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Social Network Analysis (SNA) has been applied in a variety of scientific fields. 

In particular, SNA has been utilized with Medicare data to study the structure of 

physician networks. We utilized SNA to elucidate the structure of physician networks 

derived from Medicare data, to gain a better understanding of variation in treatment 

patterns ascertained from Medicare data. This was in service of a fuller exploration of 

utility of SNA use on networks derived from Medicare data. With the main context being 

the use of minimally invasive breast biopsy among physicians in Texas, our aims were to 

assess whether network structure, as identified by SNA, and measures derived from these 

networks, are useful as supplements to standard statistical models such as hierarchical 

regression. Further, we aimed to build social network models, specifically exponential 

random graph models and network autocorrelation models, in exploring the structure of 

physician networks and in determining if social relationships affect the outcome of 

interest. Our results reveal that network analysis has potential in not only controlling for 

variation in regression models but in also highlighting the importance of physician 
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relationships and network positions in health outcomes and health outcomes research. 

However, a better understanding of the interpretation of these physician networks derived 

from Medicare data is needed in order to fully tap into the potential of network analysis 

in health services research.   
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SECTION 1: BACKGROUND 

Section 1.1:  Introduction and Brief History of Social Network Analysis 

People are “embedded in thick webs of social relations and interactions” 

(Borgatti, Mehra, Brass, & Labianca, 2009). This idea has garnered much attention in 

social science and has led to the formal study of social relations in networks. Such a web 

of social relations, or a social network, can be described as a “specific set of linkages 

between a defined set of social actors” (Walker, 1969). Social Network Analysis (SNA) 

provides a formal framework within which to study these social relations. Formally, 

social networks are represented as graphs of nodes (actors) and edges (relationships) that 

mathematically represent the social relations, linkages, or interactions between these 

nodes.  

This mathematical representation allows the tools of graph theory to be used to 

formalize and analyze these networks, and the social relations they represent (Hollstein, 

2014). Specifically, network measures such as degree, centrality, and transitivity provide 

numerical values that represent social structure and social phenomena. For example, 

degree, a basic network measure describing the number of connections a node has to 

other nodes within a network, can be used to describe the potential for social activity for 

that node (Robins, 2015).  

Some believe that SNA traces its beginnings at least to Jacob Moreno and his 

work in the 1930s. Moreno was a developmental psychologist studying role assignment 

of elementary school students. In the course of his work, he developed a methodology for 

collecting data that has become widely used in SNA (Carrington, 2014; T.W. Valente, 
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2010). His methodology involved the collection of names of students deemed to be fit for 

certain roles, such as leader, friend, etc. These names were given by students, who would 

“nominate” their peers for the roles listed above (T.W. Valente, 2010). The data produced 

from this methodology provided insight into the social structure of the groups of students 

studied by Moreno. From this information, he identified students who were likely to be 

more socially popular and mentally healthy, as defined by receiving more nominations 

for friends and leaders (T.W. Valente, 2010). He was then able to target therapeutic 

activities to students who were less mentally healthy (Carrington, 2014). Further, Moreno 

is credited with having coined the term “sociometry”, the methodology described above, 

and with developing the “sociogram”, a visual representation of his data (Carrington, 

2014).  

By the 1950s, the relationship and similarity between the sociogram and graph 

theory had become widely understood. Various research groups began exploring and 

applying graph theoretic concepts to their work on social structure within communities. 

Two prominent groups became centers for development of this methodology: the 

Manchester Anthropologists and the Harvard Structuralists (Carrington, 2014; T.W. 

Valente, 2010). The Manchester Anthropologists applied sociometric methodologies and 

ethnographic methods to study urban life in Britain and Africa (Carrington, 2014; T.W. 

Valente, 2010). Aware of Moreno’s work, they applied his methods to visualizing and to 

analyzing sociometric data (Carrington, 2014). Work emerged from this group suggesting 

that structured interactions between individuals within a specific urban community affect 

everyday life (T.W. Valente, 2010). The second group, the Harvard Structuralists, used 

sociograms to visualize and analyze social structures of various communities, specifically 
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communities in the Deep South (Carrington, 2014). These structuralists, so called 

because of their emphasis on network structure, became foundational in the development 

of a social network research paradigm within the United States (T.W. Valente, 2010). 

From the 1960s to the present, SNA has seen an increase in scope, not only in the 

fields to which it has been applied, and in which work has been published, but also in 

terms of the mathematical methodologies developed for its application (Carrington, 2014; 

T.W. Valente, 2010). Presently, SNA sees utility in multiple disciplines such as 

economics, epidemiology, and physics (Carrington, 2014). This increase in scope is 

related to the increasing and continued development and sophistication of statistical and 

mathematical models utilized to analyze networks (Carrington, 2014). As Carrington 

states, “the use of mathematical models in social networks analysis supports incredible 

cross-fertilization across substantive areas” (2014).  

Section 1.2:  Social Network Analysis in Health Care 

Research in healthcare utilizes SNA methodology in various ways. Valente 

divides the use of SNA in health care into five categories: the study of social support and 

its impact on health; the study of HIV/STDs transmission; examination of community 

health interventions; research on inter-organization collaborations to improve health 

service provision; and understanding health provider performance (2010). As an example 

of these applications, network methodology allows identification of key players and 

opinion leaders within a network. One study identified physicians who were such key 

players in their network, and used these key players to promote vaginal birth after a first 

cesarean (VBAC) birth (Lomas et al., 1991). Hospitals that utilized these identified key 
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players as change agents had higher VBAC rates as compared to hospitals that did not 

utilize these key players.  

 Another example of SNA utilization in health care involved understanding how 

physicians adopt new innovations. Health care is an evolving field, with new innovations 

and treatments constantly being developed and introduced. In a classic study of diffusion 

of innovation (the process whereby new ideas spread within networks), prescription 

patterns of a new drug, tetracycline, among physicians in private medical practices in 

Illinois were studied (Coleman, Katz, & Menzel, 1957). The authors concluded that early 

adopters of tetracycline tended to be physicians who were more integrated into their 

networks: i.e., the networks in which these adopters practiced were cohesive (Coleman et 

al., 1957). Multiple re-analyses have been conducted of the same data set, resulting in a 

variety of apparently contradictory findings (M Kilduff & H. Oh, 2006). One study found 

that it was not cohesion but rather structural equivalence, or similarity “in patterns of 

relations with other individuals”, that impacted early adoption (Burt, 1987; M Kilduff & 

H. Oh, 2006). Subsequent analyses have found that neither cohesion nor structural 

equivalence affected adoption, or alternatively that both cohesion and structural 

equivalence affected adoption (P.V. Marsden & J. Podolny, 1990; Strang & Tuma, 1993; 

van den Bulte & Lilien, 2001). The authors of these papers used different approaches and 

perspectives, which lead to their differing results. However, the majority of the authors 

alluded to physician relationships affecting the adoption of the new drug, in one way or 

another.  

Section 1.3:  Social Network Analysis and Medicare Data 
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SECTION 1.3.1: BACKGROUND 

SNA has been used in studies utilizing administrative databases such as Medicare. 

One particular study has validated a method using Medicare data in the identification of 

collaborative relationships (Barnett, Landon, O'Malley, Keating, & Christakis, 2011). In 

this study, Barnett et al. utilized Medicare data from a Boston Hospital referral region 

(2011). They created a physician network where nodes are physicians and two physicians 

are said to have a tie, or share a patient, if both physicians submit a claim for that same 

patient (Barnett et al., 2011). This Medicare derived network was compared to a network 

derived from a web-based questionnaire asking about a physician’s collaborative 

relationships. Barnett et al. found that the greater the number of shared patients, the more 

likely it is that the two physicians have a collaborative relationship (82% with nine shared 

patients) (2011). 

 The above method has been applied in a variety of studies using administrative 

databases to create and to study networks. One study utilized this method to identify 

professional physician collaborative networks within hospital referral regions (HRR) 

(Landon et al., 2012). Network characteristics, such as degree, were compared and found 

to vary between physician collaborative networks (Landon et al., 2012). Another study 

utilized the Barnett et al. SNA methodology to help identify potential accountable care 

organizations (ACOs), suggesting that the networks discovered using SNA methodology 

and Medicare data were suitable candidates for ACOs (Landon et al., 2013). Another 

study examined how hospital-based physician networks and their structure affect 

spending and utilization of hospital services (Barnett et al., 2012). Barnett et al. found 

that physicians with higher normalized degree (number of physicians whom they share 
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patients, divided by the total number of patients shared with other physicians) are more 

likely to have higher spending and health care utilization (2012).  

 One study sought to explore how network communities, or tightly connected sub-

networks within a physician network, impact the treatment of prostrate cancer (Pollack, 

Weissman, Bekelman, Liao, & Armstrong, 2012). The authors found that prostatectomy 

rates differed between communities within a physician network (Pollack et al., 2012). 

Using a similar methodology, another study expanded this work to determine if urologist 

network characteristics such as community assignment and degree affected rates of 

complication after radical prostatectomy (Pollack, Wang, et al., 2014). Using a 

generalized linear mixed-effects model with patients nested within urologists and 

urologists nested within network communities, this study suggested variation of 

complication rates across urologist communities. Furthermore, urologist’s average degree 

significantly affected complication rates (Pollack, Wang, et al., 2014).  

 Another study utilized SNA methodology to determine whether providers who 

have more shared patients with other providers provide higher quality of care at lower 

cost (Pollack, Frick, et al., 2014). Using network methodology, the authors created a 

metric called “care density”, a patient-level measure describing “the amount of patient-

sharing among his or her outpatient providers” (Pollack, Frick, et al., 2014). The authors 

suggested that those providers with higher “care density” tend to have aspects of higher 

quality of care and lower cost of care (Pollack, Frick, et al., 2014).  

 Utilizing SNA methodology to create networks using Medicare data, Casalino et 

al. attempted to determine if physician network characteristics affected ambulatory care-

sensitive hospital admissions (ACSAs) (2015). ACSA’s are admissions for disease 
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processes, such as congestive heart failure, that are preventable with appropriate primary 

care (Casalino et al., 2015). Physician networks were built using the methodology 

described in Barnett et al., resulting in 417 physician networks across five states 

(Casalino et al., 2015). The authors found that ACSA rates varied significantly between 

networks, with a 46% difference in rates of admission between the communities at the 

25th percentile and 75th percentiles of admission performance (Casalino et al., 2015). 

Conducting a multivariate analysis, they found that network structure characteristics, 

such as number of primary care physicians, affected ACSA rate, suggesting that networks 

with larger number of primary care physicians have higher ACSA rates (Casalino et al., 

2015). Within the same model, they found that a physician’s degree significantly and 

positively affected ACSA rate; however, this effect was small (0.003) (Casalino et al., 

2015).  

 A further study utilized SNA methodology to explore physician collaboration 

networks, and also utilized exponential random graph models (ERGMs, see Section 5) to 

understand underlying structures of these physician collaboration networks (Uddin, 

Hossain, Hamra, & Alam, 2013). Further, Uddin et al. related network measures, such as 

density (proportion of observed edges over total possible number of edges), to total 

hospitalization costs and to readmission rates. The purpose was to explore correlations 

between physician collaboration and patient outcomes (2013). This study concluded that 

density of physician collaboration networks is positively correlated with hospitalization 

costs and readmission rates (Uddin et al., 2013). The ERGMs used in this study revealed 

that the 2-star parameter (see Section 5) has significant impact on hospitalization costs 

(Uddin et al., 2013). Furthermore, Uddin et al. assessed the variation in healthcare 
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spending and readmission rates between community networks (Uddin, Kelaher, & 

Piraveenan, 2015). This study suggests that spending and readmission rates vary across 

physician communities, and that average number of nodes per community is positively 

correlated with readmission rates (Uddin et al., 2015). 

 Moen and colleagues studied hospital specific networks derived from Medicare 

data, using SNA methodologies, to understand physician adherence to use of implantable 

defibrillators (ICDs) (Moen, Austin, Bynum, Skinner, & O'Malley, 2016). The authors 

found that centrality measures such as degree do not have an effect on ICD adherence 

(Moen et al., 2016). Moen et al. utilized ERGMs to examine homophily (the tendency for 

similar individuals to form ties) within their physician networks (2016). Results varied 

between hospitals. As an example, at one hospital, St. Mary Medical Center, pairs of 

cardiologists and emergency physicians were more likely to form ties as compared to 

other specialties (Moen et al., 2016). 

SECTION 1.3.2: LIMITATIONS AND OPPORTUNITIES 

Many of the studies mentioned above utilized basic bivariate statistics to study 

SNA metrics. Several employed logistic regression or multi-level models with SNA 

metrics as main effects. However, opportunities still exist in this area, as most studies 

focus on one level of analysis (network level, community level, or physician level, see 

Section 2), or one network metric (degree or density), to the exclusion of others. For 

example, in the study of Pollack et al. on prostatectomy rates, the density of a community 

could have been used as an additional explanatory variable in the logistic regression, to 

understand whether cohesive communities have higher or lower prostatectomy rates 

(2012).  
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 Further, to the best of our knowledge, there is a lack of research as to whether 

network communities can be used to supplement standard statistical analysis such as 

hierarchical regressions. In hierarchical regression using Medicare data, hospitals, referral 

regions, or service areas are often utilized as levels within which physicians are nested. 

Network communities are another level within which physicians could be nested, but the 

impact of using this level has not been systematically evaluated. Nor has there been 

formal comparison of the explanatory power from using different types of levels.  

 Another aspect of SNA that many current studies utilizing Medicare data do not 

address, by nature of their analysis plans, is the dependency structure of social networks. 

Network measures on individual actors have inherent interdependency, as the data is 

itself relational (Kolaczyk, 2009). To understand and to leverage these dependencies in 

examining network structure requires modeling tools such as ERGMs. Furthermore, 

network autocorrelation models could also be utilized in such a setting to model how 

network structures can affect outcomes, while accounting for network dependencies.  

Section 1.4:  Overview of Minimally Invasive Breast Biopsy Context 

In this work, we wish to address the limitations and opportunities outlined in 

Section 1.3.2. The context in which we examine the extension of the use of SNA in 

Medicare data is the rate of use of minimally invasive breast biopsy (MIBB), as recorded 

in Medicare data.   

In 2009, the National Comprehensive Cancer Network (NCCN) set 

recommendations that at least 90% of initial diagnostic biopsies for breast or 

mammographic abnormalities be minimally invasive (Bevers et al., 2009). Compared 
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with open (operative) biopsy, MIBB offers several advantages such as lower cost and 

lower complication rates (Verkooijen et al., 2002). However, recent studies have 

demonstrated that MIBB rates for initial biopsies are well below the 90% recommended 

in the NCCN guidelines (Breslin et al., 2011; Clarke-Pearson et al., 2009; Holloway, 

Saskin, Brackstone, & Paszat, 2007; Williams et al., 2011; Zimmermann et al., 2013). 

Zimmerman et al. characterized regional variation in the use of MIBB (2013). Another 

study demonstrated that significant variation in the use of MIBB exists within and 

between facilities and between physicians (Tamirisa et al., 2015). After adjusting for 

surgeon factors, the use of MIBB ranged between facilities from 7.5% to 96.0% (median 

= 49.2%). After adjusting for hospital factors and surgeon characteristics, the use of 

MIBB ranged between surgeons from 8.0% to 87% (median = 50.9%) (Tamirisa et al., 

2015).   

It is known that physician relationships affect the diffusion of new ideas, such as 

the use of MIBB, as well as medical decision-making (Burt, 1987; Coleman et al., 1957; 

M Kilduff & H. Oh, 2006; P.V. Marsden & J. Podolny, 1990; Strang & Tuma, 1993; van 

den Bulte & Lilien, 2001). Thus, studying these physician relationships adds a new 

perspective in explaining the variation in MIBB utilization. SNA applied to examining a 

physician’s network of relationships provides a methodology for exploring how these 

physician relationships affect the use of MIBB. A full exploration of this perspective 

requires more than simply looking at the network measures; rather it needs an in depth 

look at the way in which networks of physicians are formed, and how their structures 

impact behavior. 

Section 1.5:  Specific Aims 
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The overall goal of this work is to explore the utility of SNA in examining 

Medicare data within the context of studying MIBB rate. To this end, this work has the 

following specific aims. 

• Aim One: Determine whether regression utilizing SNA characteristics of 

physician networks explains more variation in treatment patterns than 

standard hierarchical analyses with hospitals as a third level.  

• Aim Two: Model physician networks using ERGMs and network 

autocorrelation models to gain further insight into network structure, and how 

network structure impacts patterns of treatment.  

This work will be organized as follows: 

• Section 2 provides details about the methods of network creation utilized, and 

the network measures considered.  

• Sections 3 and 4 provide details about the methods used in Aim One, 

specifically the regression methods used in this study, and also present 

relevant results. Section 3 focuses on a global perspective, considering 

measures and methodologies for network-level analysis. Section 4 focuses on 

a local perspective, considering measures and methodologies for nodal-level 

analysis. 

• Sections 5 and 6 details ERGMs and network autocorrelation methodologies 

and relevant results.  

• Section 7 discusses the results described in the previous Sections.   
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SECTION 2: GENERAL METHODS: A DESCRIPTION OF DATA, NETWORK 

CREATION, AND NETWORK MEASURES 

Section 2.1:  Cohort Selection 

This study utilizes the 100% Texas Medicare data, a data set that contains the 

total enrollment and claims files for Medicare beneficiaries within Texas. As in Tamirisa 

et al., the patient cohort was obtained from the following files: Denominator File, 

Outpatient Standard Analytic File (OUTSAF), Carrier Standard Analytic File, and 

Medicare Provider Analysis and Review File (MEDPAR) (Tamirisa et al., 2015). The 

Denominator File contains demographic and enrollment data for each beneficiary; claims 

for outpatient facility services and physician services were obtained from the OUTSAF 

and Carrier Standard Analytic Files; and MEDPAR was used for any inpatient hospital 

claims data. Census data was used to provide ZIP code-level education and income 

estimates.  

 We selected patients from seven metropolitan regions in Texas. These regions 

were chosen to incorporate geographic diversity within Texas. Using the Office of 

Management and Budget delineations of metropolitan regions, we defined our regions by 

counties (Budget, 2013). The regions selected are as follows: Austin, Dallas, El Paso, 

Houston, Lubbock, San Antonio, and Rio Grande Valley. We focused on four years: 

2009 to 2012. For each year from 2009 to 2012, we conducted cohort selection and 

network creation, as described in what follows.  

Section 2.2:  Physician Identification 
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To identify our physicians, those who treat breast cancer patients, we first needed 

to identify breast cancer patients. We identified these patients based on the following 

inclusion and exclusion criteria from Tamirisa et al.: women with age greater than or 

equal to 66; who had a breast biopsy within the year of interest; with continuous 

enrollment in Medicare Part A & B in the year of interest, and with no health 

maintenance organization coverage in the twelve months prior to and after diagnosis; and 

who received breast cancer diagnosis as confirmed by the resection of the tumor after 

biopsy. Restricting our cohort to patients with cancer diagnosis ensures that the MIBB 

procedure is specific to breast mass (2015). As in Tamirisa et al., we utilized the 

following Current Procedural Terminology (CPT) codes for the identification of biopsies 

and mastectomies: 19100, 19101, 19102, 19103, 10021, 10022, 19110, 19120, 19125, 

19126, 19160, 19162, 19301, 19302, 19303, 19304, 19305, 19306, 19307, 19180, 19182, 

19200, 19220, and 19240 (2015). We used the following ICD-9 codes for the 

identification of breast cancer: 174.0 and 233.0 (Tamirisa et al., 2015).   

 We restricted our attention to physicians involved in the care of breast cancer 

patients. This allowed the study of important relations that impact physicians’, and 

specifically surgeons’, use of MIBB, while excluding relationships that might pertain to 

other aspects of care. We examined four types of physicians: primary care physicians, 

biopsy physicians, surgeons, and radiologists. Primary care physicians (PCPs) are 

physicians of selected specialties (family practice, general practice, or internal medicine) 

involved in the primary care of a patient. PCPs were identified from Medicare data using 

an algorithm developed by the Dartmouth Institute (Goodman et al., 2003). Surgeons are 

the physicians who did the breast surgery, and radiologists are those who read the 
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mammograms. Biopsy physicians are the physicians who did the breast biopsy of the 

patients, and were either radiologists or surgeons. Physicians were identified using their 

National Provider Identification (NPI) number to obtain specialties and demographic 

information. Patients were assigned to physicians based on plurality of visits (PCPs) or of 

procedure claims (biopsy physicians, surgeons, or radiologists). Furthermore, each 

physician was assigned a metropolitan region and hospital for each year based on the 

plurality of patient visits (PCPs) or procedure claims (for biopsy physicians, surgeons, 

and radiologists) for breast cancer patients for that year.  

Section 2.3:  Network Creation 

To create the physician networks, where physicians are nodes and edges are 

shared patients, we utilized the shared patient model validated by Barnett et al. (Barnett et 

al., 2011). Each edge is valued, or weighted, based on the number of patients shared by 

the two physicians connected by the edge. Two physicians share a patient if both 

physicians submit a claim for that same patient within a specified period of time, for us, 

the year of study. According to Barnett et al., the more patients that two physicians share, 

the more likely they are to be collaborators (2011). In their study, among physician pairs 

who shared nine or more patients, 82% of these physician relationships were verified by 

survey as being real collaborative relationships (Barnett et al., 2011). Following Barnett 

et al., we say that two physicians have a collaborative relationship if they share nine or 

more patients, and no collaborative relationship if they share eight or fewer patients 

(2011). Since our interest is in the presence of collaboration, we did not use weighted ties 
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beyond network construction, and in the calculation of the network measure of strength 

(see Section 2.4.2).  

 To build our physician collaboration network we began with a bipartite network. 

A bipartite network is one in which nodes are divided into two disjoint groups, and in 

which all connections are between and not within those groups: e.g., people and their 

memberships in organizations, or patients and their relationships to physicians (Moen et 

al., 2016). We are ultimately interested in studying physician-to-physician networks; 

thus, we next transformed the bipartite network into a unipartite network, where 

physicians are connected to physicians. Specifically, we created an incidence matrix 

consisting of patient-physician relationships, with each row representing a patient and 

each column representing a physician. The entry for each row and column represents 

whether a claim was submitted by that physician for that patient. Using matrix 

multiplication, we built the physician-physician adjacency matrix, a matrix where the 

rows and columns are physicians, and the entry in a given row and column represents the 

total number of shared patients for that pair of physicians. This procedure creates a 

unipartite network of physicians with weighted edges (Barnett et al., 2011; Landon et al., 

2012). Then, as we are only interested in whether a collaborative relationship exists, 

those edges with weight nine or greater were kept, and given a value of 1, and those 

edges with weight less than or equal to eight were given a value of 0. Further, we deleted 

any nodes that were not connected to any other nodes.  

 The original cohort only contained claims from breast cancer patients, and the 

physicians involved in the care of these patients. It did not include any other claims from 

those physicians. This exclusion could have led to us missing other shared patient 
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interactions between these physicians, for those patients who were not breast cancer 

patients. To capture these interactions, we expanded our cohort: for the year of interest, 

we obtained all claims for all patients submitted by the physicians in our original 

physician cohort, not just those with breast cancer. It is this fuller data set that we used to 

create our collaboration network above.  

Section 2.4:  Network Measures 

SECTION 2.4.1: NETWORK MEASURES AND CONNECTIVITY 

Network measures are values calculated within networks describing relationships 

between nodes, and positions of nodes within networks. These measures can supplement 

information usually derived from claims data, allowing the introduction of these 

relational and positional measures into studies of claims data. The measures can be 

examined locally, studying characteristics of individual physicians; or globally, studying 

average measures over regions, communities, or entire networks; or by using network-

wide versions of local measures. Table 2.1 summarizes the local and global measures of 

interest in this study. We explicitly note that the calculation of these network measures is 

based on an undirected network, a network where the edges have no direction, and based 

on unweighted edges (with the exception of strength, see below).   

    Before defining network measures, it is useful to discuss movement and 

connectivity within networks. We define a walk on graph G from node i to j as a 

sequence of nodes and edges, where each edge is a connection between the node prior to 

and the node subsequent to it, on the walk. Within this sequence, nodes i and j are the 

endpoints of the sequence (i.e., node i to edge ik to node k, …, node k’, edge k’j, node j) 
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(Kolaczyk, 2009). Walks are further differentiated into trails, which are walks without 

repeated edges; and trails are further differentiated into paths, which are trails without 

repeated nodes (Kolaczyk, 2009). Two nodes in a network are said to be reachable from 

each other if there is a walk between them. A connected network is defined as a network 

G where every node is reachable from every other node (Kolaczyk, 2009).  A subnetwork 

G’ of a network G is a network consisting of a subset of the nodes in G, and a subset of 

those edges in G, connecting the nodes in G’. A triangle is a complete sub-network of 

three nodes and three edges. A connected triple is a sub-network with three nodes and 

exactly two edges.  

 The length of a path is a defined as the number of edges in the path (Kolaczyk, 

2009; Moen et al., 2016). The shortest path (there may be more than one), or geodesic 

path, between a pair of nodes is an important ingredient of many network measures. Its 

length, or the geodesic distance, is calculated as the number of edges in the geodesic path 

(Kolaczyk, 2009; Moen et al., 2016).  

Table 2.1: Network Measures of Interest 
Variable Formula Interpretation 

Local (Nodal) Level  
Degree 𝐷𝑒𝑔!  = 𝑒!"

! ! !!

 

 
where e!" = 1 if and only if nodes i 
and j are connected by a tie 
 
 

--Larger values indicates greater 
potential for social activity (Freeman, 
1976) 
 
--Can be used to describe the whole 
network by plotting the distribution 
of all degrees in a network 
 

Strength  𝑆𝑡𝑟! = 𝑤!"
! ! !!

 

 
 
where w!" is the weight of the edge 
connecting nodes i and j  
 
 

--A weighted extension of the degree 
measure 
 
--In our context, an approximation of 
the physician’s patient load 



 

18 
 

Betweenness Centrality 𝐶!"# =
𝑔!"#
𝑔!"!!!

 

 
where g!"# is the number of geodesic 
paths between j and k that include i, 
and g!" is the total number of 
geodesics between j and k  
 
 

--Can be interpreted as a given 
node’s “control” of communication 
within a network (Robins, 2015; 
Freeman, 1979) 
 

Closeness Centrality 𝐶!"# =
1
𝑑!"  !

 

 
where d!" is the geodesic distance 
between node i and all other nodes 
within the network j 
 

--A small value of closeness 
centrality indicates lesser importance, 
as compared with a large value 
 
--Often interpreted as a measure of 
diffusion of flow within networks, or 
the influence of a given node on such 
flow (Robins, 2015) 
 

Transitivity (Local) 
𝐶! =

 𝜏!(𝑖)
𝜏!(𝑖)

 

 
where τ!(i) is the number of triangles 
(closed triples) containing node i in 
the network, and τ!(i) is the number 
of connected triples containing node i 
 

--Indicates the level of closure, or the 
extent to which “friends of friends 
are friends”, around the given node 
(Robins, 2015) 

Global (Network) Level 
Density 𝐷𝑒𝑛𝑠 𝐺 =

2𝐸
𝑛(𝑛 − 1)

 

 
where E is the total number of edges 
within the network, and n is the 
number of nodes within the network 
 
 

--Interpreted as the potential for 
social activity within the network 
 
--A denser network may provide the 
opportunity for more social activity 
(Robins, 2015; Valente, 2007) 
 
 

Betweenness 
Centralization 𝐶!(𝐺) =

2 𝑚𝑎𝑥(𝐶!"# 𝐺 − 𝐶!"#)

𝑛! − 3𝑛 + 2
 

 
where 
𝐶!"# = 

!!"#
!!"!!!  

g!"# = the number of geodesic paths  
connecting i and k including j,  
g!" = the total number of geodesic 
paths connecting i and k, 
max(C!"# G ) = the maximum value 
of 𝐶!"#in the network, 
n = number of nodes of in the network 
 
 

--Measures the tendency of a 
network to focus on a few individuals 
as points of collaboration (Freeman, 
1978) 
 
--A high value may indicate a highly 
centralized network and the potential 
presence of hubs that can control 
communication, information, or 
collaboration (Valente, 2007) 

Transitivity (Clustering 
Coefficient) 𝐶!(𝐺) =

1
𝑛

 𝐶!

!

!!!

	

	

--A higher value indicates that the 
nodes within the network tend to 
cluster into smaller groups (Robins, 
2015) 



 

19 
 

where	C!	=	
!!(!)
!!(!)

,	τ! i  is the number 
of triangles (closed triples) that 
include node i, and  τ!(i) is the 
number of connected triples that 
include node i 
 
 

Characteristic Path 
Length 𝑐 =

1
𝑚

 𝑑!

!

!!!

	

 
where 𝑑! is the geodesic path length 
and m is the number of geodesic paths 
 

--Small values indicate the ease of 
spread of information or resources 
through the network (Telesford et al., 
2011) 
 

 

SECTION 2.4.2: LOCAL MEASURES 

Degree is a basic network measure defined as the number of direct connections a 

node has to the other nodes within the network, or the number of edges adjacent to the 

node. It is formally defined as: 

𝐷𝑒𝑔! = 𝑒𝑖𝑗
𝑗 𝜖 𝑁𝑖

, 

where e!" = 1 if and only if i and j are connected by an edge. A larger value indicates 

more potential for social activity, as the node has more connections to other nodes, as 

compared to nodes with smaller degree (Freeman, 1979).  

 Furthermore, while the degree of each node is a local property, the totality of 

degrees in a network can be used to describe the whole network. Plotting the distribution 

of all degrees within a network is an example of this type of description. This distribution 

of all degrees in a network is a basic topological feature.  

 Strength is an extension of degree to weighted networks, given by the following 

formula: 

 𝑆𝑡𝑟! = 𝑤𝑖𝑗
𝑗 𝜖 𝑁𝑖

, 
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where 𝑤!" is the weight of the edge connecting nodes i and j. While our main interest is 

unweighted collaboration networks, we included this measure in our analysis as a 

measure to approximate a physician’s patient load.  

 Betweenness centrality of the node i is defined as: 

𝐶!"#  =  
𝑔𝑖𝑗𝑘
𝑔𝑗𝑘𝑗≠𝑘

, 

where 𝑔!"# is the number of geodesics between j and k that include i, and 𝑔!" is the total 

number of geodesics between j and k (Freeman, 1979; Robins, 2015). In our context, it is 

a measure of how frequently physician i appears on the geodesic paths between all other 

physician pairs. This measure describes the relative importance of a node, interpreted as a 

given node’s ‘control’ of communication within a network (Freeman, 1979; Robins, 

2015).  

 Closeness centrality of a given node is the inverse of the sum of all geodesic 

distances from that node to all others (Freeman, 1979; Robins, 2015). Closeness is given 

by the formula:  

𝐶!"# =
1
𝑑𝑖𝑗 𝑗
, 

where 𝑑!" is the geodesic distance between i and j (Freeman, 1979). A small value of 

closeness centrality indicates that a node is less important or central, as compared to a 

node with a larger value of closeness centrality. Closeness centrality is often interpreted 

as a measure of diffusion or flow within networks (Robins, 2015).  

 Transitivity of node i is formulated as follows: 

𝐶! =
 𝜏Δ(𝑖)
𝜏3(𝑖)

, 



 

21 
 

where 𝜏!(𝑖) is the number of triangles in the network that contain node i, and 𝜏!(𝑖) is the 

number of connected triples containing node i (Kolaczyk, 2009). Nodal transitivity 

describes the local density of a given node, and indicates the level of closure around that 

given node; whether “friends of friends are friends” (Robins, 2015). As an example, high 

transitivity would indicate that the physician is included in more closed sub-networks of 

physicians. Low transitivity would indicate the opposite.  

SECTION 2.4.3: GLOBAL MEASURES 

The global network statistics we considered for this study are as follows: density, 

betweenness centralization, transitivity (clustering coefficient), and characteristic path 

length. These measures describe the whole network, rather than just individual nodes.  

 The density is the number of ties in a network relative to the number of total 

possible ties within a network. It is defined as follows: 

𝐷𝑒𝑛𝑠 𝐺 = 2𝐸
𝑛(𝑛− 1) 

where E is the total number of edges within the network and n is the number of nodes 

within the network. This measure is sometimes interpreted as the potential for social 

activity, as with higher density there are more pathways for collaboration or interaction 

(Robins, 2015; T.W. Valente, 2010). Density is affected by network size (A. Smith, 

Calder, & Browning, 2016); as we are comparing density between regions with varying 

network sizes, we normalize density by dividing the measure by the number of nodes in 

the network.  

 Betweenness centralization is a network level measure of betweenness centrality 

(see Section 2.4.2). This measure tests the tendency of a network to focus on a few 
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individuals as points of collaboration or information flow (Freeman, 1979). It is 

calculated as follows: 

𝐶!(𝐺) =
2 𝑚𝑎𝑥(𝐶𝐵 𝐺 − 𝐶𝐵𝑖𝑗)

𝑛2 − 3𝑛+ 2 , 

where  

𝐶!"# is the betweenness centrality (see Section 2.4.2), max(C! G ) is the maximum  

𝐶!"# in the network, and n is the number of nodes in the network.  

A high betweenness centralization value may indicate a highly centralized network. 

According to Valente, highly centralized networks have the potential presence of hubs 

that can control communication, information, or collaboration (T.W. Valente, 2010).  

 Transitivity is the tendency within a network that “the friend of my friend is my 

friend” (Robins, 2015; Salter-Townshend, White, Gollini, & Murphy, 2012). It is defined 

as: 

𝐶!(𝐺) =
1
𝑛  𝐶𝑖

𝑛

𝑖=1
,	

where	𝐶! 	is	the	local	transitivity	(see	section	2.3.2).	A	higher	value	of	transitivity	

indicates	that	the	nodes	within	the	network	tend	to	cluster	together	into	smaller	

groups	(Robins,	2015).		

	 Characteristic	path	length	is	the	mean	of	all	geodesic	distances	within	a	

network.	Formally,	it	is	defined	as	follows:	

𝑐 = 1k  dl,
k

l=1
	

where	𝑑! 	is	the	geodesic	distance	of	geodesic	l,	and	k	is	the	number	of	geodesic	

paths.	Small	characteristic	path	lengths	allow	for	the	easy	spread	of	information	or	
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resources	through	the	network	(Telesford,	Joyce,	Hayasak,	Burdette,	&	Laurienti,	

2011).		

Section 2.5:  Network Communities 

Communities are tightly connected sub-networks within a network. There is much 

interest in the study of communities in network science, as many networks of scientific 

interest can be naturally divided into these sub-networks (Karrer, Levina, & Newman, 

2008). Per Karrer et al., through the exploration of these communities, an investigator can 

gain further insight into the functionality of complex networks (2008).  

 Communities have been studied in social network studies utilizing Medicare data. 

Within physician networks created from Medicare data, Pollack et al. created 

communities using the Girvan-Newman algorithm described below, and compared the 

prostatectomy rates between these communities (Pollack et al., 2012). This study 

concluded that within a physician network in a given city, communities varied in 

prostatectomy rates (Pollack et al., 2012). This illustrated variation in treatment patterns 

within cities that may not have been seen without looking at communities. Landon et al. 

utilized communities as a potential method for identifying groups of physicians suitable 

for becoming Accountable Care Organizations (ACOs), which are groups of physicians 

who “work within the current framework of current fee-for-service that also guarantees 

beneficiaries the flexibility to go to any participating provider they choose” (Landon et 

al., 2013).  

 Many algorithms exist to detect communities in networks. Girvan and Newman 

developed an algorithm to detect these sub-networks by maximizing betweenness 
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centrality of edges, also known as edge betweenness, within each derived community 

(Girvan & Newman, 2002). Edges that possibly separate communities are sequentially 

removed. A goodness-of-fit test known as modularity is used to determine the optimal 

number of communities (Pollack et al., 2012). Modularity refers to “the difference 

between the number of edges within communities and the expected number of edges 

under a null model” (Karrer et al., 2008). However, this algorithm is computationally 

demanding and is not suitable for larger networks. Clauset et al. introduced a fast-greedy 

algorithm for larger networks that optimizes modularity “by exploiting shortcuts in the 

optimization problem and using more sophisticated data structures” (Clauset, Newman, & 

Moore, 2004). This algorithm produces communities that are mutually exclusive, 

meaning that each node can only belong to one community (Clauset et al., 2004). We 

utilized this fast-greedy algorithm for detecting communities within our physician 

networks.  
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SECTION 3: REGIONAL NETWORKS AND COMMUNITIES 

Section 3.1:  Purpose and Overview of Section 

The purpose of this section is to provide a descriptive and exploratory view of the 

regional networks at the global level. The goal of this descriptive and exploratory 

analysis of the regional networks is to inform the regression analyses that we will carry 

out in Section 4, in service of Aim One. Further, this section contributes to the overall 

goal of exploring whether network analysis methodology applied to Medicare data has 

utility in the setting of understanding utilization of MIBB.  

 In this section, regional networks are described using network measures such as 

density, and network structures such as number of physicians. These measures are 

examined for each year from 2009 to 2012. The degree distribution, as described below, 

is assessed for each regional network for each year from 2009 to 2012.  

 Next, communities for each region are computed through the use of the fast-

greedy algorithm described in Section 2. With communities as the unit of analysis, a 

simple linear regression will be conducted to assess the effect of selected network 

measures and structures on community level rates of MIBB. For this analysis, we focus 

only two years: 2009 and 2012. We restrict to these years because we had a small number 

of communities, so incorporating years in a multi-level framework is not possible. 

Further, we in restricting to these years, we are able to compare results from the year the 

guidelines were established to those a few years later.  

 Table 3.1 describes the variables we examined in this section, for both the 

regional and community level analyses. We focus on the following global measures: 
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degree distribution, density, betweenness centralization, transitivity (clustering 

coefficient), and characteristic path length. These measures were described and defined in 

Section 2.  

Table 3.1: Variables Considered in this Section 
Measures Definition/Operationalization 

Network Characteristics 
Number of Breast Cancer 
Patients 

The number of patients within a given region or community.  

Ratio of Biopsy Surgeons to 
Biopsy Physicians 

Calculated by dividing the number of surgeons who conducted a 
breast biopsy within a region or community by the total number 
of physicians who conducted a breast biopsy within that region or 
community.  

Minimally Invasive Breast 
Biopsy Rate (MIBB) 

Calculated by dividing the number of patients who received 
MIBB within a region or community by the total number of 
patients in that region or community.  

Nodes Number of physicians within a given region or community.  
Edges Number of edges between physicians within a given region or 

community.  
Network Measures 
Centralization  Measures the extent to which the edges in the network tend to be 

concentrated at a small number of central nodes. Defined as in 
Table 2.1.   

Density (Normalized) The number of edges in the network divided by the number of 
edges possible in the network. 

Transitivity 
 

Quantifies the tendency that if node A is connected to node B and 
to node C, that node B and node C will be connected. Defined as 
in Table 2.1.   

Characteristic Path Length 
 

Measures the average of all shortest paths connecting two nodes. 
Defined as in Table 2.1.   

 

Section 3.2:  The Small-world Phenomenon and the Scale-free Property 

The small world phenomenon is that a network is highly clustered (has high 

transitivity) and has small characteristic path length. This results in a network having the 

property of “regional specialization with efficient information transfer” (Telesford et al., 

2011; Watts & Strogatz, 1998). To assess this property, we compare the observed 

transitivity and characteristic path length in the network of interest to the transitivity and 
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characteristic path length calculated from simulated random networks, with the exact 

same numbers of nodes and numbers of edges as the original. Specifically, we use a 

measure, 𝜎, introduced by Humphries et al. (Humphries, Gurney, & Prescott, 2006). In 

their approach, ratios of observed transitivity and the mean of the simulated transitivities 

(𝑡!), and of observed characteristics path lengths and the mean of the simulated 

characteristic path lengths (𝑐!) are computed (Humphries et al., 2006; Telesford et al., 

2011). These two ratios yield 𝜎, through the formula 𝜎 = !!
!!

. If 𝜎 > 1, then the network is 

considered small-world.  

 The scale-free property is directly tied to the degree distribution (Barabasi & 

Albert, 1999). If the degree distribution of a network follows a power-law, it is generally 

viewed as being scale-free (Barabasi & Albert, 1999). A power-law distribution is 

defined by 𝑝 𝑥 ∝  𝑥!!, where 𝛼 is the exponent or scaling factor (Clauset, Shalizi, & 

Newman, 2009). The scaling factor 𝛼 is typically between 2 and 3 for the power-law 

distributions most often observed in real world networks (Barabasi & Albert, 1999; 

Clauset et al., 2009). Per Barabasi and Albert, preferential attachment (tendency of new 

nodes introduced into the network to connect to nodes with higher degree) can lead to a 

network having a scale-free degree distribution (1999).  

 Historically, simple scatter plots of the degree distribution were used to assess the 

power-law. The scatter is plotted on axes in the logarithmic scale. If the distribution falls 

in a straight line in this plot, then it is considered to follow a power-law (Clauset et al., 

2009). Furthermore, one can calculate the slope of this line to estimate 𝛼. However, 

Clauset et al. discuss several problems with this approach, such as generation of 

systematic errors in estimating 𝛼, and difficulty in objectively assessing the power-law by 
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viewing a line (2009). Thus, Clauset et al. developed a more rigorous methodology to 

assess whether a distribution follows a power-law. Their approach utilizes both 

maximum-likelihood fitting methods and goodness-of-fit tests (through the Kolmogorov-

Smirnov statistic and likelihood ratios) (2009). A p-value that is significant indicates that 

the distribution does not follow a power-law.  

Section 3.3:  Analysis Plan 

For each regional network, we described each variable in Table 3.1 through plots 

showing the variables’ trends over time (2009 to 2012). Using transitivity and 

characteristic path length, we assessed the small-world property as outlined above. For 

each region and for each year, degree distributions were plotted and the scale-free 

property assessed through the methods outlined above.  

 Physician communities were created using the fast-greedy algorithm, separately 

for each region for each year (see Section 2.4). With these communities as the unit of 

analysis, we examined patterns of MIBB use. For this analysis we restricted to large 

communities, defined as communities with ten or more breast cancer patients. Further, 

we compared these communities between regions for each of the variables, including 

MIBB rate, described above, utilizing the chi-squared test or ANOVA, as appropriate, 

separately within each year. We further created scatterplots to display, as an exploration, 

the relationship between normalized density and betweenness centralization, and the 

MIBB rate.  

 Restricting to the years 2009 and 2012 separately, we ran multivariate regression 

models for rate of MIBB, including all communities in all regions. In this analysis, our 
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units of analysis are the network communities derived from each network and our 

outcome is the rate of MIBB per community. The main effects in these models are 

normalized density and betweenness centralization. These variables are chosen as they 

are known to impact the dissemination of new ideas within a network (T.W. Valente, 

2010). As control variables, we included only the ratio of number of biopsy surgeons to 

number of biopsy physicians, and transitivity.  

 Below is the summary of the linear regression model: 

𝑦! = 𝛽! +  𝛽!𝑋! + 𝛽!𝑍! + 𝑒!, 

where 

y! = rate of MIBB for community i, 

X! = main effects (density and/or betweenness centralization), 

Z! = community level ratio of biopsy surgeons to biopsy physicians, or transitivity, 

β! = regression coefficient associated with degree centralization or density, 

β! = regression coefficient associated with ratio of biopsy surgeon to biopsy physician, or 

transitivity, 

β! = intercept, 

e!  ~ N 0, σ! . 

 As we have a small number of communities, we limited the number of variables 

in each of the models. Specifically, we proceeded as follows: 

• Model 1a-1d: We regressed MIBB rate on each of the main effects and control 

variables separately.  

• Model 2a-2b: We regressed MIBB rate on normalized density, together with each 

individual control variable.  
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• Model 3a-3b: We regressed MIBB rate on betweenness centralization, together 

with each individual control variable.  

• Model 4: We regressed MIBB rate on normalized density and betweenness 

centralization.  

• Model 5a-5b: We regressed MIBB rate on both main effects, together with each 

individual control variable.		

Furthermore, we repeat this analysis within regions with five or more large communities.  

Section 3.4:  Results 

SECTION 3.4.1: REGIONAL NETWORKS TRENDS 

For this section, we note that our unit of analysis is at the regional network level. 

Networks are displayed in Appendix A. Trend plots for the network variables of interest 

are displayed in Appendix B. Dallas had the highest number of physicians, across all 

years (754 in 2009 and 682 in 2012). Lubbock had the lowest number of physicians 

across all years (65 in 2009 and 48 in 2012). Generally, over time, the number of 

physicians was stable in most regions. Dallas and Houston had the largest decrease from 

2009 to 2012 (9.5% in Houston and 15.7% in Dallas). Dallas had the highest number of 

edges across all years (8017 in 2009 and 6860 in 2012). El Paso and Lubbock had the 

lowest number of edges. Austin had the highest rate of change, with the number of edges 

decreasing by 35% from 2009 to 2012.  

 Dallas had the highest number of breast cancer patients across all years (890 in 

2009 and 811 in 2012). El Paso and Lubbock had the lowest number of breast cancer 

patients. The number of breast cancer patients largely remained stable over the years, in 
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most regions, with the exception of Houston and Dallas, which both experienced 

decreases (13.8% and 19.8% decrease, respectively). Rio Grande Valley (RGV) had the 

highest ratio of biopsy surgeons to biopsy physicians, at 60% in 2009 and 51% in 2012. 

El Paso had the lowest ratio of biopsy surgeons to biopsy physicians at 33% in 2009 and 

22% in 2012. There is a trend of a decrease in this ratio, with Lubbock experiencing the 

highest rate of decrease at 35%.  

Lubbock had the highest normalized density at 0.00929 in 2009 and 0.01403 in 

2012. Dallas and Houston had the lowest normalized density across all years. Further, 

Lubbock experienced the greatest increase of normalized density compared to the other 

regions. There was a 51% increase of normalized density in Lubbock from 2009 to 2012. 

Betweenness centralization varied across regions from 2009 to 2012. Dallas, Houston, 

and RGV had an overall decrease in betweenness centralization from 2009 to 2012. 

Dallas, in particular, had an increase of 57.9% from 2009 to 2012, only to decrease 50% 

from 2011 to 2012. Austin had a 440% increase in centralization from 2011 to 2012.  

 Across all years and within all regions, transitivity remained largely stable. In 

2009, Lubbock and Austin both had the highest transitivity (0.85). Dallas and Houston 

had the lowest transitivity (0.77). In 2012, Lubbock had the highest transitivity (0.87), 

and Houston had the lowest transitivity (0.74). Characteristic path length was mostly 

stable across all years within all regions. Typically, larger networks had higher 

characteristic path lengths as compared to smaller networks. This measure ranged from 1 

to 3.  
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 Across all years within all regions, MIBB rate was increasing. RGV had the 

lowest MIBB rate across all years. However, RGV did experience the highest increase 

(18%) in MIBB rate.  

SECTION 3.4.2: SMALL-WORLD AND SCALE-FREE PROPERTIES 

Tables 3.2 and 3.3 display transitivity (observed and simulated), characteristic 

path length (observed and simulated), and 𝜎 measure for all networks. For 2009 and 

2012, all regions had 𝜎 measures greater than 1. Interpreting this absolutely, all networks 

display the small world property.  

 Plots, separately for each region, of the degree distribution across all years are 

found in Appendix A. Large networks such as Houston and Dallas display unimodal 

degree distributions; whereas smaller networks such as Lubbock and RGV display 

bimodal degree distributions. Table 3.4 displays the p-value from the goodness-of-fit 

tests for the power law described in Clauset et al. (2009). Only RGV (2009 and 2010) and 

El Paso (2011 and 2012) seem to display a power-law distribution for degree.  

Table 3.2: Small-world Property (2009) 
 Transitivity 

(Observed) 
Transitivity 
(Simulated) 

Characteristic 
Path Length 
(Observed) 

Characteristic 
Path Length 
(Simulated) 

𝝈 

Austin 0.85 0.19 1.88 1.81 4.31 
Dallas 0.77 0.03 2.82 2.51 22.8 

El Paso 0.83 0.40 1.61 1.60 2.06 
Houston 0.77 0.04 2.65 2.29 16.6 
Lubbock 0.85 0.59 1.41 1.41 1.44 

Rio Grande 
Valley 

0.82 0.20 2.00 1.79 3.67 

San Antonio 0.83 0.17 2.01 1.83 4.45 
 

Table 3.3: Small-world Property (2012) 
 Transitivity 

(Observed) 
Transitivity 
(Simulated) 

Characteristic 
Path Length 

Characteristic 
Path Length 

𝝈 
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(Observed) (Simulated) 
Austin 0.86 0.17 1.83 1.89 5.22 
Dallas 0.77 0.03 2.84 2.51 22.7 

El Paso 0.83 0.36 1.63 1.64 2.32 
Houston 0.74 0.05 2.66 2.29 12.7 
Lubbock 0.87 0.66 1.35 1.34 1.31 

Rio Grande 
Valley 

0.81 0.24 1.85 1.76 3.21 

San Antonio 0.84 0.15 2.04 1.85 5.08 

 

Table 3.4: Power Law p-values for all Years and all Regions 
 2009 2010 2011 2012 

Austin <0.001 <0.001 <0.001 <0.001 
Dallas <0.001 <0.001 0.001 <0.001 

El Paso <0.001 0.031 0.084 0.103 
Houston <0.001 <0.001 <0.001 <0.001 
Lubbock <0.001 <0.001 0.001 <0.001 

Rio Grande Valley 0.072 0.173 0.016 0.017 
San Antonio <0.001 <0.001 <0.001 <0.001 

 

SECTION 3.4.3: COMMUNITY LEVEL RESULTS 

In this section, we report results only for 2009 and 2012, and we note that our unit 

of analysis is at the network community level. The fast-greedy algorithm (see Section 2), 

employed in each region separately, detected 25 large communities in 2009 and 22 large 

communities in 2012. With communities as units of analysis, there is a significant 

difference between regions in terms of the mean MIBB rate, with Houston having the 

highest MIBB rate in 2009 (mean = 0.9, SD = 0.07) and both Dallas and Houston having 

the highest MIBB rate in 2012 (0.93, 0.2). These results are similar to the MIBB rate 

results from the analysis of regional networks described in the trend plots above.  

Table 3.5: Community Level Means of Specified Variables, For 
Community Networks by Region (2009) 
Variables 
(n = number of 
large 

Austin 
(n = 4) 

Dallas 
(n = 5) 

El 
Paso 

(n = 3) 

Houston 
(n = 5) 

Lubbock 
(n = 3) 

Rio 
Grande 
Valley 

San 
Antonio 
(n = 3) 

p-value 
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communities) (n = 2) 
Network Characteristics 

MIBB Rate 
(Mean (SD)) 

0.86 
(0.08) 

0.90 
(0.03) 

0.84 
(0.09) 

0.91 
(0.07) 

0.78 
(0.13) 

0.50 
(0.04) 

0.71 
(0.19) 

0.0012 

Breast Cancer 
Patients (Mean 

(SD)) 

63.3 
(52.9) 

178 
(126.7) 

20 
(13.9) 

170.3 
(100.4) 

33 (28.3) 63.5 
(26.2) 

91.7 
(69.8) 

0.12 

Ratio of Biopsy 
Surgeons to 

Biopsy 
Physicians 

(Mean(SD)) 

0.52 
(0.19) 

0.38 
(0.10) 

0.43 
(0.12) 

0.27 
(0.14) 

0.41 
(0.03) 

0.61 
(0.06) 

0.53 
(0.21) 

0.15 

Network Measures 
Number of Nodes 

(Mean (SD)) 
61.5 

(34.8) 
150.8 
(97.5) 

26.0 
(8.2) 

138.0 
(99.8) 

30 (9.9) 71.5 
(14.8) 

90.0 
(53.3) 

0.17 

Number of Edges 
(Mean (SD)) 

635.3 
(647.1) 

1392.8 
(1288.3) 

184 
(96.6) 

1286 
(1014.8) 

308 
(205.1) 

943 
(227.7) 

1368 
(1024.4) 

0.46 

Normalized 
Density 

(Mean (SD)) 

0.01 
(0.01) 

0.005 
(0.009) 

0.02 
(0.009) 

0.005 
(0.007) 

0.02 
(0.007) 

0.006 
(0.002) 

0.007 
(0.009) 

0.06 

Characteristic 
Path Length 
(Mean (SD)) 

1.69 
(0.24) 

2.21 
(0.43) 

1.45 
(0.05) 

2.05 
(0.45) 

1.34 
(0.02) 

1.62 
(0.07) 

1.70 
(0.16) 

0.03 

Centralization 
Betweenness 
(Mean (SD)) 

0.17 
(0.04) 

0.22 
(0.12) 

0.09 
(0.02) 

0.11 
(0.01) 

0.03 
(0.02) 

0.06 (0) 0.08 
(0.01) 

0.01 

Transitivity  
(Mean (SD)) 

0.86 
(0.02) 

0.80 
(0.04) 

0.83 
(0.01) 

0.81 
(0.05) 

0.86 
(0.007) 

0.84 (0) 0.83 
(0.03) 

0.09 

*Bolded variables differ significantly between regions 
 

 In terms of other network characteristics such as the mean number of breast 

cancer patients and mean ratio of biopsy surgeons to biopsy physicians, there is no 

significant difference between regions in the years 2009 and 2012. Characteristic path 

length and betweenness centralization differed significantly between regions in 2009, 

with Dallas having the highest characteristic path length (2.21, 0.12) and betweenness 

centralization (0.22, 0.12). Tables 3.5 and 3.6 summarize the above results.  

Table 3.6: Community Level Means of Specified Variables, For 
Community Networks by Region (2012) 
Variables 
(n = number of 
large 
communities) 

Austin 
(n = 3) 

Dallas 
(n = 5) 

El 
Paso 

(n = 2) 

Houston 
(n = 5) 

Lubbock 
(n = 2) 

Rio 
Grande 
Valley 
(n = 2) 

San 
Antonio 
(n = 2) 

p-value 

Network Characteristics 
MIBB Rate 
(Mean(SD)) 

0.91 (0.2) 0.93 
(0.2) 

0.91 
(0.2) 

0.93 (0.2) 0.90 (0.3) 0.63 
(0.4) 

0.89 (0.3) <0.0001 

Breast Cancer 
Patients 

(Mean/(SD)) 

63.3 
(23.5) 

178.6 
(147.8) 

22.3 
(2.1) 

139.4 
(100.1) 

22 (12.2) 63.5 
(26.2) 

91.7 
(72.0) 

0.16 

Ratio of Biopsy 0.51 0.19 0.48 0.23 0.24 0.49 0.41 0.08 
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Surgeons to 
Biopsy 

Physicians 
(Mean/(SD)) 

(0.12) (0.17) (0.13) (0.16) (0.06) (0.22) (0.18) 

Network Measures 
Number of 

Nodes 
(Mean/(SD)) 

74.7 
(12.6) 

175.8 
(126.0) 

32 (7.1) 135.5 
(117.5) 

34 (4.2) 63 (11.3) 90.3 
(55.2) 

0.39 

Number of Edges 
(Mean/(SD)) 

595 
(23.5) 

1151 
(985.5) 

118.5 
(65.8) 

841.6 
(670.1) 

223 
(175.4) 

779.5 
(337.3) 

1126.7 
(920.3) 

0.53 

Normalized 
Density 

(Mean/(SD)) 

0.004 
(0.0003) 

0.10 
(0.02) 

0.016 
(0.005) 

0.005 
(0.006) 

0.018 
(0.002) 

0.007 
(0.001) 

0.007 
(0.007) 

0.65 

Characteristic 
Path Length 
(Mean/(SD)) 

1.74 
(0.045) 

2.10 
(0.33) 

1.53 
(0.04) 

2.12 
(0.38) 

1.41 
(0.02) 

1.6 (0.0) 1.77 
(0.081) 

0.024 

Centralization 
Betweenness 
(Mean/(SD)) 

0.12 
(0.03) 

0.19 
(0.11) 

0.095 
(0.05) 

0.15 
(0.07) 

0.04 
(0.03) 

0.06 
(0.007) 

0.093 
(0.04) 

0.19 

Transitivity  
(Mean/(SD)) 

0.53 
(0.07) 

0.39 
(0.04) 

0.62 
(0.09) 

0.57 
(0.16) 

0.71 
(0.03) 

0.56 
(0.01) 

0.57 
(0.07) 

0.03 

*Bolded variables differ significantly between regions 
 
 Figures 3.1 displays scatterplots of the MIBB rate vs. the main effects for 2009 

and 2012, respectively. Recall that these plots were created to display, as an exploration, 

the relationship between normalized density and betweenness centralization, and rate of 

MIBB. These plots were further examined by region, displaying how for each region the 

main effects related to rate of MIBB. For normalized density, there were no discernable 

patterns in the relationship with the MIBB rate, in looking at all communities in all 

regions together. However, if we focus our attention within regions, in Dallas and 

Houston the normalized density appears to have a positive effect on the rate of MIBB for 

both 2009 and 2012. This is similar to the behavior seen with betweenness centralization. 

In Dallas, betweenness centralization appears to have a positive effect on the rate of 

MIBB.  
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Figure 3.1: Correlation Plots of Main Effects vs Rate of MIBB by Region for 2009 
and 2012.  
 

 Table 3.7 summarizes the linear regression results for 2012. In the Model 1 

regression, including all communities in all regions for 2012, normalized density had a 

negative but non-significant effect on MIBB rate, while betweenness centralization had a 

positive but non-significant effect on MIBB rate. For the covariates in the same analysis 

(Model 1), transitivity had a negative non-significant effect, while the ratio of the number 

of biopsy surgeons to biopsy physicians had a negative significant effect on MIBB rate. 

Including this ratio in Model 2b, the effects of normalized density intensified. Including 

●

●●

●

1A

2A3A
4A

●

●
●

●
●

1D
2D3D

4D5D

●●

●

1E2E

3E
●
●

●
●

●
1H
2H

3H
4H

5H

●

●

●1L

2L

3L

●

●

1R

2R

●

●

●

1S

2S

3S

Austin Dallas EP Houston

Lubbock RGV SA

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.02 0.04 0.060.00 0.02 0.04 0.060.00 0.02 0.04 0.06
Normalized Density

M
IB

B 
R

at
e

region
●a
●a
●a
●a
●a
●a
●a

Austin

Dallas

EP

Houston

Lubbock

RGV

SA

2009

● ●

●

1A2A

3A

●●
●

●●

1D2D3D

4D5D

●

●

●

1E

2E

3E
●
●

●

●

●
1H
2H

3H

4H

5H

●
●

1L 2L

●

●

1R

2R

●

●

●

1S

2S

3S

Austin Dallas EP Houston

Lubbock RGV SA

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.000.010.020.030.040.050.000.010.020.030.040.050.000.010.020.030.040.05
Normalized Density

M
IB

B 
R

at
e

region
●a
●a
●a
●a
●a
●a
●a

Austin

Dallas

EP

Houston

Lubbock

RGV

SA

2012

●

● ●

●

1A

2A 3A
4A

●

●
●

●
●

1D
2D3D

4D5D

●●

●

1E2E

3E
●

●

●
●

●
1H

2H

3H
4H

5H

●

●

●1L

2L

3L

●

●

1R

2R

●

●

●

1S

2S

3S

Austin Dallas EP Houston

Lubbock RGV SA

0.5

0.6

0.7

0.8

0.9

1.0

0.5

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
Centralization (Betweenness)

M
IB

B 
R

at
e

region
●a
●a
●a
●a
●a
●a
●a

Austin

Dallas

EP

Houston

Lubbock

RGV

SA

2009

●●

●

1A2A

3A

●●
●

●●

1D2D3D

4D5D

●

●

●

1E

2E

3E
●

●

●

●

●
1H

2H

3H

4H

5H

●
●

1L2L

●

●

1R

2R

●

●

●

1S

2S

3S

Austin Dallas EP Houston

Lubbock RGV SA

0.6

0.7

0.8

0.9

1.0

0.6

0.7

0.8

0.9

1.0

0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
Centralization (Betweenness)

M
IB

B 
R

at
e

region
●a
●a
●a
●a
●a
●a
●a

Austin

Dallas

EP

Houston

Lubbock

RGV

SA

2012



 

37 
 

this ratio in the models that include both main effects (Model 5b), the effects of 

normalized density intensified while the effects of betweenness centralization decreased. 

Adding transitivity decreased the effects of normalized density (Model 2a and Model 5a). 

Table 3.7: Linear Regression Estimates (2012) 
Variables Normalized 

Density 
Centralization 
Betweenness 

Ratio  Transitivity 

All (n = 22) 

Model 1a 
(Coef/p-value/R2) 

-1.90/0.4/0.04 -- -- -- 

Model 1b 
(Coef/p-value/R2) 

-- 0.21/0.4/0.04 -- -- 

Model 1c 
(Coef/p-value/R2) 

-- -- -0.38/0.004/0.34 -- 

Model 1d 
(Coef/p-value/R2) 

-- -- -- -0.62/0.3/0.04 

Model 2a 
(Coef/p-value/R2) 

-1.19/0.6/0.06 -- -- -0.44/0.5/0.06 

Model 2b 
(Coef/p-value/R2) 

-2.13/0.2/0.39 -- -0.38/0.003/0.39 -- 

Model 3a 
(Coef/p-value/R2) 

-- 0.21/0.4/0.09 -- -0.60/0.3/0.09 

Model 3b 
(Coef/p-value/R2) 

-- 0.22/0.25/0.39 -0.38/0.004/0.39 -- 

Model 4 
(Coef/p-value/R2) 

-1.41/0.5/0.06 0.16/0.5/0.06 -- -- 

Model 5a 
(Coef/p-value/R2) 

-0.46/0.9/0.09 0.19/0.5/0.09 -- -0.53/0.5/0.09 

Model 5b 
(Coef/p-value/R2) 

-1.65/0.4/0.41 0.15/0.5/0.41 -0.38/0.004/0.41 -- 

Dallas (n = 5) 

Model 1a 
(Coef/p-value/R2) 

7.93/0.02/0.83 -- -- -- 

Model 1b 
(Coef/p-value/R2) 

-- 0.19/0.1/0.55 -- -- 

Model 1c 
(Coef/p-value/R2) 

-- -- -0.20/0.01/0.92  

Model 1d 
(Coef/p-value/R2) 

-- -- -- -0.10/0.8/0.02 

Model 2a 
(Coef/p-value/R2) 

9.65/0.02/0.95 -- -- 0.26/0.15/0.95 

Model 2b 
(Coef/p-value/R2) 

2.58/0.47/0.95 -- -0.14/0.2/0.95 -- 

Model 3a 
(Coef/p-value/R2) 

-- 0.31/0.01/0.97 -- -0.51/0.03/0.97 

Model 3b 
(Coef/p-value/R2) 

-- 0.05/0.5/0.94 -0.17/0.06/0.94 -- 

Model 4 
(Coef/p-value/R2) 

6.31/0.02/0.98 0.11/0.05/0.98 -- -- 

Model 5a 
(Coef/p-value/R2) 

3.85/0.4/0.99 0.19/0.3/0.99 -- -0.21/0.6/0.99 

Model 5b 
(Coef/p-value/R2) 

-14.5/0.8/0.98 0.77/0.7/0.98 -0.08/0.8/0.98 -- 

Houston (n = 5) 

Model 1a 
(Coef/p-value/R2) 

-4.43/0.1/0.60 -- -- -- 
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Model 1b 
(Coef/p-value/R2) 

-- 1.72/0.2/0.44 -- -- 

Model 1c 
(Coef/p-value/R2) 

-- -- -0.60/0.01/0.93  

Model 1d 
(Coef/p-value/R2) 

-- -- -- -1.04/0.4/0.24 

Model 2a 
(Coef/p-value/R2) 

-11.6/0.07/0.90 -- -- 2.89/0.1/0.90 

Model 2b 
(Coef/p-value/R2) 

-3.31/0.03/0.98 -- -0.47/0.03/0.98 -- 

Model 3a 
(Coef/p-value/R2) 

-- 2.17/0.5/0.45 -- 0.44/0.8/0.45 

Model 3b 
(Coef/p-value/R2) 

-- 1.35/0.1/0.93 -0.52/0.13/0.93 -- 

Model 4 
(Coef/p-value/R2) 

-7.89/0.01/0.98 0.61/0.03/0.98 -- -- 

Model 5a 
(Coef/p-value/R2) 

-10.7/0.3/0.92 0.73/0.7/0.92 -- 3.07/0.3/0.92 

Model 5b 
(Coef/p-value/R2) 

-2.55/0.3/0.98 0.39/0.6/0.98 -0.48/0.1/0.98 -- 

*Bolded results indicate significance.  
Model 1a-1d: main effects and control variables (separately) 
Model 2a-2b: density with control variables 
Model 3a-3b: centralization with control variables 
Model 4: density and centralization 
Model 5a-5b: density and centralization with control variables 
 
 For the separate regional analysis for 2012 (n=5 for both Dallas and Houston), 

normalized density and betweenness centralization differed in their effects on MIBB rate, 

as compared with the all communities in all regions analysis. Across all models, 

normalized density had a mostly positive effect on MIBB rate in Dallas and a mostly 

negative effect on MIBB rate in Houston. Some of these effects were significant (see 

Table 3.7).  
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SECTION 4: REGRESSION ANALYSIS 

Section 4.1:  Purpose and Overview of Section 

Our first aim seeks to determine whether regression including social network 

analysis characteristics and/or measures of physician networks explains additional 

variation in patterns of MIBB use beyond that explained by standard regression 

techniques. In Section 3, we explored network analysis of Medicare data at a high level, 

describing global network measures such as density and centralization betweenness of 

both the regional networks and community networks (derived from the regional 

networks). Further, with community networks as units of analysis, we explored the 

effects of these network measures on MIBB rate. In this section, we focus on the nodal 

perspectives of social network analysis, specifically looking at how a physician’s degree 

or betweenness affects their use of MIBB. Further, we explore whether or not the 

addition of these measures adds substantively to our regression models.  

 In this section, we first explored the relationship between nodal network 

characteristics and/or measures and MIBB use. The main purpose is to determine which 

network characteristics and measures significantly impact the use of MIBB. Two 

different models were considered: a linear regression (regressing a biopsy physician’s 

rate of MIBB on a physician’s network characteristics/measures), and a logistic 

regression (regressing a patient’s receipt of MIBB on their biopsy physician’s network 

characteristics/measures). It is important to note that the unit of analysis for the linear 

regression is the physician while the unit of analysis for the logistic regression is the 

patient.  
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Second, in a hierarchical model framework, we explored the relationships 

between network characteristics or measures and the use of MIBB, modeling patients as 

nested within biopsy physicians nested within communities. This is a different approach 

from standard hierarchical models in clinical observational studies, where health referral 

regions or hospitals are often used as the third, or highest, level. Following this pattern 

we also examined such models, with hospital as the third level. As this is a new concept, 

we first compared the clustering mechanisms of community and hospital, assessing 

whether or not these clusters are similar to each other. Then, we ran the two hierarchical 

models and compared the models, to explore which better explains outcomes.  

Section 4.2:  Methods 

SECTION 4.2.1: VARIABLES, OUTCOMES, AND VARIABLE SELECTION 

For this section, we utilized the networks described in Section 2 (see Section 2.3), 

focusing on the same regions (Austin, Dallas, El Paso, Houston, Lubbock, Rio Grande 

Valley, San Antonio) and years (2009 and 2012). Communities were created as described 

in Section 2 (see Section 2.5). For the purposes of the hierarchical models, patients were 

assigned to physicians, and physicians were assigned to communities and to hospitals 

(see Section 2.2).  

 A number of network characteristics and measures were considered for this 

analysis. Each of these characteristics and measures was calculated separately within 

each region or community, as appropriate, in each year. Table 4.1 includes the list of all 

variables considered in this chapter.  

Table 4.1: List of Variables Considered for Regression 
Analyses 



 

41 
 

Global Network Measures Density (Normalized) 

 Characteristic Path Length 

 Transitivity 

 Centralization (Betweenness) 

 Centralization (Degree) 

 Centralization (Closeness) 

 Number of Triangles 

 Number of Nodes 

 Number of Edges 

 Average Degree (Normalized) 

 Diameter 

 Average Strength (Normalized) 

Global Network Characteristics MIBB Rate 

 Number of Patients 

 Number of Biopsy Physicians 

 Number of Biopsy Surgeons 

 Number of Biopsy Radiologists 

 Ratio of the Number of Biopsy Surgeons to the Number 
of Biopsy Physicians 

 
 Mean Physician Years of Practice 

 Mean Biopsy Physician Years of Practice 

 Mean Biopsy Surgeon Years of Practice 

 Mean Physician Age 

 Mean Biopsy Physician Age 

 Mean Biopsy Surgeon Age 

 Number of non-US Trained Physicians 

 Number of non-US Trained Biopsy Physicians 

 Number of non-US Trained Biopsy Surgeons 

 Number of Female Physicians 

 Number of Female Biopsy Physicians 

 Number of Female Biopsy Surgeons 

 Number of White Patients 

 Number of Non-white Patients 

 Ratio of White Patients to All Patients 

 Number of Patients Living in Metropolitan Areas 

 Number of Patients Living in Non-Metropolitan Areas 

 Number of Patients Living in Rural Areas 
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 Ratio of Patients Living in Metropolitan Areas to All 
Patients 

 
 Average Education Quartile 

 Average Income Quartile 

 Number of Patients 66-74 Years 

 Number of Patients > 75 Years 

 Ratio of Patients 66-74 to All Patients 

Local Network Measures Degree 

 Betweenness Centrality 

 Closeness Centrality 

 Eigenvector Centrality 

 Strength 

 Transitivity 

 Triangles 

 

For regression of physician MIBB rates, we restricted our attention to biopsy 

surgeons. We recall from Section 2 (see Section 2.2) that the biopsy surgeon is the 

physician who performed the patient’s biopsy, but classified him or herself as a surgeon. 

Rate of MIBB was calculated as the number of MIBBs that the biopsy surgeon 

performed, divided by the number of biopsies they performed.  

 Considering the individual patient’s receipt of MIBB allows us to determine if the 

networks characteristics of their biopsy physician’s networks affected the patient’s 

receipt of MIBB. Our outcome is whether or not a patient received MIBB. We only 

consider MIBBs done by biopsy surgeons.  

 We first examined our list of variables (Table 4.1), and selected those to include 

in the regression models, using the following algorithm. Regression models (linear or 

logistic) were built to regress outcome on each Table 4.1 variable separately. This was 

done separately for each region as well as within the entire network, and was repeated for 

each year. Variables that were significant in these regression models were noted as 
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important. We calculated the rate of importance for each variable: the number of times 

that variable appeared as significant in the regression models over the total number of 

regression models including that variable. Some nodal measures such as betweenness 

centrality were calculated using two methods: calculating the measure considering the 

whole regional network of the physician, and calculating the measure considering the 

community network of the physician. We gave priority to the measures calculated within 

the community network as our interest lies in a physician’s influence or position within 

their local collaboration networks. That is to say, if both variables were considered 

important enough to include in the models, we only included the measures calculated 

within the community network. Appendix C lists the variables in Table 4.1 in descending 

order of rate of importance. We prioritized our variable selection to include in the full 

linear, logistic, and hierarchical model based not only on the rate of importance, but also 

what previous literature states affecting outcomes. 

 We chose the following network measures based on their rate of importance: 

degree, betweenness centrality, closeness centrality, transitivity, and strength (See 

Section 2.4.2). As these measures were calculated on networks and communities of 

various sizes, we normalized the following measures: degree, strength, betweenness 

centrality, and closeness centrality. Degree and closeness centrality were divided by n – 

1, where n is the number of nodes in the network (community) used to calculate the 

measures. Strength was divided by the maximal strength within the network 

(community). Betweenness centrality was normalized according to the following 

formula: 
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2 ∗ (𝐶!"# 𝐺 )
(𝑛 ∗ 𝑛 − 3 ∗ 𝑛 + 2) 

 

where 𝐶!"# 𝐺  is the betweenness centrality, and n is the number of nodes in the network 

(community) used to calculate betweenness (Freeman, 1979).  

 We included other non-network covariates, based on importance and what is cited 

as influential in the literature, for both the physician regressions and patient regressions. 

For the linear regressions, we included the following physician covariates: age, years of 

practice, non-US trained, gender, and biopsy surgeon specialty (surgeon or some other 

specialty). For the logistic regressions, we did not include the biopsy physician specialty 

as we restricted the logistic analysis to include only biopsy surgeons (see Section 4.2.2). 

Furthermore, for the logistic regressions, we also included patient level covariates: non-

Metropolitan residence, non-White ethnicity, age 75+, education (quartile), and income 

(quartile). For education and income, lower quartile represents fewer years of education 

and lower yearly income.  

SECTION 4.2.2: REGRESSION METHODS: LINEAR AND LOGISTIC 

For the linear regression, we considered several models. Multivariate regression 

models were used (see model outline in Section 3.3). The unit of analysis for these 

models was biopsy surgeons, with outcome being the biopsy surgeon’s rate of MIBB. 

Model 1 only included physician covariates listed above. Model 2 included only the 

network measures described above. Model 3 included both the physician covariates and 

network measures. For these analyses, we focused on biopsy surgeons. We do this to 

explore the effect of network measures on the biopsy surgeons’ rate of MIBB use, and 
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including all biopsy physicians would have limited the data, as biopsy radiologists can 

only do MIBBs. In these regressions, we included all biopsy surgeons in all regions. 

Similar to Section 3.3, we separately ran the analysis for 2009 and 2012.  

For the logistic regressions, we also considered several models. The unit of 

analysis for these models was patient, with the outcome being whether the patient 

received MIBB. We first remark that each patient is assigned to multiple physicians of 

different types, such as their biopsy physician, PCP, surgeon, and radiologist; thus, we 

focused our analysis on the biopsy physician associated with each patient. This means 

that we only considered network measures and covariates related to a patient’s biopsy 

surgeon and included these variables in the models. We further restricted the analysis to 

patients assigned to biopsy surgeons with stated surgeon specialty, for reasons noted 

above, as our interest is in how these physicians practice. Model 1 included only patient 

covariates. Model 2 included only biopsy surgeons’ covariates as described above 

(excluding surgeon specialty). Model 3 included the biopsy surgeon network measures, 

and Model 4 included all patient covariates, biopsy surgeon covariates, and biopsy 

surgeon network measures. Because of the skewness of betweenness, strength, and 

closeness, multiple network measures were log transformed (strength, closeness) or 

scaled (betweenness) to improve parameter estimation. Further, we calculated odds- 

ratios and 95% confidence intervals. 

SECTION 4.2.3: HIERARCHICAL LOGISTIC REGRESSION MODELS 

To fulfill the first aim, we conducted hierarchical logistic regression models 

(HLRMs). We considered two types of three-level hierarchical logistic regression 

models: one model where patients are nested within biopsy surgeons, nested within 

hospitals, and one model where patients are nested within biopsy surgeons nested within 

communities. Before running the models, we compared the clustering mechanisms of 
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community and hospital for each region, assessing whether or not these clusters are 

similar to each other. To assess this similarity, we utilized a cluster validation measure 

known as purity. In defining purity, we have two given cluster mechanisms, one giving 

clusters 𝐶𝑙𝑢𝑠𝑡𝑒𝑟!!, i =1, 2, …r, and the second giving clusters 𝐶𝑙𝑢𝑠𝑡𝑒𝑟!!., j =1, 2, … k. 

We further define the following: 

𝑛!" =  𝐶𝑙𝑢𝑠𝑡𝑒𝑟!! 𝐶𝑙𝑢𝑠𝑡𝑒𝑟!! , 

which denotes the number of physicians in both 𝐶𝑙𝑢𝑠𝑡𝑒𝑟!! and 𝐶𝑙𝑢𝑠𝑡𝑒𝑟!! (Zaki & Meira, 

2014).  

Purity for a specific region is calculated as follows: 

𝑝𝑢𝑟𝑖𝑡𝑦 =  
1
𝑛  𝑚𝑎𝑥!!!!

!

!!!

𝑛!"  

where  

r = the total number of 𝐶𝑙𝑢𝑠𝑡𝑒𝑟!!, 

k = the total number of 𝐶𝑙𝑢𝑠𝑡𝑒𝑟!! (Zaki & Meira, 2014). 

As an exploratory analysis, we examined this purity measure for the cluster mechanisms 

of community and hospital, for all regions, for the year 2012. Further, as the purity 

measure is not symmetrical, examined these measures with each of hospital and 

community playing the role of 𝐶𝑙𝑢𝑠𝑡𝑒𝑟!! and 𝐶𝑙𝑢𝑠𝑡𝑒𝑟!!.  

Within these models types, multiple models were run, differentiated by what 

covariates were included in the models. It is important to note that we restricted these 

analyses to patients who had surgeons conduct their biopsy, for the reasons outlined in 

Section 4.2.2. This allows interpretation of the results within the context of biopsy 
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surgeons, that is, e.g., whether or not a biopsy surgeon’s degree will affect their patient 

receiving MIBB.  

 
 The following formulizes the null model utilized in this study:  

𝑦!"# = 𝛾!!! +  𝑉!!! + 𝑈!!" + 𝑒!"# 

where  

𝑦!"# = receipt of MIBB (Y/N), for patient i of biopsy surgeon j in hospital or community 

k, 

𝛾!!! = overall intercept of the model, 

𝑉!!! = random effect for hospital or community k, 

𝑈!!" = random effect for biopsy physician j in hospital or community k, 

𝑒!"# = residual. 

We assume that 𝑉!!!, 𝑈!!", and 𝑒!"# are distributed normally.  

 For these models, we calculated the intraclass correlation coefficient (ICC). ICC 

enables us to assess the variance contribution of the group level to the outcome (Finch, 

Bolin, & Kelley, 2014; Snijders & Bosker, 2012). For a three level hierarchical linear 

model, ICC is formally described by the following formulas: 

for assessing the contribution of the level-two cluster: !!! !!

!!!!!!!!
,  

for assessing the contribution of the level-three cluster: !!

!!!!!!!!
, 

where 

𝜎! is the between patient variance, 

𝜏! is the between biopsy surgeon variance, 

𝜑! is the between hospital or community variance. 
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Because we are utilizing HLRMs, we replace 𝜎! with the value 3.29. This is the implied 

variance of the level-one residuals in a logistic distribution (Snijders & Bosker, 2012).  

We first built null models for both the hospital and the community models, with 

random effects for the second level (biopsy physician) and for the third level (hospital or 

community). Then we built further models: Model 1 controlled for patient characteristics 

and biopsy surgeon characteristics (excluding surgeon specialty). Model 2 controlled for 

patient characteristics, biopsy surgeon characteristics, and biopsy surgeon network 

characteristics. These covariates are described previously (see Section 4.2.2). To improve 

model convergence, we centered and scaled each continuous covariate. ICCs at the 

biopsy surgeon level and the hospital or community level were calculated to assess the 

levels’ contribution to the variance of the outcome. We restricted our model building to 

the years 2009 and 2012 (see Section 3.1 for rationale). 

Section 4.3:  Results 

SECTION 4.3.1: LINEAR REGRESSION 

In this section, we note that our unit of analysis is at the physician level and the 

outcome of our models is the biopsy surgeon’s rate of MIBB. Table 4.2 summarizes the 

results for the physician linear regressions. For Model 1 in 2009, there was a significant 

negative effect of non-US trained biopsy on a surgeon’s rate of MIBB (-0.27, p-value < 

0.001), and a significant positive effect for a biopsy surgeon being female on a surgeon’s 

rate of MIBB (0.11, p-value < 0.05). For 2012, a biopsy surgeon being female also had a 

significant positive effect on a biopsy surgeon’s rate of MIBB (0.18, p-value < 0.05).  

Table 4.2: Linear Regression Coefficient Estimates 
 Model 1 Model 2 Model 3 
 2009 2012 2009 2012 2009 2012 
Biopsy Surgeon Characteristics 
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Age -0.011 -0.011 - - -0.014 -0.014 
Years of Practice 0.011 0.011 - - 0.013 0.015 
Non-US Trained -0.27** -0.07 - - -0.24** -0.06 

Female 0.11* 0.18* - - 0.11* 0.17* 
Surgeon Specialty -0.08 -0.02 - - -0.01 -0.01 

Biopsy Surgeon Network Measures  
Degree  - - -1.05** -0.30 -0.91* -0.26 

Transitivity - - -0.10 -0.38 -0.14 -0.36 
Closeness - - 1.25* 0.19 1.28* 0.25 

Betweenness - - -2.26 3.72 -2.84 2.90 
Strength - - 0.93* 0.02 0.83* 0.17 

*p-value < 0.05 
**p-value < 0.001 
Model 1: physician characteristics only 
Model 2: physician network characteristics only 
Model 3: all covariates 
 

 In Model 2, degree, closeness, and strength had significant effects on a biopsy 

surgeon’s MIBB rate for 2009. A biopsy surgeon’s degree (the number of a surgeon’s 

direct collaborators) had a significant negative effect on the rate of MIBB (-1.05, p-value 

< 0.001).  Closeness (a surgeon’s “influence” within his network) and strength (potential 

number of patients a surgeon treats) both had a significant positive effect on the rate of 

MIBB (1.25, p-value < 0.05; 0.93, p-value < 0.05, respectively). For Model 3 in 2009, 

these effects were maintained, with only slight changes in the parameter estimates (see 

Table 4.2). For Model 3 in 2012, being female maintained its significance with minimal 

change in the estimate from Model 1.  

SECTION 4.3.2: LOGISTIC REGRESSION 

In this section, we note that our unit of analysis is at the patient level. Table 4.3 

summarizes the results of the logistic regressions. For patient characteristics, area of 

residence (OR: 2.10, CI: 1.07-4.27, Year: 2012), patient age (1.40, 1.04 – 1.87, 2009), 

patient education (1.24, 1.01-1.53, 2009), and patient income (1.81, 1.34-2.55, 2012) all 
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had significant positive effect on whether a patient received MIBB (Model 1). 

Controlling for all other factors in Model 4, only area of residence remained significant 

(3.12, 1.40-7.07, 2012). In terms of biopsy surgeon characteristics (Model 2), surgeon 

age (1.07, 1.01-1.14, 2009), years of practice (0.91, 0.86-0.97, 2009; 0.90, 0.81-0.98, 

2012), non-US trained (0.54, 0.33-0.85, 2009), and male gender (0.62, 0.40-0.97, 2012) 

significantly affected patients receiving MIBB. Controlling for all other factors (Model 

4), surgeon male gender (0.54, 0.31-0.92, 2009) and non-US trained surgeons (0.67, 0.46-

0.95, 2009) significantly affected whether patients received MIBB.  

 
For network measures, a biopsy surgeon’s betweenness centrality (a surgeon’s 

“control” of information within his network) significantly and positively affected a 

patient receiving MIBB in both 2009 and 2012 (456, 40.6-9E3, 2009; 91, 2.8-2E4, 2012). 

Further, a biopsy surgeon’s transitivity (a surgeon’s tendency to work in closed clusters) 

(0.02, 0.002-0.2, 2012) and strength (potential number of patient a surgeon treats) (0.52, 

0.4-0.7, 2012) significantly and negatively affected a patient receiving MIBB. 



 

51 
 

Controlling for all other factors (Model 4), the above network measures remained 

significant for their respective years with very little change in the odds ratio.  

SECTION 4.3.3: HIERARCHICAL LOGISTIC REGRESSION MODELS 

In this section, we note that our unit of analysis is at the patient level and the 

outcome of the models is the patient’s receipt of MIBB. Table 4.4 summarizes the purity 

results. When comparing clusters where 𝐶𝑙𝑢𝑠𝑡𝑒𝑟!! is the community and 𝐶𝑙𝑢𝑠𝑡𝑒𝑟!! is the 

hospital, purity measures range from 0.2543 to 0.6942, with Austin having the lowest 

purity measure, and Lubbock having the highest purity measure (0.6942). When 

comparing clusters where 𝐶𝑙𝑢𝑠𝑡𝑒𝑟!! is the hospital and 𝐶𝑙𝑢𝑠𝑡𝑒𝑟!
! is the community, purity 

measures range from 0.8108 and 0.9922, with El Paso having the lowest purity measure, 

and Lubbock having the highest purity measure.  

Table 4.4: Purity Results for All Regions (2012) 
Region 𝑪𝒍𝒖𝒔𝒕𝒆𝒓𝒊

𝟏 = 
Community 

𝑪𝒍𝒖𝒔𝒕𝒆𝒓𝒋
𝟐 = Hospital 

𝑪𝒍𝒖𝒔𝒕𝒆𝒓𝒊
𝟏= Hospital 

𝑪𝒍𝒖𝒔𝒕𝒆𝒓𝒋
𝟐= 

Community 
Austin 0.2543 0.9069 
Dallas 0.3179 0.9782 

El Paso 0.5952 0.8108 
Houston 0.4475 0.9430 
Lubbock 0.6942 0.9862 

RGV 0.4153 0.9922 
San Antonio 0.6035 0.8939 

 

Table 4.5 summarizes the ICC results from the HLRMs. For the hospital model 

type, surgeon level ICC in the null models changed from 2009 to 2012; doubling: from 

15.4% in 2009 to 32.4% in 2012. For the community model type, surgeon level ICC in 

the null models changed minimally over time. Introducing patient characteristics and 

biopsy surgeon characteristics minimally changed the ICCs for the surgeon level for both 



 

52 
 

model types for both years. However, controlling for network characteristics (Model 2) 

reduced the ICCs for the surgeon level for both model types and both years; an almost 

50% reduction in ICCs was seen for the surgeon level for both model types and both 

years. Comparing between model types, surgeon level ICC was lower in the hospital 

model type as compared with the community model type.  

Table 4.5: Summary of ICC by Model Type from 2009 and 2012 
 Hospital Model Type Community Model Type 
 
 
  

Biopsy 
Physician 

(Level Two) 
ICC 

Hospital 
(Level Three) 

ICC 

Biopsy 
Physician 

(Level Two) 
ICC 

Community 
(Level Three) 

ICC 

 2009 2012 2009 2012 2009 2012 2009 2012 
Null 0.302 0.542 0.231 0.059 0.416 0.482 0.105 0.124 
Model 1 0.305 0.474 0.217 0.064 0.418 0.420 0.085 0.154 
Model 2 0.171 0.324 0.270 0.126 0.284 0.258 0.118 0.264 
Null Models: three level models with surgeons as the second level and hospital/community as the third level 
Model 1: three level models controlling for patient characteristics and physician characteristics 
Model 2: three level models controlling for patient characteristics, physician characteristics, and network measures. 
 
 For the hospital model type, hospital level ICC in the null model decreased from 

2009 to 2012 (0.231 vs. 0.059).  Introducing network characteristics increased the 

hospital level ICC in 2012 (0.059 vs. 0.126). For the community model type, community 

level ICC in the null model had a minimal increase from 2009 to 2012 (0.105 vs. 0.124). 

Similar to the hospital model type, introducing network characteristics increased the 

community level ICC in 2012 (0.124 vs. 0.264). Comparing between model types for the 

null model, hospital level ICC was larger than the community level ICC for 2009 (0.231 

vs. 0.105). However, in 2012, this pattern reversed, with community ICC higher than 

hospital level ICC (0.124 vs. 0.059, respectively).  

 Table 4.5 summarizes the odds-ratio from the HLRMs. Significant results were 

seen only in 2012. For both Model 1 and Model 2 and in both model types, patient 

income had a significant positive association with patient receipt of MIBB (OR ranges: 
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1.99 – 2.20, LCI: 1.04-1.12, UCI: 3.83-4.24).  For Model 2, the biopsy surgeon’s 

transitivity (a surgeon’s tendency to work in clusters) had a significant positive 

association with patients receiving MIBB, in both model types (OR: 1.99-2.13, LCI: 

1.04-1.10, UCI: 3.83-4.12). Further, for the community model type, male biopsy surgeon 

gender significantly negatively affected the patient’s receipt of MIBB for both Model 1 

and Model 2 (OR: 0.28-0.34, LCI: 0.10-0.11, UCI: 0.74-0.96).  
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SECTION 5: NETWORK MODELS: EXPONENTIAL RANDOM GRAPH MODELS 

Section 5.1:  General Overview of Exponential Random Graph Models 

and Purpose of Section 

SECTION 5.1.1: GENERAL OVERVIEW 

Exponential random graph models (ERGMs) are statistical models that, for an 

observed network, allow for inferences about how given network configurations, such as 

the number of triangles, influence the presence of edges within the network. In other 

words, ERGMs are statistical models of network structure allowing for inferences 

regarding the presence of patterns within the network (Goodreau, Kitts, & Morris, 2009; 

Robins & Lusher, 2013). An ERGM builds a probability distribution on the set of all 

possible networks on a set of fixed nodes—those in the observed network—based on the 

configurations of interest. In this distribution of networks, the observed network is the 

“average network” (Robins & Lusher, 2013).  

 Each configuration of interest is a pattern of nodes and a subset of edges among 

them (Robins, Pattison, Kalish, & Lusher, 2007). For example, an edge configuration is a 

pair of nodes with a connection between them; a 2-star configuration is a set of three 

nodes where one node is connected to the other two nodes; a 3-star configuration is a set 

of four nodes where one node is connected to the other three nodes; a triangle 

configuration is a set of three nodes where all three nodes are connected to each other 

(Koskinen & Daragnova, 2013). Parameter estimates are calculated for those 

configurations included in the exponential model. The value of the parameter can be 

interpreted as the tendency of a network in the possible population of networks to contain 
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that configuration (Robins et al., 2007). For example, a network with a higher parameter 

value of the triangles configuration exhibits a tendency for clustering in population of 

random networks centered at the given network.  

SECTION 5.1.2: ERGMS BACKGROUND 

ERGMs are used to answer questions about network structure; specifically, in 

exploring processes that are involved in the creation of networks. These models have 

been used to study such processes in multiple fields, and we provide a few examples of 

their use in the literature.  

 Goodreau et al. utilized ERGMs to examine processes that generated friendship 

networks (2009). ERGMs were used to analyze adolescent friendship networks in 59 

schools studied in the National Longitudinal Survey of Adolescent Health. The desire 

was to examine the effects of an adolescent’s sociality (ability to make friends), 

homophily (propensity to establish friendships within the same grade, sex, or race), and 

triadic closure (friends of a friend will be friends) on generating friendship networks 

(Goodreau et al., 2009). Modeling friendship networks in an ERGM framework allowed 

understanding of the generative patterns of friendship networks. Goodreau et al. found 

that networks within grade levels tend to be more cohesive, and that females are more 

likely to form triadic closures than males (2009). In terms of homophily and depending 

on the composition of the schools, blacks tend to have higher homophily compared to 

other races, meaning that the propensity for blacks to form friendships with other blacks 

is greater than that, as an example, of whites forming friendships with other whites 

(Goodreau et al., 2009). Further, Goodreau et al. found that homophily and triadic closure 

interact with sociodemographic conditions in structuring the process of friendship 
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formation (2009). For example, white, black, and Asian students show high propensity 

for homophily and within-category triadic closure, representing cohesion within their 

groups, whereas Hispanic students do not exhibit such network structures (Goodreau et 

al., 2009).  

 Another example involves the use of ERGMs in exploring structural differences 

between networks derived from observed behavior and networks derived from subject 

recall. This study defined the behavior network using the frequency of dyadic interactions 

between two individuals, and the recall network using each individual’s recollection of 

these interactions (Quintane, 2013). ERGMs for this study included the following 

structural parameters: edge (parameter controlling for density), alternating star (parameter 

controlling for the degree distribution), isolates (parameter controlling for non-connected 

nodes), path closure (parameter controlling for the presences of closed triangles in the 

network), and multiple connectivity (parameter controlling the number of unclosed 

triangles in the network) (Quintane, 2013). The study found that the behavior and recall 

networks are structurally different, specifically in the closure of transitivity process 

(Quintane, 2013). Quintane found that nodes in the behavior networks tend to cluster 

more, as evidenced by positive and significant path closure parameters, as compared with 

nodes in recall networks (2013).  

Another study utilized ERGMs to study physician collaboration networks derived 

from an Australian insurance claims dataset, with the aim of comparing network 

structures of physician collaboration networks that have high hospitalization cost and 

readmission rates, to physician collaboration networks that have low hospitalization cost 

and readmission rates (Uddin et al., 2013). In this study, hospitalization cost is defined as 
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all payments made by the health insurance company and readmission rate is defined as 

the percent of patients who were admitted more than once (Uddin et al., 2013). This study 

specified ERGMs using structural characteristics that were assumed to be driving forces 

of the formation of the networks (Uddin et al., 2013). Uddin et al. found that the 2-star 

parameter, a parameter interpreted as the tendency for physicians within a network to 

work with multiple partners, was significantly different between the high cost network 

and low cost networks, with high cost networks having higher values (p < 0.05) (2015). 

This suggests that physicians in high cost networks tended to have multiple relationships 

with other physicians as compared with physicians in low cost networks. Furthermore, 

there was a significant difference in the alternating k-star parameter, a more robust 

network parameter than the k-star parameter for assessing centralization, between high 

readmission networks and low readmission networks, with low readmission networks less 

likely to be centralized (Uddin et al., 2013). 

Another study utilized ERGMs to examine physician networks derived from 

Medicare data (Moen et al., 2016). Their study compared the network structure of 

physician and hospital networks within two adjacent hospital referral regions (HRRs), 

each network with a different level of adherence to clinical guidelines regarding 

implantable cardioverter defibrillator (ICD) therapy (Moen et al., 2016). Adherence was 

operationalized as the ratio of ICDs being used as the primary prevention modality for 

heart failure patients to the total number of ICDs used for heart failure. In this study, the 

authors explored the effects of physician specialty homophily (e.g., family practice 

physicians connected to other family practice physicians) and alternating k-stars (Moen et 

al., 2016). The log-odds transformed physician practice homophily coefficient is 
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interpreted as the change in the log-odds of the presence of a tie if the nodes have the 

same physician specialty, as compared to if they do not have the same physician 

specialty, while holding the rest of the network constant (Moen et al., 2016). Moen et al. 

found that cardiology physicians are more likely to form ties with other cardiology 

physicians, rather than ties with physicians in other specialties (Moen et al., 2016). 

Furthermore, Moen et al. found that physicians in family practice were less likely to form 

ties with other family practice physicians than with physicians in other specialties (2016).  

SECTION 5.1.3: SECTION PURPOSE 

In this section, we utilize ERGMs to examine our regional networks of 

physicians. Our goal is to expand the literature using ERGMs in the analysis of networks 

derived from Medicare data. Utilizing ERGMs enables the exploration of the role of 

specific network measures such as degree, centrality, clustering, and homophily in the 

formation of these physician collaboration networks. We explore whether the network 

configurations and network development processes play a significant part in the 

formation and the structure of our regional networks of physicians, derived form 

Medicare data.  

 This section is divided into the following parts: We first describe mathematical 

considerations of ERGMs. We then describe model specifications of ERGMs in general, 

and describe the models built specifically for this study. Finally, we describe the results.  

Section 5.2:  Methods 

SECTION 5.2.1: MATHEMATICAL CONSIDERATIONS OF ERGMS 
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ERGMs have the following form, specifying the probability of a set of ties Y 

given a set of nodes and their attributes: 

𝑃  𝑌 = 𝑦  𝑛 𝑎𝑐𝑡𝑜𝑟𝑠) =  
exp ( 𝜃!𝑧!(𝑦)!

!!! )
𝑐  

where the  𝑧! 𝑦  terms represent model covariates (e.g., alternating k-stars, edges, nodal 

attributes), 𝜃! are the parameters to be estimated, and c is a quantity that ensures that the 

formula above is a proper probability distribution (Goodreau et al., 2009; Koskinen & 

Daragnova, 2013; Moen et al., 2016; Robins et al., 2007). It is theorized that tie 

formation is an actor dependent process; that is, actors and their attributes affect the 

formation of social structure and ties (Goodreau et al., 2009; Lusher & Robins, 2013). 

Taking the logit of this formula allows one to examine the conditional log-odds of 

individual ties, expressed as: 

𝑙𝑜𝑔𝑖𝑡 𝑃 𝑌!" = 1 | 𝑛 𝑎𝑐𝑡𝑜𝑟𝑠,𝑌!"! =  𝜃!𝛿𝑧!(𝑦)
!

!!!

 

where ” 𝑌!"!  denotes all pairs other than 𝑌!", and 𝛿𝑧!(𝑦) is the amount by which 𝑧!(𝑦) 

changes when 𝑌!" is toggled from 0 to 1” (Goodreau et al., 2009).  

 An important consideration in examining ERGMs is the assumption of dyadic 

dependence (dependence structure), that ties are not independent of each other in tie 

formation, as well as the particular description of this dependency used in modeling 

(Koskinen & Daragnova, 2013). Dyadic dependence concerns the endogenous tie-

formation process; that is, tie formation is dependent on the pairs of nodes within a 

network, rather than on individual nodes. Dependence can be modeled in many ways. 

Examples include the triad closure model (friends of friends will be friends) as used by 

Goodreau et al., and the Markov dependence model (ties sharing a node will be 
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dependent) as used by Moen et al. and Uddin et al. (2009; 2016; 2013). Dependence 

assumptions and considerations, which are mostly scientific and content concerns, 

determine network specifications in an ERGM (Koskinen & Daragnova, 2013). We note 

that, absent any dyadic dependence, the model above will only include terms that 

represent nodal attributes. This is a dyadic independence model, and is simply a logistic 

regression (Goodreau et al., 2009; Koskinen & Daragnova, 2013).  

 The goal of ERGMs is the estimation of 𝜃!. Some models of ERGMs, such as 

models with the Markov dependence assumption, utilize a pseudo-maximum likelihood 

estimation method with logistic regression as the computational device (Goodreau et al., 

2009; Handcock, 2003; Koskinen & Snijders, 2013; Wimmer & Lewis, 2010). However, 

pseudo-maximum likelihood estimations are limited in their utility, as the estimation 

technique often produces infinite coefficient values, despite convergence of the model 

(Handcock, 2003). Markov Chain Monte Carlo (MCMC) methods were implemented to 

address these issues with pseudo-maximum likelihood estimation (Handcock, 2003; 

Koskinen & Snijders, 2013; Wimmer & Lewis, 2010). With MCMC estimation, 

parameters are first estimated using pseudo-maximum likelihood, and then updated, from 

a simulated distribution of random graphs explored using MCMC (Wimmer & Lewis, 

2010).  

While MCMC improves estimation, the derived models often suffer from model 

degeneracy. Degeneracy here refers to the problem that parameters obtained using this 

technique are implausible; yielding a graph that has all connections in place or a graph 

that has no connections at all (Handcock, 2003; Wimmer & Lewis, 2010). Per Handcock, 

model degeneracy occurs for two reasons: there is no maximum likelihood for the 
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parameters of interest – in other words, the network specifications are not important for 

the structure or formation of the network; or the model is not specified correctly – in 

other words, the network specifications are not all accounted for within the model (2003).  

SECTION 5.2.2: DESCRIPTION OF THE DATA AND ERGM MODEL SPECIFICATIONS 

For this section, we utilized the data set and the networks created in Section 2. As 

our interest is in exploration of these tools, we do not utilize our full range of available 

networks, in order to ease the computational and time burden of the models we run. We 

restrict our analysis to the year 2012 and to the following regions: Houston, El Paso, and 

RGV. These regions were considered because of the differences in the rate of MIBB 

(Houston and El Paso are much higher rates than RGV) and the sizes of their networks 

(Houston is large, El Paso is of moderate size, and RGV is small). We built ERGMs for 

each metropolitan region.  

 We built ERGMs of a class called social selection models, models that examine 

whether nodal attributes, such as gender or age, affect the formation of ties within a 

network (Robins & Daragnova, 2013). In social selection models, a binary categorical or 

continuous nodal attribute can be included as a covariate. Positive parameter estimates 

for binary categorical variables carry the interpretation that nodes with that attribute tend 

to have more network ties than nodes without that attribute (Robins & Daragnova, 2013). 

Positive parameter estimates for a continuous variable suggests that those with higher 

values of the variable tend to have more network ties compared to those with lower 

values of the variable (Robins & Daragnova, 2013). Furthermore, social selection models 

may also include homophily effects for both categorical and continuous variables. For 

our models, we consider uniform homophily for categorical variables: whether two nodes 
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have the same value, or different values, for each of the given categorical variables of 

interest. We examine this type of homophily, as our interest lies in whether having 

similar values of these covariates impacts the structure of the network differently as 

compared to having connections between nodes that are not similar to each other. In the 

context of physician practice homophily, we explore whether, for example, two 

physicians being of the same defined specialty increases the likelihood of formation of a 

tie as compared with two physicians of different specialties. For these homophily terms, 

it is useful to examine the conditional log-odds transformation of the parameter estimates. 

These transformed parameter estimates are interpreted as the odds of an edge appearing, 

given the presence of homophily in the variable in question (Goodreau et al., 2009). For 

our continuous homophily terms, we considered the absolute difference of the continuous 

variables.  

 For our specific models, we included the following nodal attributes (covariates) as 

binary variables (yes or no): female, non-US trained, PCP physician type, biopsy 

physician type, surgeon physician type, and dual physician type. Dual physician type 

indicates a surgeon who both did the biopsy and the surgery to treat the cancer. We 

further examined uniform homophily for each of the above variables. We included the 

following continuous nodal attributes, both as nodal attributes and as absolute difference: 

age and years of practice (YOP).  

 We considered the following network configurations: GWDEGREE and GWESP. 

GWDEGREE and GWESP refer to the geometrically weighted degree and geometrically 

weighted edgewise shared parameter, respectively (Goodreau et al., 2009; Levy, Lubell, 

Leifeld, & Cranmer, 2016; Wimmer & Lewis, 2010). Including GWDEGREE is 
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equivalent to including a term for degree distribution (alternating k-star), but with the 

interpretation of preferential attachment (new nodes in the network form ties with nodes 

of high degree). A negative GWDEGREE parameter indicates a network creation process 

under which nodes are more likely to form relationships with nodes of higher degree (i.e., 

nodes that are more popular) (Levy et al., 2016). GWESP is equivalent to modeling 

triangles, with a positive estimate indicating higher likelihood of formation of clusters. 

GWESP further accounts for higher order triangles. Geometrically weighted terms are 

formulated differently than the equivalent alternating k-stars and triangles for the purpose 

of reducing the problem of degeneracy (Goodreau et al., 2009; Wimmer & Lewis, 2010).  

 In our analysis, we first computed descriptive statistics such as number of 

physicians, number of edges, number of PCPs, etc. for each of the regional networks 

(Houston, El Paso, and RGV). To test differences between regions, we carried out chi-

squared tests for the categorical variables and ANOVAs for the continuous variables 

(age, years of practice, and MIBB rate). Second, we ran the following ERGMs: a model 

with nodal attribute, uniform homophily, and absolute difference terms (Model 1); a 

model with nodal attribute terms, uniform homophily terms, the absolute difference 

terms, and GWDEGREE (Model 2); a model with nodal attribute terms, the uniform 

homophily terms, absolute difference terms, and GWESP (Model 3); and a model with 

the nodal attribute terms, uniform homophily terms, absolute difference terms, 

GWDEGREE, and GWESP (Model 4). The R package, “statnet”, was utilized for 

computing the models (Handcock et al., 2017).  

Section 5.3:  Results 
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Table 5.1 summarizes network attributes across the networks (Houston, El Paso, 

and RGV); there were significant differences between networks in terms of network 

attributes. Specifically, the proportions of non-US Trained physicians, Dual physicians 

(surgeons who did both the biopsy and the surgery to treat the cancer), females, and 

MIBB rates were different between regions. 

Table 5.1: Descriptive Statistics for Regional Networks (2009 & 2012) 
 Houston 

N (%) 
Rio Grande Valley 

N (%) 
El Paso 
N (%) 

p-value 

Nodes 513 124 62 -- 
Edges 5918 1845 678 -- 

Biopsy Physicians 139 (27%) 37 (29%) 22 (35%) 0.3522 
Surgeons 91 (17%) 28 (23%) 15 (24%) 0.27 

PCPs 271 (52%) 69 (56%) 29 (47%) 0.43 
Radiologists 141 (27%) 27 (22%) 17 (27%) 0.52 

Non-US Trained 122 (24%) 51 (41%) 30 (48%) <0.0001 
Dual 32 (6%) 21 (17%) 8 (13%) 0.0004 

Female 176 (34%) 19 (15%) 12 (19%) <0.0001 
Age (Mean/SD) 48.7 (14.5) 48.9 (14.1) 49.0 (18.2) 0.982 

Years of Practice 
(Mean/SD) 

22.8 (11.4) 23.0 (10.4) 24.3 (13.2) 0.608 

MIBB Rate 96% 59% 90% <0.0001 
*Bolded indicates significance 
 

For the Houston network, Model 4 did not converge. In Model 1, the following 

nodal attributes were significant: age, YOP, female, PCP, surgeon, and biopsy physician 

(coefficient estimates = 0.006, -0.017, -0.43, -1.96, -2.25, -0.15, respectively, all p-values 

< 0.05). Those who are older are actively forming ties compared to those who are 

younger, and those who have higher YOP are less actively forming ties as compared to 

those who have lower YOP. Further, females, PCPs, surgeons, and biopsy physicians are 

less likely form ties as compared to males, non-PCPs, non-surgeons, and non-biopsy 

physicians. In the same model, the following homophily terms were significant: female, 

PCP, surgeon, and biopsy physician (0.19, -0.28, -0.25, -0.096, respectively, all p-values 

< 0.05).  These homophily terms were negative (except for female), indicating lower 

likelihood of forming ties between nodes with the same attribute value, holding all else 
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constant (e.g., there is less likelihood for PCPs to be connected to other PCPs, as 

compared to PCPs being connected to non-PCPs).  For gender, the opposite effect held. 

The absolute difference of age was significant, with a negative coefficient, indicating that 

physicians in these networks tend to form ties to those closer to themselves in age (-

0.019, p-value < 0.05). For Model 2, GWDEGREE was negative and significant, 

indicating that physicians in these networks have a higher likelihood of forming ties with 

physicians of higher degree (-3.92, p-value < 0.05). Adding the GWDEGREE term did 

not change the other terms significantly, but did remove the significance of the surgeon 

homophily term. For Model 3, GWESP was positive and significant, indicating an 

increased likelihood of triadic closures in this network (8.63, p-value < 0.05). Adding this 

GWESP term changed some of the estimates and ablated significance of some 

parameters; specifically, the covariates of PCP and Surgeon. Table 5.2 summarizes these 

results.  

Table 5.2: Houston ERGM Coefficients 
 Model 1 

Estimate (SE) 
Model 2 

Estimate (SE) 
Model 3 

Estimate (SE) 
Edges -0.075 (.29) 0.025 (.31) -12.60* (.58) 
Nodal Attributes    

Age (nodecov) 0.006* (.002) 0.005 (.00) -0.002 (.00) 
Years of Practice 

(nodecov) 
-0.017* (.003) -0.017* (.00) -0.004 (.00) 

Female (nodefactor) -0.43* (.03) -0.39* (.04) -0.15* (.02) 
Non-US Trained 

(nodefactor) 
0.004 (.04) -0.025 (.05) 0.05 (.05) 

PCP (nodefactor) -1.96* (.04) -1.96* (.05) -1.01* (.04) 
Surgeon (nodefactor) -2.25* (.12) -2.18* (.13) -1.16* (.09) 

Biopsy Physician 
(nodefactor) 

-0.15* (.03) -0.16* (.03) -0.06* (.22) 

Dual (nodefactor) 0.53 (.28) 0.50 (.27) 0.53 (.22) 
Homophily     

Age (absdiff) -0.019* (.00) -0.017* (.00) -0.009* (.00) 
Years of Practice 

(absdiff) 
0.006 (.00)  0.005 (.00) -0.002 (.00) 

Female (nodematch) 0.19* (.03) 0.21* (.05) 0.23* (.04) 
Non-US Trained 

(nodematch) 
0.03 (.05) -0.008 (.06) 0.06 (.05) 
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PCP (nodematch) -0.28* (.04) -0.28* (.05) 0.04 (.06) 
Surgeon (nodematch) -0.25* (.12) -0.22 (.14) -0.001 (.10) 

Biopsy Physician 
(nodematch) 

-0.096* (.03) -0.11* (.04) -0.101* (.05) 

Dual (nodematch) -0.002 (.28) 0.028 (.27) 0.18 (.21) 
Network Structure    

GWDEGREE -- -3.92* (.51) -- 
GWESP -- -- 8.63* (.37) 

AIC 39841 39809 36991 
*Bolded indicates significance 
**nodefactor: categorical nodal attribute inserted in ERGMs in R; nodecov: continuous nodal attribute 
inserted in ERGMs in R; nodematch: homophily categorical variable inserted in ERGMs in R; absdiff: 
homophily continuous variable inserted in ERGMs in R  
Model 1: Nodal Attributes and Homophily Terms 
Model 2: Nodal Attributes, Homophily Terms, GWDEGREE 
Model 3: Nodal Attributes, Homophily Terms, GWESP 
 
 
 For the RGV network, Model 2 and Model 4 did not converge. In Model 1, the 

following covariate terms were significant: non-US trained, PCP, surgeon, and biopsy 

physician (0.152, -2.135, -1.801, 0.617, respectively, all p-values < 0.05). Non-US 

trained physicians and biopsy physicians were actively forming ties as compared to US 

trained physicians and non-biopsy physicians. Further, PCPs and surgeons were less 

active in forming ties as compared to non-PCPs and non-surgeons. In terms of 

homophily, the following terms were significant: non-US trained and PCP (0.191, -0.402, 

respectively, all p-values < 0.05). The non-US trained term was positive, indicating 

increased likelihood of homophilous ties on this attribute. The PCP term was negative, 

indicating decreased likelihood of homophilous ties on this attribute. The absolute 

difference of years of practice was significant and negative (-0.018, p-value < 0.05), 

indicating physicians forming ties to other physicians closer in years of practice. Adding 

the GWESP term in Model 3 did not change the parameter estimates significantly. The 

GWESP term was significant and positive (169, p-value < 0.05) for this network, 

indicating an increased likelihood of triadic closures. Table 5.3 summarizes these results.    

Table 5.3: RGV ERGM Coefficients 
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 Model 1 
Estimate (SE) 

Model 2 
Estimate (SE) 

Model 3 
Estimate (SE) 

Edges 0.928* (.38) -- -217 (1.1) 
Nodal Attributes    

Age (nodecov) 0.002 (.01) -- 0.003 (.01) 
Years of Practice 

(nodecov) 
0.002 (.01) -- 0.001 (.01) 

Female (nodefactor) -0.051 (.12) -- -0.032 (.01) 
Non-US Trained 

(nodefactor) 
0.152* (.05) -- 0.142* (.05) 

PCP (nodefactor) -2.135* (.09) -- -1.947* (.08) 
Surgeon (nodefactor) -1.801* (.15) -- -1.696* (.16) 

Biopsy Physician 
(nodefactor) 

0.617* (.09) -- 0.516* (.09) 

Dual (nodefactor) -0.176 (.19) -- -0.088 (.19) 
Homophily     

Age (absdiff) 0.010 (.01) -- 0.010 (.01) 
Years of Practice 

(absdiff) 
-0.018* (.01) -- -0.018* (.01) 

Female (nodematch) 0.062 (.13) -- 0.093 (.14) 
Non-US Trained 

(nodematch) 
0.191* (.07) -- 0.190* (.07) 

PCP (nodematch) -0.402* (.08) -- -0.277* (.10) 
Surgeon (nodematch) 0.003 (.14) -- 0.000 (.15) 

Biopsy Physician 
(nodematch) 

0.001 (.08) -- 0.011 (.09) 

Dual (nodematch) 0.092 (.01) -- 0.058 (.18) 
Network Structure    

GWDEGREE -- -- -- 
GWESP -- -- 169* (.91) 

AIC 6309 -- 6259 

*Bolded indicates significance 
**nodefactor: categorical nodal attribute inserted in ERGMs in R; nodecov: continuous nodal attribute 
inserted in ERGMs in R; nodematch: homophily categorical variable inserted in ERGMs in R; absdiff: 
homophily continuous variable inserted in ERGMs in R  
Model 1: Nodal Attributes and Homophily Terms 
Model 2: Nodal Attributes, Homophily Terms, GWDEGREE 
Model 3: Nodal Attributes, Homophily Terms, GWESP 
 
 For the El Paso network, Model 3 and 4 did not converge. In Model 1, the YOP, 

female, PCP, and surgeon nodal attributes were negative and significant (-0.027, -1.964, -

1.573, -2.448, -0.297, respectively, p-value < 0.05). In terms of homophily, the PCP term 

was significant and negative (-0.297, p-value < 0.05). The absolute difference term for 

YOP was significant and negative (-0.032, p-value < 0.05). In Model 2, the addition of 

the GWDEGREE did not change the parameter estimates of the other terms. The 
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GWDEGREE term was negative and significant (-5.62, p-value < 0.05). Table 5.4 

summarizes these results. 

Table 5.4: El Paso ERGM Coefficients 
 Model 1 

Estimate (SE) 
Model 2 

Estimate (SE) 
Model 3 

Estimate (SE) 
Edges 3.147* (.85) 3.160* (.86) -- 
Nodal Attributes    

Age (nodecov) 0.013 (.01) 0.015 (.01) -- 
Years of Practice 

(nodecov) 
-0.027* (.01) -0.029* (.01) -- 

Female (nodefactor) -1.964* (.51) -1.925* (.54) -- 
Non-US Trained 

(nodefactor) 
-0.020 (.09) -0.032 (.09) -- 

PCP (nodefactor) -1.573* (.18) -1.589* (.19) -- 
Surgeon (nodefactor) -2.448* (.41) -2.451* (.41) -- 

Biopsy Physician 
(nodefactor) 

0.119 (.20) 0.111 (.20) -- 

Dual (nodefactor) 0.249 (.56) 0.285 (.57) -- 
Homophily     

Age (absdiff) 0.012 (.01) 0.012 (.01) -- 
Years of Practice 

(absdiff) 
-0.032* (.01) -0.032* (.01) -- 

Female (nodematch) -0.758 (.53) -0.776 (.55) -- 
Non-US Trained 

(nodematch) 
-0.055 (.12) -0.053 (.12) -- 

PCP (nodematch) -0.297* (.14) -0.284* (.14) -- 
Surgeon (nodematch) -0.494 (.38) -0.503 (.38) -- 

Biopsy Physician 
(nodematch) 

-0.247 (.15) -0.249 (.15) -- 

Dual (nodematch) 0.830 (.53) 0.815 (.54) -- 
Network Structure    

GWDEGREE -- -5.62* (1.4) -- 
GWESP -- -- -- 

AIC 1779 1774  

*Bolded indicates significance 
**nodefactor: categorical nodal attribute inserted in ERGMs in R; nodecov: continuous nodal attribute 
inserted in ERGMs in R; nodematch: homophily categorical variable inserted in ERGMs in R; absdiff: 
homophily continuous variable inserted in ERGMs in R  
Model 1: Nodal Attributes and Homophily Terms 
Model 2: Nodal Attributes, Homophily Terms, GWDEGREE 
Model 3: Nodal Attributes, Homophily Terms, GWESP 
 
 Comparing Model 1 across regions, we see that the PCP nodal attribute term and 

the homophily term were consistently negative and significant. RGV had a significant 

and positive non-US Trained nodal attribute and homophily terms, while in the other 

networks this term was not significant. Table 5.5 summarizes these results.   
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Table 5.5: ERGM Model 1 Coefficients Compared Between 
Regional Networks 
 Houston 

Estimate (SE) 
Rio Grande 

Valley 
Estimate (SE) 

El Paso 
Estimate (SE) 

Edges -0.075 (.29) 0.928* (.38) 3.147* (.85) 
Nodal Attributes    

Age (nodecov) 0.006* (.002) 0.002 (.01) 0.013 (.01) 
Years of Practice 

(nodecov) 
-0.017* (.003) 0.002 (.01) -0.027* (.01) 

Female (nodefactor) -0.43* (.03) -0.051 (.12) -1.964* (.51) 
Non-US Trained 

(nodefactor) 
0.004 (.04) 0.152* (.05) -0.020 (.09) 

PCP (nodefactor) -1.96* (.04) -2.135* (.09) -1.573* (.18) 
Surgeon (nodefactor) -2.25* (.12) -1.801* (.15) -2.448* (.41) 

Biopsy Physician 
(nodefactor) 

-0.15* (.03) 0.617* (.09) 0.119 (.20) 

Dual (nodefactor) 0.53 (.28) -0.176 (.19) 0.249 (.56) 
Homophily     

Age (absdiff) -0.019* (.00) 0.010 (.01) 0.012 (.01) 
Years of Practice (absdiff) 0.006 (.00)  -0.018* (.01) -0.032* (.01) 

Female (nodematch) 0.19* (.03) 0.062 (.13) -0.758 (.53) 
Non-US Trained 

(nodematch) 
0.03 (.05) 0.191* (.07) -0.055 (.12) 

PCP (nodematch) -0.28* (.04) -0.402* (.08) -0.297* (.14) 
Surgeon (nodematch) -0.25* (.12) 0.003 (.14) -0.494 (.38) 

Biopsy Physician 
(nodematch) 

-0.096* (.03) 0.001 (.08) -0.247 (.15) 

Dual (nodematch) -0.002 (.28) 0.092 (.01) 0.830 (.53) 
*Bolded indicates significance 
**nodefactor: categorical nodal attribute inserted in ERGMs in R; nodecov: continuous nodal attribute 
inserted in ERGMs in R; nodematch: homophily categorical variable inserted in ERGMs in R; absdiff: 
homophily continuous variable inserted in ERGMs in R  
Model 1: Nodal Attributes and Homophily Terms 
Model 2: Nodal Attributes, Homophily Terms, GWDEGREE 
Model 3: Nodal Attributes, Homophily Terms, GWESP 
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SECTION 6: NETWORK MODELS – NETWORK AUTOCORRELATION MODELS 

Section 6.1:  General Overview of Network Autocorrelation Models and 

Purpose of Section 

Social behaviors often occur within the context of social networks; thus, a node’s 

social behavior within a network is dependent on the relationships between it and other 

nodes, and those between other nodes (Leenders, 2002). Network autocorrelation models 

are models of nodal behavior that consider these nodal interdependencies. Specifically, 

they study how a node’s social behavior may be influenced by a node’s position within 

the network, and the behavior and the characteristics of neighboring nodes (Leenders, 

2002; M. Smith, Gorgoni, & Cronin, 2016). These models utilize one or more of several 

possible weight matrices that describe effects of nodes on each other, and relationships 

between nodal attributes. It is through these weight matrices that interdependences 

between nodes are incorporated into the model estimation procedures (Leenders, 2002; 

M. Smith et al., 2016).  

 These models have been utilized in multiple settings, such as studying academic 

performance, political science, and social influence studies (Chun, Kim, & Kim, 2012; 

Fujimoto & Valente, 2012; Hays, Kachi, & Franzese, 2010).  They have also been 

utilized in studying transit networks, communication networks, and trade networks (Chun 

et al., 2012; Hays et al., 2010; M. Smith et al., 2016). In an example of a social influence 

study, Fujimoto and Valente utilized these models to study smoking behavior among 

adolescents, within their friendship networks, examining how friendships affect smoking 

behavior (2012). The weight matrix that these authors specified incorporated the 
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influence of mutual or reciprocated friendship nominations, as well as the influence of 

one-sided friendship or non-reciprocated friendship nominations (Fujimoto & Valente, 

2012). They found that reciprocated friendships had a greater impact on smoking 

behavior than non-reciprocated friendships (OR: 4.44, CI: 3.27-6.01 vs. OR: 2.07, CI: 

1.64-2.61) (Fujimoto & Valente, 2012).  

 To our knowledge, there have not been any studies utilizing these models 

in networks created from Medicare data. The purpose of this section is to describe the use 

of network autocorrelation models in exploring factors that contribute to the use of 

MIBB. This section comprises the following parts: a brief overview of the mathematical 

considerations of network autocorrelation models, including model specification of 

network autocorrelation models; a brief description of the data we utilized in our 

analyses; a description of the outcome variable and covariates used in our analysis; a 

specification of the weight matrices we utilized in the analysis; descriptive results, and 

model results. 

Section 6.2:  Methods 

SECTION 6.2.1: NETWORK AUTOCORRELATION – MATHEMATICAL CONSIDERATIONS 
AND MODEL SPECIFICATIONS 

Leenders describes the mathematics of network autocorrelation models; what 

follows is an overview of these considerations (2002). We let y be a vector corresponding 

to the nodes in a network, where each entry in the vector records for the corresponding 

node the social behavior or outcome of interest. The entries of the vector can be 

continuous, or binary. We let X be a matrix of covariates for the nodes in the network, 
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just as in a regression model (e.g., age, gender, etc.). Network autocorrelation models 

take the influence of the nodes on each other into account through a weight matrix, 𝑊!.  

Weight matrices describe specific network effects and spatial effects. Multiple 

weight matrices, each of them representing a specific type of influence of nodes on other 

nodes within the network, can be included in the model. We considered the following 

types of weight matrices: attribute similarity, structural similarity, and netlag. Attribute 

similarity calculates a similarity matrix based on nodal attributes such as gender (Leifeld 

& Cranmer, 2017). This matrix captures whether two nodes connected to each other are 

similar in some specified nodal attribute. Structural similarity captures the extent to 

which two nodes are connected to the same neighboring nodes (Leifeld & Cranmer, 

2017). Netlag calculates a partial network lag matrix to capture how the outcome of a 

node’s neighbors affect the node’s outcome; specifically it allows the inclusion of those 

values in y corresponding to a node’s neighbors, and other nodes in the network, as 

covariates in our regression model(Leifeld & Cranmer, 2017). Table 6.1 provides more 

specific details of the weight matrices used in our study. 

Table 6.1: Summary of Weight Matrix Effects 
Variables Description/Interpretation 

Weight Matrices Effects 
Attribute Similarity This term is based on a nodal attribute (Leifeld & Cranmer, 

2017). In our context, it captures whether two physicians 
connected to each other are similar in terms of being biopsy 
physicians, non-US trained, or female.  

Structural Similarity Two nodes are structurally similar if they share the same 
neighboring nodes. (Leifeld & Cranmer, 2017). In our context, a 
physician may be affected by the high performance of another 
physician who is connected to the same group of physicians.  

Netlag This term is a spatial network term, capturing the autocorrelation 
in networks. In other words, it captures whether a node being 
connected to a high performing node (in terms of outcome) will 
affect the node’s performance (Leifeld, 2017). In our context, it is 
asking whether a physician being connected to a physician whose 
rate of MIBB met recommendations will affect whether their rate 
of MIBB meets recommendations.  
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Formally, a simple network autocorrelation model has the following notation 

(Leenders, 2002):  

𝑦 =  𝜌𝑊! +  𝜀, 

where 𝜀 ~ N(0, 𝜎!). This model can be extended to include a matrix of covariates, X: 

𝑦 =  𝜌𝑊! + 𝑋𝛽 +  𝜀, 

where 𝜀 ~ N(0, 𝜎!).  

The above model is used to estimate 𝜌 and 𝛽, and thus infer how influence (i.e., a 

node being connected to a higher performing node, operationalized through netlag), 

interdependencies (i.e., mutual friendships; structural similarity), or covariates (i.e., 

attribute similarity) affect y, each while controlling for each other, and possibly for 

underlying covariates.  

SECTION 6.2.2: DATA, OUTCOMES, COVARIATES, WEIGHT MATRIX SPECFICIATIONS, AND 
MODELS 

As we did in studying ERGMs, we focused on only a few networks, here only for 

the year 2012. Houston and Rio Grande Valley were chosen because they are different 

sized networks, and have very different rates of MIBB. Section 2.3 describes the 

derivation of these networks.  

 As our outcome variable for each physician we chose to utilize whether or not the 

rate of MIBB for that physician met NCCN guidelines. The MIBB rate for a given 

physician was calculated by looking at all patients within our breast cancer cohort, who 

claimed service from that physician, and computing the percentage of the patients thus 

defined who received MIBB. If the MIBB rate of a physician was greater than 0.90, we 

said that the physician had a rate of MIBB meeting recommendations. Thus, we are 
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modeling whether or not physician attributes, network position, etc. affects a physician’s 

rate of MIBB meeting recommendations.  

 We included the following network measures as controls, as previous analyses 

suggested the influence of these measures on MIBB: betweenness centrality and local 

transitivity (see Section 2.4.2 for definitions). The following nodal attributes were 

included as covariates: physician’s age, physician years of practice, whether or not the 

physician is a PCP, whether or not the physician is a surgeon, and whether or not a 

physician is a Radiologist.  

We included weight matrices of the types specified and introduced above. For the 

attribute similarity matrices, the following attributes were considered: biopsy physician, 

non-US trained, and female. We note that there is an attribute similarity matrix for each 

listed attribute. The interest is in whether a physician with a given attribute value 

connected to another with the same attribute value is more likely to have a rate of MIBB 

meeting recommendations. For netlag, we included a lag of 1 and a lag of 2. A lag of 1 

captures immediate neighbor effects while a lag of 2 capture effects of nodes at a distance 

of 2 from a given node.  

 Descriptive statistics were obtained for covariates and outcome: frequencies with 

percentages for categorical variables, and means with standard deviations for continuous 

variables. We considered three network autocorrelation models for each network; for all 

three models the outcome is whether a physician’s rate of MIBB meets 

recommendations. Model 1a considers the effect of attribute similarity, for the three 

attributes mentioned above, on the outcome. Model 1b considers the effect of structural 

similarity, and Model 1c considers the effect of netlag, including lag 1 and lag 2. Model 2 
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includes all the weight specification matrices and network measures, thus exploring the 

effects of the weight specification matrices on the outcome, while controlling for network 

measures. Model 3 controls for weight specification matrices, network measures, and 

nodal attributes (those mentioned specifically in the above as covariates of interest).  

Section 6.3:  Results 

Houston had 513 physicians within the 2012 network. RGV had 124 physicians. 

For Houston, 428 (89.3%) physicians had rates of MIBB meeting NCCN 

recommendations. For RGV, only 62 (50%) physicians had rates of MIBB meeting 

NCCN recommendations. Houston had 122 (23.8%) physicians who were non-US 

trained, while RGV had 51 (41.1%) physicians who were non-US trained. RGV had only 

19 (15.3%) physicians who were female while Houston had 176 female physicians 

(34.3%). Table 6.2 summarizes these and other descriptive statistics for the Houston and 

RGV networks.  

Table 6.2: Descriptive Statistics for the Houston and RGV Networks 
 Houston Rio Grande Valley (RGV) 
Number of Physicians 513 124 
Biopsy Physicians (n (%)) 139 (27.1%) 37 (29.8%) 
Surgeons (n (%)) 91 (17.7%) 28 (22.6%) 
PCP (n (%)) 271 (52.8%) 69 (55.6%) 
Non-US Trained (n (%)) 122 (23.8%) 51 (41.1%) 
Female (n (%)) 176 (34.3%) 19 (15.3%) 
Age (mean (SD)) 48.7 (14.5) 48.9 (14.1) 
YOP (mean (SD)) 22.8 (11.4) 23.0 (10.4) 
Betweenness Centrality (mean (SD)) 425.7 (1165) 52.0 (116.7) 
Transitivity (mean (SD)) 0.71 (0.29) 0.81 (0.22) 
Outcome (n (%)) 458 (89.3%) 62 (50%) 
 
 For Houston, attribute similarity of biopsy physician was significant in all three 

models. A biopsy physician connection to another biopsy physician, as compared to a 

biopsy physician connection to a non-biopsy physician, negatively affected that biopsy 
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physician having a rate of MIBB meeting NCCN requirements (parameters ranging from 

-0.0035 and -0.0042, all p-values < 0.05). Further, in Model 2, a non-US trained 

physician connection to another non-US trained physician, as compared with a non-US 

trained physician connection to a US-trained physician, significantly and positively 

affected that non-US trained physician having a rate of MIBB meeting NCCN 

requirements (0.0038, p-value < 0.05). Structural similarity had a significant positive 

effect on a physician having a rate of MIBB meeting NCCN recommendations in Models 

2 and 3 (0.039, p-value < 0.05 and 0.044, p-value < 0.05, respectively). Similarly, netlag 

of 1, i.e. a physician being directly connected to a physician with a rate of MIBB meeting 

NCCN guidelines, had a significant positive effect on a physician having a rate of MIBB 

meeting NCCN recommendations, in Models 2 and 3 (0.888, p-value < 0.05 and 0.089, 

p-value < 0.05, respectively). Furthermore, in Model 3, a physician being a surgeon 

significantly and negatively affected whether a physician had a rate of MIBB meeting 

NCCN recommendations (-2.673, p-value < 0.05). Table 6.3 summarizes these results.  
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For RGV, attribute similarity of biopsy physicians was significant across all three 

models. A biopsy physician’s connection to another biopsy physician, compared with a 

connection to a non-biopsy physician, negatively affected that biopsy physician having a 

rate of MIBB meeting NCCN recommendations (parameters ranging from -0.034 and –

0.061, all p-values < 0.05). For Model 1, netlag of 1 had a significant negative effect on a 

physician having a rate of MIBB meeting NCCN recommendations (Model 1c). Table 6.5 

summarizes these results.  
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SECTION 7: DISCUSSION, LIMITATIONS, AND CONCLUSIONS 

Section 7.1:  Discussion and Limitations: Aim One 

SECTION 7.1.1: RESTATING AIMS 

This study sought to examine the utility of social network analysis methodologies 

in examining and explaining rates of MIBB as recorded in Medicare data. Physician 

networks were created using Medicare data, with nodes being physicians and edges being 

shared patients. These networks are considered to be collaboration networks, i.e., 

networks that broadly describe working relationships between physicians (Barnett et al., 

2011). Within the context of exploring possible influences on physicians’ use of MIBB, 

we utilized SNA metrics to capture how physician relationships affect this use. We also 

examined how physician relationships influence patient receipt of MIBB. However, the 

overarching goal was to attempt to fully utilize SNA in examining Medicare data, and to 

assess the usefulness of the methodology, with the above context being a convenient 

subject area within which to test the tools.  

 Aim one sought to use SNA metrics to expand on traditional regression methods 

such as hierarchical linear models, utilized in health care services research. Aim two 

considered the use of network models, ERGMs and network autocorrelation models, to 

model the structure of physician networks derived from Medicare data, and to determine 

whether that network structure affected the use of MIBB. The models in Aim two 

incorporate network dependencies that traditional regression analyses do not. 

SECTION 7.1.2: REGIONAL VARIATION IN MIBB RATES AND NETWORK STRUCTURE 
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Recent work has concluded that MIBB rates among surgeons are well below 

documented guidelines and vary between regions (Tamirisa et al., 2015). These 

guidelines, established by the NCCN in 2009, recommended that MIBB be used as the 

gold standard for initial diagnosing of breast cancer, with 90% of first biopsies being 

MIBB (Bevers et al., 2009). Our results suggest that the MIBB rate among all physicians 

who administer breast biopsies is increasing over time, beginning in 2009. In fact, by 

2012, all regions in our study, with the exception of RGV, have MIBB rates above 90%. 

This suggests that NCCN guidelines are being followed. However, even in 2012 we still 

see variation of MIBB rates between regions, similar to what has been seen in previous 

work (Tamirisa et al., 2015; Zimmerman et al., 2012); rates of MIBB vary between 

regions in Texas: 50% to 90% in 2009 and 59% to 96% in 2012.  

 This variation in MIBB rates across regions further illustrates the variation in 

health care systems, service, access, and outcomes between regions, that has been studied 

by many authors and is well documented (Goodwin, Lin, Singh, & Kuo, 2013; Reistetter 

et al., 2015; Tamirisa et al., 2015; Zimmermann et al., 2013). A possible reason for some 

of this regional variation is the variation in regional physician collaboration networks. 

Previous studies utilizing SNA to examine networks derived from administrative 

databases have examined the use of physician networks and their characteristics in the 

explanation of variance in health outcomes. These studies suggest two broad conclusions: 

physician collaboration networks differ between regions, and adjusting for network 

measures such as betweenness centrality may explain some of the variance in outcomes 

(Barnett et al., 2012; Casalino et al., 2015; Landon et al., 2012; Moen et al., 2016; 
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Pollack, Frick, et al., 2014; Pollack, Wang, et al., 2014; Pollack et al., 2012; Uddin et al., 

2015).  

 Our regional results reveal that regional physician networks within Texas vary in 

size, network measures such as density, and network characteristics such as ratio of 

biopsy surgeons to biopsy physicians; this echoes one of the broad conclusions of 

previous studies utilizing SNA on administrative databases (Barnett et al., 2012; Casalino 

et al., 2015; Landon et al., 2012; Moen et al., 2016; Pollack, Frick, et al., 2014; Pollack, 

Wang, et al., 2014; Pollack et al., 2012; Uddin et al., 2015). For example, Landon et al., 

in studying the variation of patient-sharing networks across HRRs within the United 

States, concluded that network characteristics such as transitivity differed substantially 

between these networks (2012). Similarly, in our regional networks, transitivity differed 

between our networks. Furthermore, it was noted in Landon et al.’s study that transitivity 

was higher in smaller networks as compared to bigger networks (0.67 vs. 0.48, as an 

example) (2012). Similarly, transitivity in our relatively smaller networks, such as 

Lubbock, was higher than in our relatively larger networks, such as Houston (e.g., 0.87 in 

Lubbock vs. 0.77 in Houston).  

 As an aside, we provide a possible explanation for the above patterns regarding 

transitivity. We recall that transitivity has the interpretation that nodes within a network 

are “connected in dense pockets of interconnectivity”, i.e., two nodes will tend to be 

connected to each other when each is connected to a third node (T.W. Valente, 2010). 

Higher transitivity in smaller physician collaboration networks is not surprising, as 

physicians in these networks have a higher tendency to know each other and thus have a 

greater chance of collaborating with one another. Further, we note that the transitivity in 
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our regional networks is higher than the transitivity in Landon et al.’s HRR networks 

(2012). Landon et al. do not restrict specialties, whereas we do. Our focus is on 

physicians who work with breast cancer treatment, and this specialization increases the 

likelihood that physicians already know each other (2012).  

SECTION 7.1.3: NETWORK MEASURES OVER TIME 

One aspect of physician networks derived from administrative data that has not 

been thoroughly discussed in the literature is the stability of these physician collaborative 

networks, in terms of network measures, over time. For other networks, such as personal 

and research collaboration networks, studies have suggested, or implied, the stability of 

network measures, such as transitivity (Amat & Perruchas, 2016; Lubbers et al., 2010). 

To our knowledge, this is the first study that explores the stability of network measures 

for networks derived from Medicare data. The regional networks for Dallas, Lubbock, 

and Austin exhibited some instability over time. Lubbock saw a 51% increase in 

normalized density from 2009 to 2012. Austin showed a 440% increase in betweenness 

centralization from 2011 to 2012. In terms of betweenness centralization, Dallas had an 

increase of 57.9% from 2010 to 2011, but then a decrease of 50% from 2011 to 2012.  

For Lubbock, an increase in normalized density possibly indicates increased 

collaboration within the Lubbock physician collaboration network, but as Lubbock is a 

smaller network, this increased collaboration may only consist of a few more new 

collaborative ties. The changes in betweenness centralization in Austin and Dallas are 

more difficult to explain. Betweenness centralization increases indicate that physician 

collaboration networks are more centralized at a few nodes than they had been previously 

(see Section 2.4.3). A few possible explanations exist: perhaps there were real structural 
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changes within the healthcare system in Austin or Dallas; perhaps the results suggest the 

instability of calculating these measures from networks derived from Medicare data; and 

perhaps the networks have changed greatly in terms of the particular physicians who are 

in practice. Further research is needed to fully understand changes in normalized density 

and betweenness centralization in these regions, and to understand how to capture these 

changes against a possible background of changing physician roster. One possible further 

study is to run simulations of networks with structural characteristics similar to those 

observed in our networks, in order to determine what structural changes are needed to 

obtain the observed changes. This will yield information such as the number of edges 

needed to be removed and the number of nodes needed to be removed, to achieve the 

observed changes; this information may be useful in explaining the phenomenon. Further 

research would include looking at the healthcare systems, specifically those of the breast 

cancer systems, of these three regional networks to determine whether there were any 

changes, such as hospital closures or merging of hospital systems, during the periods of 

change.  

SECTION 7.1.4: SMALL-WORLD AND SCALE-FREE 

Few studies utilizing SNA on Medicare data have formally examined the small 

world property and the scale-free property of networks derived form Medicare data (Zand 

et al., 2017). Our results reveal that most of our regional networks were not scale-free 

networks, with El Paso and RGV as exceptions. According to the 𝜎 measure we utilized 

to assess the small world property, all regional networks met the formal criteria for the 

small-world property. We must note that individual observed characteristic path lengths 

for some of our regions, such as Houston and Dallas, are higher than the simulated 
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characteristics path lengths. This was not an expected result for small world networks, as 

small world networks have lower observed path lengths than simulated path lengths 

(Humphries et al., 2006; Telesford et al., 2011). However, an argument can be made that 

the path lengths are within range (1-3) of networks considered to be small world.  

We further note that that fact that our regional networks are small world is in 

contrast to the study of Zand et al., whose results suggest that networks derived from 

Medicare data were scale free (2017). This difference could be due to the size of the 

networks in the two studies. Zand et al.’s networks had upwards of 800,000 nodes, and 

edges numbers ranging from 40,000,000 to 90,000,000. The largest networks in our study 

consisted of 754 nodes and 8,346 edges. The difference in size is due to the fact that we 

were looking at a more specific patient population and a more specific physician 

population than Zand et al. (2017). It is possible that our restriction of physician types 

includes in our networks precludes the possibility that networks satisfy the scale-free 

property.  

 Barabasi and Albert suggest that the scale-free property is due to the mechanism 

of preferential attachment in the growth of the networks (1999). Assuming Barabasi and 

Albert’s conclusion, this implies that our regional networks, with the exception of El 

Paso and Rio Grande Valley, do not grow by preferential attachment. Rather, a different 

mechanism may be at play in the formation of these networks. The scale-free property 

results must be viewed cautiously, and this is specifically true of the conclusions of 

Barabasi and Albert. Though it may be possible that the scale free property gives a 

glimpse into the mechanisms of network formation, it is also possible that the scale-free 

property is inherent in all networks of the appropriate size (Keller, 2005). Further, Keller 
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points out that other network formation mechanisms also lead to the scale-free property. 

Therefore, future research is needed to examine the absence of the scale-free property in 

our regional networks, and to determine whether another mechanism of network 

development is at play. Further utilization of ERGMs with appropriate specifications may 

assist in further understanding of social mechanisms involved in the creation of these 

networks (see Section 7.2.1). 

 Our networks have the small-world property. Studies have acknowledged that 

network topologies such as the small-world property have a role in social influence 

processes, specifically diffusion (Peres, 2014). It is suggested that the structure of small-

world networks (high clustering and short path lengths) encourages rapid information 

flow and increased social influence processes (Peres, 2014). In our regional networks, 

only Houston met the NCCN guidelines in 2009, the year the guidelines were released. 

By 2010, over half of the regional networks met criteria, and by 2012 all but one of the 

regional networks met the criteria. This highlights a rapid change in MIBB rates in a 

short span of time. It is possible that the small-world structure of these networks had 

some affect on this change. 

SECTION 7.1.5: NETWORK COMMUNITIES AND RATE OF MIBB 

Studies conducted by Pollack et al. and Uddin et al. indicate that network 

communities, identified using community detection algorithms, affect health outcomes 

such as prostatectomy rates, readmission rates, and hospitalization costs (2012; 2015). 

This illustrates the second broad conclusion of studies utilizing SNA on Medicare data: 

network structure and network measures affect outcomes.  In the above studies, analyses 

were conducted at the patient level with communities either compared to each other 
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through bivariate statistical testing, or utilized as covariates in statistical modeling 

(Pollack et al., 2012; Uddin et al., 2015). However, this methodology only leads to the 

conclusion that communities have an effect on outcomes. Results do not speak about the 

specific network characteristic or structure that leads to or causes the effect on the health 

outcomes of interest.  

 We took a different approach for our study. Within a regression framework and 

with network communities as the unit of analysis, we explored the effects of network 

community level measures of density, centralization, and transitivity on the rate of 

MIBB. Considering all communities within all regions, we found that normalized density 

and betweenness do not significantly affect the community level rate of MIBB. This lack 

of effect could in part be due to the sample size of the study, with the analyses only 

encompassing, at most, 22 communities.  

 Our focus in the above was on exploring the affect of normalized density and 

centralization on a community’s rate of MIBB. In the context of diffusion of innovation, 

or adoption of new ideas, normalized density and centralization have both been shown to 

play important roles (T. W. Valente, Chou, & Pentz, 2007). Valente et al. argues that 

higher values of these measures could either help or hinder the adoption of new ideas, 

depending on the culture of the networks (T. W. Valente et al., 2007). For instance, 

denser networks have more pathways by which ideas can travel, if the network’s culture 

is conducive to adoption. As an example, in his study looking at community coalitions 

and their adoption of an evidenced-based substance abuse program, Valente et al. found 

that denser network coalitions had increased rates of adoption of evidenced-based 

substance abuse programs, and concluded that increasing density or centralization within 
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a network are valid interventions for adopting new ideas (2007). On the other hand, 

within a culture of resistance, new ideas have a difficult time taking root, and the 

pathways may become obstacles (T. W. Valente et al., 2007).  As an example, Valente et 

al. comments that highly centralized networks tend to concentrate power, resulting in 

decreased shared-decision making and fewer opportunities for change (2007).  

 Considering the parameter estimates and assuming that the lack of significance 

was due to power, we see that our general results for 2012 suggest that normalized 

density negatively affected the rate of MIBB. This suggests a culture of resistance toward 

adoption of new ideas, as the denser networks have lower rates of MIBB. Further 

research is needed to study this result. Such research should explore notions of cultural 

predisposition to adoption, and such variables should possibly be included in the analysis 

as controls.  

 We briefly discuss our results in the 2012 Dallas networks. In these 2012 

networks there was a significant positive association of normalized density with the rate 

of MIBB. By contrast, in the 2009 results, the normalized density effect was smaller, and 

was non-significant. Assuming Valente et al.’s conclusions regarding density and 

diffusion, these results possibly indicate that the healthcare system changed, and that with 

that change, the culture regarding adoption changed. In this changed situation, the 

structure of denser networks now allowed for or facilitated the increase in rate of MIBB. 

It is important to note that the Dallas community networks reveal a pattern contrary to 

that observed in the full set of communities. As such, these results should be interpreted 

carefully.  
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 Further, we found in the analysis for all regional communities, that the ratio of 

biopsy surgeons to biopsy physicians had a significant negative affect on the rate of 

MIBB. This suggests that as this ratio decreases, the rate of MIBB increases. This is an 

intuitive result, since a lower ratio implies that biopsy radiologists are more numerous 

within a given network community relative to biopsy surgeons, leading to more MIBBs. 

This increase, in turn, may possibly be due to increased referrals to radiologist for 

biopsies.  

 In assessing transitivity, we found that transitivity negatively affected the rate of 

MIBB; that is, the higher the tendency towards clustering within a network community, 

the lower that network community’s rate of MIBB. However, this effect was not 

significant. Within a diffusion of innovation context, transitivity is known to negatively 

impact the adoption of new ideas. This is because high transitivity often leads to 

redundant ties; these ties increase opportunities for diffusion of ideas only within their 

own cluster, but not to nodes outside of the cluster (Peres, 2014). 

 We comment on the behavior of normalized density and of betweenness 

centralization when the ratio of biopsy surgeons to biopsy physicians, and transitivity are 

included as covariates in our models. We see that the ratio variable and transitivity both 

affected the normalized density parameter. Specifically, the ratio variable intensified the 

magnitude of the effect of normalized density (-1.90 vs. -2.13) and transitivity decreased 

the magnitude of effect of normalized density (-1.90 vs. -1.19). Controlling for the ratio 

variable could be indicative of the importance of density and agreement to Valente’s 

result. In other words, in keeping this ratio constant, the importance of density is 

highlighted, implying that a culture of resistance may be at play in the negative effect of 
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density. Furthermore, controlling for transitivity, the importance of density lessens; this 

suggests the possibility that culture within clusters may be more important than the 

culture, or density, of the whole community network.  

 We comment on some limitations to the analyses mentioned above. First, creation 

of the community networks was based on the fast greedy algorithm. In general, there is 

concern as to whether or not this was the correct algorithm to use, and if the community 

networks derived by this algorithm actually constitute “real-world” networks. Multiple 

studies have been conducted comparing many community detection algorithms and their 

validity for accurate detection of communities (Atay, Koc, Bbaoglu & Kodaz, 2017; 

Pasta & Zaidi, 2017; Wang, Wang, Yu, & Zhang, 2015; Radicchi et al., 2004). Many of 

these studies created simulated networks with set community structures, and then 

compared the ability of multiple community algorithms to detect communities. One 

recent study found that commonly used community algorithms, including the fast greedy, 

often fail in detecting appropriate communities if the size of the network is large (i.e., > 

10,000 nodes), and the size of the community is large (i.e.,  > 10,000 nodes) (Pasta & 

Zaidi, 2017). This study indicates the lack of robustness of community algorithms as 

network size increases. However, we note that the performance of the fast greedy 

algorithm was mediocre in detecting these communities (Pasta & Zaidi, 2017). We 

further note that the size of the networks we explore was in the range of where fast 

greedy performed optimally (Pasta & Zaidi, 2017).   

Further sensitivity analyses utilizing different community algorithms are 

warranted, as are validation studies of these community networks. Sensitivity analyses 

could be done by utilizing another community detection algorithm and determining if the 



 

89 
 

communities derived by this community algorithm are similar, in terms of some specified 

network characteristic(s), to the communities derived by the fast greedy algorithm. 

Validation could be done by repeating Barnett’s methodology within one or more of 

these regional networks; that is, surveying the physicians regarding collaboration and 

creating a network from these collaborations (2011). The fast greedy algorithm could 

then be run on that created network, to re-derive the network communities. Finally, these 

communities, and the overall network, could be compared to see if they consist of the 

same members as the communities and networks derived from the Medicare data. 

Second, our analysis consisted of a small number of communities and networks only in 

Texas. Generalization of results must be done with caution. Finally, our analysis was 

cross-sectional by nature. Though we did examine two time points to explore diffusion 

patterns, it would have been better to include year as an effect in our models to fully 

study the effects of density and centralization on rate of MIBB over time; our small 

sample size, and the scope of our work, precluded this analysis.  

 The purpose of this analysis was exploratory. Our goal was to see general patterns 

in order to gain some understanding of the effects of network structure on rate of MIBB 

at the global level. To this end, we were able to see some notion of the importance of 

global network structure on the rate of MIBB, both descriptively and within the context 

of diffusion of innovation.  

SECTION 7.1.6: REGRESSION ANALYSES 

 We were interested in looking at whether biopsy surgeons’ characteristics and 

network measures affected the rate of physicians performing or patients receiving MIBB. 

Below is a concurrent discussion of both the linear model relating network measures to 
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physicians’ rate of MIBB, and the logistic model, relating network measures to patients’ 

receipt of MIBB. Recall that that analyses conducted in these models included only 

biopsy surgeons.  

 In both the linear models and logistic models, our results revealed that the surgeon 

characteristics of gender and training affected both a biopsy surgeon’s rate of MIBB, as 

well as a patient’s receipt of MIBB. Being male and having non-US training negatively 

affected a biopsy surgeon’s rate of MIBB, and the likelihood of a patient receiving 

MIBB. This is consistent with previous results (Tamirisa et al., 2015).  

In the linear models, we found that degree negatively affected the rate of MIBB, 

while closeness and strength positively affected the rate of MIBB. For the year 2009, 

these results were significant. This suggests that too many collaborators negatively 

impact a surgeon’s practice, while being in a position to control information flow, and/or 

having a higher patient load, positively impact a surgeon’s rate of MIBB. In the logistic 

models, we found that transitivity, betweenness, and strength affected whether a patient 

received MIBB. These results are significant in 2012. Strength and transitivity both 

negatively affected receipt of MIBB, while betweenness positively affected the receipt of 

MIBB. The negative impact of strength suggests that surgeons who share large volumes 

of patients opt to do open biopsies, as compared to MIBB. A possible explanation for this 

is that those surgeons who share high volumes of patients may be unique in their 

communities in terms of handling the surgical cases. Further research is recommended 

and could be done by comparing biopsy surgeons who have a high load of patients with 

biopsy surgeons who do not have a high load of patients in terms of network 

characteristics and surgeon characteristics. Previous works have explored how a 
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physician’s centrality measures impact outcome. For example, Casalino et al. showed that 

physicians with higher degree had a higher rate of ambulatory care-sensitive admissions 

(Casalino et al., 2015). Moen et al. showed that node strength significantly and positively 

impacted evidence-based ICD therapy (2016).  

 We note that there were some differences between the effects of network 

measures on patients’ receipt of MIBB, versus biopsy surgeons’ rates of MIBB. 

Specifically, looking at the 2012 adjusted models, the directions of the effects of degree, 

transitivity, and strength differed in the linear and logistic models. In the linear models, 

degree and transitivity both negatively affected the rate of MIBB, but in the logistic 

regression models, they positively affected a patient’s receipt of MIBB. Strength 

positively affected the a surgeon’s rate of MIBB, while negatively affecting a patient’s 

receipt of MIBB. This could be due to an “ecological fallacy”; that is, the association of 

network measures with the aggregated outcome (rate of MIBB by physicians), may not 

reflect the association of the network measures with the outcome at the individual level 

(patient receipt of MIBB). As this is an exploratory study of the effect of network 

measures, we note the importance of seeing this ecological fallacy. Previous works have 

used network measures within a regression framework on aggregate outcomes (Casalino 

et al., 2015; Moen et al., 2016). Our work indicates that this may not the best approach, 

and that careful consideration must be taken before utilizing network measures within a 

regression framework. Other possible, and more technical, explanations for the 

discrepancies between the linear and logistic regressions are the fact that transformations 

were utilized for some of the network measures, in order to better estimate the logistic 
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regressions. Further, we only included biopsy surgeons with a documented surgeon 

specialty in the logistic regressions.  

 We also remark on the large ORs for betweenness centralization within the 

logistic model (as well as in the HLRMs discussed below). This is possibly due to the 

skewed distribution of betweenness centralization. The range of betweenness 

centralization for biopsy surgeons in 2009 (scaled and normalized) was -0.469 to 7.364. 

Large regression estimates for betweenness centralization have been noted in previous 

literature. One study utilizing physician level betweenness centralization as a covariate in 

their linear models also had a large parameter estimate, calculated as -102698.68 (Uddin 

et al., 2013).  

 We further note that these regression results must be viewed cautiously. As an 

exploratory analysis, we chose to utilize  network measures in a regression framework. 

However, the assumption of independence required in regression does not hold, as the 

network measures we utilized have inherent dependencies. Our focus was to assess the 

behavior of these network measures to determine if these measures have some utility; the 

dependencies would have to be addressed further, if it is found that they have utility. 

 We now focus on the HLRMs, specifically examining the changes in ICCs over 

time and between model types (hospital model type vs. community model type). First, we 

discuss the purity results in comparing cluster mechanisms. Purity results showed that on 

average, regional communities clustering is not similar to regional hospital clustering. 

Specifically, communities may not be contained in hospitals; however, hospitals tend to 

be contained entirely in communities. This suggests that network communities differe 

from hospitals and therefore worth examination.  
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For these HLRMs, we sought to examine two primary questions: 1) utility of 

using community as a third level in hierarchical models for explaining variance, and 2) 

the effect of network measures on the biopsy surgeons’ ICC, and on the hospitals’ or 

communities’ ICCs. Our study showed a decrease in hospital ICC, an increase in 

community ICC, and an increase in biopsy surgeon ICC between 2009 and 2012. An 

explanation for the decrease in hospital ICC, is an administrative push of practice 

guidelines at a hospital or practice level. That a hospital has a practice policy of following 

the recommended NCCN guidelines will greatly impact the practice of surgeons. In our 

context, we suggest that this hospital level policy possibly controlled for much of the 

variance in whether or not patients received MIBB, in 2012. We thus surmise that as the 

practice change becomes more engrained through hospital policies, the hospital level’s 

explanation of variance lessens, as most hospitals become more homogeneous in terms of 

patients receiving MIBB; this explains hospital level decrease in ICC. This is largely an 

assumption, however, and further research is needed. Retrospectively examining a 

hospital whose biopsy policy changed to the NCCN guidelines could be a possible next 

step. To understand the increase in community level ICC, we first remark that the ICCs 

were not high to begin with in 2009: an ICC of 0.059 in the null model, and of 0.064 in 

Model 1 (the model incorporating patient and physician characteristics). However, by 

2012, the ICCs more than doubled: 0.124 in the null model, and 0.154 in Model 1. 

Keeping in mind the increased rate of MIBB by 2012, one explanation is the utility of 

network communities in sustainable practice change. Assuming that our network 

communities are collaboration networks, peer support and practice culture possibly 

contributed more to a patient’s receiving MIBB than hospital networks. In other words, 
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hospitals drive immediate practice change while network communities sustain the 

change. Any remaining differences in 2012 are due to community level practice 

differences. We note that we do not directly compare hospital and community impacts, as 

they are described in separate models: specifically, we don’t look at a model that includes 

effects of both at the same time. An area of future research might be looking at the 

overlap between communities and hospitals, and determining how that overlap impacts 

MIBB utilization. The increase in biopsy surgeon ICC between 2009 and 2012 

potentially speaks to the fact that some biopsy surgeons are resistant to new procedures or 

have inadequate resources to implement new procedures. This is further evidenced by the 

fact that biopsy surgeons ICCs are larger than the hospital and community ICCs for both 

the null models and Model 1 for 2009 and 2012.  

 The inclusion of network measures in the above models decreased the ICCs for 

biopsy surgeons and increased the ICCs for hospitals and communities. These results 

provide some evidence of the importance of a biopsy surgeon’s position within their 

collaboration network; in other words, these network measures account for some of the 

variability of the receipt of MIBB. Further, the increased effect of hospital and 

community on a patient’s receipt of MIBB possibly reflects the importance of health 

systems when network measures are taken into account; that is, individual decisions of 

physicians may indeed be the determining factor in practice choices, but, when taking 

their position in the network into account, the decision is often biased by the culture or 

the policy of their community or hospital. We note that is largely hypothetical, and 

further research is needed to confirm this possibility. This could be done by introducing 

into the model a variable that quantitatively measures culture. There is further argument 
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that community structure matters. When network level structures are taken into account, 

thereby leveling off differences of surgeons in terms of community, hospital policy 

matters more. This is because possible impact of the community has been removed as 

they are being controlled for in the model.  

Section 7.2:  Discussion and Limitations: Aim Two 

SECTION 7.2.1: EXPONENTIAL RANDOM GRAPH MODELS DISCUSSION 

We ran ERGMs to address the purpose of Aim Two. We were interested in 

looking at the network structure of collaborative physician networks derived from 

Medicare data. To our knowledge, only two other studies have explored ERGMs in 

networks derived from administrative studies. Uddin et al. focused on network structures 

such as 2-stars and alternating stars in their ERGMs, while Moen et al. added homophily 

effects to their ERGMs (2013; 2016). Our work focused both on network structure effects 

as well as on homophily effects.  

 We recall that Uddin et al. found differences in network structures, such as the 2-

star and alternating star parameters, between their networks (2013). Through the ERGM 

framework, they concluded that some of their networks, such as the low readmission 

network, were more centralized than the high readmission networks (Uddin et al., 2013). 

Though we did not utilize the same network configurations in our ERGMs as Uddin et 

al., we did a similar comparison of network configurations between networks. We 

compared three networks: Houston, El Paso, and RGV. As did Uddin et al., we found 

differences between these networks in terms of network configurations (2013). We found 

that in the Houston network (the largest and highest MIBB rate network), the 
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GWDEGREE term and the GWESP term were both significant. This suggests that the 

formation of the Houston network is affected both by preferential attachment and triad 

closures: physicians form ties with physicians who are well connected, and physicians 

tend to cluster. There were differences in comparison of the Houston with the El Paso 

network and the RGV network. RGV had a significant GWESP term, while El Paso had a 

significant GWDEGREE term. We note that adding the GWESP term to the ERGM for 

El Paso resulted in non-convergence of the ERGM, while adding GWDEGREE to the 

ERGM for RGV resulted in a non-convergent ERGM. This suggests that the RGV’s 

network formation is affected by preferential attachment, while the EL Paso’s network 

formation is affected by triadic closures. Recall that our scale-free results suggested that 

the RGV and El Paso networks might be influenced by preferential attachment 

mechanisms in their formation. Now, we also note that Houston network may be affected 

by the preferential attachment mechanism as well, per the ERGMs, contradicting the 

scale-free results above. This brings into question the concept of scale-free, and its ties to 

network formation.  

 Moen et al. focused the construction of their ERGMs on the inclusion of 

homophily terms along with the alternating star parameter (2016). Similarly, we included 

homophily effects. Similar to Moen et al., we found that our PCP homophily term was 

negative and significant for all three of our networks (2016). This indicates that there is a 

decreased likelihood for PCPs to form collaborations with other PCPs, as compared with 

PCPs making connections with non-PCPs. We recall that Barnett et al. validated their 

Medicare derived networks with name-generator created networks. To derive the latter 

they specifically asked physicians which physicians they referred to, and from which 
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physicians they sought advice; they defined these collaborative networks as advice and 

referral networks (2011). Thus, the Barnett et al. definition of collaboration includes 

aspects both of advice and referral.  

 This definition makes it difficult to ascertain the interpretation of the homophily 

effects.  If we define collaboration as “advice seeking”, the pattern observed in our 

ERGM seems counter-intuitive, suggesting that PCPs do not seek advice from other 

PCPs, but rather from physicians of other physician types. In our regional networks, 

PCPs comprised 47% to 52% of the physicians; this highlights the lack of homophily, as 

the pool of PCPs for other PCPs to connect with is not small. Thus, it is possible that our 

networks, rather than being “advice” networks, are more akin to “referral” networks. In 

this context, PCPs are more likely to “refer” to physicians of other types rather than to 

other PCPs. Further, in the Houston regional network, we see a similar lack of homophily 

among biopsy physicians, indicating that biopsy physicians (surgeons and radiologists) 

either do not seek advice from physicians with specialties similar to their own, or that 

they are likely to refer to other physicians of different specialties.  

 We comment that the models we ran may have suffered from degeneracy, or poor 

model fit, according to the goodness-of-fit results. As data from administrative databases 

like Medicare are being used in ERGMs, discussion of the goodness-of-fit of the 

ERGMs, and appropriateness of these measures, is needed to further understanding of 

these physician networks. Unfortunately, previous studies using ERGMs for such 

networks have not formally discussed the fit of these models. In this discussion, we 

briefly discuss the goodness-of-fit methodology, then discuss the fit of our ERGMs.  
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 A methodology utilizing observed and simulated networks was developed that 

allows the assessment of the fit of an ERGM (Hunter, Goodreau, & Handcock, 2008). 

Hunter et al.’s methodology compares specific structural statistics from the observed 

network on which the ERGM is built, with those from simulated networks based on the 

ERGM model derived from the original network (2008). Their procedure utilizes three 

network structure statistics: geometrically weighted degree, edge-wise shared partners, 

and the dyadwise shared partner statistic. Hunter et al. suggests that these statistics 

“appear to capture high-order dependency structure in networks in parsimonious fashion 

while avoiding the problem of degeneracy” (2008). In other words, these specifications 

adequately assess network structure without, in most cases, resulting in degenerate 

models. Using the ERGM based on the original network, many networks are simulated, 

taking note of the three statistics above. If the original network’s statistics are typical of 

the simulated graphs' statistics then the model has a good fit (Hunter et al., 2008). Figure 

7.1 displays a model with a good fit and a model with a bad fit.  
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We implemented this procedure and generated goodness-of-fit plots for each of 

our four models. Similar results were noted in Models 1 to 3; thus, we only discuss here 

the goodness-of-fit for Model 1 and Model 4. Recall that in the three regions we 

considered, there was convergence for Model 1 and no convergence for Model 4. 

Goodness-of-fit results are only useful for models that converge; however, we include 

model 4 as an exploratory example (Hunter et al., 2008; Koskinen & Snijders, 2013). 

Figures 7.2 to 7.4 display our goodness-of-fit results.  
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Our goodness-of-fit results reveal that our ERGM models do not fit well. This 

implies a misspecification of our models. This means that the network attributes and 

network structures of GWDEGREE and GWESP do not do a good job in modeling the 

network structure of these physician networks. This raises the question of properly 

specifying our models to account for the data. Thus, the exact nature of our Medicare 

derived networks may need to be reconsidered and restudied. One such study could 

involve fully exploring the proper specifications of ERGMs for these networks. As this 

study was exploratory and ERGM application to this data is a relatively new idea, there 

was little previous knowledge on which to base a proper specification of the ERGMs. 

Further, we were utilizing models on many different networks, each of which will have a 

different ERGM specification; thus, the standard practice of introducing network 

structure and network attribute terms, beginning with homophily terms, one at time was 

not feasible. The best approach is to re-consider the nature of the network itself, in a 

theoretical manner, for each indicvidual region, in order to build an ERGM with proper 

specifications. One way to do so is to re-validate these networks, in the manner of Barnett 

et al., not as advice but as referral networks. Then, further examination of how referral 

networks operate based on a theoretical understanding, possibly from a sociological or 
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organizational perspective, is needed in order to accurately specify the ERGM. We 

further note that Hunter et al.’s methodology may not entirely appropriate in this setting; 

Koskinen and Snidjers remarked that goodness-of-fit test should be chosen based on the 

research question and nature of the network (2008, 2013).  

SECTION 7.2.2: NETWORK AUTOCORRELATION MODELS DISCUSSION 

Another aspect of Aim Two is the utilization of network autocorrelation models. 

Recall that network autocorrelation models examine the relationship between nodal 

dependencies and a specified nodal outcome. Specifically, we examined whether a 

physician’s relationships affected whether or not a physician’s rate of MIBB met NCCN 

standards (see Section 6.2.2). To our knowledge, this is the first application of these types 

of models to networks derived from administrative databases. Therefore, little is known 

regarding the behavior of these models in these networks.  

Our results revealed that the biopsy physician attribute similarity had a 

significantly negative effect on the outcome. This was true for all three models and for 

both the Houston and RGV networks. This negative effect of attribute similarity signifies 

that biopsy physicians “collaborating” with other biopsy physicians will cause those 

physicians to be less likely to have rates of MIBB meeting NCCN guidelines. In 

interpreting these results, we must first make assumptions about the nature of 

“collaboration” in our network, as above: whether it is “advice” or “referral”. If we 

assume an “advice” framework of collaboration (physicians ask advice from other 

physicians), a possible interpretation of these results is that biopsy physicians are not a 

good influence on other biopsy physicians regarding the practice of MIBB. This 

interpretation has limitations. It is known that the culture of a network influences 
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behavior. However, we cannot ascertain the culture of our networks. However, if we 

assume a “referral” framework of collaboration (physicians refer to other physicians), a 

possible interpretation of these results is that biopsy physicians who are referred patients 

from PCPs or surgeons and not from other biopsy physicians will likely perform MIBB 

on those patients. We further see that for the RGV network, the netlag parameter of 1 was 

negative across all three models (significant for Model 1c) indicating that a physician 

who was connected to another high performing physician was less likely to have a rate of 

MIBB meeting NCCN guidelines. In contrast, the Houston network’s netlag parameter of 

1 was positive and significant when controlling for network measures and for covariates. 

This possibly indicates the strong influence of culture within the RGV network. 

 Our results suggest that structural similarity affects outcome. In the Houston 

regional network, the structural similarity parameter, after controlling for network 

measures and/or nodal covariates, has a positive and significant effect on whether a 

physician has a rate of MIBB meeting NCCN guidelines. Recall that previous diffusion 

of innovation studies suggested that structural similarity affects adoption (M. Kilduff & 

H. Oh, 2006; P. V. Marsden & J. Podolny, 1990; Strang & Tuma, 1993; van den Bulte & 

Lilien, 2001). Our result further supports this claim, with “adoption” meaning having 

MIBB rates meeting NCCN guidelines. However, we note that our analysis was cross-

sectional, and that this fact limits this interpretation. To fully study diffusion of 

innovations, we must incorporate the changes of networks over time, as this will capture 

‘movements’ of the innovation within the networks. Thus, to fully determine the effect of 

structural similarity on adoption, a longitudinal approach to modeling is recommended.  
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 We further comment on a few limitations on our use of network autocorrelation 

models on these networks derived from administrative data. Our network itself was 

limited in that we could not study a network consisting of only biopsy surgeons; we 

needed to include other physician types, as our physicians of interest were embedded in a 

larger network including other specialties. As our interest lies with biopsy surgeons, their 

relationships with each other, and their MIBB practices, this was a major limitation. 

Specifically, network autocorrelation models examine nodal behavior, but our outcome 

variable could not be considered as a behavior for all of our physician types, since PCPs 

who provide primary care do not perform MIBB; and surgeons who conducted the breast 

resection, and radiologists who read the mammogram may not perform MIBB. However, 

to create our networks, these physician types needed to be included. It would have been 

best to consider only biopsy surgeons in our networks. Further study could involve 

surveying biopsy physicians within a specific regional network regarding whom they 

seek for advice and utilizing network autocorrelation models on this advice network. 

Lastly, we only considered a cross-sectional analysis. A strength of these network 

autocorrelation models is the ability to be able to model in a longitudinal framework to 

fully study how behavior is affected by network influences over time. Further research in 

a longitudinal framework is recommended.   

Section 7.3:  Conclusions 

We sought to explore the utility of SNA on networks derived from Medicare data 

specifically looking at the effect of networks on the use of MIBB. We did this through 

multiple means: first, through a description of physician collaboration networks at the 
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regional and community levels, examining the networks’ characteristics over time; 

second, through a regression analysis at the community level, exploring the effect of 

community level network effects on a network community’s rate of MIBB; third, through 

utilizing both linear and logistic regressions to examine physician level network effects 

on physician rate of MIBB and on patients’ receiving MIBB; lastly, through the 

utilization of network models: ERGMS to model how network structure affect tie 

formation, and network autocorrelation models to model how network structure affects 

whether a physician has a rate of MIBB meeting NCCN standards. We summarize our 

results below:  

• Rate of use of MIBB varied between regional networks and over time. Regional 

variation of MIBB agreed with previous literature on MIBB and with the larger 

discussion on regional variation of healthcare.  

• From 2009 to 2012, the use of MIBB increased, with most regions meeting 

NCCN recommendations.  

• Formal evaluation of the small world property and scale-free property in our 

regional networks revealed that all regions are considered small world, but that 

only a few regional networks display the scale-free property, leading to questions 

regarding the social mechanism that underlies the formation of these networks, 

and the larger consideration of the interpretation of these networks.  

• Community level density and centralization did not significantly affect a 

community’s rate of MIBB. This may in part be due to the small sample of 

communities. However, these results, in conjunction with previous literature, 

illustrate the importance of culture in adoption within network communities. 
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• A biopsy surgeon’s degree, closeness, and strength both had significant effects on 

a physician’s rate of MIBB, while a surgeon’s transitivity had a significant effect 

on whether a patient received MIBB. This may indicate the importance of a 

biopsy surgeon’s position on the specified outcome. In addition, the ecological 

fallacy was noted when considering these two modeling approaches.  

• Within a hierarchical framework, ICC changes were noted on the second level 

(biopsy physician) and third level (hospital or community) across time. These 

results highlighted the following: the suggestion that hospital policy may drive the 

change in practice, but network communities may sustain the change, and the 

possible importance of network measures in affecting a patient’s healthcare. 

• ERGMs revealed differing results across regional networks, with a consistent 

finding that PCPs were likely to form ties with other PCPs. This leads us again to 

consider whether our networks are  “collaboration” networks. Goodness-of-fit 

results raise questions about the specification of the models and the interpretation 

of the models.  

• Lastly, network autocorrelation models consistently showed that a biopsy 

physician’s connection to another biopsy physician negatively affected their use 

of MIBB. Primarily, this was an exploratory use of the models and further 

research is recommended.		

We noted several limitations of this study in the various sections above.  

However, one limitation that bears repeating is the nature of these networks; that is, what 

do these networks really represent? Further research is recommended in validating these 

networks. This could possibly be through repeating Barnett’s study, but with a clearer 
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definition of collaboration, and on more diverse sample of physicians. Our results suggest 

that an “advice” framework or interpretation of collaboration may not be the correct 

framework or interpretation for these networks derived from Medicare data. Considering 

a “referral” framework or interpretation may lead to a better understanding of the 

networks. There is also concern as to whether we utilized appropriate physician types in 

examining how physician relationships affected MIBB rate. It is possible that not all 

physician types necessary to answer the question were included to truly answer this 

question. 

Potential exists within the social network framework. Some examples are as 

follows: utilizing network measures to control for more variance in regression models; 

using collaborative communities in hierarchical models; and using network models to 

fully explore network structure, and to fully explore effects of network structures on 

outcomes while controlling for relational dependencies. Utilizing the social network 

framework in studying physician patterns of MIBB provided some interesting insights 

into health services behavior in Texas, leading to more questions and to more possibilities 

for future work.  

 

 

 

 

 

 

 

 



 

107 
 

Appendix A: Texas Regional Networks – Network Graphs and Degree 

Distributions 
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Appendix B: Network Measures Over Time by Texas Regional 

Networks 
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Appendix C: Important Measure Plots 

 
Appendix C.1: Important Variable Plot for Physician Level Regression Analysis. See Section 4.2.1 for 
methodology description. We prioritized variables included in our models that were normalized, un-
weighted, and calculated at the community level.   
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Appendix C.2: Important Variable Plot for Patient Level Regressions. See Section 4.2.1 for 
methodology. We prioritized variables included in our models that were normalized, un-weighted, and 
calculated at the community level.   
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