
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5.3.3 Current Progress Report 

We have competed Phase 1 of DDDT taking 11,737 years of CPU time.  We are currently 

running Phase 2, and are rescoring the results from the 2FOM and 2FP7 structures following the 

completion of the testing stage.  Phase 2 has so far used over 1,200 years of CPU time. 

5.4 INFLUENZA ANTIVIRAL DRUG SEARCH 

This section describes our World Community Grid drug discovery project IADS.   

Section 5.4.1 outlines the purpose and goals of the project and discusses the drug discovery 

targets selected for the project.  Section 5.4.2 concludes the section with the status of the project. 

5.4.1 Project Goals 

In response to the H1N1 influenza pandemic of 2009, and at the request of World 

Community Grid, we launched the IADS.  We selected the neuraminidase as our drug discovery 

target.  Neuraminidase removes sialic acid for the glycoproteins and gylcolipids on the cell 

membrane to release the virion from the cell and is the target for drugs zanamivir and 

oseltamivir.  (Gamblin and Skehel 2010)  We targeted the sialic acid binding site of 

neuraminidase for docking simulations.  We used the following neuraminidase structures for 

virtual screening: 2HU4, 2HTY, 3B7E, 2QWE, 1L7G, 3CKZ, 3CLZ, 2HTQ, and 2HTW. 

5.4.2 Current Progress Report 

We have completed Phase 1 of IADS, taking 2,876 years of CPU time.  While, a Phase 2 

is planned for IADS it is on hold until the competition of the first set of Phase 2 results for 

DDDT.  No compounds have been tested from Phase 1. 
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Chapter 6 Grid Implementation of Virtual Screening and Mean Field-Free 

Energy of Binding Calculations 

Chapter 5 described how large-scale virtual screening projects using MF-FEB rescoring 

could be performed using IBM’s World Community Grid.  This chapter describes the methods 

used for DDDT and IADS projects.  Section 6.1 describes the method used for Phase 1 virtual 

screening.  Section 6.2 describes the methods used in Phase 2 MF-FEB rescoring. 

6.1 PHASE 1 – VIRTUAL SCREENING 

The first phase of our World Community Grid projects was the virtual screening of the 

targets described in Sections 5.3.2 and 5.4.1 against a compound database of 2.3 million 

compounds.  This section describes the methods used to perform Phase 1 virtual screenings.  

Section 6.1.1 describes the methods used to prepare the compound database and targets for 

virtual screening on World Community Grid.  Section 6.1.2 describes how we ran virtual 

screening projects on World Community Grid.  Section 6.1.3 compares the runtime for virtual 

screening project on World Community Grid versus using supercomputers.  Section 6.1.4 

describes how we processed and stored the virtual screening results for Phase 2. 

6.1.1 Preparing for Phase 1 Virtual Screening 

To perform a virtual screening project on World Community Grid, we first prepared the 

compound database, the targets, and the parameter files for AutoDock4 and AutoGrid4.  Section 

6.1.1.1 describes the preparation of the compound database.  Section 6.1.1.2 describes target 

preparation. Section 6.1.1.3 describes the preparation of the AutoDock4 and AutoGrid4 

parameter files. 

6.1.1.1 Building the Compound Database 

We used a subset of the ZINC database (2007 version) for our compound database for 

our World Community Grid projects. We used three filters to parse the ZINC database.  The first 

filter was “reputable dealers.”  The ZINC database was built from the product catalogues of 
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numerous chemical companies worldwide.  The “reputable dealers” filter selected compounds 

from chemical companies that, according the ZINC database, provide quality compounds (i.e., 

pure and correct).  We selected this filter to increase the likelihood that a compound selected for 

testing could be purchased and would be of a reasonable quality for reliable testing.
16

  The ZINC 

database was further filtered to include only drug-like (Lipinski, Lombardo et al. 2001), lead-like 

(Teague, Davis et al. 1999), or both compounds, the second and third filters respectively.  These 

two filters increased the likelihood of a compound selected for testing to have water solubility 

and drug-ability.  

We downloaded the filtered ZINC library multi-compound .mol2 files.  We processed 

multi-compound .mol2 files to ligand.pdbqt files according to the procedure outlined in Section 

2.3.2.1.  The final compound database contained 2,253,582 compounds, including tautomers. 

In order to find compounds quickly and to build work groups, we subdivided the 

ligand.pdbqt files were into groups.  The ligand.pdbqt files were first divided into 902 groups of 

~2,500 compounds per group.  These groups were further divided into letter groups, “a” through 

“p,” with each letter group containing ~60 of the 902 groups.
17

 

6.1.1.2 Target Preparation 

We obtained the crystal structures for all targets described in Sections 5.3.2 and 5.4.1 

from the Protein Data Bank.  We then transposed the coordinates of each target placing the 

                                                 

16
 In practice, this tended not to be the case because “reliable” dealers sometimes 

obtained their compound from “unreliable” sources, although the sources of compounds are 

disclosed.  

17
 Originally, before the work was moved to TACC, the first division was “a” to “o” 

based on the 15 nodes of hpcluster1.  On Ranger, there were 16 processors per node, therefore 

“a” to “p.” 
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origin at the active site or the geometric center of a co-crystal ligand.  The targets were then 

prepared as previously described in Sections 2.2.2, 2.3.1.1.2, and 2.3.2.2. 

6.1.1.3 AutoGrid4 and AutoDock4 Parameters 

We generated template temp.gpf files for AutoGrid4 for each target based on the search 

areas described in Sections 5.3.2 and 5.4.1 according to the standards described in Section 

2.3.1.2.  We generated template temp.dpf files according to the virtual screening parameters 

established in Section 3.1.1.3. 

6.1.2 Virtual Screening on World Community Grid 

The process of virtual screening on World Community Grid requires that prepared 

docking simulations be submitted to World Community Grid servers.  World Community Grid 

servers sent the docking simulations out to member devices for processing, then collected the 

results, and returned the results to the project servers. We then processed the returned results for 

use in Phase 2.  This section describes the methods used to complete the three steps above.  

Section 6.1.2.1 describes the preparation of work on the project servers.  Section 6.1.2.2 

describes how World Community Grid performed the docking simulations.   Section 6.1.2.3 

describes the preparation of the virtual screening results for Phase 2.  

6.1.2.1 Preparing Work for and Submitting Work to World Community Grid 

We submitted the docking simulations to World Community Grid servers as GNU-zipped 

tape archive records (i.e. .tar.gz), which contained 2,500 simulations, corresponding to one of the 

902 subgroups of the compound database, as described in Section 6.1.1.1.  Each collection of 

simulations was called a work group.  Work groups were prepared from the ligand.pdbqt files in 

the compound database and the target.pdbqt, AD4parameter.dat, temp.gpf, and temp.dpf files 

stored in the target directory.  The scripts cf090105.py and cf-090503_flu.py, corresponding to 

DDDT and IADS projects respectively, processed the input files into work groups.  These two 

scripts were the progenitor scripts to cf-100128.py and functioned as previously described in 

Section 2.3.2.2 with the following differences: (1) the scripts prepared work groups based on the 
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letter division of the compound database (i.e., the “a” work groups were all made at once), and 

(2) the output did not includes shell scripts to launch AutoGrid4 and AutoDock4.  The scripts 

outputted two files for each work group.  The first was the workgroup.tar.gz containing each 

docking simulation in a sub directory.  The second was a text file containing the md5 check sum 

for the workgroup.tar.gz.  

Ranger supercomputer at TACC severed as the project server preparing the work groups.  

We submitted jobs to build work groups on Ranger using a .sge script that allowed for the 

submission and execution of multiple serial jobs over a number of nodes.  Competed work units 

were stored on TACC’s Corral storage system. 

The main challenge faced in preparing work groups was that building the work units 

required a high performance computing environment.  Using four nodes on Ranger, a complete 

virtual screening experiment could be prepared overnight; however, with one processor it would 

take about a week.  Reading and writing to the disk, not the number of cores per node, 

determined the number of nodes required to prepare work groups.  Due to Ranger’s architecture 

with four quad-core processers per node, only four jobs could be run per node, one per processor.  

Running over four jobs per node increased the runtime as each core waited for disk access since 

the script’s main functions were copying and compressing files. 

6.1.2.2 Docking on World Community Grid 

AutoGrid4 and AutoDock4 were implemented previously on World Community Grid for 

the Fight AIDS@Home project. (Chang, Lindstrom et al. 2007)  Therefore, World Community 

Grid had an established system for handling work groups when we launched DDDT and IADS.  

The process for running the docking simulations started with World Community Grid servers 

downloading the prepared work groups from Corral at TACC.  World Community Grid servers 

then repackaged the individual docking simulations into jobs that it sent out to member devices.  

Each job was designed to have a run time of approximately 10 hours on a member’s device.  
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World Community Grid servers packaged a varying number of docking simulations into a single 

job whose total calculated runtime, based on the complexity of the ligand, was 10 hours.  The 

average number of ligands per job was five.  The member devices ran AutoGrid4 and 

AutoDock4 for each ligand in the job, compiling all docking outputs into a single result.dlg, and 

returning only the result.dlg to World Community Grid servers.  World Community Grid servers 

then compiled all the results.dlg files from the simulations of one work unit and returned the 

validated results to Corral at TACC.  

Performing virtual screening in a grid environment provided different challenges than 

those encountered in a supercomputing environment.  One challenge was processor error.  World 

Community Grid is composed of a large number of member devices with different processors.  

While the error rates of any one processor is low, on the scale of World Community Grid it 

becomes a factor, as results from different processes are compared to each other.  Originally,  

World Community Grid servers submitted two copies of each job grid, each with the same 

random number seed.  The results of the matched jobs were accepted only if the matched jobs 

provide the same results.  However, during the course of the project a test calculation was added 

to each job to validate the results, removing the need to submit matching jobs.  The calculations 

were run before and after the docking simulations to check heat induced error in the processor.  

The other challenge was download and upload time between World Community Grid servers and 

member devices.  As World Community Grid jobs were designed to run in the background on 

member devices, communication between World Community Grid servers and the member 

devices were keep to a minimum.  Additionally, World Community Grid servers have a finite 

bandwidth.   The most CPU efficient implementation of AutoGrid4 would be to run it once for a 

virtual screening project generating all required scoring grids for all the simulations.  However, 

the scoring grid map files are about 1MB each, so uploading the grid files to the member 

computers, even compressed, would require significant bandwidth over hundreds of thousands of 
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jobs.  Therefore, AutoGrid4 was run on the member devices and only the result.dlg was returned 

from each member devices, exchanging efficiency for a lower overall bandwidth requirement. 

6.1.2.3 Processing Results 

Validated docking results from single work units were processed on the project server, 

Ranger, to extract the individual docking results and generated a table of results.  The results 

returned from World Community Grid contained the results.dlg files from each job submitted to 

member computers.  The dlg_reader.py
18

 script decompressed and parsed each results.dlg file 

into multiple ligand.dlg files containing the results of the single docking simulation.  The script 

then processed the new ligand.dlg files using docking_run.py as described in Section 2.3.2.3 

generating the same output.  The dlg_reader.py script compiled the results of work unit into a 

single tab delineated ASCII text file with one docking result per line.  We archived the 

unprocessed results.dlg on Random’s storage system. 

Because the docking simulations were run in the background on member devices, World 

Community Grid modified AutoDock4 to pause as need.  Sometimes the pause would require the 

current docking run to be stored in the RAM.  Other times, the pause would require AutoDock4 

to shutdown and then start the docking simulation anew.  As each docking simulation was 

composed of 100 GA runs, World Community Grid used GA runs as checkpoints at which to 

restart the docking simulation.  For example, if the first 10 runs were complete before a 

shutdown, AutoDock4 would start on run 11.  However, AutoDock4’s post simulation cluster 

analysis would only process results obtained since the last shutdown; therefore, the 

docking_run.py script had to re-cluster the docking results. 

                                                 

18
 The dlg_reader_05.py described in section 2.3.2.3 was a simplified version of 

dlg_reader.py. 
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6.1.3 Virtual Screening Run Times on World Community Grid 

Because World Community Grid was composed of member devices donating their 

unused CPU time, running a single docking job was inefficient.  The average wall-clock time to 

run 10 docking simulations was about 12 hours.  The average time to finish a job on a member 

device from receiving the job to returning it to World Community Grid servers was 3 days, a six 

fold increase, not including the time required to prepare the work, transfer it to World 

Community Grid servers, receive the results from World Community Grid servers, and process 

the results.  The main advantage of the grid was not its efficiency but the volume of work World 

Community Grid performed.  The calculated time for a virtual screening experiment using our 

in-house 15-node cluster, hpcluster1, was 12 years, compared to 2 months for one virtual 

screening on World Community Grid.  While a super computer like Ranger could match or beat 

the two months, it would require dedicating the whole system to one project. 

The distribution of job completion times for a single work group was skewed, with ~90% 

of the jobs completed within three days and the remaining 10% taking up to two weeks to 

complete.  The overall completion time could therefore be reduced by only submitting jobs to the 

more efficient member computers.  

6.1.4 Results Extraction 

The results files generated from World Community Grid virtual screening were processed 

into two compound collections each containing 2,000 compounds corresponding to the lowest 

scoring compounds and the largest cluster compounds selected as described in Section 3.1.2.  

The sorted_results_v03.py script processed the result files.  The script first generated a list of all 

2.3 million compounds containing only the compound name, docking score, and cluster size.  

RAM limitations prevented loading the full results record into the list.  The list was then sorted 

into two new lists, one ordered by score then cluster size, and the second by cluster size then 

score.  The script removed the top compound from each ordered list then added it to the results 

lists skipping compounds already present in one of the results lists.  The selection process 
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continued until it generated two lists of 2,000 compounds.  The parallel list building process 

generated two unique rank ordered lists.  The script read the results files for a second time 

extracting the full docking results and writing the results to a final tab delineated results.txt, 

thereby generating input for Phase 2. 

6.2 PHASE 2 – GRID BASED MF-FEB CALCULATIONS 

This section describes and discusses the methods we used to perform MF-FEB 

calculations using World Community Grid for Phase 2 of DDDT and IADS.  Section 6.2.1 

describes the preparation of the files required for MF-FEB calculations.  Section 6.2.2 describes 

the process and scripts we used to perform MF-FEB calculations on World Community Grid.  

Section 6.2.3 concludes by discussing the runtime and failure rate of MF-FEB calculations on 

World Community Grid.   

6.2.1 Work Preparation 

This section describes the required input files and the preparation methods for performing 

MF-FEB calculations on World Community Grid.  Section 6.2.1.1 describes the generation of 

the compound databases.  Section 6.2.1.2 describes the preparation of the target structure.  

Lastly, Section 6.2.1.3 describes the required parameter and CHARMM files.  

6.2.1.1 Preparing Ligands 

The scripts used to prepare the MF-FEB calculations for World Community Grid 

required two matching compound databases in separate directories.  One directory contained 

ligand.mol2 files and the second directory contained ligand.pdbqt files.  The ligand.mol2 were 

copies of those obtained  from the ZINC database as described in Section 6.1.1.1 and the 

ligand.pdbqt corresponded to the docking input files used in Phase 1 as described in Section 

6.1.1.1.  The ligands in both directories corresponded to the ligands selected for rescoring as 

described in Section 6.1.4.  The job building scripts, described in Section 6.2.2, required the fully 
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protonated model of the ligand contained the ligand.mol2 file, and the torsion bond definitions 

used by AutoDock4 for the docking simulations in Phase 1 contained the ligand.pdbqt file. 

The lib_extractor.py script generated the two ligand input directories.  The script read in a 

results.txt file from Phase 1, and found the corresponding ligand files in the master compound 

databases used for Phase 1.  The script then copied the ligand files to either the mol2 or the pdbqt 

directories, generating the input compound databases for the MF-FEB calculations. 

6.2.1.2 Preparing Target 

We prepared the target files using the methods described in Section 2.4.1.2.  We gathered 

the resulting const_dihe.str, target_XXXX_water.crd, disu.str, and seg.str files into an input 

directory named after the World Community Grid job name. 

6.2.1.3 MF-FEB CHARMM Scripts and Parameter Files 

The MF-FEB calculations required the following CHARMM script and input files: 

const.str, par_all22_prot_cmap.inp, pick.str, radius.str, restr_sel.str, rstr_def_rms_fluc.str, 

site_pert.inp, site_setup_eqlb.inp, site_stup_gcmc.inp, site_stup_gsbp.inp, solv_pert.inp, 

solv_stup_eqlb.inp, top_all22_prot_cmap.inp, water_400.crd, water_8000.crd_nocopy, and 

wham.inp.  Section 2.4.2 describes the use of each of the list files in the MF-FEB calculations.  

The files were stored together in the “inputs” directory. 

A “mock_xmls” directory contained template XML files.  These XML files stored 

parameters for the MF-FEB calculations and lists of the individual job input files.  The 

template.xml file contained all the parameters for the MF-FEB calculations including the MD 

simulation lengths, system size, perturbation steps, etc.  The template.xml file is similar to the 

job.xml file described in Section 2.4.3.1, and was used to generate unique xml files for each 

ligand-target system.  In addition to the template.xml, the mock_xmls directory had seven 

template job xml files that contained information on what files were required for each stage of 

the MF-FEB calculations, which files were to be returned, and a place holder for the CHARMM 
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command line parameters.  The template job xml files were: site_pert_cdqr.xml, 

site_pert_rmsd.xml, site_stup_equlb.xml, site_stup_gcmc.xml, site_stup_gsbp.xml, 

solv_pert_qqdr.xml, and solv_stup_eqlb.xml. 

6.2.2 Running MF-FEB on World Community Grid 

Section 2.4.2 describes the computational method used for performing MF-FEB 

calculations, including the required inputs and the generated outputs using the second-generation 

CHARMM scripts used to perform the MF-FEB calculations on World Community Grid.  Due to 

the scale of the MF-FEB rescoring projects and the architecture of World Community Grid, we 

employed modified methods of running the MF-FEB calculation as described in Section 2.4.3.  

This section describes the process of performing MF-FEB calculations on World Community 

Grid in three sections.  Section 6.2.2.1 describes the modifications made to CHARMM input 

scripts to facilitate running them in the grid environment.  Section 6.2.2.2 outlines the process for 

performing MF-FEB calculations on World Community Grid.  Section 6.2.2.3 described the 

scripts used to manage jobs, create jobs, and calculate the results.   

6.2.2.1 Modifying CHARMM Inputs 

As discussed in Section 6.1.2.2 and 5.2, World Community Grid cycles harvests the 

member devices to perform calculations.  Therefore, calculations needed to be paused and 

restarted.  While pausing the MF-FEB calculations and retaining them in memory to be restarted 

required no modification of the CHARMM scripts, having to checkpoint and fully restart the 

calculations required modifying them.  We modified the CHARMM scripts site_pert.inp, 

site_setup_eqlb.inp, site_stup_gcmc.inp, solv_pert.inp, and solv_stup_eqlb.inp to be able to 

checkpoint during the MC and MD simulations. 

We used the restart function native to CHARMM’s MD module to restart the simulations 

from the last saved coordinates.  However, maintaining the correct perturbations step over a 

single MD run required the script running CHARMM on the member devices to determine the 
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last step completed and generate a new .prt file with the modified steps to restart the perturbation 

at the correct step.  Therefore, site_pert.inp and solv_pert.inp were modified to handle starting 

the MD simulation with a new .prt file. 

We modified the site_stup_gcmc.inp to checkpoint at the end of each MC/MD cycle.  

The modified CHARMM input script generated .crd and .psf files for the system after each cycle.  

It then deleted and rebuilt the system anew for the next cycle.  In the first-generation scripts, the 

cycles where continuous, allowing CHARMM to use the same water reservoir for all of the 

GCMC runs.  In the second-generation scripts, the reservoir was rebuilt for each cycle. 

6.2.2.2 Performing MF-FEB Calculation 

We organized the MF-FEB calculations on World Community Grid into rescoring 

projects containing ~2,000 ligands that shared the same docking target.  The projects 

corresponded to the virtual screening results of one of the DUD test sets or the virtual screening 

results in a results.txt file from Phase 1.  Each job was given a four character ID.  We divided 

virtual screening results into groups of 500 ligands, assigning each group an alphabet character 

(e.g., “a”).  The ligands groups were further divide into work groups of 10 ligands labeled “g01” 

to “g50”.  We submitted these work groups to World Community Grid similarly to how multiple 

docking simulations were bundled and submitted in Phase 1.  Each ligand was renamed with a 

four character ID with the first character matching the ligand subset and the last three characters 

being a three digit integer (e.g., a001).  We assigned the new names to the ligands file to avoid 

file name case sensitivity errors common in CHARMM.  It then took six stages to build, process, 

and determine the results of a MF-FEB rescoring project.  We automated the six stages using the 

servoskull_v02.py and techpriest_v2.py scripts and their dependent modules that are described in 

Section 6.2.2.3.  This section describes the six stages. 
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6.2.2.2.1 Setup Stage 

The first stage, or setup stage, was performed on the project servers.  We used the 

servoskull_v02.py script to build the work units for a rescoring project.  The script required the 

directories and inputs described in Section 6.2.1 and a divided results.txt files corresponding to a 

ligand group (e.g., group “a”).  The servoskull_v02.py script started setting-up the MF-FEB 

calculation by building directories corresponding to the organization method described above 

with each ligand in its own subdirectory.  The script then copied and modified the template.xml 

file into the target_ligand_charmm_param.xml file containing the CHARMM parameters for the 

ligand-target system.  Next, the script prepared the ligand by transforming the coordinate’s of the 

atoms in the ligand.mol2 to match the docking pose, parameterizing the ligand,  and centering 

the ligand on the origin as described in Section 2.4.1.1.  The antechamber output and 

intermediate files generated during the preparation of the ligand were stored in the “lig_wip” 

directory and the final ligand.prm, ligand.rtf, and ligand.crd files were written to the 

“compound” directory.  Next, the script copied the target files to the “target” directory, 

transposing the target to match the centered ligand as described in Section 2.4.1.2.  The script 

would then build the prerun job as described below for submission to World Community Grid 

servers.  The scripts concluded by generating the “outhold” directory to store the results of the 

following stages, and generating the ligand_lig_rec.xml file that tracked the progress of the MF-

FEB calculations for the ligand. 

6.2.2.2.2 Production Stages 

The next four stages, or production stages, involved performing the MF-FEB calculations 

on World Community Grid and were performed on project servers, World Community Grid 

servers, and member devices.  The calculations were divided into four stages: prerun, Type A, 

Type B, and Type C.  The stage name identified which stage of the MF-FEB calculations were 

run in a given job on a member device with each job being one CHARMM simulation.  The 

prerun jobs corresponded with the setting up of the GSBP.  The Type A jobs corresponded with 
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the GCMC simulations.  The Type B jobs corresponded with equilibrating the systems.  The 

Type C jobs corresponded with perturbation MD simulations.  We also identified the Type B and 

Type C jobs with either the site or solvent (i.e., bulk) system.  The Type C jobs were further 

divided by perturbation stage, the lambda step, and lambda direction.  All jobs were identified 

with unique four character codes. 

The process by which the servoskull_v02.py script would prepare a job was the same 

regardless of the stage.  It would copy all files required to run the job into a directory to be 

archived into a work group .tar.gz file.  The target_ligand_charmm_param.xml file contained the 

list of required files, which were obtained either from the “inputs” directory or in one of the sub-

directories in the ligand’s directory.  The servoskull_v02.py script would also copy and modify 

the corresponding template job xml file by adding the CHARMM command line options used on 

the member devices. 

The overall process for performing the MF-FEB calculations worked as follows.  All 

work was submitted to the IBM servers and received by the project servers in work units 

containing the jobs for 10 ligands.  First, the setup stage generated the prerun work units.  The 

IBM servers then received the preruns and ran them locally retaining the target_mij.dat and 

target_phi.dat binary files and returning the other files required to make the Type A jobs.  With 

the preruns completed and returned, the Type As were built on the project server and submitted 

to World Community Grid servers.  World Community Grid servers then added back the 

target_mij.dat and target_phi.dat files, distributed the Type A jobs to the member devices for the 

GCMC simulations, and returned the results to the project server which generated the Type B 

work units.  Type B work units were submitted to World Community Grid, returned, processed 

into Type C work units, submitted, and returned again.  The only files that were returned from 

the Type C jobs were the result.wham files needed to calculate the FEB.  For each stage of the 

process, the ligand_lig_rec.xml would be updated to track the progress of the calculations. 
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6.2.2.2.3 Results Stage 

In the sixth stage, or results stage, the servoskull_v02.py script calculated the final FEB 

according the methods described in Section 2.4.2.3 and wrote the results to the 

ligand_lig_rec.xml file. 

6.2.2.3 MF-FEB Job Creation and Management Scripts 

The section describes the Python scripts used on the project server, Ranger, to create and 

manage MF-FEB calculations on World Community Grid.  Section 6.2.2.3.1 describes the 

master python scripts.  Section 6.2.2.3.2 describes the “dgtool_pro” module that provided many 

of the functions and objects used by the master scripts. 

6.2.2.3.1 Master Scripts 

The master scripts, used on the project server to manage the MF-FEB calculations for 

World Community Grid, were techpriest_v02.py, servoskull_v02.py, arbitor_v01.py, 

archivest_01.py, and master_archivest.py.  This section describes these scripts. 

6.2.2.3.1.1 techpriest_v02 

The techpriest_v02.py script built the launcher scripts used to submit servoskull_v02.py 

jobs on Ranger.  This script served as the highest-level control script for managing the MF-FEB 

calculations.  Techpriest_v02.py read the files from directories containing either the divided 

results.txt files from Phase 1 or returned work unit .tar.gz files from the different stages for the 

MF-FEB calculations.  In addition to the input directories, the techpriest_v02.py script accepted 

command line options for job submission parameters for Ranger.  The script then generated 

job_setup_date.prm and job_setup_date.sge, or job_prodcution_date.prm and 

job_prodcution_date.sge files depending upon if it was preparing jobs for the set-up stage or the 

production and results stages, respectively.  The .prm files contained the command line calls for 

the servoskull_v02.py jobs to be run with one divided results.txt file or one returned work unit.  

The .sge files contained the Ranger job submission script. 
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6.2.2.3.1.2 servoskull_v02 

The servoskull_v02.py script set-up and built the work units for the MF-FEB calculations 

as described in Section 6.2.2.2.  In addition to command line options setting parameters for the 

MF-FEB calculation, the key serveoskull_v02.py inputs were the “Set-up” or “Production” 

command line options and the corresponding results.txt files from Phase 1 or returned work unit 

.tar.gz files.  Depending on the option selected and corresponding input files, the script would 

either set-up each ligand in the results.txt file generating setup work units, or process a work unit 

to the next stage (e.g., Type A to Type B, or Type C to results).  The servoskull_v02.py script 

required the dgtool_pro module, described in Section 6.2.2.3.2, to process the inputs, and 

generate work units and results.  The script generated the work unit’s .tar.gz files and the md5 

checksum files for submission to World Community Grid servers and updated the 

ligand_lig_rec.xml file, recoding the work it had performed. 

6.2.2.3.1.3 arbitor_v01.py 

The arbitor_v01.py script generated reports on the progress of a rescoring project and 

gathered final FEB calculations.  The script took three command line options, one indicating the 

name of the rescoring project, and one or both of the “progress” flags to generate a progress 

report, and/or the “results” flag to generate a results report.  Using the directory organization 

generated by the servoskull_v02.py script, the arbitor_v01.py script would read the 

ligand_lig_rec.xml files to generate the reports.  The progress report was printed to the screen 

and listed the number of ligand-target systems that had completed each stage of the MF-FEB 

calculations.  The results report was written to projectname_resutls_report.txt file.   

The file was a tab delineated table with each line having the results of one ligand.  The result 

lines started with ZINC name and new name for the ligands then contained either the FEB 

energy breakdown for successfully completed calculation, or “Failed” or “Incompleate” (sic) 

depending on the status of the MF-FEB calculations.  
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6.2.2.3.1.4 archivest_01.py and master_archivest_v01.py 

The archivest_01.py, and master_archivest.py files archived a completed rescoring 

project.  The archivest_01.py would GNU-zip all the files in a work unit group, and then tape 

archived and generated a md5 checksum for the individual ligand-target system directories.  The 

master_archivest.py file generated the .prm and .sge files to run the archivset_01.py script for 

each work unit group for a single rescoring project on Ranger. 

6.2.2.3.2 “dgtools_pro” Module 

The dgtools_pro module was a collection of modules used by the master scripts to create 

and process ligand-target systems of MF-FEB calculations on World Community Grid.  This 

section briefly describes each of the sub-modules and their key functions.  The sub modules are: 

arch.py, crdtools.py, dicxmltools.py, mol2dgprep.py, mol_obj.py, WU_build.py, WU_check.py, 

WU_prep.py, and WU_results.py. 

6.2.2.3.2.1 arch.py 

The arch.py module compressed the result.wham files to conserve hard drive space.  The 

“arch” function compressed the files in a directory using GNU-zip.  The “extract” function 

extracted the files in a directory. 

6.2.2.3.2.2 crdtools.py 

The crdtools.py module contained the rep_crd object used to process the target 

CHARMM coordinate files to match a transposed ligand.  An instance of the rep_crd object was 

called using a target.crd file.  The objects key methods generated new target.crd files, 

“write_crd”, and transposed the atomic coordinates, “center_on”.  

6.2.2.3.2.3 dicxmltools.py 

The dicxmltools.py module converted python dictionary objects to xml files, and xml 

files to Python dictionary objects.  We used xml files to store parameters for and track the 

progress of the MF-FEB calculations.  The “dic_to_xml” function converted python dictionary 

objects to xml files.  The “xml_to_dic” function converted xml files to python dictionary objects. 
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6.2.2.3.2.4 mol2dgprep.py 

The mol2dgprep.py module converted ligand.mol2 files into ligand.rtf, ligand.prm, and 

ligand.crd files for CHARMM using the “moltools_mol2” object.  The moltools_mol2 object 

was called using a ligand.mol2 and contained methods for manipulating the ligand.  The 

“save_mol2” method wrote a new ligand.mol2 file.  The “rename_atoms_unique” method 

renamed the atoms in the ligand assigning them unique names.  The “charmm_prep” method 

generated the CHARMM ligand files using antechamber.  The “geocenter” method transformed 

the ligand’s atomic coordinates to the origin returning the information to transpose the target.  

6.2.2.3.2.5 mol_obj.py 

The mol_obj.py script contained the “mol” object that generated a ligand.mol2 file from 

the results pose of a docking simulation from Phase 1.  The mol object was called using the 

ligand.mol2 file from the ZINC database.  The “build_tors” method used the ligand.pdbqt file 

used for Phase 1 docking simulations to determine the torsion bonds in the ligand.  The “tran” 

and “va_rot” methods used the pose information to transform the coordinates in the ligand.mol2 

file into the docking pose.  The “write_mol2” method wrote the transformed coordinates to a 

ligand.mol2 file. 

6.2.2.3.2.6 WU_build.py 

The WU_build.py module prepared the Type A, Type B, and Type C work units.  The 

“GCMC” function built the Type A work units.  The “system_eql” function built the Type B 

work units for the site and solvent systems.  The “pert_repu” function built the Type C VdW 

repulsion work units for the site and solvent systems.  The “pert_qdc” function built the Type C 

VdW dispersion and electrostatic interaction work units for the site and solvent system, and the 

Type C positional constraints work units for the site system.  The “site_pert_rmsd” function built 

the Type C conformational constraints work units for the site system. 
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6.2.2.3.2.7 WU_check.py 

The WU_check.py module contained the “crd_coor_check” function that checked a .crd 

file’s coordinates.  The function returned true if the coordinates were greater than 100 Å from the 

origin or where “NaN” coordinate indicted an error. The module was designed to be the location 

of future error checking functions. 

6.2.2.3.2.8 WU_prep.py 

The WU_prep.py module performed the setup stage for MF-FEB calculations on World 

Community Grid.  The “ligand” function prepared the ligand files.  The “rep” function prepared 

the target files.  The “charmm_xml_param” function generated the 

target_ligand_charmm_param.xml file.  The “prep_GSBP” function built the prerun work units. 

6.2.2.3.2.9 WU_results.py 

The WU_resutlts.py module calculated the FEB from the Type C work unit results.  The 

“get_feb” function called the following functions to determine the energy components for the 

FEB, calculate the FEB, and return a python dictionary object containing the results.  The 

“num_int_par_dx” function computed the area under a curve using Simpsons’ Rule for 

numerical integration.  The “qdc_FEB” function calculated the energy from the perturbation of 

the electrostatic interactions, VdW dispersion for the site and solvent systems, and the releasing 

of the positional constants using WHAM analysis.  The “rep_FEB” function calculated the 

energy from the perturbation VdW repulsion for the site and solvent systems using WHAM 

analysis.  The “rmsd_FEB” function calculated the energy from releasing of the conformation 

constants using WHAM analysis and equation 1-22.  The “const_FEB” function calculated the 

energy from the restrains by solving equation 1-23.  The “lrc_FEB” function read in the long-

range VdW correction factor from the prerun outputs. 
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6.2.3 MF-FEB Grid Performance 

This section examines the performance of MF-FEB calculations on World Community 

Grid.  Section 6.2.3.1 looks at runtimes, and Section 6.2.3.2 discusses the failure rate of MF-FEB 

calculations on World Community Grid 

6.2.3.1 Runtime 

On Ranger, a MF-FEB calculation for one ligand-target system took a wall-clock time of 

about 72 hours, with minimal queue times and 64 processors.  For between four and sixteen 

simultaneously MF-FEB calculations, it took a week to complete all the calculations.  On World 

Community Grid, a MF-FEB calculation for one ligand-target system took maximum wall-clock 

time of about 66 hours to run on about 170 of the member computers, not including the time 

required sending and receiving jobs from World Community Grid servers and generating jobs on 

the project server.  The full wall-clock time to rescore the TRYP test set took a total of 142 days.  

With some overlap, it took 37 day to run preruns, 27 days to run Type A work units, 21 days to 

run Type B work units, and 64 days to run Type C work units and final FEB determination.  

However, throughout the 142 days World Community Grid performed more than 1,500 MF-FEB 

calculations.  Therefore, as discussed in Section 6.1.3, the advantage of using a grid is 

throughput and not efficiency. 

6.2.3.2 Job Failure Rates 

Some MF-FEB calculations were prone to fail and required monitoring and 

troubleshooting to insure completion.  One of the challenges of implementing the MF-FEB 

calculation on World Community Grid was that we could not closely monitor the MF-FEB 

calculations for two reasons.  First, member devices performing the calculations returned only 

the minimal information, preventing us from examining the CHARMM output file and the MD 

trajectories files commonly used for troubleshooting.  Second, there were a large number of 

calculations, making fixing and resubmitting failed jobs very time consuming.  Because a 

majority of the MF-FEB calculations ran successfully, we elected not to attempt to troubleshoot 
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failed jobs and treated failed jobs as non-binders.  However, the rescoring of the ERAG and 

TRYP test sets described in Chapter 7 provided an opportunity to benchmark the failure rates of 

the MF-FEB calculation on World Community Grid. 

Overall, 82% of the ERAG test sets and 71% of the TRYP test sets MF-FEB calculations 

successfully completed.  Figure 6-1 and Figure 6-2 show the cumulative success and failure rates 

for the ERAG and TRYP test sets respectively.  Very few ligand-target systems failed during the 

setup or prerun stages.  Failures in the setup stage were likely due to errors arising from the 

parameterization of the ligand with antechamber.  Prerun failures were likely due to errors in the 

generation of the GSBP.  A few percent of the jobs were lost during the Type A and Type B 

stages, with most being lost in Type A corresponding with errors arising from the first time 

simulations were performed on the system.  The largest loss occurred during the Type C stage 

corresponding to the perturbation runs, with more site runs failing than solvation runs.  These 

failure rates correspond with the failures observed during MF-FEB calculations using the TACC 

supercomputers.  Most errors seen at TACC were due to errors in MD simulations caused by 

erroneous atom movement or placement that caused unrealistic interactions and energies that 

would crash the simulation.  The total failure rates were a combination of calculations where 

either the site or the solvation simulations failed, or WHAM analyses that did not converge or 

failed for technical reasons. 

We looked for trends in the success and failure of the MF-FEB calculations to identify 

any possible causes of failure, and to find a metric that might indicate a failure.  Three percent of 

the failed MF-FEB calculations in the TRYP test set were binders corresponding to the 

percentage of binders in the total population, showing no indication of binder or non-binder bias 

on job success.  However, none of the ERAG test set binders failed.  The ERAG binders were 

the first set of compounds tested in the MF-FEB simulations and were sent to reliable member 

devices suggesting that some of the failure rate may be due to computer performance.  

Additionally, we analyzed the ligand databases using ChemMine (http://chemmine.ucr.edu/) to 
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generate molecular descriptors for the ligands to determine if there was any correlation between 

any of the descriptors and the success or failure of the MF-FEB calculations.  Correlation 

between a molecular descriptor and the success or failure might indicate a potential limitation of 

MF-FEB calculations; however, we saw no correlation with any of the descriptors.  

An average failure of 25% is high, but not surprising considering the nature and 

complexity of the calculations.  Improving the MM code should increases stability of the MD 

simulation, and improve the overall performance of the MF-FEB calculation on member devices; 

thereby, reducing the failure rate. 
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Figure 6-1 – MF-FEB calculation cumulative success and failure rates by stage on World 

Community Grid for ERAG test set. 

  

Figure 6-2 – MF-FEB calculation cumulative success and failure rates by stage on World 

Community Grid for TRYP test set. 
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Chapter 7 Efficiency and Efficacy of Rescoring Docking Generated Poses by 

Perturbation Free Energy of Binding Calculation in Large Datasets 

The goal of this work was to determine if rescoring docking generated poses using the 

MF-FEB calculations would improve enrichment in virtual screening results over docking 

scoring functions.  In Chapter 4, we showed that MF-FEB calculations could use docking 

generated poses for FEB predictions.  Additionally, we saw improved enrichment in virtual 

screening of a 30 compound chemical database and significant discrimination between binder 

and non-binders when we rescored AutoDock4 generated pose with MF-FEB calculations.  

While the results in Chapter 4 supported our hypothesis, we only tested the MF-FEB rescoring 

method in the L99A T4 lysozyme test system, due to limited computational resources.  We 

therefore needed to test MF-FEB rescoring using larger (>1,000 compounds) and more drug-like 

test sets in order to more fully test our hypothesis and see if MF-FEB rescoring could be used 

effectively as a drug discovery tool.  We required formidable computational resources to perform 

MF-FEB rescoring for thousands of compounds, which we obtained through World Community 

Grid, as described in Chapter 5.  Additionally, DUD provided a collection of virtual screening 

test sets that Cross et. al. had used to test other docking programs, thereby allowing us to 

compare MF-FEB rescoring to other docking programs and scoring functions. (Huang, Shoichet 

et al. 2006; Cross, Thompson et al. 2009)  With the DUD test sets and the computational power 

of World Community Grid, we were able to test MF-FEB rescoring on larger drug-like test sets. 

In this chapter we examine if MF-FEB rescoring can improved virtual screening 

enrichment over AutoDock4’s scoring function in large drug-like test sets.  We selected two test 

sets from the DUD database, estrogen receptor agonist (ERAG) and trypsin (TRYP), which we 

had used to determining virtual screening result filters as described in Section 3.1.2.  We 

virtually screened both test sets with AutoDock4 and rescored the docking generated poses using 

MF-FEB calculations.  Because each test set contained ~2,000 compounds we were able to 

rescore every compound, binder and decoy, in each test set allowing for a comparison with the 
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results of Cross et al. (Cross, Thompson et al. 2009)  In both the ERAG and TRYP test sets MF-

FEB rescoring improved enrichment over AutoDock4’s scoring function.  However, MF-FEB 

calculations did not outperform all docking scoring functions and therefore needed to be 

improved in order to be employed as a drug discovery tool. 

This chapter is divided into three sections.  Section 7.1 describes the methods employed 

to virtually screen and rescore the ERAG and TRYP test sets.  Section 7.2 discusses the virtual 

screening enrichment due to MF-FEB rescoring in both test sets.  Section 7.3 concludes the 

chapter by discussing insights into the performance of the MF-FEB calculations obtained from 

the two virtual screening experiments. 

7.1 METHODS 

This methods section is dived into three sections.  Section 7.1.1 describes the ERAG and 

TRYP DUD test systems.  Section 7.1.2 describes the virtual screening methods.  Section 7.1.3 

describes the MF-FEB rescoring methods. 

7.1.1 DUD Test Sets 

The ERAG and TRYP test sets were the same we used in Section 3.1.2.1 and are 

described in that section. 

When considered as test sets for MF-FEB rescoring trails, ERAG and TRPY tests 

different aspects of the MF-FEB calculations.  ERAG provided a test set that was similar to the 

L99A T4 lysozyme test set used in Chapter 4 because the ligands in the test set were 

hydrophobic and the binding site has little contact with solvent waters.  However, ERAG binders 

were larger and more drug-like than those of the L99A T4 lysozyme test and were dependent on 

a key H-bonding interaction for binding.  TRYP provided a different test set from the L99A T4 

lysozyme test set because the ligands of the TYRP test set were hydrophilic and charged, with 

binding being dependent on electrostatic interaction, and a binding site that was largely solvent 
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exposed.  Therefore, these two systems provided contrasting test sets with which to prove the 

MF-FEB calculations. 

The main disadvantage of the DUD systems was that the decoy compounds were selected 

from the ZINC database based on their chemical similarity to the known binders in the test set 

and not from experimental results.  Therefore, it was possible that a few of the decoys may be 

true binders that had never been tested.  

7.1.2 Virtual Screening 

We performed the virtual screening of the ERAG and TRYP test sets using the methods 

described in Sections 2.3 and 3.1.2.1 on TACC’s Lonestar supercomputer. 

7.1.3 MF-FEB Rescoring 

We rescored the docking generated poses on World Community Grid as part of Phase 2 

of DDDT using the methods described in Sections 2.4.2 and 6.2.  In rank ordering the rescoring 

results, we retained failed MF-FEB runs and placed them at the end of the rankings to mimic 

how failed results are treated as non-binders in a prospective virtual screening project.  

7.2 ENRICHMENT 

In determining the effect of MF-FEB rescoring on the virtual screening results, we 

utilized three analysis methods.  First, we looked at the ability of AutoDock4’s scoring function 

and MF-FEB calculations to discriminate between binders and decoys using two-tailed Student 

T-tests for populations of unequal variance.  Second, we plotted the enrichment curves of each 

scoring method.  Figure 7-1 and Figure 7-2 contain the enrichment curves for AutoDock4’s 

scoring function and MF-FEB rescoring for ERAG and TRYP test sets respectively.  Finally, we 

examined potential experimental impact of virtual screening results by determining success rate. 

When, virtual screening results are validated experimentally, they are often tested by rank 

order with the top ranked compound being tested first. Therefore, the success rate in bench top 
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testing would be the percentage of true binders in the tested compounds.  In a retrospective 

study, success rate corresponds to the percentage of known binders in the first “n” compounds in 

the list of rank ordered virtual screening results.  For the ERAG and TRYP virtual screening 

studies, we calculated and plotted the success rate for the first 10, 20, n+10 … 100 compounds.  

Figure 7-3 and Figure 7-4 contain the success plots for AutoDock4’s scoring function and MF-

FEB rescoring for ERAG and TRYP respectively.  Success rate plots are similar to early 

enrichment plots and ROC plots, but casts enrichment in terms of hypothetical experimental 

results.  

For the ERAG test set, rescoring the ME-FEB calculations provide a significant increase 

in enrichment over AutoDock4’s scoring function.  Both AutoDock4’s scoring function and MF-

FEB calculations were able to discriminate between binders and decoys.  The mean docking 

scores were -6.74 ± 0.03 kcal mol
-1

 for the decoys and -7.4 ± 0.2 kcal mol
-1

 for the binders.  The 

mean FEB from the MF-FEB calculations were -9.4 ± 0.2 kcal mol
-1

 for the decoys and -17.1 ± 

1.5 kcal mol
-1

for the binders.  While the docking score was able to significantly discriminate 

between binders and decoys with a p-score of 3x10
-7

 and a difference in means of  ~1 kcal mol
-1

, 

the MF-FEB calculations improved discrimination with a p-score of 4.6x10
-14

 and a difference in 

means of ~8 kcal mol
-1

.  As shown in Figure 7-1, both AutoDock4’s docking scoring function 

and MF-FEB virtual screening calculations enriched the test set for binders better than random 

selection, with MF-FEB rescoring improving enrichment over AutoDock4’s scoring function.  

The success rate, shown in Figure 7-3, for the MF-FEB calculations was more than two times 

greater than the docking scoring function.  In the first ten compounds, MF-FEB rescoring 

identified five binders while the docking scoring function only identified two.  Overall, the 

enrichment results for the ERAG test set were similar to those of the small L99A T4 lysozyme 

test set in that MF-FEB rescoring significantly improved discrimination and enrichment over 

AutoDock4’s scoring function.  However, the MF-FEB method did generate false-positives.  
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For the TRYP test set, MF-FEB rescoring improved enrichment over AutoDock4’s 

scoring function, but the overall virtual screening and rescoring were not able to enrich the test 

set binders.  The mean docking scores were -7.74 ± 0.08 kcal mol
-1

 for the decoys and -5.1 ± 0.8 

kcal mol
-1

 for the binders.  The mean Gbinding from the MF-FEB calculations were -3.0 ± 0.7 

kcal mol
-1

 for the decoys and 1.1 ± 4.8 kcal mol
-1 

for the binders.  For both scoring methods, the 

mean FEB of the binders was incorrectly higher than the mean for the decoys.  While 

AutoDock4’s scoring function could discriminate between binders and decoy (p-score of 6x10
-8

), 

albeit inversely, the standard deviation of Gbinding predicated by MF-FEB calculations was too 

large to discriminate binders and decoys (p-score of 0.1).  Consistent with the discrimination 

results, AutoDock4’s scoring function did not enrich the compound database for binders, but did 

the opposite moving binders to the bottom of the ranked ordered compound database as seen in 

Figure 7-2.  However, MF-FEB rescoring improved enrichment, enriching the database slightly 

better than random for the first ~10% of the test set (Figure 7-2).  Due to the negative enrichment 

by AutoDock4’s scoring function, the success rate for the first 100 compounds was zero as 

shown in Figure 7-4.  MF-FEB rescoring did identified five binders in the first 100 compounds 

(Figure 7-4).  Overall, MF-FEB rescoring did increase enrichment in the TRYP test set and 

generated “hits” which AutoDock4’s scoring function did not.  However, the MF-FEB 

calculations were predicting high and even positive Gbinding for a number of binders indicating 

that the MF-FEB calculations need to be improved as discussed in Section 8.3. 

Because we utilized the DUD test sets, we were able to compare the enrichment of MF-

FEB rescoring to other docking scoring methods.  Figure 7-5  and Figure 7-6 are enrichment 

curves generated for the data kindly provided by Dr. Cross corresponding to the enrichment 

curve for different docking programs that appeared in Cross et al. (Cross, Thompson et al. 2009) 

overlaid with our MF-FEB enrichment curve for ERAG and TRYP respectively.  The goal of 

these figures was not to compare MF-FEB rescoring to any single scoring function but to 

compare the rescoring method to the field in general.  As shown in Figure 7-5, for the ERAG test 
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set, MF-FEB rescoring was one of the top enrichment methods, but other docking scoring 

functions outperformed MF-FEB rescoring.  As shown in Figure 7-6, for the TRYP test set many 

docking scoring functions outperformed MF-FEB rescoring.  Overall, MF-FEB rescoring as 

comparable to other scoring functions in performance, and did not distinguish itself as a drug 

discovery tool, in that MF-FEB rescoring could enrich databases, but its performance was system 

dependent and generated false positives. 

The goal of this section was to determine if MF-FEB rescoring can improved virtual 

screening enrichment over AutoDock4’s scoring function in large and drug-like test sets.  In both 

the ERAG and TRYP test set, MF-FEB rescoring did improve enrichment and significantly 

increased the odds of getting hits for the virtual screening results.  However, MF-FEB rescoring 

did not outperform other docking programs and generated false positives; therefore, it needs to 

be improved before being used as a drug discovery tool.  See Section 8.1 for a discussion of the 

utility of MF-FEB rescoring as a drug discovery tool. 
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Figure 7-1 – Plot of DUD’s estrogen receptor agonist test set enrichment curves sorted by 

AutoDock4’s scoring function and MF-FEB rescoring. Dashed lines correspond to 

ideal enrichment and random enrichment. 
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Figure 7-2 – Plot of DUD’s trypsin test set enrichment curves sorted by AutoDock4’s scoring 

function and MF-FEB rescoring. Dashed lines correspond to ideal enrichment and 

random enrichment. 
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Figure 7-3 – Success rates plot for DUD’s estrogen receptor agonist test set.  All bars start at 0% 

and are overlaid for comparison.  Ideal corresponds to the total number of binders in 

the test set. 

 

 

 

Figure 7-4 – Success rates plot for DUD’s trypsin test set.  All bars start at 0% and are overlaid 

for comparison.  Ideal corresponds to the total number of binders in the test set.  

There were no binders found using AutoDock4’s scoring function. 
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Figure 7-5 – Overlay of MF-FEB rescoring enrichment curve on enrichment cures from other 

docking programs for DUD’s estrogen receptor agonist test set. (Cross, Thompson et 

al. 2009) 
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Figure 7-6 – Overlay of MF-FEB rescoring enrichment curve on enrichment cures from other 

docking programs for DUD’s trypsin test set. (Cross, Thompson et al. 2009)  
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7.3 SOURCES OF ERROR IN THE MF-FEB CALCULATIONS 

MF-FEB rescoring’s average performance relative to other docking programs prompted 

us to make initial inquiries into how the MF-FEB calculations could be improved.  The first 

question was what influence did pose have on Gbinding and final ranking?  The second question 

was could trends in the component energy terms that comprised the FEB prediction identify a 

way to improve the MF-FEB calculations?  We addressed the second question in two ways.  To 

begin, we examined the ability of the component energy terms to discriminate between binders 

and decoys.  Then, we looked at the correlations between the component energy terms.  This 

section addresses these two questions.  Section 7.3.1 examines the effect of pose on ranking.  

Section 7.3.2 describes how component energy terms discriminate between binders and decoys, 

and the correlations between the component energy terms. 

7.3.1 Pose and Ranking 

In comparing the improvement in MF-FED rescoring enrichment in the TRYP test set to 

the enrichment in the ERAG test set, it appeared that the results of the docking might have 

influenced the rescoring.  The MF-FEB rescoring improved enrichment in both cases, but in 

TYRP it only improved negative enrichment to random levels of enrichment (i.e., junk in, junk 

out).  Additionally, as we compared MF-FEB enrichment from AutoDock4 results to other 

docking programs, we asked to what degree MF-FEB rescoring might improve the enrichment of 

results from other docking programs?  Ideally, the way to test whether MF-FEB rescoring would 

improve other docking results would be to perform a new virtual screening with a different 

docking program or scoring function and rescore the results.  However, the only information 

passed from the docking program to the MF-FEB calculations was the ligand pose.  In Chapter 4, 

we showed that docking poses could be used for MF-FEB calculations, but the trends of 

Gbinding predictions to RMSD suggest that accurate Gbinding predictions were obtained from 

those poses that resemble the co-crystal pose.  Therefore, instead of performing a new virtual 

screening project, we asked the question of how the Gbinding prediction from MF-FEB 
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calculations would compare between the self-dock and co-crystal ligand poses of the target 

structures used in the ERAG and TRYP test sets.  By testing the co-crystal structure, we were 

using the best possible docking result. 

Each DUD test set has a co-crystal target protein structure whose ligand we included in 

the test sets for virtual screening.  Table 3-6 contains the target PDB structures codes for the 

ERAG and TRYP test sets.  We performed MF-FEB calculations on the co-crystal structures of 

ERAG and TRPY targets on Ranger using the methods described in Section 2.4.  We obtained 

the AutoDock4 self-docked results from the virtual screenings described in Section 7.2, although 

we needed to re-run the TYRP self-dock MF-FEB calculations on Ranger because they failed on 

World Community Grid.   The results of the MF-FEB calculations for both the self-docked and 

co-crystal poses for ERAG and TRYP are in Table 7-1. 

 

Table 7-1 – Gbinding and rank order from MF-FEB calculations using different starting poses. 

 

With ERAG, the difference between the self-docked and co-crystal ligand poses was a 

RMSD of 0.67 Å.  The pose difference changed the predicted Gbinding by ~2 kcal mol
-1

, 

comparable to energy differences between repeated runs of the same system as seen in Section 

4.3.  The difference in energy placed the co-crystal pose in the top 2% of the test set, while the 

 
Docking Pose Co-Crystal Pose 

System 
RMSD 

(Å) 
Gbinding 

(kcal mol
-1

) 
Rank 

Gbinding 

(kcal mol
-1

) 
Rank 

Estrogen Receptor 

Agonists 
0.69 -23.8 20 of 2638 -21.09 46 of 2638 

Trypsin 3.46 -22.31 31 of 1714 -27.23 16 of 1714 
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lower scoring self-docked pose was in the top 1%.  Therefore, in the ranking of the ERAG test 

set the difference between the two poses was minor. 

With TRYP, the difference between the self-docked and co-crystal ligand poses was a 

RMSD of 3.46 Å.  The change corresponded to a repositioning to the portion of the ligand that 

extends out the P1 site.  The co-crystal pose decrease the calculated Gbinding by ~5 kcal mol
-1

, 

moving the targets ligand from the first 2% to the first 1% of the rank ordered test set.  

Therefore, in the TRYP test set using the co-crystal pose lead to an improved score and a minor 

improvement in rank order. 

If poor poses was the cause of the modest enrichment in the virtual screening of the 

TRYP test set, then the co-crystal poses should have been at the very top of the rank order.  

However, in both ERAG and TRYP, using the co-crystal pose only had a minor effect in 

ranking; with ERAG co-crystal pose actually lowered in rank.  Therefore, while a good pose was 

important to an accurate MF-FEB calculation as shown in Section 4.2, the average performances 

of the MF-FEB calculations was most likely due to inaccurate Gbinding predictions. 

7.3.2 The Relationships between MF-FEB Energetic Components 

In both the ERAG and TRYP test sets, MF-FEB rescoring generated false positives and 

in the case of TYRP, MF-FEB rescoring was unable to discriminate between binders and non-

binders.  As indicated from the result in Section 7.3.1, improving MF-FEB calculations meant 

improving Gbinding predictions themselves and not the docking results.  The MF-FEB 

calculations are very complex and improving them could require modifying the run parameters, 

changing the force field and partial charge assignment, modifying the underling theory, or 

improving methods used to predict the FEB.  With data from two virtual screening projects, we 

ask if the data contained any indication of what needed to be improved.  In the MF-FEB 

calculations, the Gbinding was the sum of energy components (see Section 1.4.4).  Therefore, 

we examined each of these energy components looking at the relationships between them and 
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their ability to discriminate between binders and decoys.  Identifying which energy components 

were aiding discrimination and determining their interdependence would indicate how we might 

improve the MF-FEB calculations 

We looked at the discrimination of the different FEB energy components between binders 

and decoys by determining the mean of each population and comparing the binder and decoy 

populations using a two-tailed Student t-test.  Table 7-2 and Table 7-3 contain the means for 

binders and decoys, and the p-score from the Student’s t-test for each Gbinding energy 

component for the EARG and TRYP test set respectively. We examined the relationship between 

the Gbinding energy components by determining the correlation between each of the Gbinding 

energy components, treating the binders and decoys as a single population.  Table 7-4 and Table 

7-5 are heat maps based on the correlation values for the ERAG and TRYP test sets respectively. 

MF-FEB calculations were able to discriminate between binders and decoys in the ERAG 

test.  However, the mean of the Gbinding was lower than expected if the results were accurately 

predicting Gbinding.  For binders, the mean Gbinding for ERAG binders was -17 kcal mol
-1

, 

which would correspond to the average ERAG binder being a picomolar binder.  The mean 

Gbinding for the decoys was -9 kcal mol
-1

, which would correspond to the average decoy being 

a micromolar binder.  In comparing the contributions to the Gbinding for the free energy of 

solvation and the Gsite, as with the L99A T4 lysozyme system, the Gsolv contributed more to 

discrimination than the Gsite.  Gsolv was ~5 kcal mol
-1

 less favorable for the binders than the 

decoy largely due to less favorable electrostatic interaction.  For the Gsite, favorable VdW 

interactions drove the discrimination of the binders and the decoys.  Additionally, there was a 

small but highly significant discrimination due to the higher energy required to restrain the 

ligand's position for the decoy, suggesting, with increased VdW repulsion, that the decoys did 

not fit the binding site a well as the binders.  These trends in energy components were consistent 

with ERAG binders being hydrophobic molecules.  In examining the correlations between 

different energy components, we observed that the Gsolv and the Gsite were highly correlated 
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with each other and with the electrostatic interaction’s energy components of both the site and 

solvent systems.  Additionally, the VdW dispersion and VdW repulsion components were 

weakly inversely correlated.  Finally, the Gbinding was largely independent for the different 

energy components, although site VdW repulsion weakly correlated with Gbinding, suggesting 

the importance of static interaction in determining the Gbinding for the ERAG test set. 

 

Table 7-2 – Discrimination between binders and decoys for Gbinding energy components for the 

ERAG test set.  Highlighted cell have a p-score less than 0.05. 

 

  

Discrimination 

T-test 

 (p-score) 

Mean Energy 

Binders 

 (kcal mol
-1

) 

Mean Energy 

Decoys 

 (kcal mol
-1

) 

Gbinding 4.6E-14 -17.11 ± 1.60 -9.39 ± 0.23 

B
in

d
in

g
  
to

 S
it

e Free Energy 1.2E-02 -33.80 ± 2.00 -31.08 ± 0.55 

Repulsion 2.0E-05 16.35 ± 1.27 19.35 ± 0.23 

Dispersion 3.8E-03 -46.70 ± 1.06 -45.07 ± 0.13 

Electrostatic 1.8E-01 -12.31 ± 1.87 -13.67 ± 0.55 

Positional Constraints 7.8E-09 13.55 ± 0.23 14.40 ± 0.14 

Conformational Constraints 2.6E-29 0.24  ± 0.03 -0.05 ± 0.01 

S
o
lv

at
io

n
 Free Energy 1.3E-04 -16.69 ± 2.35 -21.66 ± 0.57 

Repulsion 2.4E-02 31.68 ± 0.51 32.29 ± 0.06 

Dispersion 4.7E-01 -33.31 ± 0.52 -33.51 ± 0.06 

Electrostatic 3.8E-05 -15.06 ± 2.34 -20.43 ± 0.55 

 

 

MF-FEB calculations were not able to discriminate between binders and decoys in the 

TRYP test set.  While the mean Gbinding for decoys was more reasonable for non-binding than 

ERAG decoys at -3 kcal mol
-1

, the mean Gbinding for the binders was clearly incorrect at 1 kcal 

mol
-1

.   Interestingly, both the Gsolv and the Gsite correctly discriminated between binders and 

decoys.  In both cases, electrostatic interactions drove discrimination, consistent with the charged 

nature of the trypsin inhibitors.  Additionally, the values of the energy component from 

electrostatic interactions were very low at less than -100 kcal mol
-1

.  As with ERAG, we 

observed that the Gsolv and the Gsite were highly correlated with each other and with the 

electrostatic interaction’s energy components and the VdW dispersion and repulsion components 
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were weakly inversely correlated.  Finally, the Gbinding for TRYP was also largely independent 

of the different energy components, although site positional constraints were weakly inversely 

correlated with Gbinding, suggesting a reduction in entropy upon binding consistent with 

constraining the linear flexible trypsin binders. 

 

Table 7-3 – Discrimination between binders and decoys for Gbinding energy components for the 

TRYP test set.  Highlighted cell have a p-score less than 0.05. 

 

  

Discrimination 

T-test 

 (p-score) 

Mean Energy 

Binders 

 (kcal mol
-1

) 

Mean Energy 

Decoys 

 (kcal mol
-1

) 

Gbinding 1.2E-01 1.16 ± 5.00 -2.96 ± 0.74 

B
in

d
in

g
  
to

 S
it

e Free Energy 6.1E-08 -108.02 ± 10.13 -72.40 ± 2.10 

Repulsion 8.8E-01 31.08 ± 2.35 30.90 ± 0.36 

Dispersion 5.4E-01 -50.74 ± 3.17 -51.76 ± 0.46 

Electrostatic 3.1E-08 -95.02 ± 10.21 -57.92 ± 2.04 

Positional Constraints 3.1E-01 14.26  ± 0.96 14.84 ± 0.54 

Conformational Constraints 5.1E-01 -0.76  ± 0.20 -0.83 ± 0.03 

S
o
lv

at
io

n
 Free Energy 1.1E-06 -109.37 ± 13.00 -69.47 ± 2.25 

Repulsion 4.0E-02 43.94 ± 1.21 42.61 ± 0.13 

Dispersion 1.8E-01 -49.00 ± 1.41 -48.01 ± 0.16 

Electrostatic 4.6E-07 -102.84  ± 12.23 -63.99  ± 2.22 

 

 

Based on the strong correlation between Gsolv and the Gsite and the electrostatic 

interaction, we concluded that the first step in improving the MF-FEB calculations would be to 

improve the calculation of electrostatic interactions.  This conclusion was additionally supported 

in the inability of MF-FEB calculations to discriminate between binders and decoys in the TYRP 

test set, while the Gsolv and the Gsite could discriminate.  Because the energy from the 

electrostatic contributions was so larger, errors in their calculation would have a larger effect on 

the FEB, which was the difference between the two large values.  An error of 10% would only 

vary the Gbinding in the EARG test set by ~1 kcal mol
-1

, while the same error would vary the 

Gbinding in the TRYP test set by ~10 kcal mol
-1

 making a significant difference in 
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discriminating binders for non-binders.  We discuss possible solutions to better model 

electrostatic interaction in Section 8.3. 

 



 

Table 7-4 – Heat map of correlation between FEB energy components for the ERAG test set. 
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Gbinding 1.000 0.179 0.475 -0.099 -0.028 -0.124 -0.111 -0.249 -0.138 -0.015 -0.235 

B
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Free Energy 0.179 1.000 0.106 -0.044 0.942 -0.042 -0.088 0.908 0.035 0.037 0.909 

Repulsion 0.475 0.106 1.000 -0.512 -0.129 0.269 -0.077 -0.095 0.135 -0.161 -0.093 

Dispersion -0.099 -0.044 -0.512 1.000 -0.029 0.178 -0.136 -0.001 -0.303 0.530 -0.027 

Electrostatic -0.028 0.942 -0.129 -0.029 1.000 0.034 -0.057 0.940 0.059 -0.020 0.944 

Positional Constraints -0.124 -0.042 0.269 0.178 0.034 1.000 -0.232 0.016 0.034 0.027 0.010 

Conformational Constraints -0.111 -0.088 -0.077 -0.136 -0.057 -0.232 1.000 -0.035 -0.079 0.014 -0.032 
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Free Energy -0.249 0.908 -0.095 -0.001 0.940 0.016 -0.035 1.000 0.095 0.044 0.994 

Repulsion -0.138 0.035 0.135 -0.303 0.059 0.034 -0.079 0.095 1.000 -0.540 0.045 

Dispersion -0.015 0.037 -0.161 0.530 -0.020 0.027 0.014 0.044 -0.540 1.000 -0.008 

Electrostatic -0.235 0.909 -0.093 -0.027 0.944 0.010 -0.032 0.994 0.045 -0.008 1.000 



 

 

Table 7-5 – Heat map of correlation between FEB energy components for the TRYP test set. 
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Gbinding 1.000 -0.025 -0.160 0.251 -0.197 -0.551 -0.044 -0.347 -0.059 -0.034 -0.343 
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Free Energy -0.025 1.000 -0.232 0.255 0.968 -0.173 -0.117 0.946 -0.098 0.147 0.946 

Repulsion -0.160 -0.232 1.000 -0.736 -0.239 0.041 0.052 -0.171 0.122 -0.156 -0.165 

Dispersion 0.251 0.255 -0.736 1.000 0.214 0.172 -0.250 0.167 -0.198 0.285 0.156 

Electrostatic -0.197 0.968 -0.239 0.214 1.000 0.034 -0.112 0.972 -0.082 0.117 0.973 

Positional Constraints -0.551 -0.173 0.041 0.172 0.034 1.000 -0.183 0.015 0.005 0.001 0.015 

Conformational Constraints -0.044 -0.117 0.052 -0.250 -0.112 -0.183 1.000 -0.098 -0.043 0.004 -0.096 
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n
 

Free Energy -0.347 0.946 -0.171 0.167 0.972 0.015 -0.098 1.000 -0.079 0.156 0.999 

Repulsion -0.059 -0.098 0.122 -0.198 -0.082 0.005 -0.043 -0.079 1.000 -0.761 -0.083 

Dispersion -0.034 0.147 -0.156 0.285 0.117 0.001 0.004 0.156 -0.761 1.000 0.124 

Electrostatic -0.343 0.946 -0.165 0.156 0.973 0.015 -0.096 0.999 -0.083 0.124 1.000 
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Chapter 8 Conclusions and Future Directions 

Chapter 1 introduced computer-aided drug discovery, presented the current challenges 

inherent in virtual screening, and proposed combining virtual screening with MF-FEB rescoring 

as a method of overcoming those challenges.  Chapter 2, Chapter 3, Chapter 5, and Chapter 6 

described the implementation of MF-FEB rescoring and Chapters 4 and Chapter 7 described its 

testing in three systems.  This chapter reviews the seven pervious chapters, discussing their 

findings, how we could have been improved the work done, and what are the next steps in 

improving MF-FEB calculations and binding prediction. 

This chapter is divided into four sections.  Section 8.1 discusses the performance of MF-

FEB rescoring within this work, and evaluates its utility as a drug discovery tool.  Section 8.2 

discusses retrospective improvements to this work.  Section 8.3 discusses the next steps that one 

could take to improve MF-FEB rescoring.  Section 8.4 concludes the chapter by discussing how 

this work informs the improvement of binding prediction. 

8.1 MF-FEB RESCORING AS A TOOL FOR DRUG DISCOVERY 

CADD tools can potentially lower the high cost of drug discovery thereby facilitating 

research for neglected diseases.  (Trouiller, Olliaro et al. 2002; Nwaka and Ridley 2003; Stirner 

2008)  Therefore, the goal of this work was to improve CADD tools by improving the hit rate in 

docking-based virtual screening.  As explained previously, current virtual screening tools, while 

enriching compound databases for potentially active compounds, generate large numbers of false 

positives leading to expensive and potentially fruitless bench-top testing. (Kellenberger, Rodrigo 

et al. 2004; Chen, Lyne et al. 2006; Warren, Andrews et al. 2006; Cross, Thompson et al. 2009)  

While docking programs are able to reproduce experimental binding poses, their scoring 

functions fail to reproduce accurately or correlate with experimental FEB, leading to poor 

enrichment in virtual screening.   The assumption has been that the statistical mechanics 

perturbation based FEB calculations are more accurate than docking scoring functions, but their 
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computational intensity prevents their use in virtual screening. (Alonso, Bliznyuk et al. 2006; 

Gilson and Zhou 2007; Guimaraes and Cardozo 2008; Michel and Essex 2010)  However, Roux 

and coworkers developed a mean field FEB method.  It is amenable to a grid computing 

environment allowing perturbation based FEB calculations to be used in large-scale virtual 

screening projects. (Deng and Roux 2006; Wang, Deng et al. 2006; Deng and Roux 2008)  Our 

hypothesis, therefore, was that the rescoring of docking generated poses with MF-FEB 

calculations would increase enrichment over the docking scoring function. 

We tested our hypotheses using three test sets.  In Chapter 4, we tested our hypothesis 

using the engineered hydrophobic binding pocket of L99A T4 lysozyme with a small compound 

database of 30 compounds.  In Chapter 6, we tested our hypothesis using the ERAG and TRYP 

test sets from DUD, containing 2,428 and 1,587 compounds respectively.  For all test sets, MF-

FEB rescoring improved enrichment over AutoDock4’s scoring function.  However, MF-FEB 

rescoring was only able to discriminate between binders and non-binders, or decoys, in L99A T4 

lysozyme and ERAG test sets.  Additionally, MF-FEB rescoring did not outperform other 

scoring function in the ERAG and TRYP test sets. 

We previously defined a good CADD tool as one that could identify bioactive 

compounds from a virtual chemical library, in a variety of different systems, and in a timely and 

efficient manner.  So, does MF-FEB rescoring meet the four criteria of a good CADD tool?  In 

both the ERAG and TRYP test set, MF-FEB rescoring had a higher success rate than 

AutoDock4’s scoring function, even with the limitations of the MF-FEB calculations, suggesting 

that MF-FEB rescoring can improve the likelihood of identifying hits in a virtual screening 

project and thereby identify bioactive compounds.  However, MF-FEB performance is system 

dependent as shown by comparing the enrichment of the ERAG and TRYP test sets.  In addition, 

MF-FEB rescoring is currently not timely, in that the current runtime for a single target on World 

Community Grid is about six mounts, not including the time required to establish the project.  

Finally, MF-FEB rescoring is not efficient for two reasons.  First, its current implementation 
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involves work unit processing steps that World Community Grid servers could perform, but are 

being performed on the project servers. Additionally, the FEB simulations use the general-

purpose molecular modeling program CHARMM, which could be replaced with a program 

optimized to run MF-FEB calculations.  Second, and most importantly, for both ERAG and 

TRYP there were less computationally demanding docking programs that outperformed MF-FEB 

rescoring in enriching compound databases. 

8.2 IMPROVING DISCOVERING DENGUE DRUGS-TOGETHER 

The objective of this section is to discuss changes we would have made to this project by 

applying the knowledge gained during the course of the project.  Knowledge was gained from 

the experiences of performing virtual screening with docking programs and FEB calculations, 

and from the concurrent advances in the field.  We discuss how we would improve this project in 

two parts.  In Section 8.2.1 we discuss what improvements we would like to have made to this 

project based on what would have been possible at the time we were doing the project.  There are 

changes we would have liked to make to this project that were not possible when the project 

began, for example, the availability of the DUD test sets.  Therefore, in Section 8.2.2 we outline 

what the best practices are for preparing to run a MF-FEB rescoring project using currently 

available tools. 

8.2.1 Improvements to the Past 

There are a number of ways we could have improved the project.  Potential 

improvements can be classified into three categories: first, are modifications to the test set, 

second, are enhancements to our testing of docking programs, and third, are modifications to 

MF-FEB calculations. 

In the optimization of AutoDock4, we used only a small trypsin test set (see Section 

3.1.1) and in the optimization of the MF-FEB calculations we used only the benzene-L99A T4 

lysozyme system ( see Section 3.2.1).  Ideally, we should have developed a unified and diverse 
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test set for docking and MF-FEB optimization that included both binders and non-binders.  This 

ideal test set would have included the L99A T4 lysozyme test set and the trypsin test set, 

allowing for both the comparison to other work afforded by the L99A T4 lysozyme test set and 

the ligand and electrostatic complexity of the trypsin test set.  Additionally, we would have 

added the HIV protease and neuraminidase test sets for the reasons discussed in Section 3.1.2.1.  

Given time and resources, it would have been ideal to measure the FEB of each compound, both 

binder and non-binders, in-house to provide a standardized test set.  An accurate, unified, and 

diverse test set would allow for better optimization for AutoDock4 and the MF-FEB calculations, 

which would have supported or improved the parameters selected in Chapter 3.  The improved 

test set would also have provided early indication of the poor performance of the TYRP test set. 

Ideally, we would have performed the AutoDock4 virtual screening results filtering study 

described in Section 3.1.2 before the launch of Phase 1 of DDDT.  Had we done those tests 

earlier, we would have taken the time to look at the performance of other docking programs in 

the virtual screening of trypsin, our dengue protease stand-in.  Unfortunately, the DUD database 

was not established at the time we were preparing for Phase 1 and our computational resources 

were limited.  We did virtually screen the NCI diversity set and the trypsin test set against 1eb2 

trypsin structure resulting in a close to random distribution of binders, but did not yet understand 

the results in light of selecting ligands to progress from Phase 1 to Phase 2, and were depending 

on MF-FEB rescoring to improve enrichment. 

We would like to have improved the initial testing of the MF-FEB calculations.  

However, the very steep learning curve and high computational demand of the MF-FEB 

calculations prevented us from doing tests then that we would otherwise choose to do now.  We 

would have tested and optimized more parameters on a number of systems (at least eight 

different ligands, half binders and half non-binders) in four different targets as described above.  

Using these systems, we would have done the same work we did in Section 3.2.1 on run time and 

system size, but would have examined other parameters, like the constraint forces, and tested 
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different atomic partial charge models and force fields.  Additionally, we should have spent 

additional time studying the variance in different MF-FEB calculations due to different random 

number seeds, as seen in Section 3.2.1, to better understand its cause.  Finally, given time and 

resources, we would like to have tested MF-FEB rescoring on all the DUD test sets.  A full DUD 

test would have provided more insights into how to improve MF-FEB calculations as different 

targets present different docking and rescoring challenges and may have even shown cases where 

MF-FEB does not improve enrichment.  

Many of the modifications discussed above would have allowed us to identify the 

shortcomings in the MF-FEB calculations earlier in our work.  However, we would have most 

likely spent time addressing those problems, or might have abandoned parts of the project, and 

might never have implemented Phase 2.  Had we not done the MF-FEB calculations on World 

Community Grid, we would have been prevented from gaining the insights provided by 

rescoring the ERAG and TRYP test set. 

8.2.2 Best Practices for Virtual Screening with MF-FEB Rescoring   

Based on the experience gained during this project, this section describes the best 

practices for performing a MF-FEB rescoring project.  This section also focuses on the best 

practices for preparing for a virtual screening project, thereby ensuring the best use of MF-FEB 

rescoring. 

Based on the results of this and other works, the docking programs and MF-FEB 

rescoring performances are target dependent. (Kellenberger, Rodrigo et al. 2004; Kontoyianni, 

McClellan et al. 2004; Warren, Andrews et al. 2006; Cross, Thompson et al. 2009)  Therefore, 

before committing the computational resources required for MF-FEB rescoring, it is important to 

determine the potential performance of the system in a virtual screening project.  Bench marking 

the system requires first obtaining or constructing a test set, second determining which docking 
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program or scoring function provides the best enrichment, and third determining how well the 

MF-FEB calculations can discriminate between binders and non-binders of the target. 

The first step in testing a target system is to make a test set.  The DUD test sets are 

examples of good test sets.  The test set for the target system should be assembled containing 

binders and non-binders, or binders and decoys.  Binders should be only a few percent of the 

total system, modeling the few binders in a virtual screening library.  Ideally, the test set would 

come from experimental data on the target, for example a high throughput screening experiment.  

If that data were not available, data from related systems could be used, as we used trypsin as a 

stand-in for dengue protease.  The test set should include at least one co-crystal structure of a 

ligand bound to the target, to test docking program’s accuracy at pose prediction, and for 

benchmarking the accuracy of the MF-FEB calculations given an ideal docking pose.  

Additionally, a small subset, 4 to 10 compounds, of binder and non-binders should be assembled 

to parameterize and test the MF-FEB calculations. 

 In the second step, the test set should be virtually screened using different docking 

programs and scoring functions, determining which programs or function provides the best 

enrichment.  For example, the full test set compiled in step one could be virtually screened using 

the freely available docking programs of DOCK (Ewing, Makino et al. 2001), AutoDock4 

(Huey, Morris et al. 2007; Morris, Huey et al. 2009), and Vina (Trott and Olson 2010).  The 

selection of which docking programs to test can be focused using data on related systems present 

in comparative docking studies like Warren et. al. (Warren, Andrews et al. 2006) and Cross et al. 

(Cross, Thompson et al. 2009).  The docking programs should be tested using the same 

parameters and search volumes that will be used in the full virtual screening project.  Using the 

docking program with the best enrichment will increase the probity that binders will be selected 

for rescoring as current grid computational resources prevent MF-FEB rescoring for more than a 

few thousand compounds. 
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The third and forth steps is to optimize the MF-FEB calculations and then to determine if 

the MF-FEB calculations can discriminate between binders and non-binders of the target.  This 

testing is done using the smaller test set compiled in the first step.  The desired result is to see 

discrimination between binders and non-binders and have a difference in mean FEB comparable 

to the ERAG results to minimize overlap in the binder and non-binder populations, thereby 

reducing false positives.  The MF-FEB parameters should be optimized for convergence.  MF-

FEB rescoring should not be used if convergence or effective discrimination cannot be achieved. 

Based on the results of this work, the targets that are most likely to be successful in MF-

FEB rescoring will be those that do not undergo significant conformational changes upon ligand 

binding and whose ligands are not charged. 

8.3  FUTURE DIRECTIONS 

The goal of this work was to improve drug discovery tools by rescoring docking 

generated poses with MF-FEB calculations to improve virtual screening enrichment rates.  

However, while improving enrichment, MF-FEB rescoring was unable to discriminate 

effectively between binders and non-binders in the TRYP test set. (Chapter 7)  This section 

proposes avenues of future research to address this limitation.  The inability of the MF-FEB 

calculations to discriminate could arise from inaccuracies in the modeling of the system, 

parameter and force field selection, fundamental problems in the MF-FEB calculations, or any 

combination of the three.  MF-FEB calculations do not model the energy contribution from 

conformation changes in the target that are not in the site system’s explicit model or that do not 

occur within the simulation time scale. (See Chapter 3, Chapter 4)  However, trypsin is stable 

receptor (Guvench, Price et al. 2005) that should have performed well in MF-FEB calculations.  

Therefore, target flexibility was likely not the problem.  We will assume, for this section, that the 

fundamental theory behind the MF-FEB calculations was appropriate, which is supported by this 

work (see Chapter 1, Chapter 4, Chapter 7) and others (Deng and Roux 2006; Wang, Deng et al. 
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2006).  Therefore, the problem of poor discrimination in the TRYP test set likely resulted from 

the parameterization or force field selection. 

As discussed in Chapter 7, the Gsite and Gsolv absolute values were significantly larger 

in the TRYP test set than in the ERAG test set, while their mean difference, Gbinding, remained 

within an experimentally appropriate range. Those larger energies in the TRYP test set correlated 

with large energy contributions from the charge-charge interactions, which suggested that the 

accuracy of the trypsin binding calculations would be largely influenced by the accuracy of the 

charge-charge interaction component. (See Table 7-2, Table 7-3, Table 7-4, and Table 7-5)  The 

dependence on electrostatic interactions for binding was consistent with the structure of trypsin 

and its inhibitors; this has also been demonstrated in other work. (Shi, Jiao et al. 2009)  On 

average, Gbinding values were only few percent of the total Gsite and Gsolv values.  Therefore, 

a small error the calculations of Gsite or Gsolv would be sufficient to change the binding status 

of ligand.  Since Gsite and Gsolv were largely composed of the charge-charge interaction in the 

TRYP MF-FEB calculations, improvement in the accuracy of their calculations could improve 

MF-FEB’s ability to discriminate between binders and non-binders in the TRYP.  The charge-

charge interactions for the FEB were determined by the decoupling of those interactions as 

described by the CHARMM force field using Coulomb’s Law and the partial charges assigned to 

the atoms.  Therefore, to improve these calculations could require modifying the decoupling 

steps to increase sampling, modifying the partial charges, and/or changing the force field. 

The following sections explore improving MF-FEB’s treatment of charge-charge 

interactions.  Section 8.3.1 describes the tests sets for analyzing and improving the MF-FEB 

calculations.  Section 8.3.2 discusses modifications to the MF-FEB calculations that will be 

tested.  Section 8.3.3 discusses the potential results and conclusions of those tests. 
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8.3.1 Test systems 

In order to improve the treatment of charge-charge interactions in MF-FEB calculations, 

test sets should be compiled that can examine the accuracy of the FEB prediction for trypsin 

binders, test discrimination between trypsin binders and non-binders, and ensure the MF-FEB 

calculations retain their performance established in other systems.  The test sets should be small 

as the MF-FEB calculations are computationally intensive and the calculations will need to be 

preformed multipliable times under different conditions.  The test set should use experimental 

determined structures, because they represent the ideal docking result and, therefore, remove 

possible errors arising from the ligand pose in the MF-FEB calculations. (See Chapter 4)  The 

test set would be composed of twelve protein:ligand systems from three groups; trypsin binders, 

trypsin non-binders, and the control systems. 

The first group would contain four trypsin binders covering a range of FEB at ~2 kcal 

mol
-1

 steps and include benzamidine.  The ~2 kcal mol
-1

 step is greater than the average error for 

MF-FEB calculations, as determined in section 4.2, allowing the FEB predictions to not only be 

checked for accuracy, but to be check for accurate ordering of binders.  Benzamidine provides a 

binding standard for comparison with the non-binders discuses below.  The systems in this group 

include 1G36 ( Gexp = -10.2 kcal mol
-1

  (Nar, Bauer et al. 2001)), 1EB2 ( Gexp =  -8.2 kcal mol
-1

 

(Liebeschuetz, Jones et al. 2002)), 1BTY ( Gexp =  -7.2 to -6.8 kcal mol
-1

 (Katz, Finer-Moore et 

al. 1995)), and 1UTN ( Gexp =  -4.7 kcal mol
-1

 (Leiros, Brandsdal et al. 2004)).  All these ligands 

are basic, consistent with the chemistry of trypsin inhibitors.  

The second group would contain four systems of two compounds that did not bind to 

trypsin each with two poses.  These systems determine if modifications the MF-FEB calculations 

would improve discrimination between binders and non-binders and examine the modeling of the 
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charge-charge interactions.  The non-binders would be isopropylbenzene and benzoic acid.
19

  It 

is expected that in the docked structures neither the propyl group of isopropylbenzene nor the 

carboxylic group of benzoic acid will overlay the diamine of benzamidine, as the P1 pocket is 

negatively charged.  Therefore, two poses will be used for each non-binding ligand.  The first 

pose will be the docking-generated pose, to examine the FEB predictions based on the 

interaction suggested from docking and mimicking virtual screening results.  The second pose 

would come from modifying the benzamidine in 1BTY to the two ligands to examine the 

modeling of the charge-charge interaction between the functional groups of the ligands and the 

P1 site.
20

 

The last group of four systems would be a control set to insure that modifications made to 

the MF-FEB calculations were not biasing the FEB predictions to discriminate trypsin binders 

from non-binders, but were improving the accuracy of the MF-FEB prediction.  This group 

would contain two binding and two docked non-binder systems from the L99A T4 lysozyme test 

set.  The binders would be benzene ( Gexp =  -5.2 kcal mol
-1

 (See Section 4.2)) and ethylbenzene 

( Gexp =  -5.8 kcal mol
-1

, 1NHB (Morton, Baase et al. 1995; Morton and Matthews 1995) . (See 

Chapter 4)  The benzene system allows for comparison to previous optimization work. (See 

Chapter 3)  Ethylbenzene serves not only as a positive control for binding to L99A T4 lysozyme, 

but also allows for limited comparison with the trypsin non-binder controls.  The group’s non-

                                                 

19
  The non-binding compounds could have been obtained the literature, but most trypsin 

non-binders for that source were complex molecules developed for thrombin or factor X 

inhibition.  Therefore, it was decided to propose ligands that based on their chemistry should not 

bind, yet would enable focused inquires into the charge-charge interaction.  However, their non-

binding status should be determined experimentally. 

20
 The positional constraints in the MF-FEB calculations should the set to the engineered 

poses, and not the equilibrium pose to insure interactions between the functional group and the 

P1 pocket. 
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binders should be benzamidine and benzoic acid, consistent with the trypsin binder and non-

binder controls.  

8.3.2 Methods 

This section discusses potential modifications to the MF-FEB calculations to improve 

discrimination in the TRYP test set.  The general approach would be to test each modification 

independently, using the test set described in section 8.3.1, and comparing the MF-FEB 

predicted energies to the experimental FEB for each system.  As the test set is composed of 12 

systems, simulations can be performed using the high-performance computing resources at 

TACC as described in Section 2.1.2.  Modifications to the MF-FEB calculations would include 

increasing the number of decoupling steps to improve sampling, modifying the partial charges, 

and changing the force field. 

In the current implementation of the MF-FEB calculations, the  steps for decoupling the 

charge-charge interaction were 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1. (See Chapter 2)  

These steps provided sufficient sampling for convergence of the WHAM analysis for most MF-

FEB calculations. (See Section 6.2.3.2 for a discussion on MF-FEB failure rates.)  These steps 

were selected from work with the L99A T4 lysozyme system, which did not have a charged 

binding site.  (Deng and Roux 2006)  In the L99A T4 lysozyme system, plots of charge-charge 

interaction energy vs.  step were linear in the site calculation for benzene and indole, but non-

linear in the bulk calculation for benzene and indole, and non-linear in the site and and bulk 

calculations for phenol. (See Figures 6, 7, and 8 in (Deng and Roux 2006))  As interactions 

between the ligand and the target were coupled, the charge-charge interaction energies changed 

as if the charges were moved together.  The charge-charge interactions were modeled using 

Coulomb’s Law; therefore, the energies increased as lambda approached one and stopped at the 

energy based on the physical distance between the charges.  In trypsin, a plot of the charge-

charge interaction energy vs.  step would be expected to be non-linear, similar to curves for the 

bulk and polar ligand site calculations from the L99A T4 lysozyme system.  It is possible that 
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when large charge-charge interactions were present, the transition for  between 0.9 and 1 was 

under-sampled in our current algorithm.  To test if sampling frequency was causing errors in the 

charge-charge interaction energy of MF-FEB simulations, we would perform the MF-FEB 

calculations adding additional  steps in the 0.9 to 1 range distributed using a 1/x relationship. 

Different partial charge assignment methods have been tested with the MF-FEB 

calculations and showed only small differences in FEB predictions. However, these partial 

charge comparisons have only been reported for the benzene-L99A T4 lysozyme system. (Deng 

and Roux 2006)  Therefore, different partial charge models should be tested in the trypsin system 

using the test set described in section 8.3.1 to evaluate the impact of partial charge models on 

FEB predictions. There are several of methods for assigning partial charge that can be tested, 

from the empirical to the quantum mechanical.  The testing of different semiempirical partial 

charge models for the ligands would begin with those available in Antechamber (Wang, Wang et 

al. 2006) and include the TPACM4 charge set, which was specifically developed for the GAFF 

(Mukherjee, Patra et al. 2011).  Attention will be paid to the partial charges on benzamidine 

diamine, ensuring that the charges were distributed according to the resonance structure and that 

the positive charge was distributed between the amine nitrogens and the shared adjacent cationic 

carbon.  Computationally more demanding ab-initio quantum mechanical methods for assigning 

partial changes should be tested (e.g. SCF/6-31G*, MP2/cc-pVTZ) as opposed to the quicker 

empirical and elector population based methods; however, recent studies showed little 

differences between free energy of solvation calculations using quantum mechanical and other 

partial change assignment methods. (Mobley, Dumont et al. 2007; Zhou, Huang et al. 2010) 

As discussed in Section 3.2, different force fields were tested with the MF-FEB 

simulation and produced Gbinding predictions that were within the error of the calculations; 

however, these studies only examined the lysozyme system. (Wang, Deng et al. 2006)  

Therefore, a systemic test of different force fields using the test set described in section 8.3.1 

would allow for effect of the force field on MF-FEB simulations to be determined.  Initially,  the 
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AMBER force field (Cornell, Cieplak et al. 1995) from which the GAFF force field was derived 

would be examined. (Wang, Wolf et al. 2004)  Next polarizable force fields (PFF) would be 

tested to reduce errors in the charge-charge interactions in the TRYP test set.  The PFF models 

the dipole moment and polarizability of atom by extending the force field’s non-bonding 

interaction terms. (Halgren and Damm 2001; Lopes, Roux et al. 2009)  PFFs have been used to 

determine the free energy of solvation for methane, ethane and methanol using free energy 

perturbation methods, alchemy and annihilation, with an error of 0.13 kcal mol
-1

. (Kaminski, 

Ponomarev et al. 2009)  PFFs have been used to improve the FEB prediction of benzamidine to 

trypsin, but not using MF-FEB calculations. (Jiao, Golubkov et al. 2008)  CHARMM already has 

two polarizable force fields (Anisimov, Vorobyov et al. 2004; Patel and Brooks 2004; Patel, 

Mackerell et al. 2004) that could be used for testing PFF with MF-FEB calculations; however, 

ligand parameterization may be a challenge as ligand parameters are not included in the standard 

force field and both PFFs are under development (Lopes, Roux et al. 2009).  Regardless of 

implementation, using a PFF will likely increase the runtime of the MD simulations especially 

when employing a fluctuating charge model PFF. (Lopes, Roux et al. 2009) 

8.3.3 Potential Results and Conclusions 

The challenge of modeling charge-charge interactions is that the absolute energetic 

contribution to FEB from charge-charge interactions for a system cannot be determined 

experimentally.  Therefore, success in the modification of charge-charge interactions in MF-FEB 

calculations can only be judged on the modification’s ability to “better” reproduce the 

experimentally determined FEB and not on their ability to model the charge-charge interactions. 

Ultimately, making these modifications is akin to changing the weight of empirical parameters, 

thereby reducing these modifications potential effectiveness in other systems. 

The ideal result would be to be to have a modification to the charge-charge model of the 

MF-FEB calculations that would accurately predict the FEB for each binder in the test set and 

predict the non-binders FEB to be  ~0 kcal mol
-1

 or greater.  A good result would contain small 
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errors in the accuracy of the FEB prediction, but would correctly rank-order the trypsin binders, 

and discriminate the binders and non-binders with the minimum mean separation of ~7 kcal mol
-

1
 (i.e., the difference between non-binding and the mean FEB of the trypsin binders).  The 

minimally acceptable result would be to correctly discriminate binders from non-binders.  An 

ideal result would indicate an improvement in the MF-FEB calculations, which could then be 

tested with a larger test set to determine the robustness of the modification.  However, good or 

acceptable results would indicate the MF-FEB calculations needed further improvement in order 

to have the predicted FEB match the experimental FEB.  A failure to obtain improvement would 

suggest that a combination of modifications should be tested, that other parameters (e.g. the 

constraint model) should be tested, or that there were fundamental problems in the MF-FEB 

approach and/or the force fields. 

The above suggestions to improve the MF-FEB calculations (i.e., modifying the 

decoupling step size, modifying the partial charges, and changing the force field) were presented 

in order of implementation difficulty.  However, the most difficult implementation, PFFs, may 

provide the best improvement to MF-FEB calculations.  Increasing the  step size may improve 

the accuracy of the charge-charge inter interaction, but the energy curve was not asymptotic  as  

approached one.  Therefore, the energy between  steps 0.9 and 1 as currently implemented may 

be sufficient.  Changes in partial charge assignment should only cause scaling of the energy 

determined from Coulomb’s Law for any pairwise interaction.  Therefore, unless there were 

significant changes in the distribution of the partial charges for different models, it may be 

difficult for charge models to improve the demarcation between binders and non-binders.  It is 

most likely that the force field will need to include changes in polarization as charged ligands are 

brought near a charged binding site.  PFFs have been used to improve the FEB prediction of 

benzamidine to trypsin (Jiao, Golubkov et al. 2008), and it has been shown that the FEB 

correlates with the polarizability of the ligand. (Shi, Jiao et al. 2009)  Therefore, it is most likely 
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that PFF will improve the ability of MF-FEB calculations to discriminate binders from non-

binders in charged systems. 

8.4 IMPROVING DRUG DISCOVERY TOOLS 

Ultimately, it is our ability to accurately predict solubility and binding that will allow us 

to effectively use computational methods for drug discovery.  The goal of this section is to 

examine the impact of this work on the field of virtual screening and FEB predictions, and 

suggest what directions the field may take in improve FEB predictions.  

The findings of this work are significant to the fields of virtual screening and FEB 

predictions.  The MF-FEB rescoring of the ERAG and TRYP represent the largest 

implementation of perturbation free energy binding calculations so far.  Previous studies have 

been small (< 60 compounds) and largely methods orientated (Deng and Roux 2009; Michel and 

Essex 2010),  however this work used two orders of magnitude larger test sets that could be 

compared to docking scoring functions. 

The field recognizes the challenges of accurate FEB prediction both in the error in the 

predictions and in the limitations of the force fields (Merz 2010; Michel and Essex 2010), and 

the difficultly of modeling solvation and entropy in docking scoring functions.  Nevertheless, it 

has been a common assumption that  rigorous perturbation based FEB calculations are “better” 

than empirical scoring functions uses by many docking programs due to their sampling of micro-

states to determine the FEB. (Alonso, Bliznyuk et al. 2006; Gilson and Zhou 2007; Guimaraes 

and Cardozo 2008; Michel and Essex 2010)   However, this work has shown that this assumption 

is incorrect in the case of MF-FEB rescoring, and that perturbation based FEB calculations 

perform similarly to empirical scoring functions in that they produce false positives and perform 

differently in different systems.  The continual presences of a large number false positives in any 

virtual screening project using any scoring method suggests a fundamental problem in our 
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computational models, be it in the description of the molecules (e.g., force fields), or in our 

approach to modeling binding both mathematically and in simulation. 

We currently are unable to accurately and robustly predict the absolute FEB using 

empirical methods, be it scoring functions, LIE or force fields, because all empirical methods are 

limited by their test set.  Therefore, until first principles methods can be used, all methods will 

fail when they are used for a target they cannot model.  Research is being done to include QM 

modeling in CADD (Zhou, Huang et al. 2010), but, like SM approaches to FEB prediction, our 

ability to implement it is limited by the computational power available to the researchers. 

Nevertheless, we can improve our approach to empirical parameterization and the 

development and test of SM-FEB methods by including non-binders in our training set.  While a 

few non-binders have been used in the testing of perturbation based FEB methods (Deng and 

Roux 2009; Michel and Essex 2010), most docking scoring functions do not.  It should be no 

surprise when a mean score for a virtual screening project suggests that most compounds in the 

compound database are binders, when the scoring function is parameterized to find binders.  

Therefore, the next improvement in the field of drug discovery may not be a better method of 

determined bindings, but a more effective method of determining non-binders, because a few 

positive results with a number of false negatives is more useful to drug discovery then trying to 

find a few true positives hidden in among many false positives.   
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Summary of Dissertation 

 

Current docking programs can accurately reproduce experimentally determined binding poses of 

small molecules to macromolecular targets.  However, the empirical based scoring functions of 

docking programs do not accurately predict the free energy of binding, leading to large numbers 

of false positives when docking programs are used for virtual screening.  To improve virtual 

screening enrichment, mean field perturbation based free energy of binding calculations were 

coupled with a traditional docking program to rescore docking generated poses.  The rescoring 

method was tested in the L99A T4 lysozyme system and the Database of Useful Decoy’s trypsin 

and estrogen receptor agonists test sets.  IBM’s World Community Grid was employed due to the 

computational demands of the free energy of binding calculations launching the projects 

Discovering Dengue Drug-Together and Influenza Antiviral Drug Search.   Although rescoring 

docking generated poses with free energy of binding calculations consistently improved 

enrichment in all test sets, rescoring did not out perform all scoring functions.   
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