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Although the thermodynamic control of protein folding has been known for 

decades, a complete understanding of the thermodynamic determinants that defining 

protein folds is still elusive. In this regard, it is becoming clear that focusing only on the 

native states of protein folds will be insufficient for deciphering the protein folding 

problem. Knowledge of the thermodynamics of the denatured state is also necessary.  In 

this project, the thermodynamic determinants of the native fold, present in the denatured 

ensemble, were investigated and the critical role of the denatured state ensemble in 

controlling protein folding is discussed. In this work, the COREX algorithm, used until 

now to model the native state ensemble, was for the first time used to model the 

denatured state ensembles and investigate the relationship between denatured ensemble 

energetics and sequences, as well as between denatured ensemble energetics and 

secondary structures. Substantial thermodynamic differences were found between the 

denatured and the native states ensembles.  The generality and robustness of our results 

were validated by performing fold-recognition experiments that matched sequences with 

their respective folds using only energetic information. The success of our study and the 

 vi



 

unique energetic information found in denatured states suggest a wide range of strategies 

for developing novel algorithms for protein prediction and classification.  

In addition, this work has particular medical relevance. Understanding the 

chemical and physical processes underlying thermodynamic determinants of protein 

folding specificity will enable the rational design of drugs to combat the rapidly 

expanding family of misfolding diseases.  Some misfolding diseases are known to be 

related to non-specific β-sheet formation. The value of this project lies in the detailed 

analysis between denatured ensemble energetics and sequences, as well as between 

energetics and secondary structures. Correlation analysis between structure and energetic 

information revealed that denatured states have evolutionarily evolved to avoid early β-

sheet formation, suggesting that the therapeutic strategies to combat misfolding diseases 

(especially for diseases related to non β-sheet formations) could be found in the 

energetics information of the denatured states rather than the native states.   
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CHAPTER 1  

 
General Information 

 

One of the most challenging problems in biology is the protein folding 

problem.  In general, the protein folding problem refers to the question of how a 

chain of amino acids correctly and rapidly folds into the three-dimensional, 

functional form. Interest in the protein folding problem can be traced back to the 

early 1960s.  Levinthal first noticed that amino acid sequences adopt a unique 

fold through a non-random search of the conformation space (Levinthal, 1968).  

Extensive interest in the protein folding problem has increased since the Nobel 

Prize winner Christian Anfinsen put forward his famous “thermodynamic 

hypothesis” for protein folding (Anfinsen, 1973).  One of the most important 

implications of Anfinsen’s thermodynamic hypothesis is that all the information 

defining the final fold is contained in the primary sequence and that information is 

thermodynamic in nature. Although experimentalists and computational biologists 

have studied and attempted to understand the thermodynamic determinants of 

protein folding since Anfinsen’s hypothesis, most efforts were concentrated on 

the natively folded state of proteins.  This state is favored because it is relatively 

stable and is biologically functional state that is experimentally easier to control.  

For this reason, denatured state of proteins has been ignored for years because 

of its relatively unstable and structurally heterogeneous characteristics.  With the 

development of new spectroscopic techniques and computational simulation 

approaches, denatured state is gradually drawing the attention of biologists.   
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  Results from nuclear magnetic resonance (NMR) studies have shown that 

the denatured state contains residual structures instead of adopting completely 

random coils (Hennig et al., 1999). Computational simulations also support the 

notion that non-random coil structures are found in the denatured state (Daura et 

al., 1999). Theoretical arguments also exist for the importance of the denatured 

state (Dill and Shortle, 1991). First, the denatured state represents the starting 

point of protein folding. Knowledge about the denatured state will help us 

understand the initiation of protein folding and the efficiency of folding process.  

Second, the denatured state is as equally important as the native state in 

determining the protein stability that is related to biological functions.  In addition 

to the important role of the denatured state in protein folding and stability, this 

state has also been recognized as important for transport across membranes 

and protein turnover (Tompa, 2003).  
 

More recently however, the denatured state has gained significant 

prominence with the recognition that many proteins are intrinsically disordered 

(ID) or contain ID regions under otherwise physiological conditions (Wright, 

1999). This suggests that many proteins may have evolved to use the denatured 

state for functions previously associated with folded, native proteins.  Indeed, 

disorder has been found to be a conserved feature (Chen et al., 2006; Romero et 

al., 2004;  Ward et al., 2004), and its importance has already been established to 

processes such as catalysis (Gu et al., 2007; Kukreja et al., 2005;) and molecular 

recognition (Dunker et al., 2001; Iakoucheva et al., 2001; Meszaros et al., 2007), 

and the advantages of coupling allosteric control to the folding of ID regions has 

recently been developed (Hilser and Thompson, 2007).   
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Entire proteins or regions thereof are classified as intrinsically disordered if 

they lack a stable, well-defined, ordered structure as observed in natively folded 

proteins.  The lack of ordered structure in these regions has usually been 

experimentally established by high temperature factors (B-factors), unresolved 

amino acids in X-ray crystallographic experiments, and/or spectroscopic 

techniques that do not detect regular structure formation (Blow et al., 1977; 

Ringe et al, 1986; Romero et al., 1997; 2004; Tompa, 2002; Uversky et al, 2002; 

Wright, 1999;).  In spite of the observed disorder however, pre-formed elemental 

structures have been detected within several ID regions using both experimental 

and computational approaches (Fuxreiter et al., 2004; Hennig et al., 1999).  For 

example, a fragment of the disordered N-terminal domain of glucocorticoid 

receptor can be induced to fold with the osmolyte TMAO (Kumar et al., 1999).  

This result is important because it indicates that although the conformational 

ensemble under native conditions is dominated by unstructured states, there 

nevertheless exists a relatively restricted conformational manifold of folded, 

compact structures that are important for functional interactions. As a 

consequence, a quantitative thermodynamic understanding of the denatured 

states of non-ID proteins may provide insight into the how ID proteins can be 

functionally and/or structurally characterized.   
 

The current understandings of disordered regions have been largely 

gleaned from examining results of successful machine learning training efforts 

that detect recurring patterns within these regions (Dosztanyi et al., 2005; Gu et 

al., 2006; Jones and Ward, 2003; Linding et al., 2003; Liu and Rost, 2003; 

Romero et al., 1997; Yang et al., 2005). Though some disorder region predictors 

are successful in identifying disordered regions to help understand the identified 

sequences patterns and provide many useful applications, there is little 
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understanding regarding the thermodynamic properties of these regions.  

Perturbations of the denatured state ensemble have been shown to impact 

protein stability and folding kinetics (Mok et al., 2001; Shortle et al., 1992; Wrabl 

and Shortle, 1996; Wrabl and Shortle, 1999) since the free energy of stability is 

dependent on both the denatured and natively folded state of the protein. A 

better physical understanding of unfolded states of proteins may also be of 

particular importance due to the observation that many human diseases are 

associated with unfolded proteins (Ross et al., 2004) , as well as the existence of 

proteins that are biologically active in the intrinsically disordered state (Kukreja et 

al., 2005).  
 

Although thermodynamic control of protein folding has been recognized 

for years, and the importance of the denatured state has drawn extensive 

attention recently, a detailed understanding of the thermodynamic role of 

denatured states in modulating protein folding remains elusive. Knowledge of 

protein fold specific thermodynamic determinants in the denatured state will 

provide new insights into deciphering the protein folding problem.  Information on 

characteristics of thermodynamic determinants in denatured states will help 

understand why some proteins are misfolded while others retain their native 

folds. Therefore, deciphering the thermodynamic determinants that govern 

protein fold specificity in the denatured state will assist in developing therapeutic 

approaches to treat misfolded protein diseases.  
 

In this work, the thermodynamic determinants of protein fold specificity in 

denatured states are characterized to understand the thermodynamic rules that 

relate sequence to fold as well as thermodynamic control of denatured states in 

protein folding. 
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Previous data showed that the native states of proteins share common 

thermodynamic properties that are independent of and even transcend structural 

similarities (Larson and Hilser, 2004; Wrabl et al. 2002;). This was done by 

developing a position-specific energetic description of each protein and 

determining the amino acid propensities for the different thermodynamic 

environment.  The utility of our energetic representation was established by 

matching (with an 84% success rate) a protein’s sequence to a one-dimensional 

representation of that protein’s energy landscape.  That result conclusively 

demonstrated that the organizing principles for native proteins can be 

represented in purely energetic terms, and that the specific thermodynamic 

descriptors developed in that work were sufficient to quantitatively characterize a 

diverse database of human protein structures.   

  

For achieving the goals of characterizing the thermodynamic determinants 

in denatured states and understanding the role of denatured states in 

thermodynamic control of protein folding,  we examine the thermodynamics of 

the denatured states across multiple proteins in human protein database in order 

to determine: 1) whether similar thermodynamic organizing principles exist as 

those in the native state, 2) what is the nature of these thermodynamic 

organizing principles 3) the relationship of this thermodynamic organizing 

schema with both sequence and structure, and 4) the quantitative similarity with 

the native state energetics.   
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CHAPTER 2  
 

COREX Algorithm and the Denatured State 
Ensemble 

 

Introduction 
 

 Large numbers of conformations interconvert at a fast rate in the 

denatured state ensemble thus making it difficult to characterize the dynamic 

nature of these states.  Although the availability of advanced experimental 

techniques such as NMR and Fourier transform infrared spectroscopy (FTIR) can 

provide structural and dynamic information for denatured states, quantitative 

energetic description of the denatured states across multiple proteins has still 

proven elusive. To capture the thermodynamic characteristics of denatured 

states across a large protein database, an ensemble-based thermodynamic 

model, COREX, is used to generate the denatured ensemble of each protein in 

our Homo sapiens protein database containing nonhomologous proteins.  

COREX models the native state of a protein as an ensemble of partially unfolded 

conformational microstates instead of a single static state. The algorithm uses a 

high-resolution structure of a protein to generate a statistical thermodynamic 

ensemble of states by alternatively folding and unfolding a certain number of 

residue stretches within the sequence for all possible combinations. Denatured 

ensembles are generated by perturbing the full ensemble to favor unfolded 

states. Position-specific thermodynamics of each protein in the database were 

calculated and characterized.  The unique features of those position-specific 

thermodynamics are discussed.    
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Results 

Generation of the Ensemble of microstates by COREX 
                                 

The statistical thermodynamic model COREX describes a native protein 

as an ensemble of states rather than as a single static structure (Hilser and 

Freire, 1996).  A high resolution X-ray or NMR structure of protein is used as a 

template. The individual conformations are generated by unfolding the various 

regions of the protein in exhaustive combinations (Hilser and Freire, 1996; Wrabl 

et al., 2001).  To systematically vary the folding units, the boundaries are 

advanced per residue in the sequence for each partition until the scheme repeats 

itself (Figure 2-1).   

Probability of microstates: 
 

 The probability of any conformation (microstate) of a protein under 

equilibrium conditions is calculated by Equation 2.1:  

 

Q
K

K

KP i
N

i
i

i
i states

==

∑
=1

                     (2.1) 

 

where Ki = e(-∆Gi/RT) is the statistical weight of each microstate and the summation 

in the denominator is the partition function, Q, for the system.  The Gibbs free 

energy for each microstate, ∆Gi  is calculated as: 

 

∆Gi = ∆Hi,solvaiton –T (∆Si,salvation + W∆Si,conformational)                           (2.2) 
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Figure 2-1:  An illustration of the COREX algorithm to generate partially 
unfolded states 
A protein of 100 amino acids is divided into 20 different sequential folding units 
(labeled F1-F20), each with 5 residues. Each circle represents one residue in the 
three-dimensional x-ray crystal structure of the native protein. The partitioning 
scheme is then overlaid on the high-resolution structure, the total combinations 
among different folding units and unfolded units generate in 2N-2 (1028574) 
partially folded states, N is the number of folding units. An exhaustive 
enumeration of the partially unfolded states can be generated by systematically 
varying the folding units and sliding the unit ahead by one residue for each 
partition. For each partition, the procedure is repeated again (in this example 5 
partitions needed until all possible partially folded conformations are generated).  
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The relative apolar and polar free energies of each state were calculated by 

accessible-surface-area based parameterization equations (Hilser and Freire, 

1996; D'Aquino et al., 1996; Xie and Freire, 1994): 

 

( )( 385/ln**45.0*

)333(**45.0*44.8)(

,

,,,

TASAT

TASAASATG

iapolar

iapolariapolariapolar

∆− )
−∆+∆−=∆

  (2.3) 

 

( )( 335/ln**26.0*

)333(**26.0*44.31)(

,

,,,

TASAT

TASAASATG

ipolar

ipolaripolaripolar

∆−− )
−∆−∆=∆

  (2.4) 

 
The conformational entropy ∆Sconf was determined by summarized three primary 

contributions:  (1) ∆Sbu→ex is the entropy change associated with transferring 

buried side chains to solvent exposure (2) ∆Sex→u, the entropy change gained by 

a surface-exposed side-chain upon unfolding  the peptide backbone; and (3) 

∆Sbb, the backbone entropy change gained by unfolding itself (Hilser and Freire, 

1996). W is an entropy weighting factor to control the contributions of completely 

unfolded states.  COREX generated ensemble of states and the probabilities of 

each state is shown in (Figure 2-2) for G protein (PDB number 1KAO).Another 

important statistical descriptor of the equilibrium can be evaluated for each 

residue in the protein which is defined as the residue stability constant, κf,j.  This 

quantity is the ratio of the summed probability of all states in the ensemble i in 

which a particular residue j is in a folded conformation (ΣPf,j) to the summed 

probability of all states in which j is in an unfolded conformation (ΣPnf,j): 
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Figure 2-2:  COREX generated ensemble of microstates and calculated 
probabilities of sample G protein (PDB: 1KAO)  
Samples of partially folded microstates generated by COREX and the relative 
probabilities are shown. Each column represents microstates with different 
percentages of unfolding.  Red regions in each state are treated as native-like. 
Yellow regions are treated are denatured-like (for schematic purposes only). 
Actual probabilities (numbers in yellow) of each state were shown below each 
state.  
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κ f , j =
Pf , j∑
Pnf , j∑      (2.5) 

 

From the stability constant, the position-specific free energy can be written as: 

 

jf,jf, ln•RTG κ−=∆     (2.6) 

 

The importance of the stability constant and its good agreement with 

experimental data has previously been shown with hydrogen deuterium 

exchange comparisons (Hilser and Freire, 1996). 

Position-specific thermodynamic descriptors 
 

Position-specific thermodynamic descriptors were calculated by taking the 

difference in folded and unfolded subensemble quantities. 

 

>∆<−>∆<=∆ jnfpoljfpoljpol HHH ,,,,,][      (2.7) 

>∆<−>∆<=∆ jnfapoljfapoljapol HHH ,,,,,][   (2.8) 

>∆<−>∆<=∆ jnfconfjfconfjconf SSS ,,,,,][    (2.9) 

 Quantities in folded and unfolded sub ensembles were calculated as: 
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Generation of the Denatured State Ensemble by COREX 
 

A database of 122 nonhomologous proteins (Table 2-1) was analyzed 

using the COREX algorithm. Because our previous analysis was determined 

under native conditions, the Boltzmann-weighted thermodynamic values reported 

at each position were dominated by contributions from structured states, as they 

have the highest probability under native conditions (Figure 2-2).   To determine 

whether structure encoding information is also contained within any other subset 

of states in the full ensemble, the ensemble was systematically perturbed by 

increasing the stability of each state in a manner proportional to the amount of 

unfolded structure, as described in Materials and Methods.   The net effect of 

such a perturbation strategy is to redistribute the ensemble to favor more 

unfolded states.  These conditions can be referred to as denaturing because the 

ensemble probabilities are dominated by states where the folded regions account 

for less than 20% of the residues in any given state.     
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Table 2-1:  Homo sapiens proteins analyzed by the COREX algorithm 
 
PDB Length SCOP class SCOP family 
1A17 159 All alpha Tetratricopeptide repeat (TPR) 
1A3K 137 All beta Galectin (animal S-lectin) 
1AD6 185 All alpha Retinoblastoma tumor suppressor 
1ALY 146 All beta TNF-like 
1B56 133 All beta Fatty acid binding protein-like 
1B9O 123 Alpha and beta (a+b) C-type lysozyme 
1BD8 156 Alpha and beta (a+b) Ankyrin repeat 
1BIK 110 Small Small Kunitz-type inhibitors 
1BKF 107 Alpha and beta (a+b) FKBP proline isomerase 
1BKR 108 All alpha Calponin-homology domain 
1BR9 182 All beta Metalloproteinases, TIMP 
1BUO 121 Alpha and beta (a+b) BTB/POZ domain 
1BY2 111 Alpha and beta (a+b) Scavenger receptor cysteine-rich 
1BYQ 213 Alpha and beta (a+b) Heat shock protein 90, N-terminal 
1CBS 137 All beta Fatty acid binding protein-like 
1CDY 178 All beta C2 set domains 
1CLL 144 All alpha Calmodulin-like 
1CTQ 166 Alpha and beta (a/b) G proteins 
1CY5 92 All alpha DEATH domain 
1CZT 160 All beta Coagulation factor C2 domain 
1D7P 159 All beta Coagulation factor C2 domain 
1DG6 149 All beta TNF-like 
1DV8 128 Alpha and beta (a+b) C-type lectin domain 
1E21 119 Alpha and beta (a+b) Ribonuclease A-like 
1E87 117 Alpha and beta (a+b) C-type lectin domain 
1EAZ 103 All beta Pleckstrin-homology domain 
1ESR 75 Alpha and beta (a+b) Interleukin 8-like chemokines 
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Table 2-1, cont.: Homo sapiens proteins analyzed by the COREX algorithm  
 
PDB Length SCOP class SCOP family 
1FAO 100 All beta Pleckstrin-homology domain 
1FIL 139 Alpha and beta (a+b) Profilin (actin-binding protein) 
1FL0 163 All beta Myf domain 
1FNA 89 All beta Fibronectin type III 
1FNL 172 All beta I set domains 
1FP5 208 All beta C1 set domains 
1FW1 208 All alpha Glutathione S-transferases 
1G1T 157 Alpha and beta (a+b) C-type lectin domain 
1G96 111 Alpha and beta (a+b) Cystatins 
1GEN 200 All beta Hemopexin-like domain 
1GGZ 144 All alpha Calmodulin-like 
1GH2 107 Alpha and beta (a/b) Thioltransferase 
1GLO 217 Alpha and beta protein Cathespin 
1GNU 117 Alpha and beta (a+b) GABARAP-like 
1GP0 133 All beta Mannose 6-phosphate receptor 
1GQV 135 Alpha and beta (a+b) Ribonuclease A-like 
1GR3 132 All beta TNF-like 
1GSM 202 All beta I set domains 
1H6H 143 Alpha and beta (a+b) PX domain 
1HDO 205 Alpha and beta (a/b) Oxidoreductases 
1HDR 236 Alpha and beta (a/b) Tyrosine oxidoreductases 
1HMT 131 All beta Fatty acid binding protein-like 
1HNA 217 All alpha Glutathione S-transferases 
1HUP 141 Alpha and beta (a+b) C-type lectin domain 
1HZI 129 All alpha Short-chain cytokines 
1I1N 223 Alpha and beta (a/b) Protein-L-isoaspartyl 
1I27 69 All alpha C-terminal rap74 subunit 
1I2T 61 All alpha PABC (PABP) domain 
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Table 2-1, cont.:  Homo sapiens proteins analyzed by the COREX algorithm 
 

PDB Length SCOP class SCOP family 
1I4M 108 Alpha and beta (a+b) Prion-like 
1I71 83 Small Kringle modules 
1I76 163 Alpha and beta (a+b) Matrix metalloproteases 
1IAM 185 All beta I set domains 
1IAP 190 All alpha Regulator of G-protein signaling 
1IFR 110 All beta Lamin A/C globular tail domain 
1IHK 157 All beta Fibroblast growth factors (FGF) 
1IJR 103 Alpha and beta (a+b) SH2 domain 
1IJT 128 All beta Fibroblast growth factors (FGF) 
1IKT 115 Alpha and beta (a+b) Sterol carrier protein, SCP 
1IMJ 208 Alpha and beta (a/b) Ccg1/TafII250-interacting factor B 
1J74 139 Alpha and beta (a+b) Ubiquitin conjugating enzyme 
1JHJ 160 All beta Anaphase-promoting complex 
1JK3 158 Alpha and beta (a+b) Matrix metalloproteases 
1JSF 130 Alpha and beta (a+b) C-type lysozyme 
1JSG 111 All beta Oncogene products 
1JWF 139 All alpha VHS domain 
1JWO 97 Alpha and beta (a+b) SH2 domain 
1K04 142 All alpha Focal adhesion kinase 
1K1B 228 Alpha and beta (a+b) Ankyrin repeat 
1K59 122 Alpha and beta (a+b) Ribonuclease A-like 
1KAO 167 Alpha and beta (a/b) G proteins 
1KCQ 103 Alpha and beta (a+b) Gelsolin-like 
1KEX 155 All Beta B1 Domain of Neuropilin - 1 
1KMV 186 Alpha and beta (a/b) Dihydrofolate reductases 
1KPF 111 Alpha and beta (a+b) HIT protein kinase-interacting 
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Table 2-1, cont.:  Homo sapiens proteins analyzed by the COREX algorithm  
 
PDB Length SCOP class SCOP family 
1KTH 58 Small  BPTI-like 
1L8J 170 Alpha and beta (a+b) MHC antigen-recognition domain 
1L9L 74 All alpha  NKL-like 
1LCL 141 All beta  Galectin (animal S-lectin) 
1LDS 96 All beta  C1 set domains  
1LN1 203 Alpha and beta (a+b) STAR domain 
1LPJ 133 Alpha and beta  Human Crbp IV 
1LSL 113 All beta  Thrombospondin-1 
1M7B 179 Alpha and beta (a/b) G proteins 
1M9Z 104 Small  Extracellular domain, cell surface 
1MFM 153 All beta  Cu,Zn superoxide dismutase-like 
1MH1 180 Alpha and beta (a/b) G proteins 
1MH9 194 Alpha and beta  Deoxyribonucleotidase 
1MJ4 79 Alpha and beta  Cytocrome B5 Sulfite Oxidase 
1MWP 96 Alpha and beta (a+b) A heparin-binding domain 
1N6H 167 Alpha and beta  Rab5A 
1NKR 195 All beta  I set domains 
1PBK 116 Alpha and beta (a+b) FKBP immunophilin/proline 
1PBV 195 All alpha  Sec7 domain 
1PHT 83 All beta  SH3-domain 
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Table 2-1, cont.:  Homo sapiens proteins analyzed by the COREX algorithm   
 
PDB Length SCOP class SCOP family 
1POD 124 All alpha  Vertebrate phospholipase A2 
1QB0 177 Alpha and beta (a/b) Cell cycle control phosphatase 
1QDD 144 Alpha and beta (a+b) C-type lectin domain 
1QKT 248 All alpha  Nuclear receptor ligand-binding 
1QUU 245 All alpha  Spectrin repeat 
1RBP 174 All beta  Retinol binding protein-like 
1RLW 124 All beta  PLC-like (P variant) 
1SRA 151 All alpha  Osteonectin 
1TEN 89 All beta  Fibronectin type III 
1TN3 137 Alpha and beta (a+b) C-type lectin domain 
1ZON 181 Alpha and beta (a/b) Integrin A (or I) domain 
1ZXQ 192 All beta  C2 set domains 
2ABL 162 Alpha and beta (a+b) SH2 domain 
2CPL 164 All beta  Cyclophilin  
2FCB 173 All beta  I set domains 
2FHA 172 All alpha  Ferritin 
2ILK 155 All alpha  Interferons/interleukin-10 (IL-10) 
2PSR 96 All alpha  S100 proteins 
2TGI 112 Small  Transforming growth factor 
3FIB 249 Alpha and beta (a+b) Fibrinogen C-terminal domain 
3IL8 68 Alpha and beta (a+b) Interleukin 8-like chemokines 
5PNT 157 Alpha and beta (a/b) Phosphotyrosine phosphatase 
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Position-specific Energetics in the Denatured State Ensemble is the 

Unique Property of Ensemble 
 

As indicated previously (Larson and Hilser, 2004), position-specific 

energetics in the native ensemble are the ensemble averaged thermodynamic 

reporters and do not represent the energetic contribution of an amino acid to the 

stability of the molecule.  In this chapter, COREX generates denatured 

ensembles by perturbing the ensemble to favor unfolded states. To investigate 

whether position-specific energetics in the denatured ensemble still represent the 

ensemble averaged thermodynamic property after perturbation, correlation 

analysis between position-specific descriptors and the contribution of the amino 

acid at the same position to the accessible surface area (ASA) in protein is 

shown in Figure 2-3.  The absence of a correlation between the position-specific 

descriptors in denatured ensemble and the energetic contributions for all proteins 

within the database reveals (Table 2-2) that the position-specific energetics in 

denatured ensemble are a property of the ensemble as a whole and can 

characterize protein fold in an effective way independent from the amino acid 

sequence at the position.  

Stability Constants in Denatured Ensemble – Agreement between 

COREX Calculation and Experimental Data 
 

Previous work has demonstrated that denatured proteins contain residual 

structures (Dill and Shortle, 1991; Dobson et al., 1992; Shortle et al., 2001). 

Those relatively stable, persistent individual residual structures are hypothesized 

to play a significant role in the energetics of protein folding. Most residual 

structures were detected by NMR studies which experimentally support the 

important roles of denatured states involved in protein folding.  
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Figure 2-3:  Residue-specific accessible surface area (ASA) vs position-
specific thermodynamics in human lysozyme protein (PDB: 1JSF) 
Each point in the plot represents one residue in protein.  The ordinate is the ASA 
for each residue of the protein which represents the residue-specific energetic 
contribution to the thermodynamics of the protein. The abscissa is the COREX 
algorithm calculated thermodynamic descriptor (Apolar enthalpy). The correlation 
coefficient (R2) for ASA vs position-specific thermodynamic descriptors is 0.0057, 
suggesting no correlation.  Correlation statistics for the entire database are 
summarized in Table 2-2. 
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Table 2-2: Correlation (R2) table of accessible surface area contributors 
versus denatured ensemble-averaged thermodynamic descriptors 
 

R2 ∆G lnkf ∆Hapol ∆Hpol T∆Sconf

ASAapol 0.015826 0.015826 0.000246 0.018176 0.000169 
ASApol 0.001971 0.001971 0.002843 0.005849 0.001363 
ASAsc 0.017912 0.017912 0.003285 0.012893 0.000137 
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As discussed previously, the stability constants calculated by COREX represent 

regional differences in stability within the protein at the resolution of each residue 

position.  For the native ensemble, previous experiments have demonstrated 

good agreement between COREX calculated stability constants and 

experimental protection factors (Hilser & Freire, 1996).  To demonstrate that the 

COREX calculated stability constants for the denatured ensemble still serve to 

represent true characteristics of the denatured ensemble, COREX calculated 

stability constants and experimental data are compared.  As indicated by Figure 

2-4, the relatively stable region (residues 83-86) of staphylococcal nuclease 

reported experimentally under denatured condition is also captured by COREX 

(Alexandrescu and Shortle, 1994; Wang and Shortle, 1995). Furthermore, good 

agreement was also found between COREX calculations and cold denaturation 

experiments (Babu et al., 2004).  
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Figure 2-4: COREX calculated stability constants of staphylococcal 
nuclease (PDB: 1STN) 
Stability constants of staphylococcal nuclease under native and denatured 
conditions were calculated.  The X-axis indicates the residue numbers and Y-axis 
is the stability constants under native condition (Top black line) and denatured 
condition (Bottom colored lines). Under denatured conditions, different numbers 
of allowable folded segments (1, 2, and 3) were used to calculate the stability 
constants (Blue line represents the result from a maximum of one folded units, 
green line represents the result from a maximum two folded, units and red line 
represents the result from maximum three folded units).  Resides (83-86) in the 
red circle are relatively stable residues found under denatured conditions 
identified by COREX as well as reported by experimental data.  
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Materials and Methods 
 

 Nonredundant database of Homo sapiens proteins 

 

 A dataset of nonredundant Homo sapiens proteins (Table 2.1) with protein 

structures in the Protein Data Bank (PDB) was used for this analysis.  This 

dataset contains 122 proteins with a total of 17802 residues. The selection 

criteria for this dataset are 1) Proteins containing 50-250 amino acids with a 

maximum of 50% sequence identity within the set.  2) Only X-ray structures 

having a resolution better than 2.5 Å were selected.  These criteria were set with 

consideration for computational demands and structure quality. 

 

Computational Details of COREX algorithm  

 

 The COREX algorithm is a statistical thermodynamic model in which a 

native protein is depicted as an ensemble of states rather than as a single static 

structure. The thermodynamic energetics of each 122 proteins in the Homo 

Sapiens dataset was calculated using COREX algorithm. Monte Carlo sampling 

was used to generate the protein ensembles with the following parameters: (1) 

50,000 state/partition for proteins larger than 80 residues, all states were 

selected for proteins less than 80 residues. For the native ensemble, entropy 

weighting factor W=0.5; for denatured ensemble, W=1.5.  Simulation temperature 

is set at 25oC and the window size for local unfolding is 5 residues with a 
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minimum window size set at 4 residues. For generating denatured ensemble, the 

maximum number of folded windows in each partition is set at 2. Because the 

size of the proteins in the analyzed database ranged form 50 to 250 residues, the 

maximum number of residues folded range from 10 to 50.  
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CHAPTER 3 
 

Energetic information in Native and  

Denatured State Ensembles 

Introduction 
 

As mentioned, both native and denatured states are involved in protein 

folding and contribute to protein stability.  Consequently, characterization of the 

energetic information in both native and denatured states becomes important for 

a complete understanding of the protein folding process as well as the 

thermodynamic control of protein stability and functions. Although much attention 

has been focused on the energetic landscape of the native states, investigating 

the native state alone will be insufficient for deciphering the protein folding 

problem (Bowler, 2007). Quantitative thermodynamic description of the 

denatured state will be critical for a detailed understanding the thermodynamic 

control of protein folding, stability, and function.  

 

We previously showed that the energetic information derived from the 

native state ensemble can be used to determine the regional differences in 

stability for a database of multiple proteins (Larson and Hilser, 2004).  With this 

distinction, proteins can be categorized in terms of the thermodynamics of the 

energy landscape of the native states, rather than in terms of the secondary or 

tertiary structure of the folded native conformation (Larson and Hilser, 2004; 

Wrabl et al., 2002). In the previous chapter, denatured ensembles were 

generated using COREX for a database of Homo sapiens proteins and position-

specific thermodynamics were calculated.  In this chapter, the energetic 
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landscape of proteins under denaturing conditions was examined and the 

energetic information from native and denatured ensembles was compared.  The 

goal of this chapter is to describe the common energetic properties in denatured 

states across multiple proteins in the human protein database and quantitatively 

compare the energetic information between the native state ensemble and the 

denatured state ensemble.  

 

Results  
 

Defining Thermodynamic Environments 
 

 Previous work has shown that three thermodynamic environments (low 

stability, medium stability and high stability) (Wrabl et al., 2001) or eight 

thermodynamic environments (Larson and Hilser 2004) could be defined based 

on ensemble-based energetics. With a combination of eight thermodynamic 

environments, 90% of the energetic variability within a Homo sapiens structural 

database can be captured (Larson and Hilser, 2004). In a similar way, 

thermodynamic environments for both native ensembles and denatured 

ensembles were defined in this chapter.  

 

Native ensembles and denatured ensembles were generated by COREX 

as shown in previous chapter. Position-specific thermodynamic descriptors were 

calculated for each protein in the database. Thermodynamic environments within 

proteins were defined through the use of the partitioning around medoids (PAM) 

clustering applied to the position-specific thermodynamic descriptors. Four 

descriptors used in defining thermodynamic environments were: stability 
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constants (lnkf), apolar enthalpy (Hapol), polar enthalpy (Hpol) and conformational 

entropy (TSconf) Figure 3-1 is the outline of how eight thermodynamic 

environments were defined.   

 

Characterization of Thermodynamic Environments in Native and 
Denatured State Ensembles 
 

To characterize the energetic information in each thermodynamic 

environment, mean energetic values were calculated for eight environments in 

the native ensemble (Table 3-1) and the denatured ensemble (Table 3-2). The 

normalized mean energetic values for each thermodynamic environment are 

shown in Figure 3-2 for native ensemble and Figure 3-3 for denatured ensemble.  

As shown in Figure 3-2 and Figure 3-3, thermodynamic environments (TEN and 

TED) represent a systematic partitioning of the space, where the different 

environments corresponds to a different stabilities, as well as different 

thermodynamic mechanisms for achieving that stability. Comparisons between 

normalized energetic values of eight environments in native ensemble and 

denatured ensemble show significant difference.  

 

To compare with a conventional view based on secondary structure, one 

of proteins in the database (1KAO) was structurally colored coded with eight 

thermodynamic environments in native ensemble and eight thermodynamic 

environments in the denatured ensemble as shown in Figure 3-4. Eight 

thermodynamic environments represented by eight different colors. The primary 

sequence has been colored according to the relative thermodynamic 

environment segments.   
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Figure 3-1: Schematic illustration of defining eight thermodynamic 
environments for G protein (PDB ID: 1KAO) 
COREX algorithm was used to generate ensembles based on crystal structure. 
Position-specific thermodynamic descriptors were calculated. The whole 
database of total 17802 residues with position-specific thermodynamic 
descriptors was clustered based on four dimensions (lnkf, Hapol, Hpol and TSconf)  
Eight clusters with different colors represent eight different thermodynamic 
environments based on four dimensional clustering.  The whole structure of G 
protein was color coded based on eight thermodynamic environments. 
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Table 3-1:  Mean energetic properties of eight thermodynamic 
environments in native ensemble 
 

TE 

Native
∆G 

(cal/mol)
∆Hpol

(cal/mol)
∆Hapol 

(cal/mol)
∆TSconf 

(cal/mol)
1 -3527 -6083 4859 -3124 
2 -4938 -8649 6292 -4101 
3 -8548 -12388 8756 -4356 
4 -9822 -15059 9078 -5225 
5 -12425 -16275 14167 -5563 
6 -10527 -12487 14045 -4573 
7 -7473 -9443 10902 -4065 
8 -6385 -11496 6494 -4885 

 
 
 
 
Table 3-2:  Mean energetic properties of eight thermodynamic 
environments in denatured ensemble 
 

TE 

Denatured
∆G 

(cal/mol)
∆Hapol

(cal/mol)
∆Hpol 

(cal/mol)
∆TSconf 
(cal/mol)

1 7500 -1083 -915 -8323 
2 9082 -996 44 -9312 
3 8427 -1115 1085 -7704 
4 7611 -303 -2168 -9790 
5 9100 662 -400 -10327 
6 9859 -1028 -1075 -10902 
7 10178 -1522 2426 -8363 
8 10696 -1538 1094 -9939 
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Figure 3-2:  Comparison of the eight thermodynamic environments in 
native state ensemble 
Each thermodynamic environment is defined based on the clustering of these 
four thermodynamic descriptors. Plotted are the mean values for the four 
thermodynamic descriptors with in each cluster: free energy ∆G, apolar enthalpy 
∆Hapol, polar enthalpy ∆Hpol and conformational entropy T∆Sconf.  The X-axis is the 
thermodynamic environments (TED) listed in order of increasing stability.  The Y-
axis is the normalized mean values of the corresponding thermodynamic 
descriptors. 
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Figure 3-3: Comparison of the eight thermodynamic environments in 
denatured state ensemble 
Each thermodynamic environment is defined based on the clustering of these 
four thermodynamic descriptors. Plotted are the mean values for the four 
thermodynamic descriptors with in each cluster: free energy ∆G, polar enthalpy 
∆Hpol, apolar enthalpy ∆Hapol and conformational entropy T∆Sconf.  The X-axis is 
the thermodynamic environments (TED) listed in order of increasing stability.  The 
Y-axis is the normalized mean values of the corresponding thermodynamic 
descriptors. 
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Figure 3-4:  Thermodynamic environments characterization for the GTP 
binding protein (PDB: 1KAO) in native and denatured state ensembles 
Eight thermodynamic environments represented by eight different colors. The 
primary sequence has been colored according to the relative thermodynamic 
environment segments.  Secondary structures are shown for comparison with 
thermodynamic environment segments. High-resolution structures have been 
mapped with native ensemble-based energetics and denatured ensemble-based 
energetics to show the differences. 
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Stability Constant and Energetic Correlation between Native and 
Denatured Ensembles 

 

As previously established protein stability is defined by both native and 

denatured states. One of the most important parameters calculated by COREX is 

the residue stability constant as shown in the previous chapter. The COREX 

calculated stability constant has good agreement with experimentally verifiable 

hydrogen exchange protection factors (Hilser et al. 1998) and it can provides a 

meaningful characterization of regional stability within the protein at the level of 

each residue position (Larson et al. 2004).  Quantitative comparison of the 

position specific stability constant under native and denatured conditions 

provides a better understanding for protein stability. As shown in Figure 3-5, 

stability constants for G protein (1KAO) were calculated under native and 

denatured conditions.  It is clear that regions of high stability under native 

conditions often correspond to regions of low stability under denaturing 

conditions and vice versa. However, correlation analysis of all residues stability 

constants within whole database under native and denatured conditions shows 

that there is no correlation between stability constants under native and 

denatured conditions (Figure 3-6). No correlation between native stability 

constants and denatured stability constants suggests that native ensembles and 

denatured ensembles contribute differently to protein stability.  In fact, all four 

position-specific thermodynamic variables (i.e., the free energy of unfolding, [∆G], 

entropic [T∆S], and enthalpic contribution from apolar [∆Hap] and polar [∆Hp] 

residues) show no correlation between native and denatured ensembles (Table 

3-3).   
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Figure 3-5: Stability constants for the GTP binding protein (PDB: 1KAO) 
under native and denatured conditions 
Stability constants under native conditions are shown as close circles; stability 
constants under denatured conditions are shown as open circles. Secondary 
structures are shown on top. The X-axis is the residue number.  The Y-axis is 
stability constants (lnkf). 

 

 

 

 

 

 

 

 

 

 

 

 34



 

 

 

 
Figure 3-6: Calculated Stability Constants of all residues in the database 
using native and denatured ensembles show no correlation 
Each point of the scatter plot is a residue position for each protein in a 
nonredundant Homo sapiens database. The ordinate is stability constants (lnkf) 
calculated from denatured ensembles using COREX. The abscissa is the stability 
constants (lnkf) calculated from native ensembles.  Denatured ensembles contain 
largely unfolded proteins with up to 20% residual native structure whereas native 
ensembles consist mainly of natively folded regions in different combinations. 
The correlation coefficient (R2) between the observed lnkf values for each 
ensemble is 0.04, indicating no correlation. 
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Table 3-3:   Calculated Energetics Using Native and Denatured Ensembles 
Show no Correlation 
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Discussion 
 

Although there are some reports that characterize the energetics of 

denatured proteins (Bowler, 2007, Carra and Privalov, 1995, Godbole et al, 

2000), identifying common thermodynamic properties of denatured states across 

multiple proteins is very limited. In this chapter, position-specific thermodynamic 

descriptors for each protein in the database of non-homologous Homo sapiens 

protein structures were calculated under native and denatured conditions. 

Energetic information under native and denatured conditions was analyzed to 

identify the charactering thermodynamic environments and the contributing 

factors to the observed relative stabilities in different states. The Boltzmann-

weighted energetic information determined under native conditions differs 

considerably from those values determined under denaturing conditions. 

Quantitative comparison of energetic information under native and denatured 

conditions shows no correlation. The significance of this result is two-fold.  First, 

it shows that the calculations on the native and denatured ensembles are 

monitoring different physical properties.  Whereas under denaturing conditions 

the energetics are largely reporting on the stability of isolated pieces of the native 

structure in the absence of the stabilization effects of neighboring segments, the 

energetics under native conditions are reporting on the stability of each region in 

the context of those stabilizing interactions of neighboring segments.  Second, 

the results indicate that there is no correlation between the stability of the 

individual pieces of structure that make up a protein and the stability of that 

region in the final fold.  For instance, the loop at position 105 to 111 in G protein 

(PDBID: 1KAO ) is one of the most stable elements of structure under denaturing 
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conditions, yet under native conditions it is among the least stable regions 

(Figure 3-5).  This is because most of the stability of this region stems from local 

interactions; the folding of the remainder of the molecule adds comparatively little 

to the stability of this region.  Conversely, many positions involved in the beta 

sheet (e.g., residue 55-57, 78-81) have relatively low stability in the denatured 

ensemble, owing to the dearth of short-range stabilizing interactions, but acquire 

significant stability in the native ensemble.  

 

Materials and Methods 
 

Clustering analysis algorithm 
 

Partitioning Around Medoids (PAM) clustering method was used to cluster 

all 17802 residues in the Homo sapiens dataset based on four position-specific 

thermodynamic descriptors (∆G, ∆Hapol, ∆Hpol and T∆Sconf) to identify 2, 4, 6, 8, 

10, 12, 14, 16, and 18 medoids. Thermodynamic environments are labeled 

according to clustering medoids numbers. Manhattan distance was used to 

measure dissimilarity between medoids. The clustering analyses were performed 

using the S-Plus 6.0 professional software. 

Stability constants calculation 
 
 

Residue stability constant is calculated as: 

κ f , j =
Pf , j∑
Pnf , j∑      (3.1) 
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Where Pf,j  and Pnf,j, are the probabilities of all states in the ensemble in which 

residue j is either folded or unfolded, respectively.  Under equilibrium conditions, 

the probability of any given conformational microstate, i, in the ensemble is given 

by 

  

Q
K

K

KP i
N

i
i

i
i states

==

∑
=1

     (3.2) 

 

where Ki = e(-∆Gi/RT) is the statistical weight of each microstate and the summation 

in the denominator is the partition function, Q, for the system.  The Gibbs free 

energy for each microstate, ∆Gi is calculated as: 

 

∆Gi = ∆Hi, solvation –T(∆Si, solvation + W∆Si, conformational)                  (3.3) 

 

The relative apolar and polar free energies of each state was calculated by 

accessible-surface-area based parameterization equations in Chapter 2.  
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CHAPTER 4 
  

Investigation of Fold Information in the Native and 
the Denatured State Ensembles 

 

Introduction 
 

According to Anfinsten’s thermodynamic hypothesis, the information 

defining the final fold is contained in the primary sequence and is thermodynamic 

in nature (Anfinsen, 1973).  Analysis of the thermodynamic determinants of 

protein fold specificity will provide a better understanding of the energetics that 

drive protein folding.  Previous work has shown that a database of proteins can 

be represented with thermodynamic building blocks, and the thermodynamic 

environments can be used to match the sequences with their native folds 

successfully (Wrabl et al. 2002). Also, as shown previously, eight thermodynamic 

environments derived from native ensembles captured 90% of the energetic 

variability across the Homo sapiens protein database (Larson et al. 2004).  

 
Thermodynamic environments under native and denatured conditions 

were defined and characterized in Chapter 3. In this chapter, the native 

ensemble thermodynamic environments (TEN) and denatured ensemble 

thermodynamic environments (TED) are used to determine the fold information 

content through fold recognition experiments. The strategy is to establish amino 

acid propensity scales for different energetic environments (similar to the 

propensity scales for secondary structural environments) and to determine the 
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generality of these preferences by successfully matching sequences to their 

respective folds (defined in energetic terms).  Also, the full ensembles under 

native and denatured conditions were partitioned into different sub-ensembles to 

investigate the fold contributions of sub-ensembles.  

Results  

Fold Recognition Experiments based on Energetic Information of the 

Native State Ensemble 

 
Figure 4-1 shows a schematic outline of the energetic-based fold 

recognition experiments. Thermodynamic environments within proteins were 

detected through the use of clustering methods applied to the position-specific 

thermodynamic descriptors. This was followed by an indirect determination of the 

information content through fold recognition experiments. Fold recognition 

success was defined as the case where the target sequence scored higher than 

99% of the decoy library. The decoy library utilized here contained 431 

sequences and therefore the target sequence had to score amongst the top 4 

sequences. The full ensemble under native conditions is partitioned into five sub 

ensembles with different percentages of folding (0-20%, 20-40%, 40-60%, 60-

80%, 80-100%). Figure 4-2 shows fold recognition results obtained by threading 

20 amino acids into different thermodynamic environments.  Fold recognition 

success was defined as the case where the target sequence scored higher than 

99% of the decoy library.  The decoy library utilized here contained 431 

sequences (Larson and Hilser, 2004) and therefore the target sequence had to 
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score amongst the top 4 sequences.  As Figure 4-2 indicates, using the 8 

thermodynamic environments in the database of native ensemble energetics 

(TEN), 83.6% of the folds were successfully recognized by their sequence.  To 

confirm that the residue specific information at each position originates from 

native like states, thermodynamic environments derived by clustering only the 

sub-ensembles containing 80-100% folded structure showed no depreciable 

effect.   It should be noted that almost no fold recognition success was achieved 

for the control calculations wherein the sub-ensembles containing only 60-80%, 

40-60%, or 20-40% of the native fold were used.  This important finding indicates 

that the energy landscape of intermediately folded states (i.e. states with 

between 20-80% of the residues folded) do not determine the fold that a 

particular sequence will adopt. 

Since the propensities of 20 amino acids in different thermodynamic 

environments were used in fold recognition experiments, it would be interesting 

to know the distributions of amino acids in each thermodynamic environment.  

Figure 4-3 shows the hierarchical clustering of 20 amino acids in eight 

thermodynamic environments of native ensemble.  As shown previously (Larson 

et al., 2004), the contribution of each amino acid was not correlated to the 

thermodynamics of the environment to which it belongs. Consequently, the 

hierarchical grouping did not completely reflect a traditional chemical property 

selection mechanism such as hydrophobicity. Within the identified six groups, for 

example, aromatic amino acids (Trp, Phe,Tyr) make up one group while proline 

occupies a different group, similar to traditional chemical property selection. 
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However, it is also interesting to see that chemically and structural similar amino 

acids, for example, lysine and arginine were in different groups and showed 

different thermodynamic environment propensities. In contrast to the traditional 

way of grouping of 20 amino acids based on chemical properties, grouping amino 

acids based on propensities of amino acids in thermodynamic environments 

enable the description of protein folds in thermodynamic terms. Figure 4-2 shows 

eight thermodynamic environments, obtained using the full ensemble under 

native condition, reaches 83% success in fold recognition experiments. Further 

increases in the number of thermodynamic environments didn’t improve the fold 

recognition success. To determine the energetic information based on 

hierarchical clustering, fold recognition experiments were carried out based on 

grouping information of 20 amino acids within eight thermodynamic 

environments. Figure 4-4 shows the fold recognition success as a function of 

amino acids clustering (Larson and Hilser, 2004).  From Figure 4-4 we can see 

that fold recognition curve saturates at six clusters of amino acids with ~80% 

success and six amino acids clusters are enough to capture the majority of  

energetic information in our database (Larson and Hilser, 2004).  

Fold Recognition Experiments based on Energetic Information in the 

Denatured State Ensemble 
  

We previously showed that proteins can be categorized in terms of the 

thermodynamics of the energy landscape of the native protein, rather than in 

terms of the structural attributes of the folded native conformation. We 

demonstrated the utility of such a categorization scheme by successfully  

 43



 

 
 
 

 
Figure 4-1:  Schematic illustration of energetic-based fold recognition 
experiment 
Eight thermodynamic environments were detected through clustering position-
specific thermodynamic descriptors calculated by COREX for each residue 
(17802) in the database.  Using these identified clusters, the amino acid 
propensities for each thermodynamic environment were calculated and used to 
formulate the scoring matrix in subsequent fold recognition experiments to match 
sequences to the target fold. For each protein (target fold) in the database, the 
three-dimensional structure can be represented by a one dimensional string of 
thermodynamic environment numbers (1 to 8) identified during the clustering 
analysis.  Each target fold will be aligned to sequences in a library containing 431 
sequences.  Alignments are scored based on the Smith-Waterman local 
alignment using a scoring matrix of 20 amino acids to 8 thermodynamic 
environments. Fold recognition success was defined as the case where the 
target sequence scored higher than 99% of the decoy library (scored in the top 
four). 
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Figure 4-2: Fold recognition successes as a function of native state 
thermodynamic environments (TEN) 
Fold recognition experiments use scoring matrices composed of the log-odds 
probability of the 20 amino acids observed in each thermodynamic environments. 
A successful fold recognition experiments is defined as scoring the target protein 
among the top four proteins (1%) out of 431 sequences. Native ensembles were 
divided into five sub-ensembles (0-20% folded, 20-40% folded, 40-60% folded, 
60-80% folded and 80-100% folded) to determine the sub-ensemble contribution 
to fold recognition. Each line represents a different sub-ensemble (from top to 
bottom): full ensemble (open circle in cyan), 80-100% folded sub-ensemble 
(closed square in green), 60-80% folded sub-ensemble (open diamond in 
purple), 0-20% folded sub-ensemble (cross in orange), 40-60% folded sub-
ensemble (closed downtriangle in blue), 20-40% folded sub-ensemble (open 
uptriangle in red). With eight TEN, success rate was achieved at 83.6 %.  
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Figure 4-3: Double hierarchical cluster analysis of amino acid propensities 
for eight native state thermodynamic environments (TEN) 
Cluster results are shown in heat map in which rows are twenty amino acids and 
columns are eight native thermodynamic environments. Negative propensities 
are green, propensities near zero are black, and positive propensities are red.  
The color intensity reflects the magnitude of the propensities. The row 
dendrogram shows groupings of amino acids with similar log-odds probabilities 
for the thermodynamic environments. The gray scale above the amino acid 
dendrogram is the cluster slider. The numbers below the scale are the calculated 
dissimilarity measures.  The red dotted line is positioned at the level of six amino 
acid clusters.  Each of the six amino acid cluster nodes is indicated by a red dot 
and is highlighted. 
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Figure 4-4: Fold recognition success as a function of amino acid cluster 
number in native state ensemble   
The solid squares represent fold recognition experiments using scoring matrices 
composed of the propensities of a series of amino acid clusters for the eight 
native thermodynamic environments. A successful fold recognition experiment is 
one in which the native amino acid sequence, of the target protein, scores higher 
than 99% of the sequences (scoring in the top four) in the sequence library.  The 
x-axis indicates the number of amino acid clusters used to generate the scoring 
matrix used in the associated fold recognition experiment.  The asterisk denotes 
six amino acid groups are necessary to encode the eight thermodynamic 
environments of the proteins in our database. 
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matching (with an 84% success rate) a protein’s sequence to a one-dimensional 

representation of that protein’s energy landscape. That result conclusively 

demonstrated that the thermodynamics of the native state ensemble are 

important determinants of what fold a sequence will adopt, and that the specific 

thermodynamic descriptors developed in that work were sufficient to 

quantitatively characterize a diverse database of human protein structures. Here 

energetic information in the denatured ensemble and its sub ensembles are 

analyzed in a similar way based on fold recognition experiments. As Figure 4-5 

indicates, in the case of the denaturing conditions, fold recognition success was 

found to plateau at 98.3%, using eight environments from full ensemble, an 

improvement over the same calculation performed native conditions.  Partitioning 

the ensemble to investigate the contribution of the different sub-ensembles, 

reveals that under denaturing conditions the information content of the sub-

ensemble containing 0-20% structure (80-100% unfolded regions) achieved 

exactly the same fold recognition success as full ensemble. 80-100% structure 

(i.e. 0-20% unfolded regions) was sufficient to produce fold recognition success 

at a rate of only 35%. Fold recognition results from other sub-ensembles (20-

40% folded, 40-60% folded, 60-80% folded) were less than 20% success.  

Hierarchical clustering result (Figure 4-6) based on propensities of 20 amino 

acids in eight thermodynamic environments of denatured ensemble reveals 

different groups when comparing results to those obtained using the native 

ensemble (Figure 4-3). For example, among the six groups illustrated, Gly and 

Arg each occupies one group, while Ser and Glu make up one group, aromatic 
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amino acids( Trp, Tyr and Phe) and Asn, Glu, Asp are in the same group. The 

observed differences in amino acid groups between results obtained using 

hierarchical clustering of native and denatured ensemble suggest that different 

mechanisms of thermodynamic control are involved.  To further illustrate the 

significance of the observed differences, simple fold recognition experiments 

were performed by using the hierarchical clustering results obtained with the 

denatured ensemble. Figure 4-7 is the fold recognition result based on amino 

acid cluster numbers. As Figure 4-7 indicates, clustering the database to be 

represented by four clusters of amino acids in the denatured ensemble captures 

80% success of fold recognition within the database compared to 6 clusters in 

native ensembles capturing the same success rate.   Figure 4-8 is a control 

experiment to show the folding information in native ensemble and denatured 

ensemble is not random. As Figure 4-8 reveals, the probability to obtain fold 

recognition success higher than 15% if energetic information was just randomly 

selected is very small. 

Identifying the Source of Denatured State Fold Recognition Success 
 

Fold recognition experiment results based on native ensemble energetics 

and denatured ensemble energetics clearly indicated that denatured ensemble 

achieves a higher success rate when matching sequence to fold.  The 

experiments were performed using on PROFILESEARCH (Bowie et al, 1991) 

which basically follows Smith-Waterman local alignment algorithm with success 

was defined by the overall local alignment scores. 
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Figure 4-5: Fold recognition successes as a function of denatured state 
thermodynamic environments (TED) 
Fold recognition experiments using scoring matrices composed of the log-odds 
probability of 20 amino acids for each thermodynamic environment. A successful 
fold recognition experiments was defined as scoring the target protein among the 
top four proteins (1%) out of 431 sequences. Denatured ensembles were divided 
into five sub-ensembles (0-20% folded, 20-40% folded, 40-60% folded, 60-80% 
folded and 80-100% folded) to determine the sub-ensemble contribution to fold 
recognition. Full ensemble (open circle in cyan), 0-20% folded sub-ensemble 
(closed square in green), 80-100% folded sub-ensemble (closed uptriangle in 
purple), 20-40% folded sub-ensemble (cross in orange), 60-80% folded sub-
ensemble (closed diamond in blue) and 40-60% folded sub-ensemble(open down 
triangle in red). With eight TED, 98.3 % fold recognition is achieved. 
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Figure 4-6: Double hierarchical cluster analysis of amino acid propensities 
for eight denatured state thermodynamic environments (TED)  
Cluster results are shown in heat map in which rows are twenty amino acids and 
columns are eight denatured thermodynamic environments. Negative 
propensities are green, propensities near zero are black, and positive 
propensities are red. The color intensity reflects the magnitude of the 
propensities. The row dendrogram shows groupings of amino acids with similar 
log-odds probabilities for the thermodynamic environments. The gray scale 
above the amino acid dendrogram is the cluster slider. The numbers below the 
scale are the calculated dissimilarity measures.  The red dotted line is positioned 
at the level of six amino acid clusters.  Each of the six amino acid cluster nodes 
is indicated by a red dot.  
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Figure 4-7: Fold recognition success as a function of amino acid cluster 
number in denatured state ensemble    
The solid squares represent fold recognition experiments using scoring matrices 
composed of the propensities of a series of amino acid clusters for the eight 
denatured thermodynamic environments. A successful fold recognition 
experiment is one in which the native amino acid sequence, of the target protein, 
scores higher than 99% of the sequences (scoring in the top four) in the 
sequence library.  The x-axis indicates the number of amino acid clusters used to 
generate the scoring matrix used in the associated fold recognition experiment.  
The box denotes that four amino acid groups are necessary to encode the eight 
denatured thermodynamic environments of the proteins in our database. 
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Figure 4-8:  Fold recognition performance using thermodynamic 
environments identified with native, denatured and randomly generated 
ensemble 
Fold recognition experiments use scoring matrices composed of the log-odds 
probability of 20 amino acids for each thermodynamic environment. A successful 
fold recognition experiments is defined as scoring the target protein among the 
top four proteins (1%) out of 431 sequences.  X-axis is the number of 
thermodynamic environments. Y-axis is the percentage of proteins that ranked in 
the top four in fold recognition experiments.  Red line is fold recognition results 
as a function of denatured thermodynamic environments. Black line is fold 
recognition results as function of native thermodynamic environments.  Green 
line is the control experiment in which states were randomly picked up in COREX 
calculation and the random states were used to calculate position-specific 
thermodynamic descriptors and do cluster to define thermodynamic 
environments.  
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To identify the source of the improved fold recognition success using the 

denatured state thermodynamics, several analysis were made. First, fold 

recognition scoring matrix based on the propensities of 20 amino acids in each 

thermodynamic environments was investigated. Table 4-1 shows the 

propensities of 20 amino acids to eight native thermodynamic environments 

(TEN). Table 4-2 shows the propensities of 20 amino acids to eight denatured 

thermodynamic environments (TED).  Comparison of these propensities of amino 

acids in TEN and TED reveals that the propensities ranges (from the lowest value 

to the highest value) for 12 amino acid types are broader for TED than those 

observed for TEN. A broader range of propensities range suggests more 

variability in the propensities of amino acids to specific thermodynamic 

environments, thus imparts a distinguishing feature using TED for different amino 

acids.  Second, residue-specific scores were calculated based on the propensity 

of amino acid to thermodynamic environments.  Figure 4-9 displays the 

normalized residue-specific score distribution for all residues in the native 

ensemble and denatured ensemble. As Figure 4-9 indicates, residues in the 

denatured ensemble have a higher average position-specific score.  Figure 4-10 

shows the normalized residue-specific score for a fatty acid binding protein (PDB 

ID: 1CBS) in database. For each residue position, using the propensities for the 

thermodynamic environments in the denatured ensemble yields a higher 

normalized position-specific score which possibly accounts the observed 

improvement in the overall fold recognition score. Third, the quality of alignments 

between the target sequence and fold were investigated. Figure 4-11 shows the 
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sequence-thermodynamic environment alignments for sample proteins. Improved 

alignments were observed; resulting in a 15% increased in success rates in the 

fold recognition experiments. To quantitatively assess the improvements in the 

alignments obtained from the denatured state energetics, we compared the 

average identities for structural, energetic and sequence information obtained 

from native and denatured fold recognition experiments (Figure 4-12).  For 

instance, the mean identity of thermodynamic environments between the actual 

and the aligned structures is 69.5% using denatured state energetics for fold 

recognition compared to just 56.6% (P= 0.02) when using native thermodynamic 

environments.  Similarly, secondary structure identities also display a statistically 

significant improvement (+8%) when using information from the denatured rather 

than native state energetics are used as the basis for alignment.  As the statistics 

revealed, alignments from denatured state information were more successful at 

matching both secondary structure and thermodynamic information than the 

alignments using native state thermodynamic information, demonstrating that 

both the length and the quality of the alignment are increased when derived from 

denatured state energetics.   
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Table 4-1: Propensities of 20 amino acids in eight native state 
thermodynamic environments 
 

AA TEN1 TEN2 TEN3 TEN4 TEN5 TEN6 TEN7 TEN8 
ALA 0.452 0.0451 0.3908 -0.4474 -0.9298 0.146 0.0219 -0.287 
ARG -0.5305 -0.4176 0.2835 0.3992 0.6595 -0.4422 -0.2893 -0.5501 
ASN -0.2671 0.101 0.0691 0.4479 -0.2559 -1.1134 -0.4657 0.5433 
ASP -0.2186 0.1131 0.1469 0.3189 -0.4081 -0.6068 -0.4246 0.4669 
CYS -0.286 -0.1818 -0.0896 0.6559 0.3862 -0.5575 -1.6171 0.3574 
GLN -0.1899 -0.2493 0.2229 0.4402 0.4385 -0.595 -0.8924 0.1481 
GLU -0.3687 -0.0684 -0.1196 0.3897 0.1349 -0.4693 -0.3297 0.4107 
GLY 0.3714 0.6621 -0.2742 -0.3651 -1.2817 -1.0835 -0.2451 0.655 
HIS -0.1836 -0.2404 0.0444 0.0761 0.4483 0.1015 -0.1903 -0.2558 
ILE 0.1229 -0.2366 -0.2888 -0.745 -0.2082 0.5674 0.5648 -0.7713 
LEU -0.2289 -0.1989 -0.0341 -0.4416 -0.0871 0.5504 0.392 -0.8531 
LYS -0.1054 0.0522 0.0088 0.2026 -0.2481 -0.4288 -0.1209 0.3891 
MET -0.2796 -0.3912 0.0723 0.1778 0.5658 0.1152 -0.5707 -0.1148 
PHE -1.5335 -1.0511 -0.5042 -0.6605 0.5836 0.9802 0.1756 -1.0493 
PRO 0.9902 0.6253 -0.1364 -1.3557 -2.0027 -0.4897 0.3847 -0.4242 
SER -0.0349 0.0469 0.3706 0.397 -0.3678 -0.5806 -0.3935 0.0411 
THR 0.1525 0.1661 -0.1591 -0.1067 -0.5085 -0.1616 0.238 0.1897 
TRP -0.9032 -0.8229 -1.0371 -0.7906 1.0874 0.7166 -0.0256 -0.8265 
TYR -0.9283 -1.0909 -0.5537 -0.0852 1.0604 0.4242 0.0466 -0.9461 
VAL 0.2 -0.0298 -0.0987 -0.6274 -0.4392 0.3847 0.5053 -0.6003
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Table 4-2: Propensities of 20 amino acids in eight denatured state 
thermodynamic environments 
 

AA TED1 TED2 TED3 TED4 TED5 TED6 TED7 TED8 
ALA 0.4649 0.2582 0.1892 0.1364 -0.298 -0.5458 -0.0771 -0.4573
ARG 0.7978 -0.5294 0.936 0.3478 -0.4731 -1.8311 -0.0345 -1.8575
ASN -1.2926 -0.0628 -1.2046 -0.285 -0.0024 0.8511 -0.6002 0.3586
ASP -0.5453 0.0439 -1.1384 0.161 -0.1143 0.7266 -0.7853 0.1773
CYS -0.6649 -0.0559 0.1896 -1.0723 -0.5555 -0.5806 0.7476 0.3823
GLN 0.1134 -0.0361 -0.5252 0.5485 0.3255 0.3395 -1.1065 -0.3847
GLU -0.5389 0.0603 -0.8486 0.1241 0.2889 0.4812 -0.5126 0.1028
GLY -1.7588 -0.4908 -1.5225 -0.9766 -1.179 0.8965 -0.8042 0.9762
HIS -0.183 0.2478 0.1207 -0.607 0.098 -0.1758 -0.0008 0.1018
ILE 0.1348 -0.0976 0.665 -0.8211 -1.1361 -1.6186 0.9568 -0.6523
LEU 0.3759 0.1566 0.3141 -0.0763 -0.4603 -0.7243 0.2045 -0.2181
LYS -0.176 0.0674 -0.1519 -0.2516 0.038 0.1796 -0.0465 0.1252
MET -0.0142 0.2408 -0.072 0.1026 0.0679 -0.1809 -0.0374 -0.1929
PHE -0.6994 -0.094 -0.5922 0.4158 0.9647 -0.106 -0.5456 -0.2853
PRO 0.2657 0.1363 0.4901 -0.2655 -0.1623 -0.5578 -0.1204 -0.116
SER 0.8622 0.0501 -0.031 0.886 -0.506 -0.4946 -1.2752 -1.3582
THR -0.5699 0.086 -0.0548 -0.6999 -0.109 -0.2337 0.5298 0.2458
TRP -1.059 0.0346 -0.519 0.1492 0.7841 -0.0305 -0.3891 0.0854
TYR -1.196 -0.5211 -0.5093 0.2577 1.4776 -0.5757 -0.7906 -0.5903
VAL -0.1493 0.0191 0.3099 -1.0219 -1.1597 -0.8711 0.7973 0.2095
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Figure 4-9:   Normalized position-specific score distributions for native and 
denatured state ensembles 
Scores are calculated based on the propensities of twenty amino acids to eight 
thermodynamic environments in the native and denatured ensembles. Scores 
are normalized based on averaging the scores of five neighboring residues. The 
x-axis represents normalized score ranges. The y-axis represents the distribution 
probabilities) of normalized scores in each range. Position-specific scores follow 
a normal distribution and normalized scores in denatured ensemble have a 
higher mean, thus suggesting that average position-specific scores are higher for 
denatured ensembles when matching sequence to folds. 
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Figure 4-10:  Position-specific alignment scores for a fatty acid binding 
protein (PDB: 1CBS) calculated from native and denatured state ensembles 
The x-axis represents the residue number and y-axis is the average score for 
each position. Average scores were calculated from the native (black line) and 
denatured (red) ensemble. Average scores were calculated by averaging scores 
within a window of five neighboring residues.  As shown in the figure, scores 
calculated using the denatured ensemble are higher than scores calculated from 
native ensemble in most positions. 
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 Figure. 4-11:  Comparison of alignments generated from  fold recognition 
experiments using native and denatured state thermodynamic 
environments 
Alignments were generated using the Smith-Waterman local alignment algorithm 
to score proteins for fold recognition based on the identified thermodynamic 
descriptors.  Alignments using TEN are boxed in red while alignments using TED 
in boxed in green (gaps are represented as asterisks *). Local alignment length 
and identity are shown next to the alignment and clearly shows that alignments 
using denatured ensemble thermodynamic environments are longer matched 
with higher identities. 
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Figure. 4-12:  Alignments identity calculated based on the fold recognition 
experiments using native and denatured state thermodynamic 
environments 
Alignments were generated using the Smith-Waterman local alignment algorithm 
to score proteins for fold recognition based on the identified thermodynamic 
descriptors.  Alignments identity in alignments obtained using TEN (black bar) 
and TED (grey bar) using different metrics (secondary structure, thermodynamic 
environments and sequence as shown on the x-axis) and the percentage of 
exact match on the y-axis.    
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Discussion  
 

In the previous chapter, we demonstrated that the energetic information 

contained within the native and denatured ensembles is different. The results 

presented here revealed that there is different fold information content contained 

in the native and denatured ensemble as revealed by the different success in fold 

recognition experiments matching sequences to their respective folds.  Energetic 

information in the denatured ensemble achieved a higher success rate compared 

to native ensemble; which suggests that there should be some unique folding 

information in the denatured ensemble. Close investigation of these results 

revealed that higher fold recognition success originates from the improved quality 

of alignment between sequence and thermodynamic environments using the 

information content of the denatured ensemble. Although energetic determinants 

within the native ensemble have been shown to effectively recognize folds 

(Larson and Hilser 2004; Wrabl et al. 2002), the results presented here show that 

the energetic determinants within the denatured ensemble are more 

discriminating. Combined with the energetic determinants of the native ensemble 

energetic important for fold specificity (Larson and Hilser 2004), the success of 

this study and the unique nature of the energetic determinants in the denatured 

ensemble will provide a better thermodynamic description of protein folds and 

open new opportunities to realize a new  energetic classification of protein folds. 
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Methods 
 

Propensities of amino acids in each thermodynamic environment 
 

Propensities of amino acids in each thermodynamic environment are the 

double-normalized log-odd probabilities of each amino acid in thermodynamic 

environments calculated as double normalized log-odd probabilities: 

Residues

TE

AA

TE

TE) (AA,

Total
Total

 
Total
AA

ln Odds Log =      (4.1) 

 

AATE is the total number of one type amino acid in one thermodynamic 

environment. TotalAA is the total number of one type of amino acid in the whole 

database. TotalTE is the total number of amino acids in one thermodynamic 

environment. TotalResidues is the total number of residues in the whole database. 

 

Double hierarchical cluster analysis 

 

Double hierarchical cluster analysis was shown on heat map generated by 

SpotFire DecisionSite Statistics 7.2 software. Agglomerative hierarchical 

approach was used with complete linkage (measure the maximum distance 

between two clusters) clustering method and city block distance (Manhattan 

distance) to measure the dissimilarity.  
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Propensities of twenty amino acids in eight thermodynamic environments 

was clustered and visualized by different colors in heat map. The color range is 

set to continuous coloring and spans from green, to black, to red.  The range is 

set so that propensities equal to zero (no propensity) are colored black, lower 

propensities are colored green and higher propensities are colored red.  The 

relative intensity of the colors reflects their distance from zero propensities.  
 

Fold recognition experiments based on amino acid propensities for 
thermodynamic environments  

 
Fold-recognition experiments were based on PROFILESEARCH of 

Eisenberg and coworkers (Bowie et al., 1991) as described previously (Wrabl et 

al 2001,2002).  Based on clustering results, each protein (profile) in database 

was represented by one-dimensional string with each residue assigned to a 

thermodynamic environment. There are 431 decoy sequences including the 122 

native sequences in our dataset from which correct fold recognition is tested. 

PROFILESEARCH implements the Smith-Waterman local alignment algorithm 

(Smith & Waterman, 1981) that is used to align each profile with each sequence 

in this search database. Log-odds probabilities of amino acids in thermodynamic 

environments (Equation 5.2) were used to construct scoring matrix for alignment. 

All other parameters in PROFILESEARCH, specifically the gap open and 

extension penalties, were defaults. A successful fold recognition experiment is 

one in which the native sequence had an alignment cumulative score among the 

top four (1%) scores out of the total 431 sequences that has been scored.  

 

 64



 

Fold recognition experiments based on random information 
 

Fold recognition experiments based on random information were 

performed by randomly selecting microstates from the full ensemble. The 

randomly selected microstates were different states containing different 

percentage of folded and unfolded structure generated by COREX.  The 

ensemble made up of randomly selected microstates was then used to calculate 

position-specific thermodynamics and subsequent clustering results were then 

used to perform fold recognition.  

Alignment identity calculation 

 
          Alignment program based on PROFILESERACH was written in Perl. 

Alignment output is generated using thermodynamic environments as the profile 

that was used to match the sequences (target).  Because each sequence can be 

represented as an amino acid sequence, string of thermodynamic environment 

numbers or secondary structure types, identities based on each representation 

can be calculated. Identity is calculated as the percentage of matched positions 

divided by the total length of alignment. Secondary structure assignments for 

residues in the target sequences, the template structure used for fold recognition, 

were assigned using STRIDE (Frishman and Argo, 1995). Simple statistical t-test 

was used to compare the mean identity between alignments using denatured and 

native state energetics. Statistical tests were performed using the open statistics 

software, R (www.r-project.org). 
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CHAPTER 5 
 

The Relationship Between Denatured State 
Energetics and Secondary Structures 

 

Introduction 
 

The protein architecture is defined hierarchically with four classes starting 

with the primary amino acid sequence followed by the secondary, tertiary and 

quaternary structure. Secondary structures are building blocks of three-

dimensional, functional native folds. Information from secondary structure can be 

used to correctly predict functional sites and assign sequences to folds (Bowie et 

al 1991, Jones et al. 1999, Rose et al. 2006). In the previous chapter, we 

demonstrated the success of using denatured ensemble energetics to match 

sequences to folds. The high alignment identity for secondary structures using 

denatured state energetics suggests that the algorithm may be capturing local 

energetics that are specific to different secondary structure types.  Therefore, it is 

interesting to know whether there is some correlation between energetics in the 

denatured state and the building blocks (secondary structures) of the final native 

fold. In this chapter, propensities for different secondary structure types were 

calculated under denatured conditions and the relationship between denatured 

ensemble energetics and secondary structures were investigated.   
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Results  
 

Propensities of Secondary Structure in Thermodynamic 
Environments 
 
 To address the question of whether a correlation exists between 

energetics in denatured ensemble and secondary structure, the propensity of 

each secondary structure type was calculated for each thermodynamic 

environment in native (Table 5-1) and denatured (Table 5-2) conditions.  

Propensities were calculated as the log-odds probabilities of each secondary 

structure in each thermodynamic environment. As Table 5-1 and Table 5-2 

reveal, the same secondary structure types in native and denatured conditions 

show different propensities.  For regular structures (alpha helix and beta sheet), 

propensities in denatured thermodynamic environments (Table 5-2) showed 

greater variability; while propensities of irregular structures (coil and turn) showed 

greater variability in native thermodynamic environments (Table 5-1). For better 

illustration, propensities for each secondary structure type were plotted as a 

function of thermodynamic environments in different conditions (native and 

denatured).  Several observations can be made. First, the propensity of each 

secondary structure for different thermodynamic environments is non-random in 

both the native and the denatured states, resulting in “thermodynamic signatures” 

for different secondary structural elements.  Second, within the native state, there 

appear to be only two general signatures, one that is shared by regular 

secondary structures (i.e. alpha helix and beta sheet) (Figure 5-1) and one that is 

shared by irregular structures (coil and turn) (Figure 5-2).  Positions that adopt 

 67



 

both alpha helices and beta strands have positive propensities for environments 

TEN 5, 6 and negative propensities for TEN 1, 2, and 8; whereas positions that 

adopt both coil and turn have positive propensities for environments TEN 1, 2, 

and 8 and negative propensities for TEN 4, 5, and 6.  Third, unlike the native state 

signatures, within the denatured state thermodynamic environments, the 

thermodynamic signatures for regular secondary structures (alpha helix and beta 

sheet) show clear differences (Figure 5-3). Positions that adopt alpha helix in the 

folded protein show preferences to be in TED 1, 2, 3, 4, 5 whereas positions that 

adopt beta strands prefer TED 7 and 8.  Fourth, although the signatures for helix 

and sheet (and to a lesser extent turn) contain strong propensities, there are no 

significant propensities for coil (Figure 5-4) when compared to the magnitude of 

the propensities in the native thermodynamic environments (Figure 5-2). These 

propensities show clearly that while the thermodynamics of the native state can 

discriminate between regular and non-regular structure, the denatured state 

thermodynamics can discriminate between different types of regular structure.  

Variability in Denatured State Ensemble Energetic Propensities - 
Implication for Secondary Structure 
 

The clear separation of thermodynamic propensities (Figure 5-3) based on the 

secondary structure adopted by that position in the final fold suggests that the 

TED may be useful in making inferences about secondary structure. To challenge 

this hypothesis, the thermodynamic environment of each position (from TED) was 

assigned to a secondary structure based on the propensity of observing the 

structure for that environment (Figure 5-3, 5-4). For example, because alpha  
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Table 5-1:  Propensities of secondary structures in native state 
 thermodynamic environments 
                                                                                                                                                            

Native 
TE 

Alpha 
Helix 

Beta 
Sheet Coil Turn 

1 -0.904 -0.646 0.807 0.344 
2 -0.938 -0.448 0.441 0.620 
3 0.298 -0.338 -0.108 -0.071 
4 0.394 -0.153 -0.389 -0.196 
5 0.378 0.453 -1.295 -1.069 
6 0.357 0.427 -0.797 -1.261 
7 -0.288 0.255 0.095 -0.185 
8 -0.734 -0.300 0.251 0.496 

Variability 0.606 0.419 0.683 0.691 
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Table 5-2:  Propensities of secondary structures in denatured state 
thermodynamic environments 
  
Denatured 

TE 
Alpha 
Helix 

Beta 
Sheet Coil Turn 

1 0.581 -1.302 0.141 -0.356 
2 0.283 -0.326 -0.081 0.016 
3 0.197 -0.028 0.233 -0.416 
4 0.663 -1.454 -0.496 -0.048 
5 0.296 -0.160 -0.279 -0.138 
6 -0.52 -0.489 0.0317 0.648 
7 -2.685 0.919 -0.066 -0.879 
8 -1.724 0.450 0.219 0.202 

Variability 1.2181 0.8033 0.253 0.4535 
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Figure 5-1:  Regular secondary structure propensities for native state 
thermodynamic environments (TEN) 
In each plot, the eight environments are aligned on the ordinate and the log-odds 
probabilities of the secondary structure are plotted against the abscissa. The log-
odds probabilities of (A) alpha helices and (B) beta sheets are shown. 
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Figure 5-2:  Irregular secondary structure propensities for native state 
thermodynamic environments (TEN) 
In each plot, the eight environments are aligned on the ordinate and the log-odds 
probabilities of the secondary structure are plotted against the abscissa. The log-
odds probabilities of (A) coil and (B) turn are shown. 
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Figure 5-3:  Regular secondary structure propensities for denatured state 
thermodynamic environments (TED) 
In each plot, the eight environments are aligned on the ordinate and the log-odds 
probabilities of the secondary structure are plotted against the abscissa. The log-
odds probabilities of (A) alpha helices and (B) beta sheets are shown. 
 

 73



 

 
 
 
 
 
 
A) 

     

1 2 3 4 5 6 7 8

-2 .7
-2 .4
-2 .1
-1 .8
-1 .5
-1 .2
-0 .9
-0 .6
-0 .3
0 .0
0 .3
0 .6
0 .9
1 .2

Lo
go

dd
 P

ro
ba

bi
lit

ie
s o

f C
oi

l

T h e r m o d y n a m ic  E n v ir o n m e n ts  (T E D )

 
B) 

      

1 2 3 4 5 6 7 8

-2 .7
-2 .4
-2 .1
-1 .8
-1 .5
-1 .2
-0 .9
-0 .6
-0 .3
0 .0
0 .3
0 .6
0 .9
1 .2

L
og

od
d 

Pr
ob

ab
ili

tie
s o

f T
ur

n

T h e r m o d y n a m ic  E n v ir o n m e n ts(T E D )

      
Figure 5-4:  Irregular secondary structures propensities for denatured state 
thermodynamic environments (TED) 
In each plot, the eight environments are aligned on the ordinate and the log-odd 
probabilities of the secondary structure are plotted against the abscissa. The log-
odds probabilities of (A) coil and (B) turn are shown. 
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helix has a high propensity for TED 1, 2, 4 and 5, any positions with TED 1, 2, 4 or 

5 were assigned to alpha helix. That assignment was then compared to the 

secondary structure observed in the native fold.  The fraction of matches for each 

secondary structure is shown in Figure 5-5 and Figure 5-6.  For comparison, the 

number of matches obtained by randomly assigning secondary structure from a 

fixed number of counts for each secondary structure type (i.e. controlling for the 

composition of each secondary structure: Figure 5-5) reveals that the predictions 

are significant in all cases, but especially for helix and sheet.   Similarly, when the 

results are compared to the number of matches obtained by randomly assigning 

entire elements to consecutive stretches of positions (i.e. controlling for 

composition and continuity of each secondary structural element: Figure 5-6), it is 

clear that in successfully matching sequence to fold, the denatured state 

thermodynamic information performs disproportionately well with regular 

secondary structure, and only marginally well in turns and coils.   

 

The clear separation of thermodynamic propensities of secondary 

structures also opens the opportunity of predicting secondary structures based 

on this simple assignment approach. Figure 5-7 shows a comparison of 

secondary structure predication results between our approach and currently 

popular secondary structure prediction algorithms. As Figure 5-7 reveals, 

although admittedly a crude method for making an assignment, it nonetheless 

allows us to gauge our secondary structure encoding information with more  
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Figure 5-5: Comparison of secondary structure assignment using 
thermodynamic environment information to the random assignment of 
secondary structure 
The overall identity and those reported for each subcategories (alpha, beta, and 
coil) using thermodynamic environment information (black bar) is compared to 
identities calculated using the random assignment of secondary structure (grey 
bar). Secondary structures were randomly shuffled individually and reassign to 
each position. Irregular structures (including coil and turn) were categorized as 
coil.  The identities calculated with the random assignment are the average of 
100 repetitions.  
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Figure 5-6:  Comparison of secondary structure assignment using 
thermodynamic environment information to the random assignment of 
secondary structure elements. 
The overall identity and those reported for each subcategories (alpha, beta, and 
coil) using thermodynamic environment information (black bar) is compared to 
identities calculated using the random assignment of secondary structure (grey 
bar).Secondary structure segments within the database were randomly assigned. 
Irregular structures (including coil and turn) were categorized as coil.  The 
identities calculated with randomly assignment are the average of 100 
repetitions.  
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sophisticated approaches that use more input features and advanced 

technologies. While the predictions did not outperform more recent developments 

in secondary structure predictions; our aim was not to construct a new secondary 

structure predictor.  Instead, it was to show that TED does capture energetics that 

are associated with the energetics of the secondary structures that each position 

adopted in the native fold for each position. The assignment is achieved using 

only the propensities of each residue rather than incorporating information as 

implemented by other secondary structure predictors. 

Discussion 
 

The results in this chapter indicated that the denatured state 

thermodynamic signature contains significant fold encoding information, and that 

the majority of correctly aligned positions are in regions containing alpha helices 

and beta strands. Distinct preferences for particular thermodynamic 

environments based on regular secondary structures (alpha helices and beta 

sheets) show that there are some correlation between energetics in the 

denatured ensembles and secondary structures.  Because the energetics in the 

denatured ensembles can be successfully correlated back to the observed 

structural features found in the natively folded protein, it is important to 

emphasize that these identified energetics could potentially be related back to 

specific functional features.  
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Figure 5-7: Comparison of secondary structure prediction performance 
using thermodynamic environments (TE) with other predictors  
The accuracies for overall and subcategories (alpha, beta, and coil, turn) is 
compared to 5 other predictors: GOR (Garnier et al, 1978), PSIpred (Jones, 
1999), PHDpsi (Przybylski, 2002), PROFsec (Rost, unpublished data), and GOR-
V (Sen et al., 2005). Predication accuracy for overall (red bar), alpha helix (green 
bar), beta sheet (blue bar) and coil turn (cyan bar).  
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Currently, the three popular protein secondary structure prediction 

algorithms are the Chou-Fasman/GOR methods, neural network models and 

nearest-neighbor methods. Developed in the early 1970’s, the Chou-Fasman 

method was an empirical method based on the analysis of the relative frequency 

of amino acids in each secondary structure types to make these structural 

predictions (Chou and Fasman 1978).  The success of GOR, a method 

introduced in 1978, assumes that the amino acids flanking the central amino acid 

influence the secondary structure adopted by the central residue is likely to 

adopt.  Neural network models are sophisticated machine learning techniques 

which can be trained to predict secondary structures. Nearest-neighbor methods 

predict secondary structure by identifying similar sequences with known 

structures.  

Although secondary structure predictions based on the presented 

thermodynamic environment approach did not outperform leading secondary 

structure prediction algorithms, we found that the performance of assignment 

was comparable. The current leading technologies for secondary structure 

predictors utilize additional input features such as evolutionary information or 

multiple alignments to improve these predictions.  Using the TED based 

assignment did not require the use of machine learning techniques such as 

neural networks because the TED are biophysical descriptors that describe 

properties of secondary structural elements in the denatured ensembles. These 

thermodynamic environments represent the composite enthalpic and entropic 
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contributions that are preferred, if not required, for the formation of the observed 

secondary structural element.   

The significance of the results we wish to emphasize is the relationship 

between denatured ensemble energetics and secondary structures. The 

presented correlation provides us with a better understanding about how 

thermodynamics under denatured conditions are related to the building blocks 

(secondary structures) of native folds.  An improved understanding of the 

correlations between denatured ensemble energetics and secondary structure 

will allow us to achieve the goal of obtaining better secondary structure prediction 

results. 

Methods 
 

Calculation of propensities of secondary structures in thermodynamic 
environment  

 

Secondary structures were assigned to each residue in database by 

secondary structure assignment program STRIDE (Frishman et al. 1995). Log-

odds probabilities of four secondary structure categories (alpha, beta, coil and 

turn) in thermodynamic environments were calculated as:  

( )

Residues

, ln

Total
Total
Total

AA

OddsLog
TE

SS

SS

TESS =          (5-1) 

AAss is the total number of one type secondary structure in one 

thermodynamic environment. Totalss  is the total number of one type of secondary 
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structure in the whole database. TotalTE is the total number of amino acids in one 

thermodynamic environment. TotalResidues is the total number of residues in the 

whole database. 

 

Secondary structure prediction identity calculation 
 

 Positions of each residue (represented by thermodynamic environment) 

were assigned a secondary structure according to the log-odd probabilities of 

secondary structures in thermodynamic environments.  For example, if α-helices 

have a high log-odds probability in thermodynamic environment 1, residues in 

this environment are classified as α-helices. Secondary structure assignment for 

residues in original structure was assigned using STRIDE (Frishman and Argo, 

1995). Identity is calculated as the percentage of matched positions divided by 

total number of residues in original structure. Coil and turn were assigned 

individually, but categorized in one group in the identity calculations as is usually 

reported by other secondary structure prediction algorithms. 
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CHAPTER 6 
 

 Investigating the Roles of Structure and 
Sequence in the Local Energetics in the 

Denatured State Ensemble 
 

Introduction  
 

The increasing evidence of residual structure (native-like or non native 

like) present in the denatured state (Dill and Shortle, 1991, Mok et al., 1998) 

suggest that they may be guiding points for the folding process.  To investigate 

how the denatured state controls the protein folding process thermodynamically, 

the relationship between structure in the denatured state and the local energetics 

must be established. The contributions of inherent sequence properties to local 

energetics of the denatured ensemble should also be explored since the fold 

defining information is contained within the primary sequence. Identifying the 

relationship between sequence and the energetics of the denatured ensemble 

will help us understand the role of the denatured state in folding process. The 

results from chapter 4 and 5 indicate that the denatured state ensemble can be 

viewed as a sort of thermodynamic signature containing significant fold encoding 

information, and that the majority of positions that are correctly aligned are in 

regions of containing α-helices and β-strands.  To investigate whether this result 

was simply due to our model of the denatured state (i.e. the denatured ensemble 

is comprised of states with isolated segments of native-like structure), we 
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systematically explored the importance of alternative denatured state 

conformations.        

 

Results  
 

Role of Non-native Structure in the Local Energetics of the Denatured 
State 
 

To investigate the importance of the local structure features (i.e. α-helix, 

β−sheet or turn) to the energetics at each position, we utilized a previously 

reported algorithm which generates self-avoiding conformations by randomly 

sampling backbone and torsion angles (Whitten et al. In Press).  For this 

analysis, a subset of 12 proteins (DATASET1) (Table 6.1) was selected from the 

entire database so that each structural class (i.e., all alpha (all-α), all beta (all-β), 

alpha and beta (α+β), and small proteins (small)) had 3 representative members.  

Multiple random, self-avoiding chains were generated for each sequence and the 

stability of each local segment of structure (relative to an ensemble of disordered 

conformations) was calculated.  The averages and standard deviations over all 

conformations for each sequence are shown for each structural class (Figure 6-1 

is for all alpha (all-α), Figure 6-2 is for all beta (all-β), Figure 6-3 is for alpha and 

beta (α+β), and Figure 6-4 is for small proteins (small)). Interestingly, the stability 

profiles from denatured ensembles (assuming only native-like conformations in 

structured regions) are similar to those determined from the cases where the 

denatured state is generated from actual random conformations.  Inspection of 

equation 6.1 (See Material and Methods) reveals the origin of this behavior.  

Because the thermodynamics of the unfolded sub-ensemble for each residue j,  
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<∆Gnf,j>, is dominated by the probability of the completely unfolded state, PU, it is 

determined from the additive contribution of the individual unfolded state values 

for each amino acid (Tables 6.2A & 6.2B )( D'Aquino et al., 1996, Hilser et al. 

1996, Hilser et al., 2006, Lee et al., 1994).  As such the unfolded sub-ensemble 

for each amino acid is identical.  The similarities in the energy profiles calculated 

from different denatured state structures indicates that the differences in stability 

between the different regions of the sequence are far greater than the stability 

differences between each alternative conformation of a specific region.  In other 

words, the peaks and valleys that are visible in each sequence provide an 

ensemble-averaged ‘foldability’ metric (i.e. the probability of finding that residue 

in the context of its sequence neighbors in a unique conformation, relative to 

being disordered).  

 

Although the negative sign for lnκf in figures 6-1 – 6-4 indicates that the 

denatured ensemble is dominated by a broad conformational repertoire at every 

position, there are nonetheless, significant position-specific differences in the 

foldability metric.  For example, the difference between the denatured state 

stability at positions 33 and 40 of the protein 1KTH (Figure 6-5) reveals that 

regardless of the specific conformation, position 40 is highly unlikely to adopt a 

single structure as compared to position 33, and will instead populate a broader 

ensemble.  In other words, the combined probability for the ensemble of 

alternative conformations at position 40 is far greater than at position 33, and 

ensures that the ensemble will be distributed among many states.     
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Table 6-1:  Homo sapiens proteins in DATASET1 
 

PDB Length SCOP class SCOP family 
1I27 69 All alpha C-terminal rap74 subunit 
1I2T 61 All alpha PABC (PABP) domain 
1L9L 74 All alpha NKL-like 
1FNA 89 All beta Fibronectin type III 
1LDS 96 All beta C1 set domains 
1TEN 89 All beta Fibronectin type III 
1ESR 75 Alpha and beta  Interleukin 8-like chemokines 
1MJ4 79 Alpha and beta  Cytocrome B5 Sulfite Oxidase 
1MWP 96 Alpha and beta  A heparin-binding domain 
1KTH 58 Small BPTI-like 
1I71 83 Small Kringle modules 
1M9Z 104 Small Extracellular domain, cell surface 
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Table 6.2A   Amino acid denatured state properties 

 

 ALA ARG ASN ASP CYS GLN GLU GLY HIS ILE 

ASAex,apol (Ǻ2)(1) 70.0 87.1 38.1 42.1 30.3 65.0 71.1 26.2 90.0 110.7

ASAex,pol(Ǻ2)(1) 36.1 126.1 104.0 95.0 75.05 121.6 94.3 43.12 68.0 10.9 

　Ssc
(2)

(cal·mol-1·K-1) 
0 -0.84 2.24 2.16 0.61 2.12 2.27 0 0.79 0.67 

 S　 bb
(3)

(cal·mol-1·K-1) 
4.1 3.4 3.4 3.4 3.4 3.4 3.4 6.5 3.4 2.18 

 

Table 6.2B   Amino acid denatured state properties 
 

 LEU LYS MET PHE PRO SER THR TRP TYP VAL

ASAex,apol(Ǻ2)(1) 122.3 101.3 104.6 186.8 100.8 55.1 79.5 184.5 175.8 88.7 

ASAex,pol(Ǻ2)(1) 27.5 79.0 64.0 36.5 15.6 81.9 41.1 52.3 71.1 17.8 

　Ssc
(2)

(cal·mol-1·K-1) 
0.25 1.02 0.58 1.51 0.0 0.55 0.48 1.15 1.74 1.29 

　Sbb
(3)

(cal·mol-1·K-1) 
3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 2.18 

 

(1) Solvent accessible apolar (ASAex, apol) and polar (ASAex, pol) surface area for 

each amino acid in the denatured state (Lee et al., 1994, Hilser and Feire, 1996, 

Hilser et al. 2006. Murphy et al., 1992). (2) Side chain conformational entropy 

differences (∆Ssc) between the completely unfolded state and the state in which 

each residue is folded.  This corresponds to the ∆Sex-u) previously determined 

and applied as described before (Hilser and Feire, 1996). (3) Backbone 

conformational entropy differences (∆Sbb) between the completely unfolded state 

and the state in which each residue is folded.        
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Figure 6-1: Examining the structural effects to calculated stability 
constants (lnkf) using denatured state ensemble for alpha proteins  
Three α proteins (1I2T, 1I27 and 1L9L) were selected and calculated lnkf (open 
circles).  These values were compared to the null model where structures were 
randomly generated for subsequent calculation of the stability constant 
(RAND_3D, closed triangles with error bars).  Regions of α helices are 
highlighted with a black bar. 
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Figure 6-2: Examining the structural effects to calculated stability 
constants (lnkf) using denatured state ensemble for beta proteins 
Three β proteins (1FNA, 1LDS, and 1TEN) were selected and calculated lnkf 
(open circles).  These values were compared to the null model where structures 
were randomly generated for subsequent calculation of the stability constant 
(RAND_3D, closed triangles with error bars).   
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Figure 6-3: Examining the structural effects to calculated stability 
constants (lnkf) using denatured state ensemble for alpha + beta proteins  
Three α + β proteins (1ESR, 1MJ4, and 1MWP) were selected and calculated lnkf 
(open circles).  These values were compared to the null model where structures 
were randomly generated for subsequent calculation of the stability constant 
(RAND_3D, closed triangles with error bars). Regions of α helices are highlighted 
with a black bar. 
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Figure 6-4: Examining the structural effects to calculated stability 
constants (lnkf) using denatured state ensemble for small proteins  
There small proteins (1M9Z, 1KTH, and 1I71) were selected and calculated lnkf 
(open circles).  These values were compared to the null model where structures 
were randomly generated for subsequent calculation of the stability constant 
(RAND_3D, closed triangles with error bars). 
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Role of Sequence in Local Energetics of the Denatured State 
 

The sequence contribution to the observed residue stabilities for each secondary 

structural class was investigated by comparing to the thermodynamic signature 

from the actual sequence with signatures from sequences that have been 

randomized. Stability constants calculated from actual sequence and randomized 

sequences are shown for each structural class (Figure 6-6 is for all alpha (all-α), 

Figure 6-7 is for all beta (all-β), Figure 6-8 is for alpha and beta (α+β), and Figure 

6-9 is for small proteins (small)). Several observations can be made from this 

comparison. First, the sequence composition determines the mean stability for 

each protein with little deviation from this mean, even when the sequence has 

been shuffled several times (see Materials and Methods) (Figure 6-10).  The 

difference between the mean value of the cases where just the conformation was 

shuffled and the case where both the sequence and conformation were shuffled 

is not statistically significant (p=0.7683). Second, the sequence order impacts the 

variance of residue stabilities within the protein sequence (p=0.03) indicating that 

neighboring residues have significant stabilizing and destabilizing 

contributions(Figure 6-11) and that the thermodynamics that are calculated at 

each position are not simply reporting on the properties of the individual amino 

acids.   

 

Discussion 

The roles of non-native structures and sequences in local energetics of 

denatured states are investigated.  Though different conformations show similar 

stability profiles, there are still significant differences in the position-specific 

probabilities of adopting a unique conformation. Also the mean stability for each 

protein is independent of their structural class (Figure 6-10). Sequences regions  
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Figure 6-5:  Random generated three structures of small Kunitz-type 
inhibitors protein (PDB: 1KTH) and the stability constants under denatured 
conditions 
(A) Three random generated structures. Panel1 shows conformations colored by 
residues. Panel 2 show conformations colored by stability constants values. 
Clearly, three randomly generated structures show different conformations. (B) 
Stability constants for three conformations under denatured conditions.  Clearly, 
three randomly generated structures show a similar stability profile.  
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Figure 6-6:  Examination of sequence contribution to the stability constant 
(lnkf) in alpha proteins 
Three alpha proteins (1I2T, 1I27 and 1L9L) were selected. Changes in stability 
constant was investigated between proteins with randomly generated structures 
(RAND_3D, open circles) and randomly generated structures + randomly 
shuffled sequences serving as the second null model (RAND_3DSEQ, closed 
triangles with error bars). The same proteins from DATASET1 were used.  
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Figure 6-7:  Examination of sequence contribution to the stability constant 
(lnkf) in beta proteins  
Three beta proteins (1FNA, 1LDS and 1TEN) were selected. Changes in stability 
constant was investigated between proteins with randomly generated structures 
(RAND_3D, open circles) and randomly generated structures + randomly 
shuffled sequences serving as the second null model (RAND_3DSEQ, closed 
triangles with error bars). The same proteins from DATASET1 were used.  
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Figure 6-8:  Examination of sequence contribution to the stability constant 
(lnkf) in alpha + beta proteins  
Three alpha + beta proteins (1ESR, 1MWP and 1MJ4) were selected. Changes 
in stability constant was investigated between proteins with randomly generated 
structures (RAND_3D, open circles) and randomly generated structures + 
randomly shuffled sequences serving as the second null model (RAND_3DSEQ, 
closed triangles with error bars). The same proteins from DATASET1 were used.  
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Figure 6-9:  Examination of sequence contribution to the stability constant 
(lnkf) in small proteins  
Three small proteins (1KTH, 1I27 and 1M9Z) were selected. Changes in stability 
constant was investigated between proteins with randomly generated structures 
(RAND_3D, open circles) and randomly generated structures + randomly 
shuffled sequences serving as the second null model (RAND_3DSEQ, closed 
triangles with error bars). The same proteins from DATASET1 were used.  
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Fig. 6-10:  Sequence composition affects the mean of stability constants 
The mean stability constant (lnkf) of each protein and DATASET1 (white), 
RAND_3D (grey) and RAND_3DSEQ (black) is calculated.  X-axis is the 12 
proteins in DATASET1 labeled from 1 to 12. Y-axis is the calculated mean 
stability constant for each protein.  
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Fig. 6-11:  Sequence order affects the variance of stability constants  
The variance of stability constants (lnkf) of each protein and DATASET1 (white), 
RAND_3D (grey) and RAND_3DSEQ (black) is calculated.  X-axis is the 12 
proteins in DATASET1 labeled from 1 to 12. Y-axis is the calculated variance of 
stability constants for each protein.  
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with alpha helix forming propensities show higher stabilities (more stable), but 

this observation pertains to the protein’s denatured state and does not 

necessarily suggest that all-α proteins have a higher mean stability over other 

structural classes.  Thus the stabilizing contribution from alpha helical formation 

applies locally and does not necessarily lead to an overall improvement in global 

stability. Local energetics in denatured states also shows substantial sequence 

dependence.  The dependence of the mean stability on the composition of the 

sequence shows that proteins in the denatured state are not thermodynamically 

equal. Regional stabilities are also locally modified by the sequence order of 

amino acids in the local context, another example supporting that Flory’s 

isolated-pair hypothesis does not hold true (Pappu et al., 2000) and that residue 

conformations are not independent of each other.  Understanding these effects 

will help facilitate our understanding of how mutations impact the denatured state 

of the protein that is also intrinsically linked with the natively folded proteins. 

 

Materials and Methods 
 

Selection of proteins used in dataset 
 
1) DATASET1  

 A sub dataset contains 12 selected proteins from the entire database 

described in Chapter 2 to allow for a more in depth analysis of sequence and 

structural contributions to the observed stability.  Three proteins were selected 

for each of four common SCOP class category (all α, all β, α + β, and small) to 

construct a representative dataset.  
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2) RAND_3D (NULL MODEL1) 

 The null model used to investigate the structural contribution to the 

calculated energetics was generated for DATASET1 was called RAND_3D.  

Random conformations were generated by a program called MPMOD for each 

protein in DATASET1.  

 

3) RAND_3DSEQ (NULL MODEL2) 

 The null model used to investigate the sequence contributions to the 

calculated energetics was generated for DATASET1 was called RAND_3DSEQ.  

Each protein in DATASET1 have randomly shuffled sequence and randomly 

generated conformers, also using MPMOD.  Denatured ensemble energetics are 

calculated for each generated protein in RAND_3DSEQ using COREX, assuming 

the randomly generated conformer as the “native state x-ray structure”.  The 

energetics of RAND_3D was compared to this second null model to investigate 

the sequence contribution to the stabilization of the region.  Sequences were 

randomly shuffled 10 times and 1 random conformer was generated for each 

randomized sequences. 

Generated Random Conformations 
 

 Random conformations were generated by a program called MPMOD 

(Whitten et al., In press) for each protein in DATASET1. As shown in Figure 6.12, 

MPMOD generates random conformations that do not violate van der Waals radii 
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limits. First, the backbone ϕ, ψ, and ω angles are randomly selected, then the 

algorithm checks to see if the chain is self-avoiding.  If there are no violations, 

rotamers are randomly selected from a rotamer library (Lovell et al., 2000) for 

each residue type to build the side chain.  The atomic positions of the side chains 

are then checked for violations with limits of allowable van der Waals 

interactions.  Denatured ensemble energetics were then calculated for these 

generated conformations in this dataset with COREX.  50 random conformers 

were generated for each protein.  
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Protein

Randomly assign 
backbone ϕ ψ ω angles

Calculate 3 D backbone

Add rotamers

Self avoiding

Calculate structure
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no
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Acceptable Conformation  
Figure 6-12:  Schematic representation of MPMOD procedure on generating 
random conformations 
Sequence of each protein in DATASET1 was used as input for MPMOD. 
Backbone angles were randomly selected and were calculated no violation of self 
avoiding. Rotamers are randomly selected from a rotamer library for each 
residue type to build the side chain. Final conformation was generated after no 
violation of self-avoiding was constraint was achieved.  
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CHAPTER 7 

 
Probing the Role of the Denatured State in Protein 
Folding 
 

Introduction  
 

Although the protein folding problem has been recognized for decades, a 

detailed understanding of the actual folding process does not yet exist. Different 

protein folding models have been proposed to reflect the different insights on the 

folding process. The first protein folding model, the framework model, was 

proposed by Ptitsyn in 1973 and was later further refined (Ptitsyn, 1995). This 

model implies that individual amino acid residues and their local interactions with 

neighbors define the folding code. The model states that the formation of 

secondary structures is the cause for the assembly of the final structure, thus 

emphasizing the importance of the surrounding environment of each amino acid 

as determinants of the final fold.  However, the competing hydrophobic collapse 

model argues instead that the non-local hydrophobic interactions are the driving 

force for the formation of final fold (Dill et al., 1995).  Partially in agreement with 

the framework model, the nucleation model emphasizes the importance of strong 

and localized nucleus (native-like elements of secondary structure) in the 

formation of final structure (Wetlaufer, 1990).  Particular models aside, the 

protein folding process involves ensembles from both fully folded and unfolded 

states; therefore, investigations focused on only the folded state will incompletely 

decipher the protein folding problem. Therefore, unveiling of the role of denatured 
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states in folding process will provide novel insights that will help complete the 

current understanding of the protein folding process.  

In the previous chapters, the energetic information in denatured states 

were characterized and identified.  The roles of denatured states in protein 

folding will then be investigated in this chapter and the relevant implications 

about the denatured states are discussed.  

 

Results 
 

Propensity of Secondary Structure in Thermodynamic Environments 
of the Denatured State Ensemble and Structural Forming Capacity 
 

 Figure 7.1 is a summary figure of structural effects on the stability of the 

denatured state ensemble.  A significant observation from Figure 7.1 is that α-

helix segments (labeled with black bar) are more stabilized in the protein when 

the model of the denatured ensemble accounts for only native-like 

conformations.  The origin of this difference is that the structure of the α-helix is 

significantly more compact and stable than the randomly selected conformations, 

and it represents a very narrow region of the conformational space accessed by 

the random sampling of states.  Nonetheless, it is noteworthy that in spite of this 

built-in bias, sequence segments destined for α-helix show peaks in the structure 

forming propensity, even when randomly generated structures are used. This 

result indicates that sequence segments which are destined for α-helix have a 

comparatively low energetic cost associated with constraining the ensemble to a 

unique structure.  To investigate the role of denatured state in protein folding, 

propensities of secondary structures in each thermodynamic environment were 

re-inspected. Figure 7-2 is the average stabilities of eight thermodynamic 
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environments in denatured ensemble ordered from high to low and propensities 

of secondary structures in those eight environments were also shown. As Figure 

7-2 indicates, the only positive propensities that are found in the most stable 

environments (i.e., TE1D and TE4D) are those segments destined for α-helix.  

Sequences destined for all other secondary structure have low intrinsic structure 

forming capability (i.e., they are represented by troughs in their lnkf values; Figure 

7-2). Interestingly, sequence segments with high intrinsic structure forming 

capability (i.e. peaks in their lnkf values; Figure 7-2) have among the highest 

negative propensities for β−sheet.  In other words, relative to all other secondary 

structure, β−forming sequences characteristically favor high conformational 

degeneracy when in isolation.  

 

Is the Denatured State Poised to Minimize Unfavorable Folding? 
 

The framework model emphasizes the roles of local environment of amino 

acid and the secondary structure elements in determining the final fold. 

Interestingly, what we found here is that local structural forming capacities of 

amino acid sequence correlated well with the surrounding thermodynamic 

environment for each amino acid residue in the primary sequences. This 

correlation between the structural and thermodynamic characteristics of the 

denatured state reveals interesting and previously unreported trends for the 

denatured state, and these trends further support a framework model of protein 

folding (Udgaonkar et al., 1988, White et al., 2005).   The role of the denatured 

state in protein folding is proposed as shown in Figure 7-3. As indicated in Figure 

7-3, the denatured state is predicted to be macroscopically heterogeneous, with 

the propensity for any single structure being highly improbable across the entire 
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sequence.  Within this background many regions, particularly those destined for 

α-helix or coil, will flicker (in the context of small isolated segments) into the 

folded conformation far more often than those regions destined for other 

secondary structures (Figure 7-3).  Most important, however, is that our model 

provides a statistical picture which reveals that regions destined for β−sheet will 

form unique local structure much less often than random. In effect, the denatured 

state thermodynamics (particularly with regard to β and α- helical structures) are 

dominated by strong negative propensities (Figure 7-1).   

  

Discussion  
 

The role of denatured states in protein folding is investigated in this 

chapter.  Although our studies do not establish the underlying reasons why 

protein denatured states have evolved with these propensities, there is at least 

one plausible hypothesis.  Because β−strands interact with other β−strands 

through backbone hydrogen bonding, the potential for partnering with incorrect 

strand formation is relatively high. α-helices, however, presumably exclude 

potential non-specific backbone interactions through the formation of local i to i+3 

hydrogen bonds of the helix.  As a consequence, most of the favorable (and 

unfavorable) interactions between helical regions can in principle be controlled or 

modulated through individual site mutations, as they will involve mostly side 

chain interactions.  Controlling for incorrect β-strand pairing, on the other hand, 

will be less amenable to modulation through single site mutation, and would 

presumably require a more global solution.  Our results provide insight into such 

a solution. The thermodynamic architecture of the denatured state indicates that 

the denatured ensemble is biased in a way that minimizes the probability of  
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Figure 7-1: Examining the structural effects to calculated stability 
constants (lnkf) using denatured state ensemble 
Twelve proteins, three from each structural class ((A)  all  alpha  (B) all Beta (C) 
alpha + beta (D) small) were randomly selected (DATASET1, open circles).  
These values were compared to the null model where structures were randomly 
generated for subsequent calculation of the stability constant (RAND_3D, closed 
triangles with error bars).  Regions of alpha helices are highlighted with a black 
bar. 
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Figure 7-2:  Average stabilities of eight thermodynamic environments 
under denatured conditions 
Eight thermodynamic environments (TEs) were ranked from high stability to low 
stability on X-axis. Stability of each thermodynamic environment was represented 
by black bar. TE1 and TE4 are two thermodynamic environments with high 
stabilities, TE7 and TE8 are two thermodynamic environments with low 
stabilities.  
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Figure 7-3:  Schematic representation of the denatured state energy 
landscape 
Shown is a hypothetical unfolded protein (top), which is depicted as having no 
structural propensity.  The strong negative bias for α-structure formation coupled 
to the modest propensity for a-helix and turn structure formation, suggests the 
that the sub-partition function for states involving isolated folded segments of 
helix and coil (Qα|C; Left) is significantly higher than the sub-partition function for 
states where isolated segments of  β-strand (Qβ|T ; Right) are folded. This pre-
collapse equilibrium does not obligatorily signify that nucleation between different 
parts of the structure subsequent folding occurs through helix and coil, only that 
those segments in isolation have high folding probabilities.   
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equilibrium states that could promote folding to non-productive end states (Fig. 

12).It is interesting that protein mis-folding into amyloid fibrils has been 

associated with β structure formation, indicating that non-specific β structure is 

indeed a potential problem.  The fact that our results suggest that the denatured 

states evolved to minimize this problem raises the possibility that the 

determinants of amyloid propensity for a sequence may be found in the 

denatured state thermodynamics, rather than in the properties of the native state.  

Whether this is indeed the case awaits further study.     
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CHAPTER 8 

 
Concluding Remarks 

 

A number of original and significant contributions have been made by the 

presented work. The contributions can be summarized as the first application of 

COREX towards the analysis of the denatured state ensembles of multiple 

proteins in a human protein database revealing significant thermodynamic 

differences between sequence segments within the denatured ensemble, as well 

as between denatured and native states. The correlation between denatured 

states and secondary structures and the crucial roles of denatured states in the 

protein folding process has also been identified.  The contributions from this work 

has opened new opportunities for future study of the protein folding problem with 

potential applications to uncover novel strategies for the treatment of amyloid 

fibrils associated with protein misfolding diseases.  

 Although the importance of the protein denatured state has long been 

recognized, the thermodynamic role of the denatured states in protein folding 

remains elusive. In chapter 1, the importance of investigating the denatured state 

was emphasized and the specific aims of the study in this dissertation were 

proposed to capture the common characteristics of the denatured state across 

multiple proteins in Homo sapiens database.  

 Simulation of the denatured state and characterization of associated 

energetic features across multiple proteins was not an easy task. Chapter 2 

described the initial effort to develop a strategy for simulating and characterizing 
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the denatured state using the statistical thermodynamic model COREX. The 

good correlation between experimental data and COREX calculations 

demonstrated the robustness and efficiency of this algorithm in simulating the 

denatured state and calculating position-specific thermodynamic descriptors, 

thus providing a solid foundation for the studies conducted in this dissertation.  

 In Chapter 3, energetic information in the denatured state was 

characterized and then compared with those of the native state.  Quantitative 

analysis of the energetics between denatured and native states revealed that 

there is no correlation between these states. This observation further supported 

the point that a study focused on the native state will insufficiently address the 

protein folding problem.  

 Energetic information contained within the denatured ensemble was 

investigated in chapter 4 by conducting fold recognition experiments to match 

sequence to fold.  Surprisingly, denatured states showed a significant 

improvement in the ability to match sequences to folds compared to native 

states. This finding suggested that there was unique information in denatured 

ensembles and the thermodynamic determinants contributing to protein fold 

specificity was different from that found in the native ensemble. More importantly, 

the significant observations in this chapter open a wide range of future 

possibilities for developing new approaches of protein classification and 

prediction by using information in denatured states.  

  The primary goal of chapter 5 was to investigate the relationship between 

denatured state energetics and secondary structure. Propensities of secondary 

structures in thermodynamic environments of the denatured state across multiple 

proteins were analyzed and revealed that the denatured state energetics can be 
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related to structural features of the native state. This observation was intriguing 

as it suggests that there are thermodynamic signatures in denatured states for 

structural and possibly functional properties.   The correlation between energetics 

in the denatured state and native state secondary structures also opens 

opportunities to develop simple but efficient algorithms for protein secondary 

structure prediction using simple techniques. 

 The roles of structure and sequence in denatured states energetics were 

investigated in chapter 6.  The finding that local energetics in denatured states 

reflected the structural forming abilities of local sequence was interesting.  Also 

inherent properties of sequences were found to play an important role in local 

energetics of denatured states.  The observations in this chapter provided a 

better understanding for the relationships between sequences, denatured states 

and secondary structures.  

 

 What exactly is the role of the denatured state in protein folding?  Based 

on the results presented in the previous six chapters, an intriguing mechanism of 

protein folding involving denatured states was put forward in chapter 7.  The 

findings suggested that the energetics of the denatured state avoided early β-

sheet formation, opting instead of for α-helix and turn to serve as potential 

nucleation sites for protein folding. Early incorrect β-sheet formation has always 

been found in amyloid fibrils associated with misfolding diseases.  Our results 

suggest that energetics in the denatured state evolved to minimize the possibility 

of the formation of incorrect β-sheet.  Knowledge about thermodynamic 

determinants of protein folding specificity in the denatured state opens the 

possibility of detecting determinants of amyloid formation and providing capability 

to control amyloid related misfolding diseases. 
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