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In this dissertation, we present the application of biomedical informatics, 

including data mining and knowledge discovery, to extract knowledge from genomics, 

transcriptomics, and clinical data. To improve our understanding of biomedical problems 

such as infectious disease and addiction research, we have successfully applied next 

generation sequencing (NGS) techniques to generate both transcriptomics and genomics 

data. First, through the investigation of transcriptomics data on rats in environmentally 

enriched and isolated conditions, we concluded that the pathways of retinoic acid 

receptor activation, eukaryotic initiation factor 2 signaling, and protein ubiquitination 

play significant roles in addictive behavior and thus direct our focus on individual 

differences in susceptibility to addiction. Second, through mining Syrian golden hamster 

transcriptomics data during visceral leishmaniasis, we discovered that splenic 

macrophages experienced mixed classic and alternative polarization/activation and whole 

spleen tissue experienced massive inflammatory response during visceral leishmaniasis. 

We proposed several mechanisms to understand the pathogenesis of L. donovani. 



vi 

Additionally, we investigated genomics data of several Venezuelan equine encephalitis 

virus mutants and showed that the replication fidelity of Tc-83 can be increased by 

incorporating point mutations at the RNA-dependent RNA polymerase region. These 

findings should accelerate the development of a new live attenuated vaccine for 

Venezuelan equine encephalitis virus.  

In addition to the NGS data mining and knowledge discovery, we developed a 

novel ensemble data analysis method to improve the predictive ability of classic bagging 

and AdaBoost methods. By evaluating forty-one online datasets, we demonstrate the 

ability of our ensemble method in increasing predictive accuracy, which could be 

particularly useful for identifying novel diagnostic biomarker panels. Furthermore, we 

assessed two different intervention strategies for schistosomiasis using the meta-analysis 

method and demonstrated that implementation of the new integrated strategy reduces the 

infection risk by ~3–4 times compared to the conventional strategy. This approach is 

applicable to evaluate any new prevention, diagnosis, or treatment strategy. 
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Chapter 1. Biomedical Informatics and Knowledge Discovery 

Biomedical informatics is an interdisciplinary field that focuses on how to 

effectively use biomedical data to improve human health. It integrates strategies from 

computer science and the quantitative disciplines (e.g. statistics, data science, decision 

science, etc.) to solve challenging problems in the biological and medical sciences. 

The data mining and knowledge discovery process in biomedical informatics 

follows the data, information, knowledge, wisdom (DIKW) hierarchy. This hierarchy 

represents the relationships among data, information, knowledge and wisdom (Figure 1).  

Data are quantitative and qualitative descriptions of events. For example, the data 

can be 40 million 50 base pair nucleotide reads from RNA sequencing (RNA-Seq) or 

they can be the gravities of an illness. These data are just symbols with no significant 

meaning by themselves. 

To obtain information, we endow the data with meanings by including relational 

connections through correction, categorization, calculation, and so on. In our case, the 40 

million small sequences can be aligned to an appropriate reference genome to obtain the 

expression level of each gene. We can also classify samples into experimental or control 

groups. These data processes turn the data into information, offering us better 

understanding of the current state.  

Knowledge is meaningful information that can be used for guiding and inferring. 

Typically, information is massive. For example, we can simultaneously evaluate the 

expression of thousands of genes in one RNA-Seq experiment. Not all genes are equally 

important. Some of them may closely relate to the pathogen stimuli, while the others may 

not. Diseases are more likely to be relevant to genes differentially represented between 
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two conditions. Knowledge discovery is the procedure to identify and integrate of key 

and useful information. 

Wisdom (i.e. understanding) is a collective application of knowledge. It is the 

hardest to achieve but the best way to direct further research and make predictions. Once 

we have enough knowledge about a disease, we can help the patients with better 

prevention, earlier diagnosis and timely treatment. The ultimate objective for biomedical 

informatics and translational research is to enhance the patient care. 

 

 

Figure 1.1 DIKW and systems biology in biomedical informatics (Adapted from 
Starkey JM, et al., J Clin Trans Res, 2012) 

 

Data analysis in biomedical informatics follows the DIKW hierarchy. Its central 

study object is systems biology. Systems biology is a scientific approach that focuses on 
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complex interactions and/or processes within a biological system. The goal of systems 

biology is to identify emergent properties. For any given system, the systems biology 

combines analyses from a variety of sources including clinical response and biomolecules 

on a variety of levels including DNA, RNA, protein, metabolites, etc. (Figure 1). A study 

in systems biology fashion links all of these different levels of molecules and sub-

systems into networks, describes the over-all function of the study model, enables novel 

understanding, and, finally, benefits patient care. 

In this entire dissertation, we will address three different perspectives of the 

systems biology: genomics at the DNA/RNA level, transcriptomics at the mRNA level, 

and clinical data.  

1.1 GENOMICS DATA IN BIOMEDICAL RESEARCH 

Genomics describes research associated with the genome of any specific model. 

The investigated biological system is highly complex, and its mechanism cannot be 

interpreted as the effect of one individual gene [1, 2]. The term, genome, was first coined 

by the German botanist Dr. Hans Winkler in 1920 [3]. The genome of an organism is its 

genetic material encoded in DNA or RNA, which encodes all mRNA/proteins, tRNA, 

rRNA, siRNA, miRNA, etc. inside the specific creature. Both “genome” and “genomics” 

are derived from the Greek word “genesis”, with the meaning of "birth" or “origin”. As 

the names suggest, genomics data are typically related to the discovery-based genome-

wide researches on complex biological systems at the fundamental DNA/RNA level. 

The first DNA sequencing techniques were developed in the early 1970s [4-6], 

approximately two decades after the establishment of the DNA double helix structure in 

1953 by James Watson and Francis Crick [7]. These sequencing strategies went through a 
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huge revolution in 1977 when Frederick Sanger and his colleagues developed both the 

Sanger sequencing and the shotgun sequencing methods [6]. In Sanger sequencing, DNA 

fragments with different lengths were radioactively or fluorescently labeled and then 

separated using gel electrophoresis. This method is appropriate for fairly short sequences 

(100 ~ 1000 base pairs). The shotgun sequencing technique is applied to the longer 

sequences, which are first randomly subdivided into smaller fragments, sequenced, and 

then re-assembled to obtain the overall sequence. Sanger Sequencing had been dominant 

and most widely used for approximately 25 years until 2005, when next-generation 

sequencing (NGS) technologies became commercially available [8]. NGS technologies 

conceptually adopt the Sanger method, but automate it to offer cost-effective sequencing 

with dramatic increases in speed. Presently, NGS technologies are the most powerful and 

efficient methods to obtain genomics data and have been gradually replacing the 

traditional Sanger methods in most genomic research studies.  

1.1 TRANSCRIPTOMICS DATA IN BIOMEDICAL RESEARCH 

Transcriptomics investigates the large scale and comprehensive transcriptome in 

an organism or a cellular system. As initial products of genetic material, the 

transcriptome include mRNA, rRNA, tRNA, and other non-coding RNA. mRNAs are the 

transcripts of protein-coding genes that can be translated into proteins. The other RNAs 

are non-coding RNAs, which cannot be translated into protein but regulate the synthesis 

of proteins. 

The transcriptome for a given cell or cell population varies with external 

environmental conditions. This differs from genomics data, which is fixed for a given 

organism. The expression levels of mRNA transcripts approximately reflect the proteins 
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that are being actively expressed in the system at a given time. The exceptions include 

mRNA degradations and posttranslational modifications. The objective of the majority of 

transcriptome profiling is to examine the variation of mRNA expression under different 

experimental conditions and to further identify the altered mechanisms. 

To obtain a profiling of the transcriptome, we usually convert RNA into 

complementary DNA (cDNA) using the enzyme reverse transcriptase. cDNA is a double-

strand DNA. All of the sequencing techniques we discussed above for the genomics data 

are equally applicable to the sequencing of cDNA. Therefore, NGS technology is widely 

used to study the transcriptomics. 

1.3 DATA PATTERN RECOGNITION IN BIOMEDICAL RESEARCH 

Data pattern recognition and interpretation is a promising field in biomedical 

research when the data include a significantly large number of events. The previously 

unknown but interesting patterns represent novel information in a dataset. Our 

understanding of this information may shed light on future patient care. For instance, a 

biomarker panel can be obtained from the data pattern that distinguished diseased 

subjects from health controls. The biomarker panel can direct further biomedical research 

or the disease diagnosis in the clinic. 

In this report, we will present a novel classification tool. We mainly focus on the 

classification algorithms in machine learning, particularly in pursuit of ensemble 

methods. Classification refers to algorithmic procedures that assign objects into groups 

[9, 10]. The product of a classification is a classifier, also known as a model, which can 

map input data to classes. The diagnostic problem in clinical research is a classification 

event that determines which patients will be assigned to the disease group given a set of 
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symptoms as the input data. We emphasize the use of ensemble methods for model 

construction. As a result, we developed a Dirichlet Process Mixture (DPM) integrated 

ensemble method to enhance the accuracy of classification. 

1.4 CLINICAL DATA IN BIOMEDICAL RESEARCH 

The study of clinical data using systems biology methods can also benefit patient 

care. The genomics and transcriptomics research discussed previously, together with 

other proteomics and metabolomics research, accelerates the translation from biological 

bench research to clinical usage. When a novel approach of diagnostics, treatment, or 

prevention emerges, it becomes imperative to compare it with the existing methods. We 

will exploit the meta-analysis to assess two different intervention strategies based upon 

the clinical data. 

Meta-analysis summarizes findings from independent but similar studies to seek 

patterns of agreement or disagreement among them [11-13]. As a popular approach for 

systematic review, meta-analysis provides a quantitative assessment on the effects of 

interest by combining many available and pertinent data. This result is more precise than 

any individual constitutive study. This pooled analysis method has become increasingly 

more popular for evaluating the clinical effectiveness of health care interventions [14-19].  

 

This dissertation covers five different projects, spanning four different fields of 

the biomedical research in transcriptomics, genomics, data pattern recognition, and 

clinical data. Since our transcriptomics and genomics data were generated by the Illumina 

HiSeq 1000 sequencer, we will first present in Chapter 2 a brief introduction of this state-

of-the-art NGS technology, especially the Illumina HiSeq platform. After that, two 
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transcriptomics projects will be discussed in Chapters 3 and 4. In the first project, we 

investigated an enriched environment introduced protective addiction phenotype against 

cocaine in rats. We will describe the detailed data validation, analysis, and interpretation 

in this project to illustrate the procedure of data mining and knowledge discovery. In the 

second transcriptomics project, we worked to understand the pathogenesis mechanisms of 

visceral leishmaniasis. This project used Syrian golden hamster as our animal model. The 

third project, described in Chapter 5, is a genomics project. It aims to develop vaccine 

candidates against the Venezuelan equine encephalitis virus (VEEV) infection through 

studying the intra-host variation of VEEV in African Green monkey kidney cells and 

mouse model. The data analysis in this project shares some common algorithms as in the 

novel ensemble method discussed in Chapter 6, which is the forth project. In chapter 6, 

we developed and evaluated a novel Dirichlet Process Mixture (DPM) integrated 

ensemble method for classification. In our last project, discussed in Chapter 7, we 

assessed two intervention strategies for schistosomiasis using meta-analysis. In Chapter 

8, we close this dissertation with a short conclusion, which readdresses the role of 

biomedical informatics in knowledge discovery. 
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Chapter 2. Next Generation Sequencing  

Next Generation Sequencing (NGS), different from capillary electrophoresis-

based Sanger sequencing, are a family of automated, fast, and parallel DNA sequencing 

technologies. The fundamental principles of NGS sequencing were developed since 

middle 1990s [20-23]. NGS technologies experienced many evolutions until 2005 when 

GS20 from Roche 454 Life Sciences became the first commercially available NGS 

sequencer [8]. Since then, more than 30 NGS platforms have been developed. These 

state-of-the-art technologies have been generating an unprecedented wealth of data with 

high resolution, which has revolutionized the genomics and transcriptomics research [24-

27]. The size of data produced from NGS sequencers has increased by at least two-fold 

every year since it was invented, which outpaces Moore’s law. Meanwhile, the cost of 

sequencing has been dropping faster than the Moore’s law (Figure 2.1). 

 

 

Figure 2.1 Sequencing cost 2001-2014 (Adapted from National Human Genome 
Research Institute website [28] ) 
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In this chapter, we will first discuss the general principles and mechanisms of 

most in-market NGS sequencers. After that, we will focus on the Illumina HiSeq 

platform, from which we generated our transcriptomics and genomics data for the 

following three chapters. At the end of this chapter, we will summarize the applications 

of NGS in biomedical research. 

2.1 NGS MECHANISMS 

All NGS protocols from mRNA/DNA samples to NGS data have two essential 

steps: template preparation and sequencing. Each step has several different methods. The 

unique combination of methods from each step distinguishes one NGS platform from the 

other and determines its associated sequencing error modes. We will summarize these 

methods as they apply to various NGS platforms in appendix A. 

2.1.1 NGS template preparation 

Template preparation is the first step of NGS protocols. The goal of this step is to 

create non-biased and representative nucleic acid material from the investigated genome 

or transcriptome. There are primarily two existing templates for NGS reaction, the clonal 

amplification template and the single molecule template.  

Both template preparation strategies begin with randomly shearing the large 

genomic DNA or cDNA into small fragments. Different platforms prefer different 

fragment sizes: less than 600 bp for the Illumina, SOLiD and Ion Torrent platforms, less 

than 1kb for Roche 454 and less than 20kb for PacBio [29]. The fragmentation strategy 

also varies among platforms but mainly falls into three categories: physical (e.g. acoustic, 
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sonication, hydrodynamic shear), enzymatic (e.g. endonuclease, transposase) and 

chemical (e.g. heat and divalent metal action) fragmentation. 

The next step in template preparation is to ligate the fragments with adapters – 

common or universal nucleic acids – to form the sequencing library. The clonally 

amplified templates require both fragment amplification and attachment / immobilization, 

while the single molecule templates only need to attach/immobilize the fragments to a 

solid surface or support. Most NGS platforms (e.g. Illumina, Roche 454, SOLiD and Ion 

Torrent) with an imaging system favor the clonally amplified templates to enhance the 

fluorescence/light signal. The single molecule sequencers are utilized in the PacBio 

platform and the Oxford nanopore platform. These various approaches between the 

platforms have determined that the clonally amplified templates need about 3-20μg of 

starting genomic DNA material, while 1μg is enough for the single molecule templates. 

Moreover, the platforms using clonal templates are more likely to have substitution errors 

due to the mutations in amplification. 

2.1.2 NGS sequencing mechanisms  

All NGS instruments follow the sequencing-by-synthesis principle [30] to 

sequence a template, which enables massive simultaneous sequencing. Several different 

mechanisms have been deployed in the widely used NGS platforms including cyclic 

reversible termination (CRT), single-nucleotide addition (SNA), sequencing by ligation 

(SBL), single molecule real-time (SMRT) sequencing, semiconductor sequencing and 

nanopore strand sequencing. We will briefly describe each mechanism here. 

CRT utilizes reversible 3’-blocked or 3’-unblocked terminators that terminate 

DNA synthesis after incorporating one nucleotide. In each cycle, the sequencing 
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comprises three steps: nucleotide incorporation, fluorescence imaging and cleavage [31]. 

This method is used by the Illumina platforms, which have been recently improved from 

the 4-dye sequencing chemistry to a 2-dye system. This improvement halves the number 

of images and thus increases the sequencing efficiency [32]. 

The SNA method, also known as the pyrosequencing method, detects the 

pyrophosphate (PPi) released when a deoxynucleoside triphosphate incorporates into the 

sequencing template. The PPi is converted to ATP, which then converts luciferin to 

oxyluciferin and emits light. A high-resolution charge-coupled device (CCD) detects the 

light in order to monitor the sequencing process. This method has been implemented in 

the Roche 454 platforms [33].  

SBL, another cyclic method, incorporates additional nucleotides using DNA 

ligases rather than polymerases as used in the CRT and SNA methods. Each cycle is 

comprised of three steps including ligation of a fluorescent-labeled probe, imaging the 

fluorescence, then cleavage in preparation for the next run. This method is implemented 

in the SOLiD platforms, which utilizes four fluorescently labeled di-base probes with five 

nucleotides added in each cycle, such that each sequencing cycle demands five rounds of 

primer reset.  

Semiconductor sequencing is used in the Ion Torrent platforms, which utilize a 

semiconductor sensor, as opposed to the optics-based technology discussed above. A 

hydrogen ion (H+) is released each time a nucleotide is incorporated, resulting in a local 

pH change. Ion Torrent monitors the sequencing process with a semiconductor sensor to 

detect and convert the pH chemical information to digital information [34]. The four 

nucleotides are added and washed off sequentially. A peak indicates that the 
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corresponding nucleotide matches the template and its amplitude indicates the number of 

matched nucleotides. Since this approach has no modified nucleotides or optical imaging, 

it is a relatively faster and lower cost method compared to the previous methods. 

SMRT sequencing, implemented by PacBio NGS sequencers, utilizes the zero-

mode waveguide (ZMW) nanophotonic structure [35]. In this method, the sequencing 

template and polymerase complexes are immobilized at the bottom of the ZMW. As 

discussed in the CRT and SNA methods, a fluorescent-labeled nucleotide is incorporated 

into the template thereby releasing fluorescence. The observation volume provided by the 

ZMW is small enough to reduce the diffusing background fluorescence and the 

fluctuation of the signal fluorescence so that we can sufficiently distinguish the 

fluorescent signal from the background noise to determine the incorporated nucleotide 

[36]. This method requires less genomic starting material and returns extremely long and 

accurate reads so that it is ideal for de novo sequencing. 

Nanopore strand sequencing as implemented by Oxford Nanopore Technologies 

is another single molecule sequencing method. A protein nanopore set is an electrically 

resistant membrane bilayer with a DNA enzyme complex attached. The enzyme can 

guide and ratchet DNA into an intact DNA polymer to pass through the nanopore, which 

is so small that only one nucleotide could enter at a time. Each nucleotide obstructs the 

nanopore with a unique modulation, leading to a characteristic change in current. An 

electrically sensitive sensor then records the disruption to distinguish between the four 

nucleotides and even some modified bases. As a result, the individual DNA bases are 

identified as the DNA molecule passes through the system. This method requires no 



30 

modification of the nucleotides, thus has no deterioration in accuracy when long DNA 

strands are sequenced [37].  

2.2 ILLUMINA HISEQ SYSTEM 

The Illumina HiSeq sequencing system utilizes clonal amplification templates and 

CRT sequencing mechanisms. Specifically, this platform adopts the reversible 

terminator-based sequencing-by-synthesis (SBS) chemistry. The resulting sequences can 

be either single-end or paired-end. The sequencers are able to generate a large number of 

reads in one run so they are suitable to analyze large animal or plant genomes. The 

Illumina HiSeq 1000 platform has one flow cell for sequencing but it can be upgraded to 

the HiSeq 1500 by incorporating an additional rapid run mode or to the HiSeq 2000 by 

adding another flow cell. 

We illustrate the sequencing procedures of Illumina HiSeq 1000 and other HiSeq 

platforms in Figure 2.2. The genomic DNA (or cDNA) of interest are first randomly 

sheared into segments and then ligated with adapters at both ends to build the library 

(Figure 2.2A). In addition to the adapters, we can link the library with an index, a unique 

identifier sequence that distinguishes it from other libraries pooled in the same lane of a 

flow cell. The reads are further immobilized on the surface of a flow cell (Figure 2.2B). 

Each read is then isothermally amplified using solid-phase bridge amplification to form 

clusters. Each cluster can contain up to 1,000 identical copies of the original nucleic acid 

chain (Figure 2.2C-F). There are tens of millions such clusters at each square centimeter 

of the surface of a flow cells. All of these clusters will then be processed in parallel. The 

four deoxynucleoside triphosphates are fluorescently-labeled with different dies. During 
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each sequencing cycle, we add all four different deoxynucleoside triphosphates, but only 

one deoxynucleoside triphosphates can be incorporated into the nucleic acid chain and 

then terminate the polymerization (Figure 2.2G). We identify the nucleotide base for each 

cluster by imaging the fluorescent dye in situ. To enable the detection of the next 

nucleotide, we enzymatically cleave the dye and then repeat the whole process again 

(Figure 2.2H). Eventually, we can determine the order of bases in a read to generate the 

sequence (Figure 2.2I). Billions of sequencing reads can be generated in one run using 

the Illumina HiSeq 1000 sequencer; therefore, we utilized this sequencer for the projects 

discussed in Chapters 3, 4 and 5.  
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Figure 2.2 Illumina sequencing overview (Adapted from Illumina Webpage [38]) 
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2.3 APPLICATIONS OF NGS TECHNOLOGY 

NGS platforms can generate a large amount of low-cost but high quality reads 

within a short time, making them useful in many applications. These include but are not 

limited to 1) transcriptome profiling to analyze gene expression levels in cells, tissues and 

organisms (generally known as RNA-Seq) [39]; 2) creating de novo transcriptome 

assemblies without a reference genome; 3) discovering variants by sequencing the target 

region of interest or the whole genome; 4) genome-wide profiling of proteins, especially 

the binding sites of transcription factors based upon chromatin immunoprecipitation 

sequencing (e.g. ChIP-Seq); 5) studying genome-wide DNA methylation (methyl-Seq) 

and DNase I hypersensitive sites (DNase-Seq); and 6) inventorying co-exiting organisms 

(Metagenomics).  

With so many applications, NGS technologies are experiencing rapid 

development. Moreover, competitive pricing has revolutionized the applied markets such 

as biomarker discovery, disease diagnostics, drug discovery, agriculture and animal 

research, and personalized medicine. Biomedical informatics plays, and will continue to 

play, a key role in all of these processes in order to glean valuable information from the 

raw short sequencing. However, the sheer scale of the data remains a significant 

challenge for data analysis.  
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Chapter 3. Enriched Environment Induced Protective Phenotype 1 

3.1 INTRODUCTION 

Humans display vast individual differences in susceptibility to drug addiction. 

Some individuals become addicted after only a single exposure while others remain 

resistant to addiction even after many exposures to high doses of a drug. Understanding 

the mechanisms of the resistance to addiction will provide new targets for the treatment 

and even the prevention of addiction. As in previous research [40-42], rats provided the 

animal model to study the environmental enrichment paradigm for addiction resistance.  

Currently there are no Food and Drug Administration (FDA) approved 

pharmacotherapeutics for cocaine addiction in the United States, in spite of decades of 

targeted studies of known pharmaceuticals. For this reason, finding and identifying 

completely novel targets for pharmacotherapeutic and genetic intervention is paramount 

for developing successful treatments for addiction. 

3.2 OBJECTIVES AND EXPERIMENTAL DESIGN 

The goal of this project is to determine intrinsic differences between 

environmentally enriched conditions (EC) and isolated conditions (IC) on the brain’s 

response to cocaine administration. Our ultimate objective is to identify completely novel 

targets for addiction prevention or treatment. We focus on the biological significance of 

environmental enrichment and explore the molecular mechanism of this protective 

phenotype. 

                                                 
1 In collaboration with Dr. Thomas A. Green’s group at UTMB. 
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In the environmental enrichment paradigm, rats were randomly assigned to either 

an EC or IC group. The EC rats had daily exposure to novelty (children’s plastic toys), 

exercise, and social contact with conspecifics (i.e. group housing). Meanwhile, the IC rats 

were housed singly with no exposure to novelty. In each condition, we provided 8 rats 

with access to self-administrated cocaine and another 7 rats with access to saline only as 

a control. Thus, the environmental enrichment paradigm experiment consisted of four 

groups: 7 rats for IC saline, 8 rats for IC cocaine, 7 rats for EC saline, and 8 rats for EC 

cocaine. All rats were first trained to use the self-administration system and then 

harvested after 14 days of cocaine/saline self-administration when their response to 

cocaine was stabilized [42]. For each rat, we sequenced the left nucleus accumbens 

mRNA samples using an Illumina HiSeq 1000 sequencer to generate 50bp paired-end 

reads. The protein extraction from the right nucleus accumbens was investigated using 

liquid chromatography mass spectrometry. Please refer to Litchi C.F. [42] and the 

manuscript (Y.F. Zhang, et. al., not shown) for detailed information about the 

experimental design. 

3.3 RNA-SEQ DIFFERENTIAL EXPRESSION ANALYSIS 

RNA-Seq, short for RNA-Sequencing, is the technology applied to quantitatively 

characterize genes at the transcription level by measuring the differential expression of 

messenger RNA (mRNA) [39]. The work flow for RNA-Seq differential analysis 

typically begins with quality assurance and quality control (QA/QC) to assess the quality 

of the raw sequence reads. Sequencing reads with acceptable quality are then mapped to a 

reference sequence. The numbers of reads that map to specific features – genes, 

transcripts, or exons – are counted to measure their expression levels. The work flow 
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ends with statistical analysis of the read counts to identify differentially expressed 

features. The whole process is consistent with the DIKW hierarchy as discussed in 

Chapter 1. 

3.3.1 RNA-Seq NGS data 

The mRNA of the left nucleus accumbens from each rat was first converted to 

cDNA, sheared into segments with length of about 270 base pairs, then sequenced using 

an Illumina HiSeq 1000 sequencer according to the manufacturer’s directions. In each 

lane, we pooled four samples, which are distinguished by different index sequences. The 

outputs were paired-end sequences. Thus, each segment had been sequenced from both 

ends to produce two sequencing reads. The sequencer records all nucleotide information 

using massive image files. A program CASAVA converts the image files into text-

enriched file in fastq format. Please refer to session 2.2 for details about the sequencing 

procedure. 

A fastq file includes millions of sequencing reads. Each read has four lines: 

identifier, read sequence, connector, and coded Phred score (Box 1). As an example, the 

identifier “@UT344:39:C0WBUACXX:2:1101:2495:2088 1:N:0:TGACCA” indicates 

that the read comes from a sequencer named UT344 in run number 39. Identifiers are 

usually shared by all the reads within the same fastq file. Additionally, this specific read 

comes from the position (2495, 2088) of the 1101st tile of the 2nd lane of a flow cell 

named C0WBUACXX. “1:N:0:TGACCA” means that it is the forward read (1) in a 

paired-end sequencing effort, without filter (N) or control bits (0) on and with index 

sequence TGACCA. The length of the reads varies depending on the sequencing 

parameter as well as the sequencing platforms. In the current project, all reads have 50 
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base pairs. The Illumina HiSeq 1000 is a 4-dye system with four different fluorescent 

colors for the four standard nucleotide bases. For each base, four images will be recorded 

to show the intensity of each color. The Phred score directly relates the ratio of the 

dominant color intensity to the other three, more noisy colors. More specifically, the 

quality Phred score is logarithmically related to the base-calling accuracy or error 

probabilities. The Phred scores are then further encoded as ASCII characters by adding 

33. This gives the relationship: �ℎ��� ��	��  =  −10 ∗ log������	� �����  = 

����� ��	��� �ℎ��� ��	��� − 33. For example, the first base of the 4-line read in Box 

1 below has the quality value character “C”, which corresponds to the Coded Phred Score 

ASCII value 67, so its Phred score is 67 − 33 = 34 thus its error rate is 10� !/�� ≈
0.0004 < 0.001. One RNA-Seq fastq file contains millions of such 4-line reads to profile 

the investigated transcriptome. 

@UT344:39:C0WBUACXX:2:1101:2495:2088 1:N:0:TGACCA     � Identifier 

CCNGGAGCGGAACCACAGTCCTGTCCAGGTGGAGGCAGATGAGCACCTAT   � Read Sequence 

+                                                     � Connector 

CC#4ADDBFHDHGJIJIJHIGHFHGIJJJBGH?GEGFGCFHGIIJJIJIJ    � Coded Phred Score 

Box 1.  Example of one 50bp read from Illumina HiSeq 1000 

 

3.3.2 RNA-Seq pre-analysis 

All NGS data analyses including RNA-Seq begin with data quality assurance and 

quality control (QA/QC). This essential step aims to detect any systemic errors before or 

during sequencing. Some platforms support internal quality and calibration control with 

spiked-in RNA from a small, diverse and well-defined genome, such as PhiX virus. 

Meanwhile, the raw sequencing reads from all platforms can be evaluated based upon 
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their inherent features. Currently, several NGS data QA/QC statistical analysis tools are 

publicly available including FastQC, HTQC, FaQCs, FASTX-Toolkit, NGS QC Toolkit, 

QC-Chain and so on. 

QA/QC programs generally assess raw NGS data quality from three perspectives: 

the representativeness of the input samples, the performance of the sequencer and the 

reliability of the sequenced reads. If the input sample is randomly selected from one 

organism, the GC content per sequence, theoretically, follows a normal distribution. A 

significant contamination or amplification bias, however, may introduce secondary peaks 

into the main distribution and alter its shape. The duplication level (i.e. the frequency of 

duplicated reads) can be used to evaluate the diversity of the input sample. The 

sequencing qualities in tile level, the output sequence length, N content percentage and so 

on are assessed. Read sequences with a higher Phred score are more reliable. We may 

also want to assess other properties, such as overrepresented sequences, adapter content, 

and k-mer content. Adapters, low quality reads and nucleotides can be filtered out as 

needed based upon customized criteria.  
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Figure 3.1  FastQC output results. Representative output when we checked quality of 
the reads for samples in the current projects using fastQC. Here we only 
show the plots of quality scores across all bases (A), quality score 
distribution over all sequences (B), GC distribution overall all sequence (C) 
and N content across all bases (D). 

 

In this project, no internal control had been incorporated so we assessed the 

sequencing output quality using the software FastQC (version 0.9.1). All the raw NGS 

data in this project had high Phred scores (Figure 3.1A, B), low N percentages (Figure 

3.1D) and an overall normal GC sequence distribution (Figure 3.1C). Thus, the overall 

sequencing quality was high. We then aligned the reads against the Rattus norvegicus 

reference genome (version 3.4) using the Tophat (version 2.0.6) and Bowtie (version 

2.0.2) software without any filtering or trimming. For all samples, 93.24±2.63% of the 

raw reads successfully mapped to the rat genome using the default parameters. We 
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further examined the alignment depth using the Integrative Genomics Viewer (IGV) 

visualization software. An alternative approach would be to visualize the results using 

genomic browser or to directly calculate the alignment depth along the regions of interest. 

As an example, we visualized the expression of the early growth response 4 gene (Egr4) 

in four different conditions (Figure 3.2A). The results clearly indicate that Egr4 was over 

expressed in the IC brain then further increased with cocaine stimulus. 

 

Figure 3.2.  Alignment results visualization. Here we showed the visualization of the 
alignment results at the region of early growth response gene 4 (Egr4) using 
the IGV software. For each group, one representative sample was presented. 

 

Not all regions in a genome are equally interesting. We have to integrate the 

alignment output with the genome annotation information and then narrow down to the 

investigated features, such as genes, exons, and transcripts. For an RNA-Seq gene 

differential expression analysis, the goal is to identify genes that are differentially 
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expressed in different situations. We can quantify the expression level of a gene with the 

number of reads that successfully map to its exon region. A higher expression level is 

more likely to be associated with a larger number reads. Ambiguity in region assignment 

occurs when one read maps to the overlap regions of two genes and / or only part of the 

read is mapped. The majority of currently available read count measurement software, 

such as htseq-count, eXpress, and GenomeFeature, have different options for dealing 

with the assignment of ambiguous reads. We measured the expression of each read using 

the htseq-count python program (version 0.5.3p9) in the union mode. In this mode, 

ambiguous reads are ignored. The results described 22,518 rat genes with the number of 

reads mapped to them. 

In summary, we started the pre-analysis of RNA-Seq with data quality control and 

assurance. The raw data were enriched in short sequences with no assignable genetic 

meaning. We then mapped them against an annotated reference genome. The alignment 

revealed connections between the sequencing reads to the annotated genes. This 

relational connection provides information on the expression levels of each gene. All 

above approaches follows the DIKW hierarchy, as discussed in Chapter 1. In the 

following RNA-Seq differential expression analysis, we include more relationships such 

as correction, categorization, and calculation, to identify the essential information which 

is the precursors of knowledge. 

3.3.3 RNA-Seq gene differential expression analysis 

Although the amount of input genomic material for NGS sequencing is 

comparable at very beginning, the library size – the number of sequenced fragments –

varies from sample to sample, thus it is inappropriate to directly compare the number of 
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reads between samples. To address this, two normalization methods are mainly used: the 

rescue method [43] and the scaling factor method.  

The rescue method reports the abundance of gene expression in units of fragments 

or reads per kilobase of exon per million mapped reads (FPKM or RPKM). FPKM is 

used for paired-end sequencing where one segment produces two reads. FPKM reduces 

to RPKM in single-end sequencing when one fragment produces only one read. This 

method integrates the between- and within-sample normalization by rescaling the read 

counts over both library sizes and gene lengths. It is effective for comparing genes within 

one sample and suitable for between sample comparison, but may introduce biases in the 

per-gene variances [44]. This method has been popularly used in the Cufflinks approach. 

The scaling factor normalization method employs many different strategies 

including total counts, mean, median, ratio, quantile, and others. The most popular 

approach is the Trimmed Mean of M-values (TMM) method [45]. TMM assumes the 

majority of genes are not differentially expressed between samples. To obtain the TMM 

scaling factors, we first calculate the gene-wise log-fold-changes of a reference sample 

(i.e. the M-values) as well as the gene-wise absolute (average) expression with the 

reference sample (A-values). We then exclude the most highly expressed genes having 

the largest fold changes based upon the M and A values. After trimming, the weighted M 

value of all other genes is directly related to the TMM factors. The TMM factors are 

typically close to 1, and serve as scaling factors to normalize library sizes and read 

counts. TMM normalization has been implemented in many RNA-Seq data analysis 

packages in BioConductor R including edgeR, DESeq, DEXSeq and others. 
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In addition to the two above approaches, strategies using housekeeping genes 

[46], GC-content biases [47], and technical effects [48] have also been proposed. All 

these normalization methods aim to reduce the technical bias inherent in the sample 

preparation steps. With normalization, quantitative approximations of target gene 

abundance become comparable. 

We employed TMM factors to correct the library size. The raw library sizes 

showed large variation (Figure 3.3A): the sample with the largest library size had 2 times 

more reads than the smallest one. After TMM normalization, the effective library sizes 

for all samples were almost the same (Figure 3.3B).  

 

  

Figure 3.3 Effects of TMM normalization on library size. Effective library size of each 
sample before (A) and after (B) TMM normalization. 

 

To perform statistical comparisons, we can model the normalized reads with 

various distributions including the normal, negative binomial [49, 50], and non-

parametric distributions [51]. The Cufflinks NGS data analysis toolkit assumes that the 

expression measurements in FPKM / RPKM units approximately follow a normal 

distribution. Cufflinks performs its differential expression tests using a Bayesian 

A B. 
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inference procedure to maximize the a posteriori count estimate [52]. The negative 

binomial distribution method, though more complex, is by far the most technically 

accurate and appropriate method and is widely used by expert analysts. It has been 

implemented in many BioConductor packages including edgeR, DESeq, NBPSeq, 

baySeq, BBSeq, etc. These approaches take the raw NGS count numbers and their 

normalization factors as input. The negative binomial distribution requires two 

parameters: the mean and the dispersion. To calculate the dispersion, several methods are 

used. They include: Cox-Reid adjusted profile likelihood, weighted quantile-adjusted 

conditional maximum likelihood, quasi-likelihood method, and dispersion shrinkage for 

sequencing method, etc. These methods have been implemented by several different 

analysis packages, none of which significantly outperforms the others. The resulting 

dispersions have three forms: common, trended/splined, and tag-wise. Common 

dispersion is shared by all genes in the sample. Tag-wise dispersions are different for 

each gene (i.e. tag). Meanwhile, genes with similar features (e.g. expression levels) are 

grouped together and share the same trended / splined dispersion. We can fit the read 

counts with a generalized linear model because we assume the counts follow negative 

binomial distribution, a distributions in the exponential family form. Once a model is 

built, we can perform statistical tests, such as the likelihood ratio test, with any dispersion 

to assign p-values to genes. However, the tagwise dispersion with a moderate degree of 

shrinkage is more likely to maximize performance [53]. The returned p-values are related 

to the contribution of the interested factor to the total dispersions. The non-parametric 

methods require no prior assumption of data distribution. The corresponding models are 

data-adaptive models. RNA-Seq data analysis packages such as LFCseq, NOISeq, 
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SAMSeq, and MRFSeq, utilize the non-parametric methods. They share a similar strategy, 

which entails creating a noise population and then comparing the signal to noise. The 

final p-values are associated with the probability that the signal is distinguished from 

noise. 

In this project, we utilized the BioConductor package edgeR (version 3.0.4) for 

gene differential expression analysis. 14,309 (63.54%) out of the total 22,518 rat genes 

had more than one count in per million mapped reads (CPM) in at least five out of the 30 

samples. The other genes were characterized by very low expression levels across the 

entire sample population. We filtered out these genes because the low expression level 

degrades the reliability of further statistical analyses. We performed TMM normalization 

only on the 14,309 genes that passed the filter. Using functions in the edgeR package, we 

estimated the common, trended, and tagwise dispersions in sequence because the 

calculation of the latter dispersion utilizes the former one as bootstrap input. Specifically, 

we first estimated the common dispersion across the whole sample, which was then 

utilized to calculate the trended dispersions. Finally, we obtained the tagwise dispersions, 

which took into account the trended dispersions. With the tagwise dispersion, we were 

able to fit the differential gene expression to a generalized linear model then perform a 

likelihood ratio test to generate the p-values. Genes with a p-value < 0.05 were treated as 

significant. The results indicated that the environmentally enriched condition led to 3393 

genes being differentially expressed (2186 down-regulated, and 1207 up-regulated) and 

that cocaine administration effected the expression of 1274 genes (768 down-regulated 

and 506 up-regulated) (Figure 3.4A). Additionally, 1121 genes (288 down-regulated and 
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832 up-regulated) were associated with the interaction effects of environmental 

enrichment and the cocaine administration. 

 

Figure 3.4 RNA-Seq expression analysis results. We presented the Venn diagrams of 
RNA-Seq gene expression analysis results for main cocaine effect (cocaine), 

main enrichment effect (enrichment) and their interaction (cocaine & 
enrichment) at two different cutoff p-value < 0.05 (A) and FDR < 0.05 (B). 
Number of up-regulated and down-regulated genes was indicated with up 

arrow (↑) and down arrow (↓), respectively. Numbers with no arrow 
means the regulation patterns of the gene were not consistent in two or more 
conditions. 

 

To correct for multiple comparison tests, we further performed the Benjamini–

Hochberg (BH) procedure to obtain the false discover rate (FDR). Genes with FDR < 

0.05 were treated as significant. 1198 differentially expressed genes (DEGs) were 

associated with the enrichment main effect and 42 genes with the cocaine main effect 

(Figure 3.4B). No genes associated with the interaction effect of the enrichment and 

cocaine factors were identified in this level of significance.  

P value < 0.05 FDR < 0.05 
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In the following analysis, an FDR < 0.05 was utilized when we investigated 

relationships among molecules (session 3.4.1 and 3.4.2). The cut off was loosened to p-

value < 0.05 (not FDR, which is much more stringent) to include more genes when we 

investigate the canonical pathways of interest using QIAGEN’s Ingenuity® Pathway 

Analysis suite (IPA®, QIAGEN Redwood City,www.qiagen.com/ingenuity) [54] 

(session 3.4.3  and 3.4.4). Although the corresponding FDR for p-value < 0.05 for the 

main enrichment effect was 21.06%, the distribution of the false positive errors should be 

randomly distributed across the entire sample. For the canonical pathways in IPA, a 

group of genes with functions in concert are studied simultaneously, which would 

compensate for the relatively large false discovery rate. 

3.4 RESULTS AND DISCUSSION 

This project was discovery-driven to identify essential pathways related to the 

EC-induced addiction protective phenotype. In the following, we will first compare the 

RNA-Seq findings with known knowledge about cocaine addiction and EC-related 

protective phenotype to validate the significance of our RNA-Seq results. Then, we will 

introduce several novel target pathways, which are or will be investigated by our 

collaborative research group. Finally, we will compare the RNA-Seq transcriptomics 

results with the proteomics study results. 

3.4.1 Effects of cocaine addiction 

Cocaine is a powerful and addictive drug, whose effects have already been well 

studied. When people smoke or snort cocaine, the cocaine quickly travels to the brain and 

affects the function of the reward pathway. Cocaine acts as monoamine reuptake 
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transporter inhibitor to block transportation of monoamine from the synaptic cleft back 

into the terminal synapses in the nucleus accumbens, which is the central component of 

the mesolimbic reward pathway. This process leads to a huge increase and accumulation 

of monoamine in the nucleus accumbens. 

 

 

Figure 3.5  Effect of the cocaine administration. We performed up-stream regulator 
analysis for cocaine administration associated differentially expressed genes 
using IPA and presented a network of several activated regulators of interest 
and their target genes. (Legend for all networks and pathways from IPA. 
Molecule color: red (up-regulated) and green (down-regulated). Regulator 

color: orange (activated / increased) and blue (inhibited / decreased). 
Connection line: solid (direct connection) and dash (indirect connection). 

Line arrow: ⟶ (up-regulate / activate), ⟞ (down-regulate / inhibit) and — 
(affect). Line color: red (consistent finding and activated prediction), 
orange (consistent finding and inhibited prediction), grey (affect connection) 
and yellow (inconsistent finding and prediction). ) 
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We performed IPA up-stream regulator analysis with differentially represented 

genes associated with cocaine administration (Figure 3.5). Many early genes that were 

shown to be immediately induced by cocaine administration in previous studies were up-

regulated. These genes include FOS, FOSB, JUNB, EGR2, EGR4, etc. Based upon the 

regulation of these genes, the up-stream regulator analysis in IPA predicted that the 

cocaine stimulus was activated (p-value = 2.03e-12, z-score = 2.924). At the molecular 

level, cAMP response element binding protein 1 (CREB1) is known to be highly 

enhanced after chronic cocaine taking, thereby further enhancing reinforcement in 

cocaine self-administration by rats [55]. Our analysis indicates that CREB1 was predicted 

to be activated (p-value = 5.01e-16, z-score = 3.343).  

The above results thus confirmed previous findings about cocaine addiction and 

gave us confidence in the high quality of our data and data analysis. These findings 

therefore assured us that our RNA-Seq technique has the power to distinguish between 

the samples of the two experimental conditions at both the treatment and molecular level. 

3.4.2 Effect of EC induced protective phenotype 

Environmentally enriched rats show a protective addiction phenotype in rat drug 

self-administration paradigms [40-42]. Specifically, EC rats, with daily access to novel 

toys, exercises and social contact, exhibit less bar pressing under acquisition, 

maintenance, extinction and reinstatement of cocaine taking and seeking compared to the 

control IC rats. Very interestingly, many genes associated with cocaine addiction were 

down-regulated in the EC condition. Up-stream regulator analysis of the differentially 

expressed genes (DEGs) associated with EC main effect indicated that the response of 

cocaine administration was inhibited (p-value=4.8e-4, z-score = -1.793) under EC. Thus, 
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an enriched environment leads to opposite effects as the cocaine stimulus, which can be 

interpreted as a protective phenotype. Additionally, we identified an inhibitory activity of 

potassium chloride in EC rats compared to IC rats (p-value 1.63e-4, z-score = -2.276). 

Cocaine greatly increases the response to potassium chloride [56], however, the EC rats 

showed decreased gene expression related to the activity of potassium chloride. This 

response behavior confirms that the enriched condition leads to a protective phenotype 

for cocaine addiction. 

 

 

Figure 3.6  Effect of enriched condition. We performed up-stream regulator analysis for 
enriched environment associated differentially expressed genes using IPA 
and presented a network of several activated regulators of interest and their 
target genes. 

 

It is known that blocking the activity of the transcription factor CAMP 

Responsive Element Binding Protein 1 (CREB1) in the nucleus accumbens can reproduce 
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the EC induced protective phenotype [56]. However, the CREB1 target genes underlying 

this protective phenotype have yet to be identified. Although our RNA-Seq results 

indicated no differential expression of CREB1, 50 CREB1 target genes were shown to be 

differentially expressed due to the EC environment, with the majority genes down-

regulated (Figure 3.7). The altered genes included EGR2, FOS, IL6ST, NR4A1, NR4A3, 

SLC38A1, SLC6A11, SMOC1, TSPYL4, etc. CREB1 is activated by phosphorylation by 

several protein kinases as results of various cellular stimuli. The findings suggest the 

phosphorylation signaling for CREB1 is altered by environmental enrichment and 

confirm our previous discovery that CREB1 plays an essential role in the resistance of the 

protective phenotype against cocaine addiction. 

 

 

Figure 3.7 EC effect on the CREB1. We presented a network of CREB and its target 
genes that were differentially expressed in the enriched condition. 
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3.4.3 Novel EC induced protective phenotype related pathways 

The objective of the current project is to identify novel pathways related to the 

EC-induced protective phenotype. With the DEGs associated with the environmental 

enriched condition main effect, Dr. Green’s lab preformed an IPA canonical pathway 

analysis and selected three representative pathways for further research. 

 

Figure 3.8 Retinoic acid receptor (RAR) activation pathway. A selected top canonical 
pathway enriched with genes that were differentially expressed in the 
enriched condition.  

 

The first selected pathway was the retinoic acid receptor (RAR) activation 

pathway (Figure 3.8). In this pathway, we found up-regulation of the mRNA in the 

majority of retinoic acid target genes, as well as proteins involved in retinoic acid 

synthesis and binding. Retinol dehydrogenase (RDH) consists of a group of enzymes that 
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function to dehydrogenate retinol and covert it to retinal, a precursor of retinoic acid 

(RA). Retinol binding protein (RBP) and cellular retinoic acid binding protein (CRABP2) 

are retinoid-binding proteins which are necessary in RA synthesis and protect RA in the 

cytoplasmic environment. In addition, many RAR target genes are also up-regulated by 

environmental enrichment, such as RDH and CRABP2. Increased expression of these 

genes further enhances RA synthesis and RA signaling, which in turn forms a positive 

feedback loop. In contrast, most down-regulated genes are RAR pathway inhibitors, such 

as PCK, MAPK, JNK, AKT, etc. At the mRNA level, RA pathways transcripts showed 

coordinated regulation by environmental enrichment, therefore we hypothesize that the 

high expression of retinoic acid may relate to the EC-induced protective phenotype. 

 

 

Figure 3.9 EIF2 signaling pathway. A selected top canonical pathway enriched with 
genes that were differentially expressed in the enriched condition. 
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The second selected pathway is the eukaryotic initiation factor 2 (EIF2) signaling 

pathway (Figure 3.9). As the name suggests, EIF2 is required in the initiation of 

translation. It delivers charged initiator methionyl-tRNA to the ribosome and also 

functions to identify the translational start site. The activity of EIF2 and EIF2β, the 

guanine nucleotide exchange factor of EIF2, are inhibited when they are phosphorylated. 

The enriched environment caused down-regulation of the up-stream kinases of both EIF2 

and EIF2β. As a result, EIF2 and EIF2β were activated to initiate translation. We 

identified the up-regulated expression of many members belonging to the 40S and 60S 

ribosomal subunit-mRNA complex, indicating increased activity of protein translation. 

We hypothesize that the effectiveness of protein translation regulated by EIF2 may 

contribute to the EC-induced protective phenotype. 

 

 

Figure 3.10 Protein ubiquitination pathway. A selected top canonical pathway enriched 
with genes that were differentially expressed in the enriched condition. 
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The third selected pathway is the protein ubiquitination pathway. This pathway 

regulates the degradation of short-lived or regulatory proteins through ubiquitination. A 

target protein is first conjugated with multiple ubiquitin moieties to form poly-

ubiquitinated protein. The deubiquitinating enzymes (DUB) can remove unbiquitin 

chains from the tagged proteins for further recycling. Otherwise, the poly-ubiquitinated 

proteins will be proteolyzed by the proteasome complex PA700 / 20S. The enriched 

condition up-regulated many members in the proteasome complex but down-regulated 

many DUB enzymes. This led to more protein degradation activity in EC rats than in IC 

rats. We hypothesize that the effectiveness of protein degradation through ubiquitination 

may contribute to the EC-induced protective phenotype. 

3.4.4 Comparison between transcriptomics and proteomics results 
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Figure 3.11 Mitochondrial redox carriers. We examined the effects of enriched condition 
in the component proteins of five inner-membrane-bound complexes in 
mitochondria. 

 

We harvested the left nucleus accumbens for RNA-Seq transcriptomics research 

and the right nucleus accumbens for proteomic investigation using liquid chromatography 

mass spectrometry (LC/MS). The most striking result from the proteomics study is that 

proteins involved in energy production are highly expressed in EC rats [42]. Both the 

proteomics data and our RNA-Seq transcriptomics data had “Mitochondrial dysfunction” 

as one of the top-regulated canonical pathways. We examined the inner-membrane-bound 

complexes in mitochondria. All five complexes showed members that were up-regulated 

under the EC environment (Figure 3.11). Lipid-soluble or water-soluble electron carriers 

electrically connect the first four complexes. They function interactively to transfer 

electrons from the mitochondrial matrix into the inter-membrane space then reduce 

molecular oxygen to water. More specifically, complex I can pass electrons from NADH 

to coenzyme Q and complex II passes electrons from FADH2 to coenzyme Q. The 

electrons from coenzyme Q are further passed to cytochrome c through complex III. 

Cytochrome c then passes electrons to complex IV and leads to the reduction reaction. 

This process results in a proton gradient across the mitochondrial inner membrane, which 

is then used by complex V, also known as ATP synthase, to make ATP. The up-

regulation of these complex members indicated that the EC rats had more active energy 

production than the IC rats. Thus, the findings at the proteomics and transcriptomics level 

mutually support each other. 

3.5 CONCLUSION AND LIMITATIONS 
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The current project utilized an unbiased discovery-based transcriptomic method to 

search for differential expression of genes in the nucleus accumbens of EC and IC rats 

that self-administer cocaine or saline. Our results suggest that environmental enrichment 

plays a significant role in addictive behavior and provide future direction in the study of 

individual differences in susceptibility to addiction. With further research, we expect to 

unravel the biochemical and physiological mechanisms of the protective phenotype at the 

functional level. 

The NGS approach has several significant advantages. First, RNA-Seq is a 

genome wide study with high throughput and sensitivity. We could detect differential 

expression of 10–20 thousand genes in one run. Second, RNA-Seq requires no a priori 

knowledge of the genomic features or cross-hybridization between similar sequences as 

in microarray analysis. Third, nanograms of DNA material are sufficient for RNA-Seq. 

The low amount of sample requirement enables us to sequence each nucleus accumbens 

rather than pool samples together as was necessary in the proteomics investigation.  

In addition to its relatively high cost, the NGS strategy has several intrinsic 

limitations. First, RNA-Seq investigates the system at the transcriptomics level without 

considering mRNA degradations and post-translational modifications. Second, the 

sequencing reads are typically of short length which limits its ability to sequence highly 

repetitive regions. Third, the Illumina HiSeq platform utilizes a clonally amplified 

template technique which may cause progressive replication errors during library 

preparation.  

Another limitation pertinent to our experimental design is that samples were 

harvested three hours after cocaine/saline self-administration thus only that time point 
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was examined. Since mRNA regulation is a dynamic process, we may fail to catch earlier 

or later regulations that could be essential to the environmental enriched condition 

induced protective phenotype. 
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Chapter 4. Investigation of Pathogenies of Visceral Leishmaniasis 

Through Transcriptional Profiling 2 

4.1 INTRODUCTION 

Visceral leishmaniasis (VL), also known as kala-azar, is an endemic disease in 

tropical and subtropical areas. The disease is mainly caused by parasitic protozoa 

Leishmania donovani. There are four different forms of the disease, including: cutaneous,  

diffuse cutaneous, mucocutaneous and VL. VL is the most severe form. VL patients have 

a high fatality rate (up to 100%) within two years, if untreated. Over 12 million people in 

88 countries are known to have leishmaniasis but many cases (>90%) are asymptomatic. 

Each year, 1 to 2 million more people become sick with leishmaniasis, of which 0.2 to 

0.4 million new infections are deadly VL. The disease threatens about 350 million people 

mainly in Indian subcontinent (India, Bangladesh, and Nepal), East Africa (Sudan, South 

Sudan, and Ethiopia), and Brazil. These areas typically are associated with malnutrition, 

population displacement, poor housing, weak immune system and lack of resources [57]. 

All these disadvantages increase the risk of infection, and make the diagnosis and 

treatment difficult. 

The life cycle of Leishmania occurs in the vertebrate host and the vector. The 

parasites live and replicate in the mid-gut of a sandfly vector in the form of flagellated 

mobile promastigote. During a natural infection, the sandfly injects promastigotes into 

the skin of susceptible hosts, such as humans, dogs, cats, etc. The promastigotes get 

phagocytized by macrophages where they transform into amastigotes. Amastigotes 

replicate and eventually increase the parasite burden [58, 59]. Clinical findings of VL 

                                                 
2 In collaboration with Dr. Peter C. Melby’s group at UTMB. 
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patients are usually characterized by fever, splenomegaly, pancytopenia, and cachexia. 

However, the pathogenesis of VL is not clearly understood. Our objective in the current 

project is to understand the key molecular mechanisms by which the parasite causes 

pathology. Our ultimate goal is to develop new therapeutic strategies to prevent and 

control this devastating infectious disease. 

4.2 EXPERIMENTAL DESIGN 

Two experiments were implemented to investigate VL. In the first one, we 

employed an animal model – Syrian golden hamsters – because they closely mimic the 

chronic VL pathology found in humans.  

In the hamster study, six- to eight-week old outbred female Syrian hamsters 

(Mesocricetus auratus) were randomly assigned to either uninfected or infected group. 

Each group had four animals. We infected the hamsters with 1x106 Leishmania donovani 

(MHOM/SD/001S-2D) metacyclic promastigotes, intracardially. All hamsters were 

sacrificed at 28 days post infection to harvest the whole spleen cells and the adherent 

spleen cells (after 2–3 hours of adherence). We further isolated mRNA, and verified its 

quality by Agilent Bioanalyzer. The mRNA samples were submitted to Illumina HiSeq 

1000 using the same approach as discussed in Chapter 3, to generate 50 base paired-end 

reads. Please refer to the manuscript (F. Kong et. al.) for detailed information about the 

experimental design. 

In summary, our hamster experiment resulted in four groups: uninfected whole 

spleen cells, infected whole spleen cells, uninfected adherent spleen cells and infected 

adherent spleen cells. Each group had four samples. We analyzed these RNA-Seq data 

using different biomedical informatics tools to investigate VL in hamster. 
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4.3 HAMSTER VL TRANSCRIPTOME ANALYSIS. 

A transcriptome analysis aims to identify genes, transcripts, or exons that are 

likely to be differentially represented among different experimental conditions. A very 

essential step is to map the sequencing reads to the transcriptome or genome of the study 

model. Neither the hamster genome nor its transcriptome has been fully sequenced or 

annotated. As a result, we first had to assemble a draft hamster transcriptome from the 

raw RNA-Seq data before any differential expression analysis. 

4.3.1 De Novo assembly  

We assembled a de novo transcriptome for the Syrian hamster because no 

completed reference genome or transcriptome were available. We had access to the 

sequences derived from Chinese Hamster Ovary cells (from its near relative Crisetulus 

griseus) [60], and a draft genome of Mesocricetus auratus (NCBI BioProject 

PRJNA210213) [61]. Both were incompletely sequenced and/or annotated. To obtain a 

transcriptome for the hamster spleen, we applied the de novo assembly with all 

sequencing reads from hamster samples including both whole spleen cells and adherent 

spleen cells. 

To prepare the data for de novo assembly, we extracted high quality and clean 

reads from all raw sequencing reads. We first performed a quality control to assess the 

raw sequencing data using FastQC (v0.10.1) [62]. Phred score medians at all 50 bases 

were ≥ 30 (i.e. error rate ≤ 0.001) and the majority of the reads had average Phred score > 

37 (i.e. error rate ≤ 0.0002) (Figure 4.1A, B). The CG distribution overall all sequences 

content and its theoretical distribution had a similar behavior (Figure 4.1C). Moreover, 

the N contents across all bases were <5% (Figure 4.1D). N indicates unknown or 
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undetermined when a sequencer fails to determine the nucleotide in situ. Therefore, the 

overall sequencing quality is high. To avoid the contamination of pathogen sequences, we 

filtered out reads that aligned to the Leishmania donovani BPK282A1 genome (NCBI 

BioProject PRJEA61817) [63] using Bowtie2 (v2.0.0-beta5) [64] with default 

parameters. We further filtered out artifacts and the reads with less than 28 Phred score in 

more than 10% of nucleotides using FASTX-Toolkit software (v0.0.13) [65] to reduce 

the effect of low quality reads. Both forward and reverse reads were removed if any of 

them failed to pass the filters. Typically, artifacts and low quality reads were less than 2% 

of the whole sequencing. These results indicated that control and infected samples 

generated high quality sequencing reads. We pooled all the clean reads after the above 

filtering for further transcriptome assembly.  
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Figure 4.1 FastQC output results. Representative output when we checked quality of 
the reads for samples in the current projects using FastQC. Here we only 
showed the plots of quality scores across all bases (A), quality score 
distribution over all sequences (B), GC distribution overall all sequence (C) 
and N content across all bases (D). 

 

To obtain a complete hamster spleen transcriptome, we used two steps. First, the 

cleaned sequencing reads from different spleen samples were pooled together and de 

novo assembled using Trinity software [66]. Second, the resulting transcriptome, all 

cleaned reads from hamster spleen and adherent cells, and CHO-K1 RefSeq genome [60] 

were further used to perform our second de novo assembly using the BRANCH software 

[67]. Both assembling steps were run at the Texas Advanced Computing Center (TACC) 

at the University of Texas at Austin. A summary of the workflow is shown in Figure 

4.2A. 
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Figure 4.2 Hamster splenic transcriptome de novo assembly. We assembled a 
transcriptome draft for the hamster spleen with the work flow shown in (A). 
The intermediate (trinity) and final (BRANCH) transcriptomes were 
compared to transcripts of CHO cells (B, C). We then checked the E-value 
cutoff (D), and compared the final (BRANCH) transcriptomes with 
intermediate (trinity) transcriptome (E) and NEBI Mesocricetus auratus 
transcriptome draft (F). 

 

The Trinity package is a software platform for de novo transcriptome assembly of 

RNA-Seq data from non-model organisms [66]. Trinity produced 187,847 transcripts 

with lengths ranging from 201 to 23,840 nucleotides. To validate the assembled results, 

we compared each transcript against the CHO Ref-Seq transcripts using BLAST (version 

2.2.27+) [68]. 35.42% of the transcripts from Trinity returned a hit under the default 

BLAST parameters. We examined the lowest E-value and the largest alignment score 

associated with each Trinity transcript. The results showed that the largest reported E-

value among all the hits was 1e-5 and 78% of the hits had an E-value equal to 0 (Figure 

4.2B). 85.83% of the successful hits returned alignment scores > 500 (Figure 4.2C). 

These data indicated that the Syrian hamster de novo assembled transcriptome was highly 

homologous to sequences in the CHO-K1 genome. Meanwhile, the pool of Trinity 

transcripts contained more transcript sequences than what is represented or annotated in 

the CHO-K1 genome. 

We further used the BRANCH software to expand the Trinity transcriptome into a 

more complete transcriptome [67]. In total, 205,041 transcripts with length ranging from 

201 to 23,840 nucleotides were obtained. We then created our own blast library including 

both Rattus norvegicus (Rnor_5.0.73) and Mus musculus (GRCm38.73). All transcripts 

from BRANCH were compared against our customized library using BLAST (v 2.2.28+) 

[68]. 64% (131,021) of the BRANCH transcripts had a BLAST E-value <1e-3 when 
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compared to the rat and mouse genomes. We assigned each transcript with the targeted 

gene names, which had the lowest E-value. The transcripts that passed the E-value cutoff 

were typically longer and thus more informative than those failed (Figure 4.2D). After 

application of the <1e-3 cutoff to the assembled transcripts from BRANCH and Trinity, 

BRANCH produced more long transcripts compared to Trinity (Figure 4.2E), confirming 

that BRANCH improved the Trinity assembly.  

We finally pooled 131,021 BRANCH transcripts together as a draft reference 

transcriptome. All of them had a blast hit with E-value <1e-3 against the mouse and rat 

library. Using the Bowtie2 software package (v2.1.0), we aligned all RNA-Seq reads that 

failed to map to the Leishmania genome against our draft transcriptome and got a 92.76 ± 

0.68% alignment rate. This was considerably higher than the 58.46 ± 1.38% and 37.77 ± 

1.25% obtained when aligned against the NCBI Mesocricetus auratus transcriptome 

(NCBI BioProject PRJNA210213) and CHO ref seq transcripts. Addtionally, we 

compared our assembled transcriptome with the NCBI Mesocricetus auratus draft 

transcriptome and found >70% NCBI transcripts could be found in our de novo 

assembled transcriptome, while <30% assembled transcripts were identified in the NCBI 

transcriptome (Figure 4.2E). We also tested to incoporate the NCBI Mesocricetus auratus 

genome into our de novo assembly by a third running of BRANCH. Furher analysis 

failed to identify differential expression of some genes (e.g. CCL6/7/8/9/25/28, 

CXCL10), known to be differentially expressed by PCR. Collectively, these data 

indicated that with the initial BRANCH analysis, we had assembled the most complete 

hamster spleen transcriptome available. We used it as a reference transcriptome for RNA-

Seq differential expression analysis. 
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4.3.2 RNA-Seq gene differential expression analysis 

All the non-leishmania-like raw sequencing reads were first mapped to our 

assembled reference transcriptome using Bowtie2 (v2.1.0) with default options but 

allowing one read to map to as many as 500 different transcripts. We then measured the 

expression abundance, i.e. the number of reads mapped to each transcript, using the 

software eXpress. The effective counts were used for RNA-Seq differential expression 

analysis because they corrected biases caused by multiple alignments and mismatches 

during alignment.  

We analyzed the spleen samples and the adherent spleen samples separately 

because they contained different cell populations and were sequenced in two independent 

runs. We first examined the sample clustering patterns using multidimensional scaling 

(MDS, Principal Coordinate Analysis) plots (Figure 4.3A, B) with the top 500 most 

differentially expressed genes. The root-mean-square deviation was used to calculate the 

distance between each pair of samples. The infected and uninfected samples were 

appropriately clustered in both spleen and splenic macrophage samples. However, the 

first dimensional coordinate separated spleen but not adherent cell samples, which 

suggest a greater effect of Leishmania infection in the whole spleen samples than in the 

adherent spleen cells.  
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Figure 4.3 MDS plot of hamster VL samples. We examined the clustering patterns of 
hamster VL samples in spleen tissue (A) and splenic adherent cells (B) 
using classic Torgerson metric MDS plot, which also known as PCA plot. 

 

To identify differentially expressed transcripts in each experiment, we performed 

differential expression analysis, using two R BioConductor packages edgeR and DESeq2. 

In total, three different approaches were applied: classic exact test and generalized linear 

model with likelihood ratio test in BioConductor packages edgeR [69], and Wald test in 

DESeq2 [70]. Only transcripts with at least one count per million mapped reads (CPM) in 

at least three out four samples in control and/or experimental group were used for 

analysis. We considered a transcript to be significant when it was detected by all three 

different approaches as differentially expressed transcript. We set the cutoff as FDR < 

0.01 and identified 4,360 differentially expressed transcripts in the spleen samples, which 

included 2,340 (53.7%) up-regulated and 2,020 (46.3%) down-regulated genes (Figure 

4.4A). At this FDR cutoff, splenic adherent cells had substantially fewer differentially 

expressed transcripts than the whole spleen tissue: 692 transcripts including 449 (64.9%) 

up-regulated transcripts and 243 (35.1%) down-regulated transcripts (Figure 4.4C). A 

number of differentially expressed transcripts were common to both spleen tissue and 

splenic adherent cells (240 up-regulated and 64 down-regulated) (Figure 4.4A, C). A 

smear plot and a heat map (Fig 4.4B, D) representation of these results are also included. 

The number of differentially expressed transcripts in the spleen tissue and splenic 

adherent cells were decreased to 2778 and 363 by tightening the FDR to < 0.001. Only 

the edgeR likelihood ratio test (LRT) results were listed and used for pathway analysis. 
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Figure 4.4 RNA-Seq expression results of hamster VL. We here presented the RNA-
Seq differential expression analysis results of spleen (left panel) and splenic 
adherent cells (right panel) during VL. The numbers of differentially 
expressed transcripts from three different approaches – likelihood ratio test 
(LRT), Fisher’s exact test (FET) and Wald test – were showed in top panel 
(A, B). The differentially expressed transcripts were the overlap of all three 
approaches. We colored these differentially expressed transcripts in red in 
the smear plots and also examined them using heat map (C, D). 

 

We evaluated the functional significance of differentially expressed genes 

associated with Leishmania infection using QIAGEN’s Ingenuity® Pathway Analysis 

suite (IPA®, QIAGEN Redwood City,www.qiagen.com/ingenuity) [54]. We uploaded 

the DEG data set (FDR < 0.001) into IPA, and then performed an IPA Core Analysis to 

identify the most significant canonical pathways. We further enriched genes in each 

pathway by relaxing the FDR to < 0.01. The top 10 pathways (ranked by –log(p-value)) 

identified in the 28-day infected spleen tissue and splenic adherent cells (shown to be 

splenic macrophages, i.e. MΦ, see section 4.5.1a) are shown in Figure 4.5A, B, 
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respectively. Four out of the top ten pathways identified in whole spleen tissue were also 

identified in splenic macrophages, supporting the central importance of macrophages in 

the immunopathogenesis of the splenic infection. 

 

Figure 4.5 Top canonical pathways in hamster VL. We presented top 10 canonical 
pathways (CPs) in the spleen tissue (A) and splenic macrophages (B), and 
the comparison between them. 

 

Moreover, we also performed gene set enrichment analysis (GSEA) using 

software from the Broad Institute (http://www.broadinstitute.org/gsea) and the MSigDB 

C5: GO gene set collection (1453 gene set available) (v4.0). A GSEA determines the 

significance of a pre-defined gene set by first calculating the correlation between the 

expression of genes inside the gene set and the class distinction, then comparing against 

noisy populations generated through random permutations [71]. We carried out 1000 

random gene set permutations to create noise and set the significance threshold as 

FDR<0.1. The GSEA results indicated that infected spleen had enrichment of up-

regulated genes associated with the inflammatory response: chemokines cell migration, 

cell proliferation, cell cycle and mitochondrial metabolism. Enrichment of down-
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regulated genes associated with tissue morphogenesis and structure, receptor-mediated 

signaling and extracellular matrix, was also observed (Figure 4.6). 

 

 

Figure 4.6 GSEA results in hamster VL. We visualized GSEA results using the 
software Cytoscape and Enrichment Map. The cut off was p-value < 0.1. 
The analysis results of hamster spleen and splenic adherent cell were 
indicated as the inner and outer of the cycles, respectively. Each cycle 
represented a gene set. The gene sets enriched with up-regulated and down-
regulated genes were colored in red and blue, respectively. The grey color 
means the gene set was not significant. 

 

4.3.3 Expression of leishmania reads in hamster host 

We next investigated the expression levels of Leishmania genes during infection. 

We mapped the raw RNA-Seq reads against the Leishmania donovani BPK282A1 



71 

genome (NCBI BioProject PRJEA61817). The infected spleen and adherent cells samples 

were highly enriched with Leishmania transcripts (up to 61 and 7 folds, respectively), 

when compared to the uninfected controls (Table 4.1). This confirmed the infectivity of 

the treatment group.  

  Infected Samples Uninfected Controls 

Spleen 1.22 0.98 0.84 0.74 0.02 0.02 0.02 0.02 

Adherent 0.31 0.20 0.17 0.16 0.04 0.04 0.04 0.03 

Table 4.1 Successful alignment rates (%) mapped to Leishmania genome. 

 

The results showed that whole spleen tissue had higher parasite reads than the 

splenic adherent cells. We can explain this phenomenon mainly by two reasons. First, 

other cell populations present in the whole spleen are also target cells for parasite 

infection like neutrophils and fibroblasts [59, 72]. Second, even though macrophages are 

the main target cell of the parasite, we have observed that high parasite burden inhibits 

macrophage adherence (Melby PC et al., personal communication). Thus, highly infected 

macrophages are less adhesive; therefore the detection of parasites in the adherent cells is 

decreased. The observation revealed that sequences from hamsters shared high homology 

with Leishmania sequences, such as actin, tubulin, calmodulin and unc104-like kinesin. 

All contributed to the fact that the uninfected controls failed to have a successful 

alignment rate of 0.  

Further analysis of Leishmania sequences from infected samples allowed us to 

identify unique parasite genes expressed during infection (Table 4.2). Many of these 

genes encode for proteins that have been characterized as pathogenic factors or tested as 

vaccine / diagnostic candidates. The amastin-like protein, 60S ribosomal protein L22, and 

40S ribosomal protein S19 were evident to protect against murine Leishmania major 
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using the vaccine screening approach. The vaccine for Leishmania histone H1+ dendritic 

cells leads to a protective phenotype in murine visceral leishmaniasis. The recombinants 

of H2A, H2B, H3 and H4 proteins were highly immunogenic and offered optimum 

prophylactic efficacy against Leishmania challenge in hamsters. The elongation factor 1-

alpha (ef-1-alpha) and the activated protein kinase c receptor (LACK) have been 

proposed as targets for drug or vaccine development. The cathepsin L-like protease is a 

potential diagnostic maker. The delivery of kinetoplastid membrane protein-11 or 

cysteine peptidase C with nanoparticles induces parasite killing or protective immunity 

against infection. All the discussed proteins appeared in our list as products of the highly 

expressed parasite genes. Thus, identification of these highly expressed parasite genes 

opens an opportunity to study their role during infection and their potential usage as 

vaccine candidates or diagnostic markers. 

Rank Protein Id mRNA product Vaccine Candidate Ref 

1 CBZ31914.1 amastin-like protein C.B. Stober, et al., 2006 

2 CBZ33166.1 elongation factor 1-alpha M. Lopes, et al., 2007 

3 CBZ33929.1 histone H2A, putative R.K. Baharia, et al., 2014 

4 CBZ33928.1 histone H2A R.K. Baharia, et al., 2014 

5 CBZ34196.1 hypothetical protein LDBPK_191680  

6 CBZ38090.1 60S ribosomal protein L5, putative  

7 CBZ32099.1 histone H2B R.K. Baharia, et al., 2014 

8 CBZ35700.1 activated protein kinase c receptor (LACK) S. Sinha, et al., 2013 

9 CBZ31585.1 histone H4 R.K. Baharia, et al., 2014 

10 CBZ35841.1 ribosomal protein L1a, putative  

11 CBZ31772.1 60S ribosomal protein L7a, putative  

12 CBZ35267.1 histone H1, putative M. Agallou, et al., 2012 

13 CBZ34604.1 40S ribosomal protein S8, putative  

14 CBZ31937.1 cathepsin L-like protease, partial P.A. Ortiz, et al., 2009 

15 CBZ32384.1 ATP-binding cassette protein subfamily A, member 2, putative  

16 CBZ34112.1 hypothetical protein LDBPK_220670, partial  

17 CBZ32611.1 40S ribosomal protein S4, putative  

18 CBZ31625.1 60S ribosomal protein L19, putative  

19 CBZ31909.1 hypothetical protein, unknown function  

20 CBZ36778.1 40S ribosomal protein S2  

21 CBZ32210.1 histone H3 R.K. Baharia, et al., 2014 

22 CBZ35406.1 unnamed protein product  

23 CBZ33040.1 histone H3, putative, partial R.K. Baharia, et al., 2014 

24 CBZ37966.1 60S ribosomal protein L18a, putative  

25 CBZ36392.1 ribosomal protein L15, putative  

26 CBZ37821.1 60S ribosomal protein L21, putative  

27 CBZ34037.1 60S ribosomal protein L11 (L5, L16)  
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28 CBZ38122.1 60S ribosomal protein L12, putative  

29 CBZ38781.1 60S ribosomal protein L22, putative C.B. Stober, et al., 2006 

30 CBZ38642.1 nucleoside transporter 1, putative  

31 CBZ34905.1 60S ribosomal protein L7, putative  

32 CBZ37237.1 40S ribosomal protein S3, putative  

33 CBZ38740.1 40S ribosomal protein S24e  

34 CBZ37952.1 40S ribosomal protein S3A, putative  

35 CBZ32545.1 40S ribosomal protein S12, putative  

36 CBZ38281.1 60S ribosomal protein L27A/L29, putative  

37 CBZ38910.1 60S ribosomal protein L18, putative  

38 CBZ38434.1 polyadenylate-binding protein 1, putative  

39 CBZ33941.1 60S ribosomal protein L9, putative  

40 CBZ32928.1 tryparedoxin peroxidase C. Carson, et al., 2009 

41 CBZ32374.1 60S ribosomal protein L28, putative  

42 CBZ37820.1 hypothetical protein, pseudogene  

43 CBZ38830.1 60S ribosomal protein L34, putative  

44 CBZ37649.1 amastin-like surface protein, putative  

45 CBZ38504.1 ubiquitin/ribosomal protein S27a, putative  

46 CBZ37739.1 40S ribosomal protein S19 protein, putative C.B. Stober, et al., 2006 

47 CBZ34752.1 ribosomal protein S25  

48 CBZ38124.1 kinetoplastid membrane protein-11 D.M. Santos, et al., 2013 

49 CBZ38105.1 60S ribosomal protein L32  

50 CBZ38283.1 60S ribosomal protein L23, putative S. Das, et al., 2013 

51 CBZ34076.1 40S ribosomal protein S15, putative  

52 CBZ37471.1 40S ribosomal protein S13, putative  

53 CBZ37012.1 ribosomal protein L27, putative  

54 CBZ31131.1 ribosomal protein S7, putative  

55 CBZ37701.1 ribosomal protein l35a, putative  

56 CBZ36360.1 60S ribosomal protein L9, putative, partial  

57 CBZ36811.1 RNA binding protein, putative  

58 CBZ34392.1 60S ribosomal protein L17, putative  

59 CBZ35110.1 ribosomal protein L38, putative  

60 CBZ32381.1 40S ribosomal protein S15A, putative  

61 CBZ38543.1 40S ribosomal protein S10, putative, partial  

62 CBZ35849.1 tryparedoxin  

63 CBZ38569.1 40S ribosomal protein S9, putative  

64 CBZ35510.1 40S ribosomal protein S14  

65 CBZ32527.1 hypothetical protein, conserved  

66 CBZ34201.1 peroxidoxin  

67 CBZ35641.1 ribosomal protein S29, putative  

68 CBZ38652.1 chaperonin HSP60, mitochondrial precursor  

69 CBZ31166.1 eukaryotic initiation factor 4a, putative  

70 CBZ31415.1 nascent polypeptide associated complex subunit-like protein, copy 1   

71 CBZ31498.1 trypanothione reductase  

72 CBZ34218.1 endoribonuclease L-PSP (pb5), putative  

73 CBZ32640.1 60S ribosomal protein L44, putative  

74 CBZ34225.1 ABC-thiol transporter, partial  

75 CBZ34704.1 eukaryotic initiation factor 5a, putative  

76 CBZ34724.1 cyclophilin a  

77 CBZ36377.1 S-adenosylmethionine synthetase  

78 CBZ37651.1 amastin-like surface protein, putative, partial  

79 CBZ36345.1 ribosomal protein S26, putative  

80 CBZ38972.1 40S ribosomal protein SA, putative, partial  

81 CBZ34101.1 3'a2rel-related protein  

82 CBZ38544.1 40S ribosomal protein S10, putative  

83 CBZ32803.1 myo-inositol-1-phosphate synthase  

84 CBZ38833.1 basic transcription factor 3a, putative  

85 CBZ33102.1 60S ribosomal protein L39, putative  

86 CBZ38793.1 ribosomal protein L29, putative  

87 CBZ31130.1 ribosomal protein S7, putative, partial  
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Table 4.2 Top 100 parasite genes specifically expressed in the infected samples 

 

4.4 RESULTS AND DISCUSSION 

Our objective in the current project is to understand the VL pathogenesis 

mechanisms. The Syrian golden hamster was used as an animal model because it closely 

mimics the chronic visceral leishmaniasis in human. In this section, we will discuss our 

findings from the hamster model. The analysis is on-going so the knowledge we can 

discover from the current project is not limited to what we discussed below. 

 4.4.1 Spleen adherent cells are enriched with macrophages 

Macrophages are the main target cells for the Leishmania parasite. The number of 

splenic macrophages increases during chronic VL (data not shown) leading to a disease-

promoting phenotype [73-75]. We were interested in the gene alteration specific to 

macrophages in addition to the whole spleen tissue. Currently, no antibody for hamster 

macrophages is available for purification. We isolated splenic adherent cells from whole 

spleen cells using a plastic culture dish. The splenic adherent cells are believed to be 

macrophage enriched. To assure that the adherent spleen cells are splenic macrophages, 

we examined the adherent spleen cells of their morphology and their expression of cell 

lineage markers. The adherent spleen cells had typical macrophage morphology and were 

88 CBZ39091.1 glucose transporter, lmgt1  

89 CBZ33891.1 60S Ribosomal protein L36, putative  

90 CBZ36113.1 surface protein amastin, putative  

91 CBZ35810.1 cysteine peptidase C (CPC) D. Doround, et al., 2011 

92 CBZ35049.1 40S ribosomal protein S33, putative  

93 CBZ32934.1 60S acidic ribosomal protein P2  

94 CBZ33458.1 P-type H+-ATPase, putative  

95 CBZ34602.1 60S ribosomal protein L26, putative, partial  

96 CBZ32363.1 pyruvate phosphate dikinase, putative  

97 CBZ38570.1 fructose-1,6-bisphosphate aldolase  

98 CBZ33614.1 oxidoreductase-like protein  

99 CBZ32061.1 elongation factor-1 gamma  

100 CBZ36403.1 aquaglyceroporin  
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positive for the intracellular macrophage marker CD68 determined by 

immunohistochemistry (data not shown). We further compared the expression levels of 

several key markers of specific cell lineage between control splenic adherent cells and the 

control whole spleen cells (Figure 4.7). The results indicated macrophage related markers 

were highly enriched in the splenic adherent cells. Conversely, the markers for other cell 

populations including T cells, B cells, neutrophils, dendritic cells and fibroblasts, were all 

highly enriched in the whole spleen cells with prolyl 4-hydroxylase, beta polypeptide 

(P4HB) as one exception. P4HB is a fibroblast marker. Its enrichment in the adherent 

spleen cells is most likely the consequence of expression by inflammatory macrophages 

[76, 77], but we cannot exclude the possible presence of a small number of fibroblasts 

among the adherent macrophages. Collectively, these data indicated that the splenic 

adherent cells were splenic macrophages. 

 

Figure 4.7 Cell lineage check in hamster samples. We plot the enrichment (i.e. CPM) 
fold changes of markers of several different cells by comparing hamster 
splenic adherent cell samples to spleen samples. (*: the CPM expression 
value in hamster splenic cells was 0) 
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4.4.2 Highly proinflammatory environment in experimental VL 

A common feature shared by the majority of the top canonical pathways in spleen 

and splenic macrophages was the up-regulation of inflammatory cytokines, chemokines 

and their receptors. The significance of chemokines cell migration was also confirmed by 

GSEA. At least four out of the top ten enriched gene sets in spleen and splenic 

macrophages were associated with production, signaling and receptor activity of 

cytokines and chemokines. We therefore examined the differentially expressed cytokines, 

chemokines, and their receptors (Figure 4.8).  
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Figure 4.8 Regulation of cytokines and chemokines. Heat map of cytokine, chemokines 
and receptors in hamster spleen (A) and splenic macrophage (B) samples. 

 

In the whole spleen tissue, we found that many pro-inflammartory genes (e.g. 

TNFAIP2, TNFAIP3, IL1α, and IFNγ) were up-regulated and many anti-inflammaroty 

genes (e.g. il1ß, and IL24) were down-regulated during VL. Additionally, many 
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transcription factors that drive inflammation were up-regulated or predicted to be actived 

during infection. The up-regulated transcription factor mRNAs included STAT1, STAT2, 

STAT3, IRF1, IRF7, TBX21, XBP1, LITAF and MHC (XBP1, NLRC5). All are 

involved in interferon signaling and cytokine responses. Additionally, many transcription 

factors related to inflammatory response were predicted to be activated in the infected 

spleen tissue, including NFκB complex (REL, RELA, RELB), NFATC2 (T cell 

activation), STAT4, IRF3/5, IFI16, HMGB1, BCL10 (NFκB activator), CBP/P300, and 

DDIT3 (caspase activation, cytokine expression). As a result, we concluded the spleen 

environment was enriched with inflammatory signal during chronic VL. 

Notably, all differentially expressed inflammatory genes in splenic macrophages 

were up-regulated during VL (Figure 4.8B). This finding distinctly contrasts with data 

from in vitro infected mouse [78, 79] and human [80] macrophages. The published 

studies indicated that Leishmania infection had a silent or suppressive, rather than 

activated, effect on macrophage inflammatory gene expression. The difference is possibly 

the result of the complex inflammatory signal environment of the whole spleen, which 

would be absent from in vitro infected macrophages. 

The spleen environment has considerable influence on the activation status of 

splenic macrophages. In particular, the increased expression of the macrophage-

activating cytokines IFNγ, IL1α, TNF, and IL-21 are likely to play a key role in 

determining the macrophage phenotype. The splenic macrophages from infected animals 

also showed increased expression of toll-like receptor-4 (TLR4) and the cytokine 

receptors IL-15Rα, CSF2Rβ/IL-5Rβ (common subunit of the IL-3, IL-5, and GM-CSF 

receptors) and IL-21R that would amplify the effect of the proinflammatory environment.  
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4.4.3 Chemokines associated with myeloid cells migration 

The immune cells are critical for the generation of innate and adaptive immune 

responses. The spleen environment was enriched in chemokines and their receptors, 

which could influnce the immune cells of their migration and positioning [81].  

The chemokines CCL2, CCL3, CCL4, CCL5, CCL6 and CCL7 were highly 

expressed in spleen during VL. They act to recruit monocytes/macrophages. Meanwhile, 

the receptors of these chekmokines including CCR1 and CCR5 were significantly 

increased in the spleen and splenic macrophages. They could contribute to the 

accumulation of monocytes / macrophages. The macrophage recruitment capability of 

CCL2 had been experimentally demonstrated in mice infected with Leishmania chagasi 

[82]. The effects of these chemokines can be further amplified by the T cell response in 

infected animals [83]. We experimentally identified an increase in macrophages in the 

spleen during VL (see section 4.5.1a). 

Neutrophile could also be recruited by the increased expression of chemokins 

CXCL2, CXCL3, CXCL5, and CCL3 in the spleen and/or splenic macrophages (Figure 

4.8A). The up-regulated eosinophil chemoattractant CCL11 in the infected spleen may 

also contribute to the recruitment of neutrophils. When neutrophils quickly localize to the 

site of Leishmania inoculation, they phagocytose and kill the parasite, or become 

apoptotic. The apoptosis could promote the subsequent infection of resident or 

inflamatory macrophages [84, 85]. The signalings of neutrophil chemoatractants and 

recruitment were activated. However, we did not find any significant increase in 

neutrophils in the spleen during VL (data not shown). Therefore, neutrophils are more 
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likely to become apoptotic if they could migrate to the infected spleen, and further 

promote the parasite infection. 

Additionally, chemokines with roles in Th1 (CXCL9, CXCL10, CXCL11), and 

Th2 (CCL8, CCL17, CCL22) cell recruitment were significantly increased in the infected 

spleen [81]. CXCL16 and its receptor CXCR6, known to recruit NKT cells and innate 

lymphoid cells, were significantly up-regulated in the spleen during VL.  

The findings above demonstrate that the diverse chemokine expression in infected 

spleen contribute to the accumulation of immune cells in the spleen. Additionaly, we 

found enriched and/or up-regulated transcription factors (Egr2, SFPI1, IRF8 and AP1) in 

the splenic macrophage, which promote myelopoiesis [86, 87]. Therefore, the local 

environment may also contribute to the accumulation of myeloid cells in the spleen. 

4.4.4 Mixed polarized/activated splenic macrophages 

Macrophages have dual roles during Leishmania infection: mediating parasite 

killing and controlling tissue damage and repair [88]. Macrophages exhibit considerable 

plasticity in their activation state, which depends on cues received from the local 

environment [89]. Distinct polarization states are evident when purified macrophage 

populations are exposed to defined activation stimuli [90]. At the extremes of the 

polarization spectrum, M1 macrophages are important for the clearance of intracellular 

pathogens including Leishmania parasites [91], while M2 macrophages are protective 

against helminths and have anti-inflammatory and tissue repair functions [88, 92]. 

However, accumulating evidence indicates that in complex biological systems the 

polarization of macrophages does not always fit neatly within the dichotomous M1-M2 

classification system [90].  
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We determined the splenic macrophage activation phenotype by evaluating the 

expression of associated genes. Splenic macrophages from hamsters with VL had a 

significantly increased expression of genes characteristic of both M1 (CXCL9, CXCL11, 

IL1B, IL6, FCGR1A, IDO, IRG1, IFNγ, STAT1, CCL3, CCL5) (Figure 4.9) and M2 (see 

below) polarization. The fold changes of the M1-associated genes were generally higher 

than those of M2-associated genes. Moreover, the majority of M1-associated genes were 

up-regulated and less than a half of M2-associated genes were up-regulated. All of these 

data suggested splenic macrophages had an M1 dominant phenotype. The up-regulation 

of IL-1β, IFNγ and IL-6 in splenic macrophages (Figure 4.9) indicated an additional 

inflammatory effect on the macrophages through paracrine or autocrine activation. IFNγ, 

IL1β and IL6 are supposed to increase activation of other M1 markers such as NOS2, 

CXCL13, which, in fact, were not significantly expressed in the infected spleen or the 

splenic macrophages.  
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Figure 4.9 Regulation of M1 genes. We showed heat maps for M1 genes in hamster 
spleen (A) and splenic macrophage (B) samples. The regulations of selected 
M1 genes were further confirmed using PCR in spleen (C) and splenic 
macrophage (D). 

 

The splenic macrophages also showed increased expression of M2-associated 

transcripts, including Arg1, IL-10, SOCS2, CCL17, and Chi3L1 (Figure 4.10). The Arg1 

expression can be driven by IL-4, growth factor receptor signaling and parasite-induced 

STAT6 activation [74, 93]. The induction of arginase is likely to be a result of the 
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increased expression of IL-10 and IL-10R in splenic macrophages, which could suppress 

T cell or macrophage effector function [94, 95]. All of these functioned to dampen the 

effects of the proinflammatory cytokines and promote infection. In contrast, some M2-

associated markers, such as CD163 and MSR1 (Figure 4.10), were down-regulated. The 

angiogenic factors (VEGFA, EPHB1/4, DLL4, LYVE1, ANGPT1, NRP1) displayed no 

up-regulation in splenic macrophages, which are characteristic of M2 activation. These 

findings suggest that the splenic macrophages were only partialy M2-like macrophages. 
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Figure 4.10 Regulation of M2 genes. We showed heat maps for M2 genes in hamster 
spleen (A) and splenic macrophage (B) samples. The regulations of selected 
M2 genes were further confirmed using PCR in spleen (C) and splenic 
macrophage (D). 

 

In some cases M1 and M2 markers were discordant between the whole spleen 

tissue and splenic macrophages. An example of this is the SOCS family of proteins that 
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regulate macrophage polarization [96]. SOCS1, which is a critical determinant of IL-4-

induced M2 polarization [97], was up-regulated in both the infected spleen tissue and 

splenic macrophages. However, SOCS2, which is also associated with M2 responses 

[96], was down-regulated in infected spleens but up-regulated in splenic macrophages. 

SOCS3, an M1-associated regulator [96], was induced in spleen tissue but not in splenic 

macrophages.  

All the above data suggested that the hamster splenic macrophages, after 28 days 

of Leishmania infection, were characterized with a mixed M1 and M2 phenotype. We 

also performed RNA view experiments to examine this hypothesis. We utilized IDO1 and 

CXCL9 as markers for the M1 macrophage activation and Arg1 as the M2 marker. The 

results showed the splenic adherent cells had all four different combinations: double 

negative, single positive for M1 or M2 marker, and double positive. This finding is 

consistent with our hypothesis that splenic macrophages presented mixed polarization 

and activation during VL. 

4.4.5 Regulators of splenic macrophage polarization in VL 

To better understand the macrophage polarization signaling, we investigated the 

M1/M2-relevant specific upstream transcription factors that were predicted by IPA to be 

activated or inhibited.  

In the whole spleen tissue, many transcription factors associated with either M1 

and/or M2 were up-regulated and also were predicted to be activated, including TBX21, 

STAT2, IRF7, IRF1, STAT1, STAT3 and so on. Some down-regulated transcription 

factors were predicted to be inhibited including NKX2-3, KLF4 and KDM58. We also 

found some up-regulated transcription factors were predicted to be inhibited, including 
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CDKN2A, SARCB1, RBL1, and NUPR. Additionally, we identified many transcription 

factors without differentially expressed genes that were also predicted to be activated or 

inhibited. We examined the relations among all of the differentially expressed 

transcription factors and M1/M2 genes (Figure 4.11). The results indicated that IRF7 was 

connected only to genes associated with M1 activation but many transcription factors had 

dual roles in the regulation of the M1 and M2 genes. The most dominant hubs regulating 

both M1 and M2 markers were STAT1 and STAT3. All were up-regulated and also 

predicted to be activated.  

STAT1 and STAT3 both are members of the signal transducers and activators of 

the transcription family of transcription factors. STAT1 typically promotes inflammation 

and inate immunity through poloarizing macrophages into M1 phenotype. STAT3 is 

believed to enhance cell proliferation, motility and immune tolerance, through polarizing 

the macrophage into M2 phenotype. Although the functions of STAT1 and STAT3 

appear oppose each other, they can be activated by or can themselves activate many 

common cytokines and growth factor receptors. For example, both Type I and II IFNs 

have STAT1 as a central mediator and have the ability to acitivate STAT3. Both STAT1 

and STAT3 can be actiavted by IL-6. The common downstream regulated M1/M2 genes 

for STAT1 and STAT3 include CCL5, IFNγ, FAS, IL1B, PSMB9, TNSF10, CXCL10, 

SOCS3, SOCS1, OASL, CCL2, AKT1, FCER1G, ARG1, and IL1R1. The balance of 

STAT1 and STAT3 in the expression or phosphorylataion levels may switch 

cytokine/growth factors between inflammatory and ani-inflammatory, leading to the 

mixed phenotype of macrophages. 
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Figure 4.11 Activities of transcription factors. We examined M1 and M2 genes, and the 
associatied transcription factors (TFs) in spleen. The transcription factors 
are colored in blue if they were predicted to be inhibited. Otherwise, they 
were predicted to be activated. Genes colored in red or green indicated 
whether they were up-regulated or down-regulated during VL. 

 

4.4.6 Role of IFNγ in macrophage polarization 

Consistent with previous studies in the hamster [75, 98, 99] and human model 

[100], IFNγ was highly up-regulated in the infected spleen tissue (FC=52.15, 

FDR<0.001) and splenic macrophages (FC=11.12, FDR<0.001). Many well-known 

IFNγ-responsive genes (e.g. CXCL9, CXCL10, CXCL11, IDO, IRG1) (Figure 4.9A) 
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were also up-regulated in VL spleen. These up-regulated M1-associated genes normally 

lead to activation of NOS2, which was notably absent in the VL hamster. This suggested 

a specific deficit in macrophage effector function in progressive VL [99, 101]. 

IFNγ is mainly secreted by T cells and NK cells, but murine and human 

macrophages may express IFNγ in response to IL12, IL18, LPS, IFNγ, M. tuberculosis, 

and Streptococcus pyogenes [102-106]. The IFNγ-producing macrophages were 

characterized as immature myeloid cells with protective ability against in vivo S. 

pyogenes infection [105]. T cell-derived IFNγ in whole spleen tissue aims to control this 

parasitic infection. As a positive regulatory loop, the T cell-derived IFNγ may induce the 

splenic macrophages to produce IFNγ. Without NOS expession, the IFNγ-producing 

macrophages may take on an anti-inflammatory or immunosuppressive function. 

Indoleamine 2,3 –deoxygenase (IDO), a IFNγ-induced M1-associated gene, was 

highly up-regulated in the whole spleen (FC=368.73, FDR<0.001) and splenic 

macrophages (FC=39.87, FDR<0.001). The increased expression of IDO may increase T 

tell tolorance [107], suppress host adaptive immunity such as anti-leishmanial T cell 

response [108] and polarize macrophages into M2 phenotype [109]. Thus the high level 

of IFNγ expression in VL would be expected to promote the development of macrophage 

and the killing of parasites, but it may paradoxically promote parasite growth and 

survival by inducing IDO1. Additional research is needed to understand the regulatary 

mechanisms. 

Immunoresponsive gene 1 (IRG1), another IFNγ induced gene, was also highly 

up-regulated in the VL whole spleen (FC=365.35, FDR<0.001) and splenic macrophage 

(FC=7.77, FDR<0.001). IRG1 regulates the fatty acid β-oxidation required for 
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mitochondrial ROS production [110]. The high expression of IRG1 suggests macrophage 

metabolism in VL is skewed toward the use of fatty acid oxidation. Peroxisome 

proliferatior-activated receptor gamma coactivator 1 beta (PPARGC1B) (FC=2.52, 

FDR=0.008), and acyl-Coenzyme A dehydrogenase (ACADL) (FC=1.49, FDR=0.001) 

were up-regulated in the spleen. Both can induce the macrophage program of fatty acid 

oxidation [111]. M2 macrophages in murine, but not in human, use fatty acid oxidation to 

meet their metabolic needs [112, 113]. The metabolic alteration caused by IRG1 may also 

promote the M2 macrophage polarization. 

4.4.7 Dysregulated tissue repair mechanisms in VL 

Fibrosis was observed during chronic VL in humans [114] and dogs [115]. The 

fibrosis pathway (hepatic firobsis) was highly represented in both the spleen tissue and 

the splenic macrophages (Figure 4.5). GSEA also revealed a cluster of collagen and 

extracellular matrix related gene sets enriched in the uninfected control samples (Figure 

4.6). We found many genes, related to tissue repair, remodeling and fibrosis, were 

differentially expressed in both spleen tissue and splenic macrophages (Figure 4.12). Pro-

fibrogenic genes, such as TIMP1, CCL2, CCL3, CCL11, CCL12 and Chi3L1 [116-118], 

were domaintly up-regulated during infection. However, genes associated with fibrosis, 

such as COLA1, IGFBP3, PDGFRβ; MMP2; IGF-1, FGFR1, VEGF and TGFB-R2, 

[119-125], were down-regulated during infection. The anti-fibrotic gene MMP9 [126] 

was highly up-regulated during infection in the spleen. These findings suggested that the 

spleen displayed no fibrosis at this point during infection (28 days) but with great 

potential to form fibrosis. Further examination showed that the fibrosis related 
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proinflammatory cytokines were up-regulated in the VL spleen and splenic macrophages, 

which may also contribute to the formation of fibrosis in the spleen. 

 

Figure 4.12 Regulation of fibrosis-related genes. We show heat maps for the fibrosis-
related genes in hamster spleen (A) and splenic macrophage (B) samples 
during VL. 

 

4.4.8 Suppressed glucocorticoid receptor signaling in VL 

The glucocorticoid receptor (GR) signaling pathway was the most highly 

represented pathway in the splenic macrophages, which was also enriched in whole 
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spleen tissue (Figure 4.5). This pathway in the splenic macrophage was characterized by 

the up-regulation of the heat shock protein family members (HSP90, HSP70) and the 

down-regulation of DUSP1 (dual specificity phosphatase 1) and SGK1 (Serum and GC 

regulated kinase) (Fig 4.13). HSP90/70, together with several other proteins, form a 

heterocomplex that is essential for steroid binding [127]. DUSP1 is the canonical MAPK 

phosphatase. We identified down-regulation of MAP3K and MAP3K14 in the infected 

spleen. The MAPKs induced expression of inflammatory mediators [128, 129] may 

further decrease the anti-inflammatory effects of the GC pathway. Moreover, the anti-

inflammatory glucocorticoids have been associated with M2 alternatively activated 

macrophages [130]. These finding may partially explain why the splenic macrophages 

appeared to be M1 phenotype dominant (see section 4.5.1d). 



92 

 

Figure 4.13 Regulation of GR signaling pathway. We show heat maps for the genes 
related to GR signaling in hamster spleen (A) and splenic macrophage (B) 
samples during VL.  

 

4.5 CONCLUSION AND LIMITATIONS 

In the current project, we have utilized the NGS-based approaches to study VL in 

Syrian golden hamster. We assembled a de novo splenic transcriptome for the hamster 

and then performed RNA-Seq differential expression analysis. The hamster system 
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showed dually activated macrophages and broad inflammatory nature. These were 

expected, but failed, to control the L. donovani parasite. These studies provide us many 

interesting directions for further research on VL. 

Across the entire experiment, we had several limitations. First, the RNA-Seq 

experiments study the organism at the transcriptome level without considering the post-

translation modification as discussed in Chapter 3. Second, a strand-specific sequencing 

approach were not implemented [131]. Third, although adherent splenic cells are 

enriched with splenic macrophages, their properties may not be representative of the 

macrophages infected with Leishmania parasites. The acknowledgement and 

understanding of these limitations will benefit our future research. 
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Chapter 5. Computational-Aided VEEV Live Attenuated Vaccine 

Design 3 

5.1 INTRODUCTION 

Vaccines are the most cost-effective agents to control and prevent viral infectious 

diseases [132]. The development of vaccines, unfortunately, is very time consuming and 

is characterized by low success rates. The average time to develop a vaccine is about 11 

years, and even worse, the average probability that it will ever enter the market is only 

about 6% [133]. It is thus a critical challenge to shorten the preclinical process and 

increase the success rate, especially considering that many existing and emergent 

infectious diseases have no useful vaccines [134].  

In the current project, we utilized bioinformatics tools to accelerate vaccine 

development for the Venezuelan Equine Encephalitis Virus (VEEV). VEEV is a positive-

sense single-stranded RNA arbovirus in the family Togaviridae, genus Alphavirus [135]. 

The genome length is 11.4kb including two reading frames that encode for two different 

polyproteins. The first polyprotein includes four non-structured proteins: nsP1 (negative 

strand RNA synthesis, RNA capping), nsP2 (helicases, proteinase), nsP3 (RNAsynthesis) 

and nsP4 (RNA-dependent RNA polymerase). These four proteins in total cover about 

two thirds of the genome from the 5’ end (Figure 5.1). The second polyprotein from the 

other third of the genome mainly encodes the capsid protein and the envelope 

glycoproteins (Figure 5.1). As an NIAID category B priority pathogen, VEEV 

periodically causes epidemics in equids and humans, though it typically circulates 

between rodents and mosquitoes in an enzootic life cycle [136-140]. VEEV has a 

                                                 
3In collaboration with Dr. Naomi Forrester’s group at UTMB. 
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mortality rate of 50-90% in horses, resulting in significant economic impact in VEEV-

endemic areas [141]. In humans, VEEV can cause encephalitis and is encountered 

throughout the Americas [135]. Without specific drugs to treat the VEEV infection, the 

current treatments are merely supportive [142]. All of these factors make VEEV not just 

a public health threat, but also a potential bioweapon and a bioterrorist agent [142, 143]. 

It is thus imperative to develop a safe and effective vaccine against VEEV.  

Like most RNA viruses, the replication of VEEV in a host forms a spectrum of 

virus mutants. The mutation rate has to be well-maintained for the virus to survive. Too 

many mutations incorporated into the viral progeny results in a greater number of unfit 

progeny, ultimately leading to a decrease or even extinction of the virus. Conversely, too 

few mutations results in little variation, thereby reducing the ability of viruses to adapt 

their overall fitness to changing environments and further impairing the viral 

transmission [144, 145] A live-attenuated vaccine Tc-83 was created to prevent the 

VEEV infection [146]. However, 20% of the Tc-83 recipients showed reactogenicity to 

the vaccine and another 20% showed failure to elicit a positive seroresponse [147]. These 

problems can be attributed to the fact that live-attenuated vaccines have the potential to 

revert to wild type or to restore virulence via compensatory mutations. In fact, Tc-83 has 

been shown to be able to reverse back to wild type in as few as three serial IC passages in 

infant mice [148]. The viral mutations have been treated as by-products of the RNA-

dependent RNA-polymerase (RdRp) because RNA viruses have no proof-reading domain 

or 3’ to 5’ exonuclease activity [149]. We proposed to increase the replication fidelity of 

Tc-83 by introducing specific mutation(s) within the sequence region of RdRp. 

5.2 OBJECTIVES AND EXPERIMENTAL DESIGN 
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To increase the efficacy of the Tc-83 vaccine and to enhance its replication 

fidelity, we collaborated with Dr. Forrester’s group to introduce mutation(s) inside the 

RdRp sequence and to assess their influence on replication fidelity. The mutant 

constructs were expected to have fewer single nucleotide polymorphism(s) (SNP) if they 

are more stable than the Tc-83 strain. 

In total, six Tc-83 mutants with one or multiple mutations in the RdRp region 

were created. The three mutations (G14R, E37G, and A106T) in the 5’ end resulted from 

the point mutations C�G, A�G and G�A, which were created by passaging Tc-83 in 

the presence of three different mutagens: viz. Ribavirin, 5’ Fluorouracil, and Azacytidine 

(Figure 5.1), respectively. A C488Y mutation at the 3’ end of the RdRp was previously 

identified in the Chikungunya virus [150], a virus from the same family and genus as 

VEEV. Four of the six Tc-83 mutants were individual mutants while another mutant 

included all three mutations in the 5’ end. The last mutant incorporated all four 

mutations. Dr. Forrester’s laboratory contributed to the mutants’ identification and 

assessment. Please refer to the manuscript (M. Guerbois, et. al., not shown) for detailed 

information.  
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Figure 5.1  Illustration of RdRp mutants. The six mutant constructs are: G14R mutant, 
E37G mutant, A106T mutant, C488Y mutant, 3x (G14R, E37G and A106T) 
mutant, and 4x (G14R, E37G, A106T and C488Y) mutant 

 

Next generation sequencing was utilized to assess the genetic stability of these six 

RdRp mutants by comparing them with the Tc-83 wild type, both in vitro and in vivo. In 

one experiment, all six mutants, as well as Tc-83 were passaged once independently (p1) 

in African green monkey kidney (vero) cells by incubating the cells with the virus for 48 

hours before collecting the virus and extracting the viral RNA. In another experiment, 

each mutant was subjected to five serial intracranial passages (p5) in six-day-old CD1 

mice. In each passage, the mice were euthanized 48 hours after inoculation of ca. 104 

PFU in a 20ul volume per animal. RNA extracted from the mouse brain p5 virus as well 

as those from the vero p1 experiment above, was sequenced using the UTMB Illumina 

HiSeq 1000. The cDNA libraries were first prepared using the Illumina TrueSeq RNA 

Sample Preparation kit under conditions recommended by the manufacturer (Illumina, 

San Diego, CA). Then TrueSeq PE Cluster Kit v3 and TrueSeq SBS kit v3 were used to 

form clusters and further sequence the cDNA templates. We used the CASAVA-1.8.2 

software to convert base calls to raw RNA-Seq sequence reads.  

5.3 INTRA-HOST VARIATION DISCOVERY 

The quality of sequence reads from the Illumina HiSeq 1000 was determined 

using the FastQC v0.10.1 software [151]. In order to obtain overall high quality reads, 

nucleotides were trimmed when more than 50% of the bases were unresolved at the ends 

of the sequences. Specifically, because of very high N (unknown) content percentages (> 

50%) (Figure 5.2A), we trimmed the first base of the forward reads and the last two bases 
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of the reverse reads for the sequencing of the vero p1 virus. The sequencing of the mouse 

brain p5 viruses, however, typically generated a low N content, ranging from 0.00% to 

0.15% across the whole position. We were thus able to use all the reads without 

trimming. We further removed artifact sequences using the FASTX-Toolkit v0.0.13 

[152]. This step is not necessary, however, when the reference genome is well-defined 

and the mutation rate is low because the alignment process requires very high 

homological similarity to report a successful hit. For example, the default parameters for 

Bowtie only allow no more than two mismatches in the first 28bp seed. As previously 

discussed, VEEV has a much higher mutation rate so that the homological similarity 

would be relaxed when mapping to the Tc-83 genome. The aim of the artifact filter here 

was to reduce the false discovered mutations introduced by the artifacts. 

 

 

Figure 5.2 RNA-Seq data quality check and sequencing depth examination. Figure A is 
a representative plot of the N content in the vero p1 viruses. Figure B is a 
representative plot of the sequencing depth for all vero p1 and mouse p5 
viruses. 

 

The acceptable forward and reverse reads after trimming and/or filtering were 

aligned to the Tc-83 reference genome (GenBank Accession No. L01443) using the 
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Segemehl v0.1.6 software [153]. Segemehl maps short sequencing reads to a reference 

genome with detection of both mismatches and gapped matches (insertion and deletion). 

Compared to other alignment software, such as Bowtie and Tophat, the required 

homological similarity between the aligned read and the hit region is generally lower. As 

a test, we utilized the unmapped reads from a human spleen sample classified by 

Bowtie/TopHat as input reads for Segemehl and found 37.2% of them had at least one hit 

in the hg38 human genome. The lower homological requirement thus makes Segemehl 

more suitable for variation detection in quasispecies and viruses with high mutation rates 

such as VEE. We only reported the best alignments for each sample when mapping the 

sequence reads against the Tc-83 genome. All mutants and Tc-83 vero p1 viruses 

returned alignment successful rates larger than 98%, and the mouse p5 viruses had rates 

ranging from 92.5% to 98.1%. The alignment was then reformatted and checked for 

coverage using SAMtools 0.1.16 software [154]. The sequencing depth is > 7 K in the 

whole genome except for two short regions at either end (Figure 5.2B). In fact, each 

position of the Tc-83 genome was covered by approximately 8k fragments / reads. The 

sequencing depths from the vero p1 and mouse brain p5 viruses are comparable. In 

summary, we achieved very deep sequencing of the VEEV samples and Segemehl 

enabled us to map highly mutated reads to the Tc-83 genes. 

The mismatches and gapped matches identified during alignment have three main 

sources: biological mutations, sequencing errors and alignment algorithms. Our ultimate 

goal is to distinguish the true biological mutations from errors due to the other two 

sources. During an RNA-Seq experiment, the genomic materials are randomly 

fragmented. These fragments are then randomly selected to form clusters and finally, they 
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are sequenced. In theory, the biological mutations should be randomly distributed across 

the whole fragment / read with little to no bias in the sequencing positions. In contrast, 

errors from sequencing and alignment algorithms are more likely to be position 

dependent because of their sequential replicate and hit procedure. An alignment file 

usually includes sections of CIGAR string and MD tag. CIGAR string describes the bases 

alignment (either match/mismatch) with a given reference. Meanwhile, MD tag achieves 

SNP/INDEL information. We examined the relation between the position and alignment 

of the mismatches and gapped matches in our samples based upon the CIGAR string and 

the MD tag. We used the E37G mutant mouse brain p5 virus as a representative example. 

Among all of the alignments, about 85% of them had perfect matches; about 8% had only 

mismatches; and the rest had gapped matches (Figure 5.3A). The mismatches / insertions 

/ deletions had a higher frequency at the ends of the reads than in-between (Figure 5.3B, 

C, D). Additionally, we noticed that the number of mismatches and gapped matches in 

forward reads and reverse reads were different, even though their patterns are the same 

(Figure 5.3). We, as well as many other research groups, believe that these non-uniform 

patterns are mainly associated with the sequencing and alignment procedures. The 

reliable biological mutations are expected to be in both the forward and reverse reads and 

could also be identified in multiple regions of the reads. 
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Figure 5.3 Alignment statistics and patterns. We used E37G mutant mouse brain p5 as 
a representative sample in all four plots. Figure A shows statistics of the 
alignment results. The “total hits” are all results reported by Segemehl. The 
“alignment matches” are matches without insertions or deletions including 
perfect matches and matches with mismatches. The “perfect match” means 
the whole reads can be perfectly aligned to the reference genome without 
mismatches. Figure B-D shows the event frequency across the whole reads. 

 

To identify biological variations, the haplotypes (i.e. a set of DNA variations that 

tend to be inherited together) were constructed using the shotgun mode of local analysis 

in Shorah v0.6 software [125, 126]. We covered each position with three different 

windows, so that the position would locate in the first third of the first window, the 

second third of the second window, and the last third of the last window. In each window, 

Shorah identified haplotypes using those reads that spanned at least 85% of the region. 

Typically, more than one haplotype was generated in each window. The first (main) 

haplotype with the most supported reads always has the largest posterior probability. The 
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other haplotypes had fewer supported reads and / or smaller posterior probabilities. 

Variations are defined as the difference between the selected haplotypes and the sequence 

of the reference genome in the same window.  

We first pooled together all of the main haplotypes and compared them with the 

Tc-83 reference genome (GenBank Accession No. L01443) in order to identify the main 

variations. The vero p1 Tc-83 virus showed six main variations (Table 5.1). Five of them 

were synonymous mutations with no change in the encoded amino acid. The only 

missense mutation, in which a valine was substituted by an alanine, occurred in the E1 

protein. These mutations were consistently found in all mutant constructs of vero passage 

1 and mouse brain passage 5. As expected, the mutations we introduced to create the 

construct persisted, indicating that those mutants are stable with no reversion to wild 

type. Additionally, a couple of other mutations were identified in the mutants. We noticed 

that all 3x and 4x mutants had a mutation at position 401 (C→G) in nsP1, which is not 

observed in the individual mutants or the Tc-83 virus. All 3x mutants had two mutations 

at position 8032 (C→A) in capsid protein and 9760 (T→G) in E2 protein, which were not 

observed in other constructs. Both 3x and 4x mutants in mouse brain p5 had a unique 

mutation not shared by others. Excluding these two newly issued mutations, all of the 

others were synonymous mutations (Table 5.1). The main variation assessment indicated 

that the mutation pattern may be different from vero cells to mouse brain and that the four 

point mutations interact with each other. However, no structure for an alphavirus RdRp is 

available so far. Therefore, we do not know the precise placement of the mutations or 

how they interact, which limits our understanding of how they work. 
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All of these main variations were always discovered in all three windows. They 

were the most favorable nucleotides in the corresponding constructs and they were shared 

by the majority or even all of the viruses in the colons. To discover the rare mutations, we 

substituted the identified main variations inside the Tc-83 reference genome in order to 

re-run Shorah for variation detection. Rather than using only the main haplotypes, we 

collected all of the haplotypes with a posterior probability larger than 0.9. All variations 

were collected. Using the A106T mutant mouse p5 virus as an example, we detected from 

the forward (reverse) reads 12,501 (13,554) variations, including mismatches, insertions 

and deletions, from the first windows, 324 (353) variations from the second windows, 

and 292 (317) variations from the third (last) windows. Among them only 77 (100) 

variations appeared in two or three different windows. As discussed previously, the 

mutations from only one window were more likely to be derived from sequencing and 

alignment errors. To reduce the effects of the sequencing and alignment errors, we only 

passed those variations that were detected in two or three different windows for statistical 

tests including strand bias and the Benjamini-Hochberg multiple testing correction [127]. 

We used FDR < 0.05 as a cut off. A variation is believed to be a real biological variation 

when the haplotype is found in both the forward and the reverse reads. The number of 

final variations (both SNP and INDEL) and SNP only at vero p1 and mouse brain p5 are 

shown in Table 5.2. In the vero p1 virus, the 3x mutant had the fewest variations and zero 

SNPs, indicating the highest replication fidelity. The 4x mutant had the most variations, 

many more than the Tc-83 wild type. The variations in other mutants were comparable to 

Tc-83. In contrast, all mutants in mouse brain p5 showed fewer variations and SNPs than 

Tc-83. 
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We further checked the main mutations of their ability to revert back. All vero p1 

viruses, except the 3x mutant, had some sequences with T in position 10356 (Figure 5.1). 

This is the only main and missense mutation detected in the Tc-83 virus. This mutation 

changed a valine to an alanine in E1 protein. E1 becomes activated when E2 binds to host 

cells. The activated E1 allows the virtual genome to escape from the endosome/virus 

particle and enter into the cytoplasm. We also found that three individual mutants of vero 

p1 virus had wild type nucleotide in position 1616 (Figure 5.1). The A106T mouse p5 

virus had reverted mutations. The difference between the vero p1 and mouse brain p5 

viruses indicated that the mutations may be environment dependent. Moreover, we found 

that the A106T mutant vero p1 viruses had a rare G14R mutation; and the G14R mutant 

vero p1 viruses had a rare E37G mutation (Figure 5.1). This, from another perspective, 

indicated that these three mutations can have interactions. 

 



105 

Protein nsP1 nsP4 Capsid E2 E1 

Position (bp) 401 1613 1616 1619 5724 5794 5970 7147 7208 8032 8805 9760 10356 10673 10900 

Start 399 1611 1614 1617 5724 5793 5970 7146 7206 8030 8804 9758 10355 10673 10899 

Ref C A C T G A G G T C A T T A A 

Ref Codons CTC GAA GCC GAT GGT GAA GCA TGC CCT ATC CAA CCT GTT AAA GAA 

Ref Amino Acid Leu Glu Ala Asp Gly Glu Ala Cys Pro Ile Gln Pro Val Lys Glu 

Var G G A C C G A A C A T G C C G 

Var Codon CTG GAG GCA GAC CGT GGA ACA TAC CCC ATA CTA CCG GCT CAA GAG 

Var Amino Acid Leu Glu Ala Asp Arg Gly Thr Tyr Pro Ile Leu Pro Ala Gln Glu 

vero 

p1 

G14R 
 

✔ ✔ ✔ ✔ A→G 
      

✔ 
 

✔ 

E37G 
 

✔ ✔ ✔ 
 

✔ 
      

✔ 
 

✔ 

A106T 
 

✔ ✔ ✔ G→C 
 

✔ 
  

C→A 
  

✔ 
 

✔ 

C488Y  
 

✔ ✔ ✔ 
   

✔ 
    

✔ 
 

✔ 

3x ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
  

✔ 
 

✔ ✔ 
 

✔ 

4x ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
    

✔ A→C ✔ 

Tc-83 
 

✔ ✔ ✔ 
        

✔ 
 

✔ 

mouse 

p5 

G14R 
 

✔ ✔ ✔ ✔ 
       

✔ 
 

✔ 

E37G 
 

✔ ✔ ✔ 
 

✔ 
      

✔ 
 

✔ 

A106T 
 

✔ ✔ ✔ 
  

✔ 
     

✔ 
 

✔ 

C488Y  
 

✔ ✔ ✔ 
   

✔ 
    

✔ 
 

✔ 

3x ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
  

✔ ✔ ✔ ✔ 
 

✔ 

4x ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ 
    

✔ ✔ ✔ 

Tc-83 
        

✔ 
   

✔ 
  

Table 5.1 Main variations examination. Information about the main variation is listed in the top part of the table. The corresponding 

box will be checked (✔) if a construct has that main variation. We use under line to indicate that the wild type nucleotide 
and main variation are co-existing. We clearly show the mutations if one construct has the main variation detected from 
other constructs as rare mutations. 
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A. Variations in vero P1 viruses 

 Variants 
Fold change 

from Tc-83 
SNP's 

Fold change 

from Tc-83 

Tc-83 G14R 8 -1.13 4 1 

Tc-83 E37G 9 1 6 1.5 

Tc-83 A106T 12 1.33 8 2 

Tc-83 C483Y 11 1.22 6 1.5 

Tc-83 3x 3 -3 0 NA 

Tc-83 4x 24 2.67 19 4.75 

Tc-83 9 1 4 1 

 

B. Variations in mouse brain P5 

 
Variants 

Fold change from 
Tc-83 

SNP’s 
Fold change 
from Tc-83 

Tc-83 G14R 73 -1.22 44 -1.39 
Tc-83 E37G 61 -1.46 42 -1.45 
Tc-83 A106T 65 -1.37 40 -1.53 
Tc-83 C483Y 70 -1.27 47 -1.30 
Tc-83 3x 62 -1.44 42 -1.45 
Tc-83 4x 73 -1.22 52 -1.17 
Tc-83 89 1 61 1 

Table 5.2 Number of variants and SNPs identified during NGS sequencing of the 
constructs and the fold changes from the wild-type Tc-83. 
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5.4 RESULTS AND DISCUSSION 

The VEEV is an arthropod-borne virus transmitted by mosquitos. To reduce the 

burden of the disease, it is more effective to protect the population via vaccine than to 

control the mosquito population. The current vaccine for VEEV is a live attenuated 

vaccine Tc-83, which could potentially revert to wild type or restore virulence via a 

compensatory mutation. To overcome this severe drawback, we validated a series of 

high-fidelity mutations of Tc-83 in the model systems. 

The six RdRp mutant constructs and Tc-83 wild type were examined for their 

resistance to 5FU (Figure 5.4) on vero cells. The 3x mutant had a similar replication 

pattern to Tc-83, but the fold change compared to no treatment controls, was markedly 

smaller than those of the Tc-83 wild type. In other words, the 3x mutant showed 

increased resistance to the mutagen, which is consistent with our previous finding that the 

3x mutant is the most stable construct in the vero p1 virus. C488Y mutant showed no 

difference from the wild type in fold change, which suggested no obvious resistance to 

mutagens 5FU. The fold change of the 4x mutant was between that of the 3x and C488Y 

mutants, similar to the pattern in the main variation examination, but not a simple 

superposition or subtraction. The patterns in the other three individual mutants were not 

consistent with those of the Tc-83, C488Y, 3x or 4x mutants. This could also be 

explained by our conclusion from the previous main haplotype examination: all of the 

individual mutations (G14R, E37G and A106T) were stable, and each had the potential to 

introduce the other two mutations. All three mutations function in concert. Thus, the 

resistance pattern of the three individual mutants was not as clear as the 3x mutant. 
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Figure 5.4 Examination of the resistance to 5’ fluorouracil treatment (5FU). Each 
construct was grown in the presence of three different concentrations of 
5FU and at three different multiplicities of infection (MOI). Plot shows the 
fold changes compared to no 5FU treatment under the same conditions. This 
experiment was designed, performed and analyzed by Dr. Forrester’s 
research group. 

 

For the viruses passing in mouse brain, we utilized the RNA-Seq approach to 

discover variations in p5 colons. Furthermore, we verified, using Sanger sequencing, the 

changes in the nucleotide sequence in passage 10 (p10) colons. In theory, with deep 

sequencing, the RNA-Seq approach should be more sensitive than the Sanger sequencing. 

In other words, for the same sample, the RNA-Seq approach should detect more and 

possibly even all mutations when compared to the Sanger sequencing approach. In all p5 

and p10 viruses, we identified a set of three synonymous mutations in the nsP1 in 

contiguous amino acids at nucleotide positions 1613, 1616 and 1619. We noticed that p5 

and p10 viruses also had some consistent mutations. For instance, p5 and p10 3x mutants 

had an A to T mutation in nucleotide position 8805, which changed a glutamate to a 

leucine in the capsid protein. P5 and p10 4x mutants had an A to C mutation in nucleotide 

position 10673, which changed an alanine to a lysine in the E1 protein. These two 

mutations were unique to the corresponding constructs and both appeared only in the 
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mouse brain but not in the vero passages. However, not all mutations found in the p10 

mouse by Sanger sequencing were found in the mouse p5. The p5 virus also included 

some mutations not found in the p10 virus. Considering the sensitivity of these two 

approaches, we draw the conclusion that the mutation occurred progressively and may 

disappear after a number of replications. 

All mutant constructs had fewer variants and SNPs compared to the Tc-83 in the 

mouse brain passing 5 (Table 5.2B). We hypothesized that the RdRp mutant has high-

fidelity, which would be more adaptable to the brain environment but could lead to 

attenuation in mouse models due to their inability to move easily between tissues. The 

constructs were validated in a lethal mouse model for Tc-83. The viruses were injected 

into 6-day old mice via the intra-cranial route and the sub-cutaneous route. In the intra-

cranial route, the 3x mutant showed more virulence with increasing mortality than the Tc-

83 wild type, while the other constructs were similar to Tc-83 but with a slightly shorter 

mean time to death. In the sub-cutaneous route, the 3x, 4x and C483Y constructs 

exhibited significantly reduced mortality compared to the wild-type Tc-83. These 

findings support our previous hypothesis that the RdRp mutant with high fidelity can 

replicate in the mouse brain, but reduces the ability of the virus to travel from the 

inoculation site into other tissues and, finally, into the brain where it causes death.  

We further tested the effectiveness of Tc-83 and the RdRp mutants as vaccines in 

an established adult model of VEEV with 7-week old CD-1 mice. Given a lethal 

challenge with wild-type VEEV (strain 3908 subtype intra-cranial), these animals 

exhibited no weight loss or viremia illness. Every vaccinated mouse exhibited a strong 

neutralizing antibody response in four weeks post-vaccination. In fact, all of the 
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constructs showed a higher neutralizing antibody response than the wild type Tc-83. 

Considering the report of failure to elicit a positive seroresponse by Tc-83, the higher 

antibody titer confirms that Tc-83 RpRd mutants can enhance the effectiveness of wild 

type Tc-83 as a vaccine.  

5.5 CONCLUSION AND LIMITATIONS 

In the current project, we assessed the replicate fidelity of VEEV mutant 

constructs from NGS data through a computer-aided approach. The same method can 

also be used to discover the essential mutations that contribute to the virus transmission 

across multiple environments. For example, we could distinguish VEEV populations that 

are isolated in the midgut of the mosquito from the ones that are able to traverse to the 

mosquito salivary gland. These approaches will help us to understand more about the 

VEEV intra-host variation, and further accelerate new live attenuated vaccine 

development. Moreover, this methodology is extensible to live attenuated vaccine 

development in other RNA viruses. 

The current project also has several limitations. We discovered that when making 

the RdRp mutants, we accidentally used a different clone of Tc-83 which already had 

three mutations at 1613, 1616, and 1619. Second, we utilized the Illumina HiSeq 

platform for sequencing. This platform uses the clonal amplification template, which may 

introduce replication mutations during the sequencing library preparation. This type of 

error could be reduced if the single molecule template were used. In other words, the 

results would likely be more reliable if sequencing platforms such as PacBio or Oxford 

nanopore were used instead. 
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Chapter 6. Dirichlet Process Mixture Integrated Ensemble Methods 

6.1 INTRODUCTION 

A learning algorithm is built by summarizing rules from a given training dataset. 

It then functions to predict an output value given some new input values. The prediction 

usually cannot be solved exactly, which is known as inductive bias. Due to this inductive 

bias, it is often difficult to determine whether a single machine learning model is 

overfitting or underfitting the data [155]. Overfitting occurs when the learning model is 

excessively complex relative to the amount of data available and thus performs much 

better for the training dataset than a testing dataset. Meanwhile, underfitting performs 

better for a test dataset than the training dataset. Ensemble methods incorporate multiple 

individual machine learning models by assuming that their expertized predictive spaces 

are different and can be complemented by each other [156]. With their constituent 

individual models, ensemble methods create an integrated model, which is characterized 

by high performance and a low risk of selecting a poor model. Ensemble methods excel 

in building models for data with relatively small sample sizes, high-dimensionality and 

complexity patterns [157].  

Ensemble methods are expected to perform better than their component single 

machine learning models because of the diversity of the individual models within the 

ensemble. The influence of model diversity on prediction abilities is illustrated in the 

following example. We will predict a new dataset using three models. Each model has an 

accuracy rate of 0.8, which corresponds to an 80% confidence level for correct 

prediction. If the models have maximum diversity (i.e. all the models are entirely 
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independent of each other), we can take the majority prediction as the final result. This 

corresponds to an accuracy rate of 0.8 * 0.8 * 0.8 + 3 * 0.2 * 0.8 * 0.8 = 0.896. The 

performance of ensemble methods generally exceeds that of any single machine learning 

algorithm. If the models have the lowest diversity, (i.e. all the models are the same), we 

can only obtain an accuracy rate of 0.8, the same as any single model. Therefore, the 

effectiveness of an ensemble method is largely dependent upon the diversity of its 

component models. 

Bagging and adaptive boosting (AdaBoost) are two of the most widely used 

ensemble algorithms. Both bagging and AdaBoost create various individual models by 

using different training datasets, which are randomly selected in bagging but are biased to 

the previously misclassified samples in AdaBoost. All of the individual models form a 

model committee, which are averaged or weighted averaged to generate the final 

prediction. Similar to many other established ensemble methods (e.g. random forest), all 

of these generated individual models are included in the final committee pool without 

assessment of their diversity. As discussed previously, the key to a better predictive 

ability for an ensemble method lies in its diversity. Here, we proposed to increase the 

predictive ability of an ensemble method by enhancing the diversity of the model pool 

before the final vote. 

To enhance model diversity, we cluster the original model pool of classic 

ensemble methods into different groups then filter out models with high degrees of 

similarity. This idea was motivated by our NGS-based quasispecies analysis in Chapter 5. 

We utilized the Bayesian nonparametric Dirichlet Process Mixture (DPM) algorithm to 

cluster reads into various haplotypes (i.e. groups). Each read can be treated as a string 
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with a specific number of characters. Similarly, we can characterize each model by the 

prediction resulting from a predefined input dataset. Each read has some sequencing 

errors. Analogously, each model has its inductive bias, which would cause some 

prediction errors in the prediction results. In the NGS field, DPM has been successfully 

applied to construct different haplotypes that can be associated with one gene by 

clustering many sequencing reads. Due to the similarity mentioned above, we predict that 

DPM could be an optimal method for model clustering. In the following, we will 

introduce the DPM integrated ensemble methods of Bagging and AdaBoost and then 

evaluate them by making a comparison with the classic approach without diversity 

assessment. 

6.2 METHODOLOGY 

The DPM algorithm [158-166] describes models with an infinite number of 

mixture groups [167]. As a Bayesian nonparametric clustering method, DPM clusters 

data into groups without knowing the number of mixing groups beforehand. Newly 

arrived data will be assigned to either a previously existing group, or a new instantiated 

group whose probability is controlled by the parameter ). The groups are determined by 

different parameters *�, *,, * , … … . Each data point is drawn from one of those 

components. The parameters *. �/ = 1, 2, 3, … � are generated from a distribution G. We 

use the Dirichlet Process (DP) [158] to characterize the distribution G. It uses a positive 

scaling factor ) and a base distribution 1�. Thus 

1|), 1�, 3 ~ 5��), 1��, 
*6|1~1, 3 = 1, 2, 3, …,  

76|*6~8�76|*6�, 3 = 1, 2, 3, …. 



 

 114

where ‘~’ means "is distributed as" in mathematics. Using the first two distributions, we 

can integrate G, and obtain a joint distribution: 

*.|*9:. , ), 1� = 1; − 1 + ) = >?@,?A9:. + ); − 1 + ) 1� 

= = ;.,?; − 1 + )? + ); − 1 + ) 1�  
In other words, the probability that DPM assigns new data to an already populated 

or a new class is formularized by using an ) controlled prior as: 

BC*. = *D*9, E ≠ /G = H ;.,?; − 1 + )       /I �J�KK * /K �J����L B	BMJ����                                           ); − 1 + )       /I � 3�N �J�KK N/�ℎ * ���N3 I�	O 1� /K /3K��3�/���� 

where *. is the parameter associated with the class of subject /; ; is the total number of 

subjects; and ;.,P  is the number of subjects that have been assigned to class * before 

subject / . In other words, the prior probability of a new subject joining a cluster is 

proportional to the number of subjects that are already in that cluster. 

The discussion above mainly applies to a one-dimensional procedure such as the 

Urn model and the Chinese Restaurant model. In our case, the predictive result of a given 

dataset from each model is of high dimension. To cluster the models using the DPM 

approach, we update the assignment probability as bellow: 

BC*. = *D*9, E ≠ /G = Q RA,SR��TU  B��.|�?�    /I �J�KK * /K �J����L B	BMJ����                                           UR��TU  B��.|���     /I � 3�N �J�KK N/�ℎ * ���N3 I�	O 1� /K /3K��3�/����      (1) 

Here, �? represents the voting of all models inside the class * and �� represents the voting 

of all models in all groups. The value B��.|�V� describes the probability that �.  comes 

from the component �V. It can be calculated by: 

B��.|�V� = WV.�1 − W�VP 



 

 115

where ki and kc are the number of inconsistent and consistent predictions of ri and ck, 

respectively. W is the error parameter, which follows the beta distribution. We updated the 

beta distribution of its parameters ) and X at each iteration: 

) = W�W,3Y      �3�     X = W,3Y�1 − W�� 

where W� and W, are estimation of the mean and variance of the prior error parameter W, 

respectively, and, n and J are the number models and samples being investigated, 

respectively. Considering that B�Z/�, Z��|W� follows a binomial distribution, we estimated 

ε in each iteration using: 

B�W|Z/�, Z��� ~ [����Z�� + ), Z/� + X� 

where kit and kct are the total number of inconsistent and consistent predictions of all 

models and their assigned groups, respectively. 

 

Data
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Results I Results 2 Results 3 Results m

DPM non-parametric Clustering

Class 1 Class 2 Class n

Model 1 Model 2 Model n

Prediction

Individual models from Bagging / Adaboost
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Figure 6.1 Illustration of DPM integrated ensemble methods 

 

We developed the DPM integrated ensemble method as illustrated in Figure 6.1. 

The whole process includes two steps: 1) create a model pool using classic ensemble 

methods, such as Bagging and Adaboost; and 2) enhance the model pool diversity using 

DPM.  

In the first step, we utilized the bagging or boosting function from the R package 

adabag to create an ensemble model. Its component individual models, also known as 

basis classifiers, form the model pool. In general, the greater the number of the basis 

classifiers, the better the predictive ability will be. However, the predictive ability can 

become worse if the classifiers have no spreading diversity.  

To increase the diversity of a model pool, we include a DPM clustering in the 

second step to assess the similarity of all the individual models based upon their 

predictive results for the whole training datasets. Initially, all models are randomly 

assigned to a class. We then update the assignments by calculating, over many iterations, 

the conditional probability of a model being from an existing or a new group given the 

prior clustering results. The DPM algorithm has been investigated for the probability 

calculation, which is the key to success in our approach. The entire model pool will be 

clustered into several groups.  

Each group from the DPM clustering has at least one model. If some groups only 

have one model assigned to them, we pool all of these models together as an ensemble 

method to predict on the original dataset. The predictive results are set as the reference 

results. Otherwise, we will use the predictive results from all of the individual models as 

the reference result. To maximize the prediction space and the diversity of the model 
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pool, we only select one model from each group. The selected model deviates more from 

the reference result compared to the other models in the same cluster. The final model 

pool of DPM ensemble methods will only contain the selected models including the 

models which form a group by themselves.  

We coded the DPM clustering algorithm in C++ based upon the original Shorah 

code to create DPM integrated bagging and boosting as above. We additionally utilized 

the R packages RCpp and RCppGSL to make the DPM algorithm in C++ callable by R. 

The pseudo code for the whole procedure is listed in Table 6.1. 

 

Input:  

md: bagging or boosting object from R package adabag; 
data: train data set 
K: number of initial groups (default=10);  
T: number of iterations (default=1000); 
J: number of record iteration (default=100) 

Output:  
 md_dpm: bagging or boosting object 

Pseudo Code: 

Generate model pools and its characterized predictive results 

1. Create a ensemble model using R package adabag 
2. For each constitute individual model (i) of the ensemble model 
3.      ri = predictive results of train data from model i 

DPM to cluster models into groups 
1. Initialize: B.�3� = 1/\ for i=1, 2, …, N and n=1, 2, … K 

2. for / in 1→N; do 
3.      sample group for ri base up B.�3� 
4. end for 
5. for t in 1→T; do 

6.       for / in 1→N; do 
7.             filter out group with size 1 

8. update B.�3� based upon Formula (1) 
9. re-sample group for �. base up B.�3� 
10. if (t > (T-J))    record;  

11.   end for 
12.  end for 
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13. for k in in 1→N; do 
14. assign model �V to group �V based upon record 

15. if �V has been assigned to multiple groups 
16.      set �V as the group with largest frequency 

17. end for 
18. filter empty groups 

Select diverse models to form new model committee 
1. new_model_committee = NULL 
2. for each group �V 
3. if ck only consist one model 
4.      push its component model into new_model_committee 
5. if new_model_committee = NULL 
6.           reference = predictive results of the classic ensemble method 
7. else reference = predictive results of models in new_model_committee 

8. for each group �V with two or more models 
9.           push the model most deviated from reference into new_model_committee 
10. Update the ensemble model with the new_model_committee 

 

Table 6.1 Pseudo code for DPM integrated ensemble method 

 

6.3 EVALUATION 

The novel DPM integrated bagging and AdaBoost algorithm, referred to below as 

DPM bagging and DPM AdaBoost, has been evaluated on a representative collection of 

datasets from the data repository of knowledge extraction based upon evolutionary 

learning (KEEL). The forty-one datasets, summarized in Table 6.2, have considerable 

diversity in size, number of classes and number of types of attributes. Their inputs 

include both categorical and numeric variables. In fact, these datasets, together with the 

iris dataset, have long been considered as representative datasets for machine learning 

algorithm evaluation [168, 169]. Here we excluded the iris data because the predictive 

results from all individual models of the ensemble method were the same and cannot be 

clustered by the DPM algorithm. In other words, a single classification tree is enough for 

the iris classification problem. 
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Dataset 
# 

Variables 

Positive Negative Imbalance 

Rate Labels #Events Labels #Events  

Abalone9 8 19 32 remainder 4142 0.0077 

Abalone9vs18 8 18 42 9 689 0.0575 

Ecoli0137vs26 7 pp, imL 54 cp, im, imU, imS 257 0.1736 

Ecoli0vs1 7 im 77 cp 143 0.3500 

Ecoli1 7 im 77 remainder 259 0.2292 

Ecoli2 7 pp 52 remainder 284 0.1548 

Ecoli3 7 imU 35 remainder 301 0.1042 

Ecoli4 7 om 20 remainder 316 0.0595 

Glass0 9 1 70 remainder 144 0.3271 

Glass0123vs456 9 5, 6, 7 51 1, 2, 3, 4 163 0.2383 

Glass016vs2 9 3 17 1, 2, 7 175 0.0885 

Glass016vs5 9 6 9 1, 2, 7 175 0.0489 

Glass1 9 2 76 remainder 138 0.3551 

Glass2 9 3 17 remainder 197 0.0794 

Glass4 9 5 13 remainder 201 0.0607 

Glass5 9 6 9 remainder 205 0.0421 

Glass6 9 7 29 remainder 185 0.1355 

Haberman 3 positive 81 negative 225 0.2647 

New-thyroid1 5 2 35 remainder 180 0.1628 

New-thyroid2 5 3 30 remainder 185 0.1395 

Page-blocks0 10 2, 3, 4, 5 559 1 4913 0.1022 

Page-blocks13vs2 10 3 28 2, 4 416 0.0631 

Pima 8 tested_positive 268 tested_negative 500 0.3490 

Segment0 19 1 330 remainder 1980 0.1429 

Vehicle0 18 van 199 remainder 647 0.2352 

Vehicle1 18 saab 217 remainder 629 0.2565 

Vehicle2 18 bus 218 remainder 628 0.2577 

Vehicle3 18 opel 212 remainder 634 0.2506 

Vowel0 13 0 90 remainder 900 0.0909 

Wisconsin 9 4 239 2 444 0.3499 

Yeast05679vs4 8 me2 51 
mit, me3, exc, vac, 
erl 

477 0.0966 

Yeast1 8 nuc 429 remainder 1055 0.2891 

Yeast1289vs7 8 vac 30 nuc,cyt,pox,erl 917 0.0317 

Yeast1458vs7 8 vac 30 nuc, me2, me3, pox 663 0.0433 

Yeast1vs7 8 vac 30 nuc 429 0.0654 

Yeast2vs4 8 me2 51 cyt 463 0.0992 

Yeast2vs8 8 pox 20 cyt 463 0.0414 

Yeast3 8 me3 163 remainder 1321 0.1098 

Yeast4 8 me2 51 remainder 1433 0.0344 

Yeast5 8 me1 44 remainder 1440 0.0296 

Yeast6 8 exc 35 remainder 1449 0.0236 
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Table 6.2  Summary of 41 datasets from KEEL for evaluation 

 

For each dataset, we downloaded the partitions using a five-fold distribution 

optimally balanced stratified cross-validation (5DOBSCV) from the KEEL official 

website [170]. As a result, we had five training and testing dataset couples for each data. 

The whole data set could be obtained by combining a training dataset with its 

corresponding test dataset or by combining all of the five testing datasets. The sizes of all 

the training datasets are approximately the same, and the sizes of the test datasets are 

approximately the same as well. 

We created the bagging and AdaBoost ensemble models using the commands 

bagging and boosting in the R package with the default parameters for each training 

dataset. 100 trees, as default, should be generated if an ensemble model was successfully 

created. Although some training datasets failed to create an ensemble model with the 

default parameters, we did no fine tuning of the parameters for evaluation purposes. For 

each ensemble method, we further integrated the DPM clustering to enhance the diversity 

of the committee models as discussed previously. The weight of each model remained the 

same as that in the original ensemble model. Thus, the DPM integrated ensemble can 

only have equal or fewer individual models than the original ensemble model. 

We characterized the performance of the classic and the DPM integrated 

ensemble methods by two values: error rate and area under the receiver operating 

characteristic (ROC) curve (AUC). The error rate measures the frequency of 

misclassifications for a model. The lower the error rate is, the better the predictive models 

will be. The ROC curve plots the predictive results of a model in such a way that the x 

axis is the true positive rate measuring the sensitivity and the y axis is the false negative 
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rate measuring the specificity. AUC is the area under the ROC curve. Therefore, AUC is 

0.5 for a truly random classification, and 1.0 for an ideal model. However, ROC curves 

from real models are usually located somewhere between the random and the ideal 

curves, so the AUC value is typically smaller than 1.0 but greater than 0.5. A good model 

should have both high sensitivity and high specificity. Consequently, the larger the AUC 

value is, the better the model performs. We calculated the AUC values using the R 

package ROCR. The AUC value is believed to be a better measurement of the predictive 

modeling accuracy than the error rate, especially for an imbalanced dataset, in which the 

number of negative events is much larger than the number of positive events. 

The bagging function in the R package adabag was successfully implemented to 

create classic bagging models for 28 out of the 41 datasets using the default parameters 

(Table 6.3). Each classic bagging model had 100 trees. On average, the DPM bagging 

reduced the tree numbers to an average of 56, ranging from 8 to 100. 19 DPM bagging 

models had 4 equivalent and 15 larger AUC values than the classic bagging models. 

Meanwhile, 18 DPM bagging models had 8 equivalent and 10 smaller error rates. Only 

four datasets (ecoli1, page-blocks13vs2, pima, vehicle1) returned smaller AUC values 

and larger error rates when comparing the DPM bagging models to the classic bagging 

models. 

 

Dataset 
Classic Bagging DPM Bagging 

Trees Error AUC Trees Error AUC 

abalone9 - - - - - - 

abalone9vs18 100 0.047 0.8530 63 0.047 0.8491 

ecoli0137vs26 100 0.074 0.9429 38 0.061 0.9461 

ecoli0vs1 100 0.041 0.9806 9 0.027 0.9801 

ecoli1 100 0.089 0.9378 57 0.092 0.9325 

ecoli2 100 0.065 0.9441 47 0.063 0.9444 

ecoli3 - - - - - - 
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ecoli4 - - - - - - 

glass0 100 0.150 0.9114 82 0.145 0.9125 

glass0123vs456 100 0.065 0.9706 24 0.065 0.9727 

glass016vs2  - - - - - 

glass016vs5  - - - - - 

glass1 100 0.192 0.8596 96 0.168 0.8596 

glass2  - - - - - 

glass4  - - - - - 

glass5  - - - - - 

glass6 100 0.033 0.9387 10 0.033 0.9378 

haberman 100 0.255 0.7231 96 0.261 0.7225 

newthyroid1 100 0.033 0.9913 17 0.023 0.9944 

newthyroid2 100 0.023 0.9802 8 0.033 0.9806 

page-blocks0 100 0.028 0.9868 91 0.028 0.9869 

page-blocks13vs2 100 0.018 0.9977 17 0.020 0.9959 

pima 100 0.240 0.8395 100 0.238 0.8394 

segment0 100 0.008 0.9929 19 0.008 0.9930 

vehicle0 100 0.053 0.9885 89 0.056 0.9889 

vehicle1 100 0.209 0.8508 98 0.210 0.8507 

vehicle2 100 0.031 0.9904 79 0.030 0.9904 

vehicle3 100 0.209 0.8522 97 0.209 0.8522 

vowel0 100 0.013 0.9919 39 0.012 0.9923 

wisconsin 100 0.034 0.9905 49 0.031 0.9908 

yeast05679vs4 100 0.074 0.8844 65 0.080 0.8859 

yeast1 100 0.226 0.7854 98 0.226 0.7855 

yeast1289vs7 - - - - - - 

yeast1458vs7 - - - - - - 

yeast1vs7 - - - - - - 

yeast2vs4 100 0.039 0.9842 30 0.041 0.9855 

yeast2vs8 - - - - - - 

yeast3 100 0.046 0.9629 63 0.048 0.9632 

yeast4 100 0.028 0.8822 58 0.029 0.8829 

yeast5 100 0.020 0.9791 36 0.020 0.9780 

yeast6 - - - - - - 

Table 6.3 Evaluation of DPM bagging 

 

We examined the four datasets with decreased AUC and accuracy from the DPM 

bagging method. The DPM bagging models for ecoli1, page-blocks13vs2, pima, vehicle1 

datasets had 57, 17, 100, and 98 trees, respectively. We noticed that the number of trees 

in the DPM bagging model for page-blocks13vs2 was relatively smaller. Thus, the DPM 

bagging may have filtered out too many trees and consequently failed to preserve the 

existing diversity. We, therefore, increased the alpha parameter from 0.001 to 0.1, which 
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made the proposal of new groups easier. These results showed that the DPM bagging 

method can improve the classic bagging model by decreasing the error rate (Table 6.4). 

Meanwhile, the numbers of trees for the other three datasets were relatively large. 

Therefore, the original model pool from the classic bagging may already present high 

diversity. We increased the number of trees to 1000 in the classic bagging method and re-

ran the DPM bagging procedure. All datasets displayed decreased or equivalent AUC 

values but fewer trees when we compared the DPM bagging with the classic bagging 

results (Table 6.4).  

 

Dataset 
Classic Bagging DPM Bagging 

Trees Error AUC Trees Error AUC 

100 trees in classic bagging, alpha=0.001 (Default) 

ecoli1 100 0.089 0.9378 57 0.092 0.9325 

page-blocks13vs2 100 0.018 0.9977 17 0.020 0.9959 

pima 100 0.240 0.8395 100 0.238 0.8394 

vehicle1 100 0.209 0.8508 98 0.210 0.8507 

100 trees in classic bagging, alpha=0.1 
page-blocks13vs2 100 0.018 0.9977 20 0.016 0.9969 

1000 trees in classic bagging, alpha=0.001 

ecoli1 1000 0.093 0.9383 265 0.090 0.9383 

pima 1000 0.236 0.8393 926 0.233 0.8394 

vehicle1 1000 0.207 0.8537 661 0.209 0.8564 

Table 6.4 Parameter fine tuning for DPM bagging 

 
To understand the reason why the DPM bagging method works, we took the 

newthyroid1 dataset as an example. In this dataset, the DPM bagging method reduced the 

number of trees from 100 to 17, but had improvements in both error rate and AUC value. 

We utilized a PCA plot to visualize the distribution of the model pool of the classic and 

DPM bagging models (Figure 6.2). We found that many individual models from the 

classic bagging method were collapsed together into a two-dimensional PCA plot. Thus, 
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many models were similar to each other, which indicated a low diversity of the model 

pool. The individual models of the DPM bagging method spread around the true label 

with high diversity. These findings confirmed our hypothesis that DPM clustering can 

increase the model diversity and explained why DPM bagging has better predictive 

ability than the classic bagging method. 

 

  

Figure 6.2 DPM bagging evaluation distributions. We visualized the prediction results 
for whole dataset from each individual model of the classic bagging (open 

circle, ○) and DPM bagging (solid circle, ●). The size of a circle represents 
number of models that locate in the center of the circle. The true label given 
by the dataset is indicated by the star (*). 
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Furthermore, we assessed, on the same datasets, the integration of DPM clustering 

into another ensemble method AdaBoost. The boosting command in adabag with default 

parameters successfully created classic AdaBoost models for 31 out of the same 41 

datasets. Similar to the classic bagging models, each classic AdaBoost model had 100 

trees. On average, the DPM AdaBoost reduced about 25% of the trees in the classic 

AdaBoost method in 31 evaluated datasets. This is understandable because the AdaBoost 

models are more diverse than those of the bagging technique: 23 of them had 17 

equivalent and 6 larger AUC values, while 27 of them had 22 equivalent and 5 smaller 

error rates. Only three datasets (glass0123vs456, page-blocks13vs2, Pima) returned 

smaller AUC values and larger error rates when comparing the DPM bagging models to 

the classic bagging models. The DPM AdaBoost models for these three datasets included 

79, 21 and 96 trees. We tuned the parameters of tree number and alpha for model 

generation (Table 6.6). These results showed that DPM AdaBoost could improve the 

classic AdaBoost in error rate or AUC value or both. 

 

Dataset 
Classic AdaBoost DPM AdaBoost 

Tree Error AUC Trees Error AUC 

abalone9 - - - - - - 

abalone9vs18 100 0.048 0.8521 100 0.048 0.8521 

ecoli0137vs26 100 0.074 0.9669 99 0.074 0.9669 

ecoli0vs1 100 0.027 0.9873 61 0.032 0.9891 

ecoli1 100 0.107 0.9436 100 0.107 0.9436 

ecoli2 100 0.048 0.9536 100 0.048 0.9536 

ecoli3 100 0.071 0.9257 99 0.071 0.9248 

ecoli4 100 0.024 0.9773 75 0.021 0.9803 

glass0 100 0.121 0.9209 100 0.121 0.9209 

glass0123vs456 100 0.047 0.9857 79 0.051 0.9856 

glass016vs2  0.083 0.8204 99 0.083 0.8185 

glass016vs5 - - - - - - 

glass1 100 0.178 0.8812 100 0.178 0.8812 

glass2 - - - - - - 

glass4 - - - - - - 
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glass5 - - - - - - 

glass6 100 0.037 0.9734 64 0.028 0.9763 

haberman 100 0.324 0.6619 100 0.324 0.6619 

newthyroid1 100 0.009 1.0000 34 0.009 1.0000 

newthyroid2 100 0.014 0.9982 30 0.014 0.9991 

page-blocks0 100 - - - - - 

page-blocks13vs2 100 0.007 1.0000 21 0.009 0.9988 

pima 100 0.245 0.7998 96 0.251 0.7976 

segment0 100 0.003 0.9999 63 0.003 0.9999 

vehicle0 100 0.024 0.9978 100 0.024 0.9978 

vehicle1 100 0.197 0.8776 98 0.197 0.8762 

vehicle2 100 0.011 0.9992 100 0.011 0.9992 

vehicle3 100 0.199 0.8645 97 0.190 0.8643 

vowel0 100 0.006 0.9996 69 0.003 0.9996 

wisconsin 100 0.040 0.9913 99 0.040 0.9914 

yeast05679vs4 100 0.074 0.9099 100 0.074 0.9099 

yeast1 - - - - - - 

yeast1289vs7 - - - - - - 

yeast1458vs7 - - - - - - 

yeast1vs7 100 0.048 0.8433 100 0.048 0.8433 

yeast2vs4 100 0.041 0.9775 97 0.041 0.9775 

yeast2vs8 - - - - - - 

yeast3 100 0.051 0.9629 100 0.051 0.9629 

yeast4 100 0.038 0.9035 100 0.038 0.9016 

yeast5 100 0.018 0.9922 70 0.017 0.9925 

yeast6 100 0.016 0.9001 100 0.016 0.9001 

Table 6.5  Evaluation of DPM AdaBoost 

 

Dataset 
Classic AdaBoost DPM Adaboost 

Trees Error AUC Trees Error AUC 

100 trees in classic AdaBoost, alpha=0.001 (Default) 

glass0123vs456 100 0.047 0.9857 79 0.051 0.9856 
page-blocks13vs2 100 0.007 1.0000 21 0.009 0.9988 
pima 100 0.245 0.7998 96 0.251 0.7976 

200 trees in classic AdaBoost, alpha=0.001 

glass0123vs456 200 0.051 0.9851 145 0.048 0.9871 

pima 200 0.246 0.8088 167 0.233 0.8017 

100 trees in classic AdaBoost, alpha=0.1 

page-blocks13vs2 100 0.007 1.0000 25 0.007 1.000 

Table 6.6 Parameter fine tuning for DPM AdaBoost 
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6.4 CONCLUSION AND LIMITATIONS 

In this project, we have developed a novel ensemble method by integrating a C++ 

coded DPM approach to enhance the diversity of model committees. We have evaluated 

the DPM ensemble method using representative online datasets. The results showed that 

our DPM ensemble method can increase the predictive ability of the majority of datasets 

when compared to the classic bagging and AdaBoost techniques.  

The DPM methods have some limitations, however. Like all machine learning 

algorithms, they are not applicable to all datasets. Also, the number of trees and alpha 

parameters must be manually fine-tuned to optimize the final results. 
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Chapter 7. Meta-analysis to compare intervention strategies of 

schistosomiasis4 

7.1 INTRODUCTION 

Schistosomiasis is a parasitic disease caused by the blood flukes of the genus 

Schistosoma. It ranks second after malaria among the global human parasitic diseases in 

terms of socio-economic and public health importance in tropical and subtropical areas 

[171]. Worldwide, this neglected tropical disease infects more than 207 million people, 

with 779 million people in 76 countries at risk [172]. This disease causes 0.2 million 

deaths [173] and 1.75 to 2 million disability adjusted life lost each year [174]. 

Three major schistosome species are known to infect humans, including S. 

haematobium, S. mansoni, and S. japonicum [171]. Schistosomiasis japonica, caused by 

S. japonicum, is endemic mainly in China, the Philippines, and parts of Indonesia [171]. 

Concerted controls since the 1950s have dramatically reduced the number of parasites as 

well as the burden of disease in these endemic areas. However, schistosomiasis japonica 

remains a major public health concern in China, where it is one of the four priorities for 

communicable disease control defined by the central government [175]. Currently, the 

disease remains endemic in the lake regions of five provinces along the middle and lower 

branch of the Yangtze River, and in some mountainous areas in the Sichuan and Yunnan 

provinces.  

The national strategy for schistosomiasis control has shifted three times in China 

since its first initiation from a transmission strategy in the mid-1950s to early 1980s, to a 

                                                 
4 In collaboration with Dr. Wei Wang at the Key Laboratory of Technology for Parasitic Disease 
Prevention and Control in China 



 

 129

morbidity strategy in the mid-1980s to 2003, then to an integrated strategy from 2004 to 

present [176]. The morbidity strategy, also known as the conventional strategy, 

emphasized the synchronous chemotherapy of humans and bovines. The new strategy, 

developed in 2004, intervenes in the transmission pathway of schistosomiasis japonica 

mainly through the replacement of bovines with machines for plowing and farming, the 

prohibition of grazing cattle on the grasslands, improved sanitation, the installation of 

fecal-matter containers on boats, praziquantel chemotherapy, snail control and health 

education [177]. This new integrated control strategy has been efficient in reducing the 

rate of S. japonicum infection in both humans and the intermediate host snails [178-181]. 

However, the effectiveness of this new integrated strategy varies across earlier reports, 

and is dependent on its implementation in various endemic regions and different local 

circumstances [182]. Therefore, we present a systematic literature review and meta-

analysis to better evaluate the effectiveness of the new integrated strategy in controlling 

the transmission of S. japonicum in China. 

7.2 DATA QUERY AND EVALUATION 

7.2.1 Literature search  

We searched all publications pertaining to schistosomiasis control from January 

1st, 2000 through December 31st, 2014. Our keywords included “schistosomiasis”, in 

combination with “integrated control strategy”, “comprehensive control strategy” or 

“infectious source control measures”. Our electronic databases included PubMed, Web of 

Science, Embase, Proquest, Cochrane Library, China National Knowledge Infrastructure, 

the Wanfang Database and the VIP Database. The title and abstract of each publication 

were read carefully, and the full texts were reviewed.  
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Both inclusion and exclusion criteria were defined for identifying the publications 

to be included in our meta-analysis. Inclusion criteria involved: (1) the control measures 

targeting schistosomiasis japonica; (2) the implementation of the study in China; (3) a 

detailed description of integrated control interventions with emphasis on control of the 

infectious source of schistosomiasis; (4) the inclusion of both study and control areas, and 

an assessment of effectiveness in both groups; (5) the description and evaluation of the 

prevalence of human S. japonicum infection and snail infection as outcomes of the 

interventions; and (6) available full text for review. The literature that met the following 

criteria were excluded: (1) lack of control areas or lack of effectiveness evaluation in 

control areas; (2) no description of quantitative outcomes of interventions; (3) the original 

data regarding the outcomes of interventions were not available; and (4) the full text was 

unavailable.  

 

 

Figure 7.1 Workflow for publication selection. A summary of the publication searching 
procedures from online searching to final selection. 

 

3,067 studies were identified based on search strategy

8 publications were involved in meta analysis

91 studies were excluded following 

application of inclusion and exclusion criteria

2,968 studies were excluded following 

initial screening

99 studies were potentially related
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No. Study region Study period Integrated interventions targeting control of infectious sources Study measurements References 

1 Anhui province 2002–2003 
Replacement of bovines with machines, improvement of sanitation, 
and building lavatories and latrines 

Human S. japonicum 
infection and snail infection 

22 

2 
Mountainous regions 
of Yunnan province 

2006–2007 
Improvement of sanitation, and building lavatories and latrines and 
prohibition of grazing cattle in the grasslands 

Human S. japonicum 
infection and snail infection 

23 

3 Poyang Lake region 2005–2007 

Removing cattle from snail-infested grasslands, providing farmers 
with mechanized farm equipment, improving sanitation by 
supplying tap water and building lavatories and latrines, providing 
boats with fecal-matter containers, and implementing an intensive 
health-education program 

Human S. japonicum 
infection and snail infection 

12 

4 
Four provinces of 
Anhui, Hubei, Hunan 
and Jiangxi 

2005–2008 

Removing cattle from snail-infested grasslands, providing farmers 
with mechanized farm equipment, improving sanitation by 
supplying tap water and building lavatories and latrines, providing 
boats with fecal-matter containers, and implementing an intensive 
health-education program 

Human S. japonicum 
infection and snail infection 

13 

5 
Xuancheng city of 
Anhui province 

2006–2007 
Replacement of bovines with machines, improvement of sanitation, 
and building lavatories and latrines 

Human S. japonicum 
infection and snail infection 

24 

6 
Jingzhou city of 
Hubei province 

2010–2011 
Replacement of bovines with machines, and prohibition of grazing 
cattle in the grasslands 

Human S. japonicum 
infection and snail infection 

25 

7 
Gong’an county of 
Hubei province 

2009–2011 
Building fences to limit the grazing area for bovines, building safe 
pastures for grazing, improving the 
residents’ health conditions and facilities 

Human S. japonicum 
infection and snail infection 

26 

8 
Jinxian county along 
Poyang Lake region 

2004–2005 
Grazing and marshland isolation, replacing bovines with tractors, 
and improving access to water and sanitation facilities 

Human S. japonicum 
infection and snail infection 

27 

Table 7.1 Characteristics of the studies enrolled in meta-analysis 
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A total of 3,067 publications were identified of which 99 were potentially relevant 

according to our initial screening. Following the application of the inclusion and 

exclusion criteria, 91 more studies were excluded. Finally, eight papers satisfied all our 

criteria and were included in the following meta-analysis (Figure 7.1). Five of the eight 

selected papers included two study areas and two control areas. Table 7.1 describes the 

general characteristics of the studies included in the analysis. 

7.2.2 Publication bias assessment  

We evaluated the literature quality using a funnel plot. A funnel plot is a scatter 

plot of the enrolled individual studies of their effect estimates (i.e. logRR in current 

project) against the standard error of the effect estimation or other measure of each 

study's size. In other words, a funnel plot examines the dependence of the effect estimate 

on the sample size. The presence of publication bias causes an asymmetry in the funnel 

plot. On the other hand, a symmetric funnel plot indicates no publication bias. Our funnel 

plots showed no obvious asymmetry (Figure 7.2). To obtain quantitative results, we 

tested funnel plot asymmetry based upon a linear regression method [183] that uses the 

metabias function in the meta package of the R software suite [184]. The funnel plots 

were observed to be symmetric, with all P values of > 0.05 (Figure 7.3). These results 

indicated no publication bias present in the literatures used in the meta-analysis. 
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Figure 7.2 Funnel plot. We used the funnel plots to examine the publication bias for 
studies of the conventional strategy in snail (A) and human (B), the 
integrated strategy in snails (C) and human (D), and the comparison 
between these two strategies in snails (E) and human (F). 

 

 

Figure 7.3 Publication bias examination. Linear regression plots were generated to 
assess the asymmetry of each funnel plot in Figure 7.2. 
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7.3 META-ANALYSIS 

We implemented meta-analysis (fixed- or random-effects models) using the rma 

function of the R package metafor [185]. The effect of the new or conventional control 

strategy in the human/snail study was evaluated with pooled log relative risk (LogRR) 

(natural logarithm, RR=risk of control without intervention / risk of experiments with 

intervention) and the corresponding 95% confidence intervals (95% CI). We then 

calculated the LogRR difference between both strategies and its standard error (SE) as 

shown below: 

J	^__ �/II���3�� = J	^__ 3�N  /3��^����� K�����^L − `	^__ �	3a�3�/	3�J K�����^L /3���a�3�/	3 

�b�`	^__�/II���3��� = c�b�`	^__3�N/3���a�3�/	3�, + �b�`	^__	J�/3���a�3�/	3�, 

from which we further compared the two strategies with the pooled logRR difference. In 

all of the analyses, Cochran’s Q test and Higgins’ I2 statistics were implemented to 

measure the heterogeneity between these studies. Cochran’s Q, an extensive d,  test, 

examines the significance of difference among multiple studies [186]. Meanwhile, 

Higgins’ I2 is a transformation of Cochran’s Q value and I2 > 75% usually indicated 

unexplained heterogeneity among the investigated studies [187]. A random-effects model 

was employed if heterogeneity existed in the data source. Otherwise, a fixed-effects 

model was reported. 

All statistical analyses were performed using the R software suite, and a P-value < 

0.05 was considered to be statistically significant. 

7.4 RESULTS AND DISCUSSION 

Heterogeneity tests revealed the presence of heterogeneity among studies that 

reported the effects of the conventional strategy on the control of human S. japonicum 
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infection (I2 = 90.34, P< 0.001) and snail infection (I2 = 83.52, P< 0.001), as well as the 

effects of the new integrated strategy on the control of human infection (I2 = 86.39, P< 

0.001). No heterogeneity was detected among the studies reporting the alteration of snail 

infection caused by the new integrated strategy (I2 =10.92, P = 0.361). We then estimated 

pooled logRR and the corresponding 95% CI using random and fixed effects models, 

respectively.  

We found that the implementation of the conventional strategy caused a reduction 

in both human S. japonicum infection (logRR = 0.56, 95% CI: 0.12–0.99; Figure 7.4A) 

and snail infection (logRR = 0.34, 95% CI: -0.69–1.37; Figure 7.4B). Meanwhile, the 

new integrated strategy significantly reduced both human S. japonicum infection (logRR 

= 1.89, 95% CI: 1.33–2.46; Figure 7.5A) and snail infection (logRR = 1.61, 95% CI: 

1.06–2.15; Figure 7.5B). In other words, the conventional strategy reduced the risk of 

infection by 1.75-fold (95% CI: 1.13 – 2.69) in humans and 1.40 fold (95% CI: 0.50 – 

3.94) in snails. In contrast, the integrated strategy reduced the risk of infection by 6.62-

fold (95% CI: 3.78 – 11.70) in humans and by 5.00-fold (95% CI: 2.89 – 8.58) in snails. 

Further comparison between these two strategies indicated that the integrated strategy 

was 3.74-fold (95% CI: 2.18 – 6.42) (logRR difference = 1.32, 95% CI: 0.78–1.86; 

Figure 7.6A) more effective in human infection control and 4.62-fold (95% CI: 2.14 – 

10.07) (logRR difference = 1.53, 95% CI: 0.76–2.31; Figure 7.6B) more effective in snail 

infection. 

 



 

 136

 

Figure 7.4 Forest plot to evaluate the conventional intervention strategy 
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Figure 7.5 Forest plot to evaluate the integrated intervention strategy 
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Figure 7.6 Forest plot to compare the integrated with the conventional strategy 
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The integrated control strategy was designed to reduce the role of bovines and 

humans as sources of S. japonicum infection. The morbidity (conventional) control 

strategy mainly involves praziquantel-based chemotherapy, snail control and health 

education interventions [188]. The praziquantel-based strategy is ineffective in 

preventing S. japonicum infection and re-infection in China, the Philippines and the 

African continent [189, 190]. Our findings demonstrate that the new integrated strategy is 

much more effective than the praziquantel-based conventional strategy in controlling the 

transmission of S. japonicum in China. We have learned that this expertise is currently 

being transferred to Africa. The Philippines may also benefit from China’s experience 

and lessons in this important area.  

7.5 CONCLUSION AND LIMITATIONS 

We analyzed studies from eight eligible publications using meta-analysis to 

compare the conventional and integrated prevention strategies of schistosomiasis 

japonica in China. The results showed that the implementation of the new integrated 

strategy reduced the infection risk by about 3–4 times compared to the conventional 

strategy. The new integrated strategy is highly effective in controlling the transmission of 

S. japonicum in China. The same strategy should be recommended to eliminate 

schistosomiasis japonica in other infected regions, such as Africa and the Philippines. 

There are some limitations in this study though. First, only eight eligible studies 

were enrolled in the meta-analysis. Most of the studies were published in national 

journals. The research outcomes are more likely to be applicable world-wide if more 

randomized controlled trials are employed. Second, no stratified analysis was performed. 

Considering the small number of trials, we were unable to assess the effect related to an 
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endemic type-specific region, such as the marshland/lake or the hilly/mountainous 

regions. An optimal control strategy should adapt to each local circumstance in order to 

facilitate progress towards the elimination of schistosomiasis. 
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Chapter 8. Conclusions 

In this dissertation, we have presented five projects to illustrate the applications of 

biomedical informatics from multiple perspectives of systems biology, including studies 

of using genomics, transcriptomics, and clinical data. We have successfully applied the 

NGS technology to assess the intra-host variation in VEEV and to improve our 

understanding of how enriched conditions were able to induce a protective phenotype for 

addiction and visceral leishmaniasis. Moreover, we developed a new ensemble method to 

improve the predictive ability of classic bagging and AdaBoost data analyses, and 

validated an integrated intervention strategy for schistosomiasis using meta-analysis. 

In chapter 3–5, we successfully utilized NGS techniques to generate unbiased 

discovery-based transcriptomics and genomics data to investigate addiction phenotype, 

visceral leishmaniasis, and vaccine development for VEEV, respectively. The first 

project (Chapter 3) revealed that several pathways play a significant role in addictive 

behavior and can thus direct the focus on individual differences in susceptibility to 

addiction. The second project (Chapter 4) was able to identify the differentially expressed 

genes and altered pathways during visceral leishmaniasis. We found that hamster showed 

dually activated macrophages and broad inflammatory nature during VL, which was 

intended to control the L. donovani parasite but failed. We have proposed several 

different future research strategies to better understand this paradox. In the third project 

(Chapter 5), we investigated the intra-host variations of VEEV in order to enhance the 

replication fidelity of the live-attenuated vaccine Tc-83. Our results demonstrate that the 

replication fidelity of Tc-83 can be increased by incorporating three point mutations at 

the RdRp region. These findings can accelerate the development of the new live 
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attenuated vaccine for VEEV. All these data analyses were based on NGS techniques to 

extract additional information and to increase our knowledge and improve our 

understanding of the complex underlying biology, with a goal to ultimately being able to 

develop novel prevention strategies, such as vaccines, diagnostic methods and treatment 

therapies. 

In Chapter 6 we developed a novel DPM integrated ensemble classification 

method to further improve our ability to extract information from biomedical data. It 

shares the same Bayesian-based approach as our previous intra-host variation project, and 

thus can be widely applied to classification problems. We evaluated our ensemble 

method against forty-one online datasets and validated the increased predictive ability of 

our method. In biomedical informatics, ensemble methods should be particularly useful 

for identifying novel biomarker panels for diagnosis. 

Finally, in Chapter 7 we performed a meta-analysis to compare a new integrated 

strategy for schistosomiasis control against the established conventional strategy. The 

result indicates that implementation of the new integrated strategy is a significant 

improvement that reduces infection risk by ca. three to four times compared to the 

conventional strategy. This meta-analysis approach is applicable for the evaluation of any 

new prevention, diagnosis or treatment approaches, such as a new diagnostic method 

developed using our new DPM ensemble method. 
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Appendix A. Various Commercial NGS Platforms 

The next generation sequencing has been rapidly evolving with increasing 

accuracy and speed but reducing cost in the past 10 years and will continue growing. 

According to a 2014 market report, the global NGS market worth was 2.5 billion in 2014 

and will increase to $8.7 billion by 2020 [191]. Nowadays, the NGS sequencers are 

mainly developed, manufactured and sold by a couple companies including Illumina 

[192], Roche 454 Life Science [193], Life Technologies [194, 195], Pacific Biosciences 

[196] and Oxford Nanopore Technologies [197]. Here and in the following we exclude 

the NGS platform from Helicos Biosciences [198], which bankrupted in 2002, as well as 

a few unpopular platforms such as Polonator [199].  

A.1 Illumina NGS platform 

Illumina, originally developed by Solexa, currently dominate the NGS platform 

market with more than 70% market share in 2014. Illumina NGS platform offers 5 series: 

Genome Analyzer, HiSeq, MiSeq, NextSeq 500 and HiSeq X. Genome Analyzer 

sequencers were the original Illumina NGS platform, which is no longer available. The 

HiSeq system includes several instruments: HiSeq 1000, HiSeq 2000, HiSeq 2500, HiSeq 

3000, and HiSeq4000 (Table A.1). HiSeq 2000 is the first instrument in this series, which 

was downgraded to HiSeq 1000 with only single flow cell mode and upgraded to HiSeq 

2500 with an additional rapid run mode. HiSeq3000/4000, launched early 2015, adopt the 

patterned flow cell technology to provide even faster sequencing speed. The HiSeq 

systems support both single end and paired end sequencing and generate a large number 
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of read in one run so that they are suitable to analyze large animal or plant genomes. 

However, the read lengths from HiSeq are relatively small. In contrast, the MiSeq 

platform returns much longer but fewer reads so they are ideal for small genomes and 

more appropriate for de novo assembly. NextSeq 500, a “HiSeq in a MiSeq” platform, 

integrates the HiSeq2500 “rapid run” into a MiSeq-sized package. NextSeq system can 

sequence hundreds of millions of reads in very fast speed. This makes the system suitable 

for exome, transcriptomics, whole genome and targeted sequencing [200]. The HiSeq X 

Five / Ten systems consist of 5 / 10 HiSeq X ultra-high-throughput sequencers to enables 

fast and affordable human whole genome sequencing [201, 202]. (Table A.2) 

 

Sequencer 
HiSeq 

1000 

HiSeq 

2000 
HiSeq 2500 HiSeq 3000 HiSeq 4000 

Run Mode N/A N/A Rapid Run 
High-
Output 

N/A N/A 

Flow Cells per 
Run 

1 1 or 2 1 or 2 1 or 2 1 1 or 2 

Output Range 47-300 Gb 47-600 Gb 10-300 Gb 
50-1000 

Gb 
125-750 Gb 

125-1500 
Gb 

Run Time 
1.5-8.5 

days 
1.5-11 days 7-60 hours <1-6 days <1-3.5 days <1-3.5 days 

Reads per Flow 
Cell† 

3 billion 3 billion 300 million 2 billion 2.5 billion 2.5 billion 

Maximum Read 
Length 

2 x 100 bp 2 x 100 bp 2 x 250 bp 2 x 125 bp 2 x 150 bp 2 x 150 bp 

Launched 2010 2010 2012 2015 2015 

Table A.1. Illumina  HiSeq platforms adapted from Illumina Webpage [203, 204] 

 
 

Sequencer MiSeq NextSeq 500 
HiSeq X 

Five 
HiSeq X Ten 

Run Mode N/A Mid-Output High-Output N/A N/A 

Flow Cells per Run 1 1 1 1 or 2 1 or 2 

Output Range 0.3-15 Gb 20-39 Gb 30-120 Gb 
900-1800 

Gb 
900-1800 Gb 

Run Time 5-55 hours 15-26 hours 12-30 hours <3 days <3 days 
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Reads per Flow 
Cell† 

25 million‡ 130 million 400 million 3 billion 3 billion 

Maximum Read 
Length 

2 x 300 bp 2 x 150 bp 2 x 150 bp 2 x 150 bp 2 x 150 bp 

Launched 2011 2014 2014 2014 

Table A.2 Other Illumina platforms adapted from Illumina Webpage [204] 

A.2 Roche 454 platform 

The Roche 454 platform provided by the 454 life science has experienced 6 

systems: GS 20, GS FLX, GS FLX Titanium, GS Junior, GS FLX+ and GS Junior+ 

System (Table A.3). GS 20 was the first NGS sequencer and is out of data now. All the 

other available Roche 454 platforms return relatively long read length, which makes them 

favorable to de novo assemblies of microbial genomes, bacterial artificial chromosome 

and plastids, and examination of 16S variable regions and other targeted amplicon 

sequences [205, 206]. The overall output is not as high as Illumina platform so they are 

less cost-effective for transcriptome or larger genome studies. 

 

Sequencer GS20 GS FLX 
GS FLX 

Titanium 
GS FLX+ GS Junior 

GS 

Junior+ 

Typical 
Throughput 

~20 Mb ~100 Mb 450 Mb 700 Mb ~35 Mb ~70 Mb 

Run Time 5.5 hours 8 hours 10 hours 23 hours 10 hours 18 hours 

Reads per Run ~20,000‡ ~400,000 

~1 million 
shotgun, 
700,000 
amplicon 

~1 million 
shotgun 

~100,000 
shotgun, 
70,000 

amplicon 

~100,000 
shotgun, 
70,000 

amplicon 

Read Length ~100 bp ≤ 300 bp ≤ 600 bp ≤ 1000 bp ~400 bp ~700 bp 

Launched 2005 2006 2008 2010 2011 2014 

Table A.3 Roche / 454 platforms adapted from 454 Webpage [207, 208] 
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A.3 SOLiD and Ion Torrent platforms 

Life technologies have two NGS platforms SOLiD (Table A.4) and Ion Torrent 

(Table A.5). The early platforms SOLiD1/2/3 are out of date. The PI and 4hq platforms 

have been gradually substituted by the 5500 and 5500xl platforms, which can be 

upgraded to the 5500 Wildfire or 5500xL Wildfire platforms. Similar to Illumina HiSeq 

platforms, the SOLiD platforms can generate a large number of reads per run but the read 

length is relatively small. This makes the SOLiD platforms suitable for differential 

transcript expression and re-sequencing for large genome but difficult for de novo 

assembly. The Ion Torrent platform has three systems: Ion Personal Genome Machine 

(PGM), Ion Proton and Ion PGM Dx. Both PGM and Proton experience several versions 

of chips, aiming to provide optional run time and output. Considering their limited 

throughput, the Ion PGM is ideal for ideal for sequencing amplicons, small genomes or 

targeting of small regions within a genome, while the Proton is suitable for sequencing 

transcriptome, exome and medium sized genomes. Both are designed for basic research. 

The PGM Dx system is a class II medical device for clinical use proved by the U.S. Food 

and Drug Administration (FDA) in Sep 2014. 

Sequencer 
Typical 

Throughput 
Run Time 

Max Reads per 

Run 
Read Length 

Launched 

Year 

1 ~3 Gb -- ~40 million 25bp 2007 

2 3-6 Gb 6-10 days ~115 million 2 x 25 bp 2008 

3 ~20 Gb 72 hours ~320 million 2 x 50 bp 2008 

4 ~100 Gb 3-12 days ~1.4 billion 2 x 50 bp 2010 

4hq ~300 Gb 3-14 days ~2.4 billion 2 x 75 bp 2010 

PI ~50 Gb 1 day ~800 million 2 x 75 bp 2010 

5500 ~48 Gb 6 days ~400 million 75 bp, 2 x 60 bp 2010 

5500xl ~95 Gb 6 days ~800 million 75 bp, 2 x 60 bp 2011 

5500 W ~120 Gb 10 days ~1.2 billion 75 bp, 2 x 50 bp 2012 
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5500xl W ~240 Gb 10 days ~2.4 billion 75 bp, 2 x 50 bp 2012 

Table A.4 SOLiD platforms from Life Technologies [209, 210] 

Sequencer 
Typical 

Throughput 
Run Time 

Max Reads 

per Run 
Read Length 

Launched 

Year 

PGM ≤2 Gb 2.3-7.3 hours 5.5 million 35-400 bp 2010 

Proton ≤10 Gb 2-4 hours 60-80 million ≤200 bp 2012 

PGM Dx ≤1 Gb <4.5 hours -- ≤200 bp 2014 

Table A.5 Ion Torrent platforms from Life Technologies [211] 

 

A.4 PacBio platform 

Pacific Biosciences provides two single molecule sequencing systems PacBio RS 

and PacBio RSII. Both generate extraordinary long reads and extremely high accurate 

reads in a couple hours (Table 6), making them ideal for de novo assembly. Their unique 

sequencing mechanism also enable them the capability to study base modifications such 

as characterization of genetic variation, methylation analysis, microbiology studies, etc. 

Sequencer Throughput Run Time 
Reads per 

SMRT Cell 

Average Read 

Length 

Launched 

Year 

PacBio RS 102 Mb 2 hours 22,375 ~5k bp 2011 

PacBio RS II 500Mb-1Gb 4 hours ~500,000 >10k bp 2013 

Table A.6 PacBio platforms adapted from Product Brochure [212] 

 

A.5 Oxford nanopore platform 

Oxford Nanopore Technologies is another company that provides single molecule 

sequencers using protein nanopores. They introduced the GridION platform as well the 

portable single-molecule sequencer MinION in 2012 and announced PromethION in late 
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2014 [213]. All three platforms have no fix run time that can be stopped flexibly 

according to the data demands. 

The NGS data output has increased at least twice every year since it was invented, 

which outpaces the Moore’s law. Meanwhile, the sequencing cost has been dropping 

faster than the Moore’s law (Figure 2). Nowadays, the sequencing of a human whole-

genome cost no more than $1000 by using the Illumina HiSeq X Ten system, which only 

takes a couple weeks from the sample preparation to the final result after data analysis 

[201]. In comparison, the first human genome project completed in 2003, which had 

experienced about 15 years since it was first articulated in 1988 and had cost about $3 

billion over this period [214]. Additionally, the size of NGS sequencers has becoming 

smaller and smaller but the output read length is longer and longer. The size MinION 

from the Oxford Nanopore Technologies is so small that comparable to a packet of 

chewing gum [215] and the PacBio RS II system from Pacific Bioscience can generate 

reads with more than 20k base pairs. Due to all these benefits, the NGS sequencers have 

become prominent tools in biological and biomedical research. 
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and explore the functions of key proteins and pathways. 

 

Area of Research 2: Development of novel ensemble methods for classification 
Mentor: Dr. Bruce A. Luxon     Co-mentor: Dr. Heidi M. Spratt 

Ensemble methods incorporate multiple individual machine learning models, by assuming 
that their expertized predictive spaces are different and can be complemented by each other. 
We employed the Dirichlet Process Mixture procedure increase the diversity of the model 
committee for ensemble methods and further enhance it predictive ability. 
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Area of Research 3:  Enriched environment induced protective phenotype in cocaine addiction 
Mentor: Dr. Bruce A. Luxon   Co-mentor: Drs. Thomas A. Green, Heidi M. Spratt 

Cocaine, a strong central nervous system stimulant, is a powerful addictive drug. Its abuse 
continues to plague our nation and leads to a persistent public health problem. Research 
shows that environmental enrichment can cause a protective phenotype against cocaine 
addiction. We sought to understand the related mechanisms by using multi-factor RNA-Seq 
experimental designs. 
 

Area of Research 4: Intra–host variations of Venezuelan equine encephalitis virus (VEEV) 
Mentor: Dr. Bruce A. Luxon  Co-mentor: Drs. Naomi L. Forrester, Heidi M. Spratt 

VEEV, a NIAID category B priority pathogen, periodically causes epidemics in equids and 
humans. To control and prevent such a viral infectious disease, vaccines are the most cost 
effective agents. We focus on the intra-host variation to determine variations essential for the 
adaptability of VEEV during transmission and infection. We expect to identify some mutants 
incapable of being transmitted by mosquitoes, which can be used as candidates to develop 
live virus vaccines for VEEV. 

 
Area of Research 5: Meta-analysis to compare two prevention strategies of their effectiveness 
Mentor: Dr. Bruce A. Luxon 

When a new strategy in prevention, diagnosis or treatment is brought up, we need to evaluate 
its effectiveness by comparing with the established and congenital strategy using systematic 
literature review and meta-analysis. We evaluated the new integrated and the conventional 
prevention strategies for schistosomiasis in this study. 

 
PROFESSIONAL TEACHING EXPERIENCE:  
Jan 2010 – May 2010  Teaching Assistant, University Physics II 

Department of Physics 
University of Houston, TX 

Aug 2009 – Dec 2009  Laboratory Instructor, General Physics Laboratory I 
Department of Physics 
University of Houston, TX 
 

COMMITTEE RESPONSEIBILITES: 
Departmental: 

Molecular Biophysics Educational Track Curriculum Committee 
Molecular Biophysics Educational Track Recruitment Committee 

 
MEMBERSHIP IN PROFESSIONAL ORGANIZATIONS: 

Moody Foundation Traumatic Brain Injury Research Center 
 
HONORS:  

Robert Bennett Scholarship, 2014-2015, U of Texas Medical Branch 
Jeane B. Kempner Scholar, 2013 – 2014, U of Texas Medical Branch 
Excellence Award, undergraduate research project, USTC, 2008 
Outstanding Student Scholarship, USTC, 2008 
Outstanding Student Scholarship, USTC, 2007  
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Outstanding Student Scholarship, USTC, 2006 
 
PUBLICATIONS: 
� PUBLICATIONS – PUBLISHED: 

C.F. Lichti, X. Fan, R. D. English, Y. Zhang, D. Li, F. Kong, M. Sinha, C. R. Andersen, H. 
M. Spratt, B. A. Luxon, T. A. Green (2014). Front Behav Neurosci 8: 246. 
 

� PUBLICATIONS – IN REVIEW: 
B. Tian, X. Li, M. Kalita, S.G. Widen, J. Yang, S. Bhavnani, B. Dang, A. Kudlicki, M. Sinha, 
F. Kong, T.G. Wood, B. A. Luxon, A. R. Brasier. Analysis Of The TGFβ-Induced Program 
in Primary Airway Epithelial Cells Shows Essential Role Of NF-κB/RelA Signaling Network 
In Type II Epithelial Mesenchymal Transition. 
 
J. Luo, Y. Liang, F. Kong, J. Qiu, X. Liu, A. Chen, B.A. Luxon, H.W. Wu, Y. Wang. 
Schistosoma Antigens-Induced Vascular Endothelial Growth Factor Promotes the Activation 
of Hepatic Stellate Cells and Modulates the Expression of Fibrosis-Associated Molecules in 
Mice with Chronic Schistosomiasis, PLOS Neglected Tropical Diseases 
 

� PUBLICATIONS – In Progress: 
F. Kong, O. A. Saldarriaga, H.M. Spratt, B.A. Luxon E. Y. Osorio, B. L. Travi and P.C. 
Melby. Transcriptional profiling reveals a proinflammatory spleen environment and mixed 
activation phenotype of disease-promoting splenic macrophages in progressive experimental 
VL. 
 
M. Mbuchi, OA. Saldarriaga, A. Muia, C. Magiri, F. Kong, H. Kanyi, S. Njenga,  H. Spratt, 
B.A. Luxon, M. Wasunna, P.C. Melby. Exploration of Immunoregulatory Networks and 
Immunopathogenic Pathways in Human Visceral Leishmaniasis.  
 
Y. Zhang, F. Kong, E.J. Crofton, M. Sinha, D. Li, X. Fan, J.D. Hommel, H.M. Spratt, B. A. 
Luxon, T.A. Green. Transcriptomic study of environmental enrichm ent and cocaine-taking 
behavior in rat nucleus accumbens.  
 
F. Kong, H.M. Spratt and B.A. Luxon. Dirichlet Process Mixture integrated approach 
enhance predictive ability for bagging and Adaboost.  
 
M. Guerbois*, T. Kautz*, F. Kong*, R. Yun, R. Langsjoen, M. D. Alcorn, H. M. Spratt, B. A. 
Luxon, S. C. Weaver and N. L. Forrester High-fidelity mutations in the vaccine TC-83 
increase immunogenicity and attenuation. (* equally contributed) 
 
W. Wang*, F. Kong*, S. Wu, Y. Liang, Z. Jie, H. Wang, J. Dai, YS Liang. Effectiveness of 
the new integrated strategy to control the transmission of Schistosoma japonicum in China: a 
systematic review and meta-analysis. (* equally contributed) 
 
B. Fongang, F. Kong, S. Negi, W. Braun, A.S. Kudlicki, A Conserved Structural Signature 
of the Homeobox Coding DNA Suggests Its Role As a Cis-Regulatory Element in Metazoans. 

 
� ORAL PRESENTATIONS: 
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Dirichlet Process Mixture Integrated Ensemble Method. Jun 2014, Galveston, TX, UTMB 
Sealy Center for Structural Biology and Molecular Biophysics Community Building Seminar  
 
RNA-Seq and de novo  transcriptome assembly to determine splenic gene expression in 
hamster  visceral leishmania. Feb 2014, Galveston, TX, UTMB BMB Student Seminar 
RNA-Seq and de novo transcriptome assembly. Sep 2013, Galveston, TX, UTMB BMB 
Student Seminar 
 
Dimensionality reduced cortical features and their use in the classification of Alzheimer’s 
disease and mild cognitive impairment. Oct 2012, Galveston, TX, UTMB Biochemistry 
Journal Club 
 
Analysis of cancer metabolism with high throughput technologies. Feb 2012, Galveston, TX, 
UTMB Biochemistry Journal Club 
 

� ABSTRACTS – POSTERS: 
 
Zhang Y, Crofton E. J., Kong F., Spratt H. , Sinha M., Andersen C. R., Li D., Fan X., Luxon 
B., Hommel J. and Green T. Retinoic acid signaling is a novel mechanism of environmental 
enrichment. Mar. 2015, Behavior, Biology, and Chemistry: Translational Research in 
Addiction in San Antonio 
 
Saldarriaga O.A, Kong F,  Mbuchi M, Muia A, Magiri C, Kanyi H, Chelugo A, Muthoni A, 
Rono R, Gachigi S,  Njenga S, Spratt, H, Luxon B, Wasunna M, Melby P., Transcriptome 
Analysis of Human Visceral Leishmaniasis: Exploring Immunoregulatory Networks and 
Immunopathogenic Pathways. 3rd Annual Clinical & Translational Research Forum, 
Galveston TX, March2015 
 
Mbuchi M., Saldarriaga O., Muia A.1, Magiri C., Kong F., Kanyi H., Anderson, Agnes, 
Ronald , Susan , Njenga S., Spratt, H., Luxon B., Wasunna M., Melby P., Exploration of 
Immunoregulatory Networks and Immunopathogenic Pathways in Human Visceral 
Leishmaniasis, 5th Kemri Annual Scientific & Health (Kash) Conference, Feb 2015 
 
O. Saldarriaga, F. Kong, H.M. Spratt, B.A. Luxon, E.Y. Osorio, B.L. Travi, P.C. Melby, 
Immunoregulatory Networks and Immunopathogenic Pathways in Visceral Leishmaniasis, 
Nov 2014, the American Society of Tropical Medicine and Hygiene 63rd Annual Meeting 
 
O. Saldarriaga, F. Kong, M. Mbuchi, et. al.; Immunopathogenesis of visceral leishmaniasis: 
from a novel animal model to human disease, Feb 2014, 2nd Annual Clinical & Translational 
Research Forum 
 
Y. Zhang, F. Kong, H.M. Spratt, et. al.; Transcriptomic study of environmental enrichment 
and cocaine-taking behavior in rat nucleus accumbens.  Nov 2013, Society for Neuroscience 
F. Kong, Y. Zhang, H.M. Spratt, et al.; Next Generation Sequencing to discover the 
transcriptomics of cocaine-taking behavior in rats. April 2013, 54th Annual National Student 
Research Forum 
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Y. Zhang, F. Kong, H.M. Spratt, et al.; The transcriptomics of individual differences in 
cocaine-taking behavior in rats. April 2013, 54th Annual National Student Research Forum 
 
F. Kong, O. Saldarriaga, H.M. Spratt, B.A. Luxon and P.C. Melby; RNA-Seq and de novo 
transcriptome assembly to determine splenic gene expression in a novel model of visceral 
leishmaniasis. April 2013, IHII / McLaughlin Colloquium on Infection & Immunity 
 
O. Saldarriaga, F. Kong, H.M. Spratt, B.A. Luxon and P.C. Melby; synergism between 
parasite and cytokine -induced expression of suppressor of cytokine signaling (socs) in 
macrophages in experimental visceral leishmaniasis. April 2013, IHII / McLaughlin 
Colloquium on Infection & Immunity 
 
F. Kong, O. Saldarriaga, H.M. Spratt, B.A. Luxon and P.C. Melby; RNA-Seq and de novo 
transcriptome assembly to determine splenic gene expression in a novel model of visceral 
leishmaniasis. Feb 2013, CTSA 1st Poster Session 
 
F. Kong, O. Saldarriaga, H.M. Spratt, B.A. Luxon and P.C. Melby; RNA-Seq and de novo 
transcriptome assembly to determine splenic gene expression in a novel model of visceral 
leishmaniasis. Dec 2012, 2nd Annual Institute for Human Infections & Immunity (IHII) 
Retreat 
 
F. Kong, C. Shumate, and S. Stoilova-McPhie; Cryo-Electron Tomography of Phospholipid 
Vesicles and Nanotubes for Structure Determination of Membrane-Associate Proteins. Sep 
2010, Molecules and Mechanisms 7th Annual Fall Research Retreat 
 
C. Shumate, F. Kong, and S. Stoilova-McPhie; Binding of Coagulation Factor VIII to 
Phospholipid Vesicles: a Combined Cryo-Electron Microscopy and Biophysical Study. Sep 
2010, Molecules and Mechanisms 7th Annual Fall Research Retreat 
 

 


