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Junín virus is found in the fertile Pampas of Argentina and is maintained in nature by the 

rodent host, Calomys musculinus. Junín is the causative agent of Argentine hemorrhagic fever 

(AHF) characterized by vascular dysfunction and fluid distribution abnormalities. Clinical, as well 

as experimental studies, have implicated involvement of the endothelium in pathogenesis of AHF, 

although the role it may play is poorly understood.  Junín virus has been shown to produce 

productive infection of endothelial cells in vitro with no visible cytopathic effects which provides a 

unique opportunity to study the cells while they are infected. Here, we show that direct Junín virus 

infection of primary human endothelial cells (EC) corresponds to increased vascular permeability 

as measured by electric cell-substrate impedance sensing (ECIS) and transwell assays. We also 

show that EC adherens junctions are disrupted during infection which may provide insight into the 

role of the endothelium in the pathogenesis of AHF and possibly other viral hemorrhagic fevers 

(VHFs). 
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Chapter 1: Introduction 
 

Viral Hemorrhagic Fevers 

 

Overview of Viral Hemorrhagic Fevers 

 “Viral hemorrhagic fevers” (VHF) include severe diseases characterized by the 

involvement of multiple physiological systems in which vascular damage and dysfunction occur 

with subsequent fluid distribution problems,  possible hemorrhaging and shock (1-5). The onset of 

VHFs is often generic, resembling other diseases that are regularly seen in the endemic areas. For 

this reason, delayed diagnosis can often lead to unchecked disease progression and adverse 

outcomes in the patients and health care workers (2, 3). 

Four known virus families have been identified as responsible for causing VHF. These 

include arenaviruses, bunyaviruses, flaviviruses and filoviruses. Although these virus families 

exhibit unique features, they share some common traits (6). They each have natural animal 

reservoirs or arthropod vectors, which allow the viruses to survive, replicate and persist. The most 

common reservoirs and vectors for these virus families are rodents and arthropods. Some examples 

include the multimmate mouse (Mastomys natalensis) which harbors Lassa virus (7); the drylands 

vesper mouse (Calomys musculinus) which carries Junin virus (8); Aedes mosquitoes transmit Rift 

Valley  or yellow fever (9, 10), and ticks which are responsible for the transmission of Crimean-

Congo HF. The reservoirs for filoviruses have not yet been indisputably identified (11).  

The four VHF virus families are distributed throughout the world. However, because of the 

nature of the specificity of the reservoirs to the virus, each virus is generally only found in areas in 

which its specific reservoir is naturally occurring (2).  While this can limit the risk of becoming 
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infected to the local population, increased frequency of travel, as well as the encroachment of 

populations into host habitats can increase the at risk population. Additionally, if an infected 

individual travels to another part of the world, the virus can spread in the absence of its reservoir if 

person-to-person or person-to-vector transmission occurs (2). 

Another way in which these deadly viruses could be disseminated in non-endemic areas, 

potentially infecting populations that are usually not at risk, would be through deliberate dispersal 

of infectious particles, as in the case of bioweapon use (12). Because the viruses that cause VHFs 

have high mortality rates and could potentially be weaponized, they have been categorized by the 

CDC as category A agents. Research into the pathogenesis of these agents and identification of 

potential therapeutic targets are the primary objectives of scientists studying these viruses. 

 Initial symptoms of the VHF syndrome include fatigue, fever, aches, and dizziness. Once 

the hemorrhagic phase occurs, patients often exhibit bleeding under the skin or from gums, eyes, 

ears, or internal organs, although blood loss itself is usually not the cause of death. Fluid 

distribution problems can lead to shock and some experience a neurological syndrome with 

seizures, while others experience kidney failure (13-16).  

 In the United States there are no FDA approved treatments specifically for VHFs, and 

patients receive supportive care which can improve the outcome if administered early enough. The 

antiviral drug Ribavirin has been used with some efficacy to treat CCHF, Lassa, or HFRS in 

endemic areas, and phase 2 clinical studies are currently underway to determine if Ribavirin is, in 

fact effective against all three (17-21). Plasma from patients that recovered from Argentine 

hemorrhagic fever has been used successfully to treat patients in the endemic area (22). However, 

the success of an attenuated vaccine to AHF (23) means that there is less immune plasma around 

for treatment purposes, and while this is good for those in the endemic area, if Junín virus ever 
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spread accidentally or through malicious means, there would only be supportive care to offer those 

infected. 

 To date, there are only two VHFs for which there are vaccines. AHF, as was mentioned 

earlier, and yellow fever (24). For this reason, it’s critical that prevention focuses on avoiding 

contact with the host species as well as isolating patients to prevent person-to-person transmission, 

if that type of transmission might be possible. Efforts to control VHFs spread via rodents include 

rodent population control measures, efforts at keeping rodents out of people’s homes and educating 

the people at risk about safe clean up practices for rodent nests and excrement as well as the 

importance of actually implementing the practices described (25). 

 In the case of VHFs transmitted by arthropod vectors, the focus is on arthropod population 

control. This can be accomplished by such measures as addressing standing water issues and 

employing pesticides.  Further steps taken that are effective when employed include bite prevention 

techniques such as the use of mosquito nets, screens, chemical repellents and protective clothing.  

 Person-to-person transmission of some VHFs has been documented (26-28), and for those 

it is critical that medical workers, family members and those who handle the deceased are educated 

and prepared to protect themselves. This means using barrier nursing practices, isolating patients 

and using personal protective equipment when possible, as well as properly disposing of medical 

items used during treatments. 

 Researchers are challenged with learning how these viruses survive in nature; emerge, 

spread and cause disease. Knowledge gained through VHF research will lead to more effective 

efforts at containment, diagnostics, treatments and vaccines that will not only benefit those in 

endemic areas, but will also help protect other populations, including military personnel who 
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venture into endemic areas as well as any population that might be the target of a bioterrorist 

attack. 

Overview of the four virus families 

The four virus families that encompass the etiologic agents causing viral hemorrhagic 

fevers are Filoviridae, Bunyaviridae, Flaviviridae and Arenaviridae. Collectively they occur in 

natural virus-reservoir cycles involving rodents, arthropods, humans, domestic ruminants and bats.  

Bunyaviruses include the hantaviruses, Crimean-Congo hemorrhagic fever (CCHF) virus, 

and Rift Valley fever (RVF) virus. Hantaviruses are rodent-borne, while CCHFV and RVFV are 

transmitted by arthropods, although RVF is often transmitted via infected blood or tissue during 

livestock slaughter or medical intervention (29, 30). CCHFV is carried by ticks and can be 

transmitted through a tick bite, crushing an infected tick against the skin, contact with infected 

animal tissues, blood or products, and human-to-human transmission is also possible (30). 

Hantaviruses are found globally and categorized into New World which cause hantavirus 

pulmonary syndrome (HPS) or Old World, which cause hemorrhagic fever with renal syndrome 

(HFRS) (31).  

One of the most infamous and highly recognizable viruses in the world belongs to the 

family Filoviridae. Ebola outbreaks were first described in the 1970’s, with patients experiencing 

severe and dramatically fatal hemorrhagic disease that was easily transmitted to health care 

workers and family members (32). Ebola has 4 subtypes: Zaire, Sudan, Ivory Coast, Bundibugyo, 

and Reston, which is the only known aerosol infectious form and only causes disease in non-human 

primates, but was found in pigs in 2009 (32, 33). 
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Also within the family Filoviridae is Marburg, actually the first filovirus found to cause 

disease. Marburg was initially discovered in Marburg, Germany, but was traced back to central 

Africa, where in Angola in 2004-2005, it was the agent responsible for a VHF outbreak with 90% 

case-fatality rate in 252 confirmed cases. 

The flaviviruses are most well-known for the mosquito-borne HFs, yellow fever and 

dengue HF (34). They are found in many areas on several continents (Tropical Africa and 

Americas; Africa, Asia and Americas) and in addition to affecting local populations, are often 

encountered by military personnel. Dengue has become nearly as significant a tropical disease 

threat as malaria. 

Of the Arenaviridae, Lassa is the most clinically relevant, with significant morbidity and 

mortality in its endemic region. However, there are several South American arenaviruses that cause 

severe HF in their respective countries (35). Arenaviruses are maintained, in nature, in rodent 

reservoirs which generally transmit the virus through infected excreta. The Arenaviridae will be 

discussed in more detail in the following section. 

A more detailed breakdown of the virus families and the HF associated with them is shown 

in Table 1.1 
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Virus Family Disease (Virus) Endemic Regions Source of Human 

Infection 

Incubation 

Period 

(days) 

Filoviridae     

Filovirus Marburg Africa Unknown 2-14 

 Ebola Africa Bats 2-12 

Flaviviridae     

Flavivirus 
Yellow Fever 

Tropical Americas 

Tropical Africa 
Mosquitoes 3-6 

 

Dengue HF 

Dengue 
Asia, Africa, Americas Mosquitoes 3-14 

Arenaviridae     

Arenavirus 

Old World 

Lassa Fever 

Lassa 
Africa Rodents 5-16 

 Lujo Africa Rodents 2-7 

New World 
Bolivian HF 

(Machupo, Chapare) 
S. America Rodents 9-15; 7-14 

 

Venezuelan HF 

(Guanarito) 
S. America Rodents 7-14 

 Brazilian HF (sabia) S. America Rodents 7-14 

 Argentine HF (Junín) S. America Rodents 7-14 

Bunyaviridae     

Nairovirus 

Crimean-Congo HF 

Africa, Europe, 

Central Asia, Middle 

East 

Ticks 3-12 

Phlebovirus 

Rift Valley Fever 
Africa, Saudi Arabia, 

Yemen 

Direct contact 

w/infected blood or 

tissue; sandflies; 

mosquitoes 

2-6 

Hantavirus 

HFRS 

Hantaan 

Dobrava 

Saaremaa 

Seoul 

Puumala 

Eastern Asia, 

Scandinavia, Western 

Europe 

Rodents 9-35 

Table 1.1: The Four Virus Families that cause VHFs. This table depicts the virus families, and the 

viruses within them, that cause VHFs around the world, including the endemic areas, source of infection and 

incubation period. 
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Overview of the Arenaviridae  

 

The Arenaviridae 

In 1933 the first arenavirus was isolated from samples obtained during an epidemic of St. 

Louis encephalitis and named lymphocytic choriomeningitis virus (LCMV) (36). The agent was 

found to be the same as one that had been observed to chronically infect mouse colonies (37).  

Within about 30 years, more viruses were identified that shared characteristics with 

LCMV, including morphology, serology and the fact that they all chronically infected rodents. This 

led to the inauguration of the Arenaviridae, the name taken from the Latin word for sandy, 

(arenosus) came from the fact that ribosomes incorporated into virions gave the viruses a sandy 

appearance (38). Over the next few decades, more arenaviruses were discovered. Some were 

serious health threats, causing hemorrhagic fevers in endemic areas, such as Guanarito, Sabia, 

Machupo, Junín, Lujo and Chapare (39-41); while others did not cause significant disease, such as 

Oliveros, Latino and Pinhal. See table 1.2 for details of the known arenaviruses. 

  



 

8 
 

 

 

 

 

Arenavirus phylogenetics 

There is only 1 genus within the Arenaviridae: arenavirus. This genus includes 24 species 

currently recognized and divided into the Old World and the New World (Tacaribe complex) 

classifications (42). Monoclonal antibodies, directed against epitopes on the viral NP and GP2 

proteins, indicate that there are some shared epitopes between the two groups. Close antigenic 

relationships exist among Amapari, Junin, Latino, Machupo, and Tacaribe viruses while Flexal, 

List of Arenavirus species and newly discovered arenavirus not yet classified, and respective characteristics 

Table 1.2 List of Arenaviruses: 

a. Lymphocytic choriomeningitis virus. 

b. Available in Genbank in December 2008. 

With permission from Charrel et al. (2010) (34) 
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Pichinde, Parana, and Tamiami viruses are more closely related antigenically (42-44). LCMV 

related viruses are antigenically distinct from the African viruses, Lassa, Ippy, Mopeia and Mobala 

(45, 46). 

Genetic analyses has offered an opportunity to group the arenavirus species according to 

phylogenetic relationships and provided valuable insight into their evolution. Figure 1.1 is a 

phylogenetic tree that clearly depicts the evolutionary relationships among the species within this 

virus family. 

Figure 1.1 Arenavirus phylogenetic relationships:  

Old world viruses; lineage A new world viruses; lineage B new world viruses; lineage C new world 

viruses; recombinant new world viruses. 
Left phylogram is based on nucleoprotein amino acid sequences 

Right phylogram is based on concatenated signal peptide and glycoprotein two amino acid sequences. The neighbor-

joining, poisson and bootstrapping (200 pseudoreplications) algorithms were computed using MEGA 2 software. Used 

with permission from Charrel and de Lamballerie (2010) (47) 
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Virion morphology and genomic organization 

All arenaviruses are enveloped, single-stranded, bisegemented, RNA viruses with an 

ambisense genome (48, 49). RNA segments are designated small (S) and large (L) that each code 

for two proteins that are encoded in opposite directions with a non-coding, stable hairpin intergenic 

region (IGR) between the two. (50). Several viruses have had their complete S segments 

sequenced, indicating a size range of approximately 3500 nucleotides. Fewer L segments have been 

sequenced thus far, but they range in size from 7102 to 7279 nucleotides (48, 51).  

 The S and L RNA segements have identical terminal sequences at 17 nucleotides. (for S it 

is 58...GCCUAGGAUCCACUGUGCGOH38, and for L it is 

58...GCCUAGGAUCCUCGGUGCGOH38), and they are conserved among the arenaviruses (51-

55). The 58 terminus of each segment contains a tri- or diphosphate group without a cap. The 58-

end nucleotides near the start of each RNA are “imperfectly complementary” with the 38 end. It is 

believed, that the 38 and 58 termini base-pair to form panhandles, making the nucleotides appear 

circular. Some S RNAs contain an extra G residue on their 58 end which would remain unpaired, 

generating a panhandle lacking flushed ends (56-58). 

The S RNA segment codes for three gene products on two genes: the nucleoprotein (NP or N), 

and the envelope glycoproteins GP1 and GP2, which arise from GPC, the glycoprotein precursor 

that is cleaved after translation (50, 59, 60). The L RNA segment consists of two genes that code 

for two gene products: the viral polymerase (L protein) and the Z protein (61). On both RNA 

segments, the genes are in an ambisense orientation (49, 50). The genes for the NP and polymerase 

proteins are located on the 38 end of their respective RNA segments, and are transcribed from 

genome-complementary mRNAs (50). The GPC and Z proteins are transcribed from antigenomes 

which are intermediates that facilitate the replication of the genes. Between the two genes on each 

segment is an intergenic region which are thought to form stable hairpin structures in the RNA 
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(50). Figure 1.2 depicts the arenavirus virion and genomic organization. 

 

Figure 1.2 Diagramatic representation of arenavirus virion and genome organization and coding strategy.  

Arenavirus virions are pleomorphic and contain many electron-dense structures which are believed to be 

incorporated host cell ribosomes, giving the particle a “sandy” appearance. Both L and S RNA segments use 

an ambisense coding strategy. S encodes GP and NP; L encodes L polymerase and Z. Image: f2-viruses-02-

02443 from Openi, the Open Access Subset of PubMed Central at http://openi.nlm.nih.gov 

Viral Proteins 

Arenavirus virions are pleomorphic, and can be over 200 nM in diameter. The envelope 

protein precursor, GPC, is a polyprotein that is cleaved after translation to form the envelope 

proteins, GP1 and GP2 which are incorporated as projections onto the surface of the virus particles 

(62). These glycoproteins mediate viral recognition of host cell receptors and viral entry, and in 

doing so, determine virus tissue tropism and range of viral hosts. The nucleoprotein (NP) is the 

major structural protein in arenaviruses, and the most prevalent viral protein in infected host cells 
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and virus particles. It encapsidates the viral RNA (NP-RNA complex) and associates with the 

polymerase to generate the ribonucleoprotein (RNP), and is important in viral RNA synthesis (63). 

It is a major component of the nucleocapsids, provides anti-interferon function and inhibits the 

activation of nuclear factor kappa B (64). It also interacts with the Z protein to mediate the 

incorporation of viral RNPs into matured infectious virions, and as part of the RNP, directs 

replication and transcription of arenavirus genomes (63). 

The L protein is generally 180 to 250 kd. and provides the enzymatic activity necessary for 

viral RNA synthesis, including the RNA-dependent RNA polymerase. In addition it functions as an 

RNA endonuclease, stealing capped primers from host cell mRNAs; these capped primers are then 

utilized to initiate its own transcription (65). This protein also contains a central ring domain and 

projections that might play a role in the formation of the 5’ cap (65).  

The matrix (Z) protein is the smallest virus protein and contains a small RING-domain. Z 

has been shown to be critical for virus replication and also important in viral budding, and viral 

nucleocapsid incorporation (66). It is also important in viral RNA regulation; it binds with L, 

keeping the polymerase in an inactive state, thereby diminishing L’s enzymatic activity and 

subsequent initiation of RNA synthesis (66). 

Viral Entry, Transcription, and Replication 

 For host cell entry, the arenavirus GP1 binds to either the cellular receptor alpha-

dystroglycan (Old World) or the transferrin1 receptor (New World) (67, 68).  Infection is pH 

dependent and might involve dissociation of GP1 and GP2, which facilitates entry into the cell by 

revealing the fusion protein (69-71). Virus particles are taken into the host cell through an 

endocytic pathway; either clathrin-dependent (New World) or Clathrin-independent (Old World) 

(72, 73). Entry of Lassa and LCMV does not require actin, caveolin or dynamin, but they do 

require cholesterol (74). 
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Arenaviruses replicate solely within the cell cytoplasm and within hours of infection, 

mRNAs for NP and L proteins can be detected (75). The arenavirus ambisense coding strategy 

provides temporal separation between synthesis of NP and GPC proteins, with NPs being 

synthesized first. For expression of GPC and Z proteins, full length complimentary S and L 

antigenomes must be generated. The RNA-dependent RNA polymerase (L) and the nucleoprotein 

(N) are found in the infecting viral particle and are critical for replication (76). Inside the infected 

cell, L and N are produced from the transcription of mRNAs from viral genomic-sense RNAs. 

Once antigenomic-sense RNAs are generated, replication of progeny genomes begins. The 

antigenomes also function as templates for synthesis of mRNAs that encode the Z and GPC 

proteins. Full length RNA molecules (antigenomic-, and genomic-sense) are replicated through a 

“prime and align” strategy, while transcription of mRNAs commences via host cell-derived m7G-

capped oligonucleotides (77). The viral RNA ambisense coding sequences are separated by non-

polyadenylated intergenic hairpin regions (IGRs) within which the viral mRNAs terminate (78). It 

has recently been shown that arenavirus replication and transcription take place within cytosolic 

structures known as replication-transcription complexes (RTCs), in which full length and 

messenger RNAs are synthesized by the viral polymerase, after which the mRNAs are quickly 

translocated for translation on host cell ribosomes (79). 

Although the actual process of arenavirus assembly is not well understood, it is thought 

that RNAs, NPs and Ls are assembled into nucleocapsids. Recent evidence indicates that Z likely 

functions to either mediate virion assembly, or inhibit RNA synthesis, based on the intracellular 

levels of the N and GP proteins (80). For an as yet unknown reason, arenavirus particles 

incorporate host cell ribosomes into their virions. Finally, the Z protein, GP complex and RNP 

work together to interact with the host cell plasma membrane where the virion buds off of the lipid 

bilayer to release newly generated infectious virus particles from the cell (80-82). 
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Overview of Pathogenesis 

The current paradigm of arenavirus pathogenesis is that infectious aerosols are deposited in 

the lungs followed by viral replication and subsequent dissemination within the host. Additional 

important sites of virus growth include the hilar lymph nodes and other parenchymal organs. 

Animal models of Lassa and Junin have shown dissemination of the virus to the brain, but there are 

no reported human cases of brain infection (83). Macrophages are infected early, as has been 

shown by immunofluorescence in fatal AHF cases (84, 85). As the infection spreads, other cell 

types become infected as well. The cell types that can be infected in cell culture include endothelial 

cells, hepatocytes, macrophages, and megakaryocytes (86-88). Although many cell types become 

infected throughout the organism, there is little overt cell destruction reported. It appears that more 

“luxury” cellular functions are disrupted rather than the overall health of infected cells being 

compromised.  For example, LCMV impairs production of pancreatic and thyroid cell insulin and 

can disrupt growth hormone release in rat pituitary cells (89, 90). 

 There is no data suggesting the direct replication of arenaviruses in lymphocytes, however, 

lymphopenia is common during systemic human and animal infections (86, 91). T cell activation 

has also been shown in Lassa infections and together with lymphopenia, the virus is able to more 

easily disseminate and replicate (92). While T cell response has been associated with survival in 

Lassa fever, and antibody appears to be insignificant in clearing acute LCMV, passive immune 

therapy, with neutralizing antibodies to LCMV, protects mice from death by reducing both the viral 

load in the tissues and the CD8+ response (93). There is also evidence indicating that in S. 

American arenaviruses neutralizing antibodies are important as well (22, 94, 95). Complement, 

through the classical pathway, is also important for virus neutralization (96).    
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Clinical Presentations 

LCMV patients usually do not succumb to disease. It presents as aseptic meningitis, 

encephalitis or meningoencephalitis (97, 98). The first phase of disease generally includes fever, 

and headache with lymphadenopathy and a morbilliform rash, that lasts only a few days. Often, the 

headache returns, with more severe pain, which can be indicative of viral meningoencephalitis. 

However, it is also common for the disease to be asymptomatic or exhibit only mild febrile 

illnesses. Fetal infections result in worse outcomes such as congenital hydrocephalus, 

chorioretinitis, and mental retardation (97-100). 

Lassa presents non-specifically with fever, headache, muscle aches and chest and 

abdominal pain. Vomiting and diarrhea with coughing and sore throat are common (101). Throat 

and eye inflammation is often seen. Hypotension or shock can occur, as well as fluid in the pleura 

or hemorrhages, and facial edema. Encephalopathy can be observed as well (101). In pregnant 

women, fetal loss is 80%. Recovery from disease during the convalescent stage includes additional 

temporary health problems such as hearing loss, hair loss or loss of coordination (102). 

In the hemorrhagic fevers caused by New World arenaviruses, the similarity of symptoms 

makes it difficult to distinguish the etiologic agents, although the most well-studied is AHF. 

Locations of patient and travel history are helpful in a diagnosis. After approximately one week 

incubation, S. American HFs usually begin with headaches, fever, body aches and fatigue (35). 

Facial edema and periorbital edema are common. Some patients move into a hemorrhagic phase in 

which bleeding can occur, most often from the mucosa, or internal organs (94). Neurological 

problems can occur as well including tremors, seizures and loss of muscle control (94). Upon 

inspection of tissues, disseminated intravascular coagulation is not usually seen, and low platelet 

counts contribute to hemorrhaging, but studies of arenavirus infection of the endothelium are 

relatively few and offer only limited data on the nature of the vascular syndrome (87, 103, 104). 
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Argentine Hemorrhagic Fever 

 

Overview of AHF 

 Of all the South American HF viruses, the most clinically relevant is Junín, with an 

esitmated 5 million individuals at risk in endemic regions(94, 105). The rodent hosts, including the 

drylands vesper mouse (calomys musculinus), are found in the Pampas of Argentina, which is the 

agricultural center of the country. Farm workers are at greatest risk of exposure, and are critical to 

the economy, but agricultural practices and machinery can cause aerosolization of mice and their 

nests, exposing workers to infectious aerosols (16). It is believed that alterations in the reservoir 

habitat in relation to agricultural practices, is what made AHF emerge in the 1950s (106, 107).  

Clinical Presentation 

 AHF has a fatality rate of between 15-30% in untreated individuals, with hemorrhagic and 

neurologic manifestations (35). 80% of infected individuals develop clinical disease which begins 

slowly and can be misdiagnosed until symptoms reach advanced stages, making it even more  

critical to initially make a correct diagnosis (35, 94). Physicians rely on clinical and clinical 

laboratory findings to diagnose AHF (platelet count < 100,000/mm
3
; white blood cell count < 

2500/mm
3
) but diagnostic tests have been developed including an RT-PCR-based assay which can 

improve the accuracy of diagnostics and improve patient outcome (108). There are three phases of 

AHF: prodromal, neurological-hemorrhagic and convalescence (94). The first week is the 

prodromal phase  which includes fever, chills, anorexia, myalgia (lower back) headache and 

general malaise. Also common are retroorbital pain, photophobia, dizziness mild intestinal upset or 

epigastric pain. Patients often present with a flushed upper body (face, neck chest), periorbital 

edema and congestion of the conjuctiva. Oral surfaces are usually affected. Gentle pressure can 
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cause the gums to bleed and physicians often find small vesicle or petechiae on the soft palate. The 

lungs and pulmonary function are generally normal while orthostatic hypotension and relative 

brachycardia are common. Females usually exhibit inappropriate uterine bleeding but jaundice, 

splenomegaly and hepatomegaly are rarely seen. Patients nearing the end of this phase are often 

lethargic and irritable with fine tremors of the tongue or hands (16, 35, 94). 

 At this point, 20-30% of cases of AHF move into the neurologic-hemorrhagic phase, 

usually from 8 to 12 days after the symptoms first begin (16, 94). The hemorrhagic manifestations 

of this stage include: epistaxis, melena, hemoptysis, hematemesis, metrorrhagia, hematomas, and 

hematuria. Neurologic symptoms are ataxia, dysarthria and intention tremor. Over 90% of the cases 

that go into this phase are fatal. Convalescent patients develop an antibody response and clear the 

virus. Usually all neurological manifestations resolve, given enough time to recover (94). 

 Clinical lab data indicate that patients develop increased production of circulating 

interferons and TNF-alpha. Immunosuppression is seen as are lymphopenia and neutropenia (16, 

94). Hemorrhage is thought to be due to thrombocytopenia and hemostatic dysfunction rather than DIC 

(16, 39, 94). 

  Endothelial cells express the New World arenavirus receptor, transferring receptor 1, at 

high levels, and have been productively infected in lab settings with no overt cytopathology (87, 

109, 110). It has been reported that JUNV infected HUVECs produce increased levels of ICAM-1, 

VCAM-1, and nitric oxide with reduced levels of von willebrand factor (87, 104). 

 Treatment of AHF includes supportive care, with possible sedation and pain management 

drugs (94). Precautions for bleeding possibilities are taken including avoiding intramuscular 

injections and strict maintenance of hydration (94).  Handling shock is more difficult. Small 

increases in hematocrit are indicative of vascular permeability problems, but are not as severe as is 

seen in HPS. Fluid administration must be cautious and cardiac monitoring critical (35, 94). 
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 Convalescent plasma administration (3000U/kg body weight) is quite effective in humans 

and in animal studies, reducing mortality to 1-2%, if it is received early in disease (within the first 

8 days) (22, 94, 111). Patients receiving immune plasma often develop a later neurologic syndrome 

that clears on its own. So far, antiviral drugs, although promising experimentally have not been 

efficacious in application. Ribavirin is the only drug that appears to be effective against the S. 

American HFs (112, 113). 

AHF Vaccine 

 There is an attenuated vaccine for Junín virus. Referred to as Candid#1 (abbreviated from 

“Candidate #1”), it has been successfully used in Argentina to decrease AHF incident rates 

dramatically (23, 114, 115). There had been several attempts at generation of a live-attenuated 

JUNV vaccine strains, including some derived from the prototypical virulent XJ strain, and another 

from XJCl3 (116). Development of those strains was discontinued for various reasons (117-119). 

Candid#1 originated from the prototypical XJ strain of JUNV, which was first passaged twice in 

the guinea pig. Subsequently, it was passaged in the mouse brain 44 times. The mouse brain, from 

the last passage, was homogenized and used to inoculate fetal rhesus lung cells (FRhl-2), followed 

by twelve additional passages and finally cloning. Next, the resulting virus underwent one passage 

in FRhl-2 cells to generate the master and secondary seed stocks. One more amplification cycle in 

FRhl-2 cells produced the vaccine stock of Candid#1, with a cumulative total of 19 FRhl-2 

passages (Figure 1.3) (120) 
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Figure 1.3 Passage History of JUNV vaccine strain, Candid#1 (reused, from Grant et al, 2012, 

with open access permission through Creative Commons). M: mouse; MB: mouse brain; GP: 

guinea pig; NHP: non-human primate, FRhl: fetal rhesus monkey lunc cells. 

 

Candid#1 was found to be more effective, and was also more attenuated for mice, and non-

human primates, with no detectable persistence or phenotypic reversion as well as low 

neurovirulence (114, 121, 122). In those vaccinated, the seroconversion rates are high and cellular 

immunity is stimulated as determined by lymphocyte stimulation tests (114, 121). Viral titers of 

Candid#1 are relatively low when compared to natural infection which may hint at a mechanism of 

attenuation. Phenotypic differences have also been found which may explain the attenuation 

including an increased susceptibility to neutralization, an increased dependence on the receptor 

transferrin 1, and increased sensitivity to complement when there are no antibodies present (123, 

124).  

 In the late 1980’s a field study was conducted in which approximately 6500 volunteers 

were given either the vaccine (3255 volunteers) or placebo (3245 volunteers) with striking results. 

Only one of those vaccinated was found to have a serologically confirmed case of AHF (p<.001) 

(114).  

 In later trials (phase II and III) Candid#1 had only minor reactogenicity and no serious 

reactions documented in any test subject (114, 121, 125). The vaccine would need to be effective 
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and safe in others beside the highest at –risk males in the population so more trials were done that 

included women and children. At this time, there have been no reported adverse outcomes in any of 

the children tested (as young as 4) and the rates of seroconversion remain high (23, 115). Although 

attempts were made to prevent the vaccination of pregnant women, including pregnancy testing, 49 

out of 17,000 children were born to vaccinated mothers within 9 months of receiving the vaccine. 

Of those children  born there was one documented case of anencephaly and one of 

meningomyelocoel which suggest caution should be used in vaccinating women in their child-

bearing years (126). However, there is no direct evidence that Candi#1 crosses the placental barrier 

or is pathogenic to the fetus. Candid#1 is now being produced in Argentina and is being used 

effectively to control AHF in the endemic area (121). 

 There has been some evidence of the efficacy of Candid#1 against other arenaviruses.  

Guinea pigs and nonhuman primates are protected against challenge with Machupo when 

vaccinated with Candid#1 (127). In the absence of much cross-neutralization between the two 

viruses, the animals vaccinated show a fast antibody response upon Machupo challenge. It’s 

possible that the vaccine is cross-priming the animals or that cellular immunity is providing cross 

protection. 

Molecular analysis of Candid#1 indicates it has potential attenuation changes in its N-, L-, 

and GPC open reading frames (ORFs), compared to virulent strains. One mutation, (R[k[k), within 

a conserved region on the polymerase  sequence, was detected at position L1156 (117, 128, 129). 

Additional differences were found in the Candid#1 L sequence, at position L936 (L[L[P), which 

falls within the structural sequence for the L protein, and L76 (H[Y[Y), which is in proximity to the 

putative ATP/AGP-binding P-loop (129). The Candid#1 GPC sequence contained a G1 carboxy-

terminus mutation (GPC168, T[A[A), which would affect the conserved N-glycosylation sequence 
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(129). Data from the same study showed that the intergenic regions on both RNA segments were 

100% conserved across JUNV strains (129). 

 

The Endothelium 

 

Overview of the endothelium 

The endothelium is an organ composed of a single layer of cells that line the blood vessels. 

This organ can detect alterations in hemodynamic forces as well as respond to signals carried in the 

blood which allow it to regulate and maintain hemostasis (130-132). When the endothelium is 

disrupted, it can result in myriad responses including leukocyte adherence, blood vessel 

constriction, activation of platelets, coagulopathies, cell growth, pro-oxidation, thrombosis, vessel 

inflammation, and atherosclerosis (132).  

Although the endothelium provides for the exchange of fluid across its barrier, it regulates 

other molecules more closely. Sometimes this barrier is semi-permeable; selectively allowing some 

molecules through. In other areas, such as the brain, the barrier is much more restrictive, protecting 

the vital organ from molecules or microorganisms that could cause damage (133, 134). The ability 

of a molecule to get through the endothelial barrier, in any particular vascular bed, is determined by 

the molecular weight of that molecule. Movement across the endothelium is also determined in part 

by the charge of the molecules and the cell as well as the ability of the molecule to be taken up by 

the cell. Movement of water across the barrier is determined by albumin’s interactions with the 

extracellular matrix and glycocalyx (134). The environmental concentration of albumin lowers 

hydraulic conductivity of the endothelium. Furthermore, endothelial cells can change shape in 

response to inflammation, and alterations in cytoskeletal reorganization, causing increases in 
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permeability to molecules across the barrier. These cytoskeltal changes can also be mediated by 

other intracellular signaling events such as increases in intracellular calcium (135). 

Angiogenesis 

 The term angiogenesis describes the process of new blood vessel formation and growth 

from existing vasculature (136). Vasculogenesis, on the other hand, refers to spontaneous vessel 

growth (137). Angiogenesis is critical in many physiological processes such as development and 

healing of wounds (138). Unfortunately it can also occur inappropriately to cause injury or disease 

and is how tumors can transition from dormant to malignant (138, 139).  This has led to the 

development of inhibitors of angiogenesis to be used in the treatment and prevention of cancer 

(140-142).  

 
For angiogenesis to occur, first, growth factors specific for angiogenesis activate 

endothelial cell surface receptors, thereby activating the endothelial cells (136). Next, proteases are 

released from the activated cells which break down the endothelial basement membrane. This 

provides an opportunity for the endothelial cells to move away from the vessels to which they were 

bound. The newly freed endothelial cells begin proliferating in the ambient matrix to form solid 

sprouts which connect neighboring vessels (136). Then integrins grab onto the endothelial cells as 

the sprouts move toward the original stimulus, causing the sprouts to form loops creating the vessel 

lumen. This type of angiogenesis fills in gaps between vessels by forming brand new vessels (136, 

138).  

 A different type of angiogenesis known as intussusception, also called splitting 

angiogenesis, occurs when a vessel is actually split in two by the extension of a capillary wall. 

Intussusception is critical as it involves cells that are already present but that restructure themselves 

to provide needed vasculature in the absence of a parallel increase in the actual number of 
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endothelial cells (143). Intussusception consists of four phases. Initially, two capillary walls 

opposite each other must make contact. Next, the endothelial cell junction architecture is 

reorganized leaving small openings through which growth factors and cells can move. Third, a 

“core” is formed at the point of contact between the vessels which pericytes and myofibroblasts 

occupy where they can start to lay the foundation for the extracellular matrix upon which the vessel 

will grow. The last step is when the core is “fleshed out” while the general structure of the core 

remains stable (143).  

Permeability and Adherens Junctions 

 As gate keepers to the passage of molecules between the blood and tissues, the endothelial 

cells are critical, as is the stability of the junctions which maintain the connection between them. 

Many diseases and other pathological states can compromise this stability and lead to inappropriate 

endothelial permeability. These include, but are not limited to, Clarkson disease, sepsis, ischemia, 

diabetes and inflammation, each of which can result in serious and often fatal outcomes (144-147). 

One of the most important features of endothelial cells which regulate the permeability of the 

barrier, are the adherens junctions (AJ) (148-150). These junctions are opened and closed as 

needed in response to a myriad of intracellular signaling pathways. The main protein component of 

endothelial specific AJs is vascular endothelial cadherin (VE-cadherin), which binds directly to 

several intracellular proteins in the catenin family, including beta-catenin, p120-catenin and 

gamma-catenin (151). When intracellular signaling initiates reorganization of AJ to allow increased 

permeability, it does so through different pathways which act on different AJ protein components. 

One way is through the activation of vascular endothelial growth
 
factor (VEGF), which causes 

tyrosine phosphorylation of VE-cadherin,
 
followed by permeability increases and leukocyte 

migration (152, 153). Another mechanism is through the breakdown of the AJ by the removal of 

VE-cadherin when it is internalized and degraded (154). 
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 There are two pathways through which permeability of the endothelium is regulated: the 

“transcellular” and the “paracellular”(155). Molecules either pass through, or between, the cells 

respectively. For transcellular passage of molecules, there must be fenestrae, or pores through 

which the molecules can move (156). Alternatively this can be accomplished through vesiculo-

vacuolar
 
organelles which can fuse creating what appear to be channels across a single cell that will 

allow movement of molecules through the endothelial layer (157-160). Paracellular movement 

however, is controlled by the opening and closing of intercellular junctions. Paracellular movement 

is tightly controlled to maintain hemostasis because opening the junctions can expose the 

extracellular matrix and lead to pathogenic thrombosis (149, 161, 162).
  
Increased vascular 

permeability is usually reversible. A few of the compounds that can increase vessel permeability 

include VEGF, histamine and thrombin, each of which do so in a way that does not compromise 

the viability or health of the cells (147, 163). Sometimes, this permeability increase can even be 

helpful to the cells or tissues especially when it provides extra nutrients or oxygen, or allows the 

movement of immune cells into a site of injury. 

 Vascular damage can also cause increased permeability. Damaged endothelial cells retract, 

the barrier is compromised resulting in hemorrhage, leukocyte recruitment and adhesion and 

possibly thrombotic events (164). Vascular damage, unlike permeability, can be irreversible 

leading to serious disruptions in hemostasis.  

 The nature of endothelial cell junctions, as well as their molecular organization, has been 

elucidated in previous work, providing an understanding of how the junctions respond to cell 

signaling events (162, 165, 166). In addition to several types of intercellular connections, there are 

two major types of endothelial intercellular junctions which are comprised of a network of proteins 

bound to cytoskeletal components interacting with signaling proteins. These are the tight junctions 
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(TJ) and AJ. Although TJ are critical in regulating the blood brain barrier, AJ are ubiquitous 

throughout the vasculature and data suggests that
 
AJ must be present and stable before TJ can form 

(165). 

 The main protein components of AJ are proteins belong to the cadherin family. Although 

endothelial cells express several cadherins, the cadherin involved in the formation of endothelial 

AJ is VE-cadherin (165, 167). 
 
Other

 
AJ proteins include proteins in the catenin family (p120-

catenin, beta and gamma-catenin) which bind directly to VE-cadherin’s cytplasmic domains. The 

AJ is then connected to the actin cytoskeleton through interactions of gamma and beta catenin with 

alpha-catenin, and then to alpha-actinin and others (168). VE-cadherin and its catenin associations 

are referred to as the “cadherin complex”, and can affect, and be affected, by the cytoskeleton. See 

Figure 1.4 for a diagram. 

 

 

 

 

 

 

 

 

Figure 1.4: Diagrammatic representation of relevant VE-cadherin protein-protein interactions in Adherens 

junctions. Transmembrane VE-cadherin binds extracellularly to an adjacent VE-cadherin, and 

intracellularly with various catenins leading to actin associations. p120-catenin binds near the cell 

membrane, while beta-catenin and gamma-catenin associate more distally. Beta-catenin and p120-

catenin are believed to be involved in the assembly of actin based structures.  
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  Previously, the paradigm has been that AJ were bound to actin via alpha-catenin. But more 

recent data indicate that this is most likely not the case, because alpha-catenin is incapable of 

binding actin at the same time that it would bind beta-catenin (168). 

 Regardless of the mechanism, it still remains that VE-cadherin must interact with the 

catenins to fully regulate permeability through the AJ. When truncated VE-cadherin, that lacks 

the complete beta or gamma-catenin binding domain is present, the junctions are 

compromised (169).
 
When done in mice, the VE-cadherin mutation results in fatal vascular 

reorganization (170).
 
Anti-VE-cadherin antibodies given to adult mice results in vascular 

leakage and hemorrhaging (171). Compounds that only affect the adhesive properties of 

VE-cadherin such as histamine cause more mild, as well as reversible, effects (147). 

 N-cadherin is another cadherin found in endothelial cells, but it has been shown that it is 

distributed around the membrane rather than clustered at junctions. It has also been shown that 

when VE-cadherin is present, N-cadherin is excluded from the junctions (172). It is possible that 

when the endothelium is stable, N-cadherin functions at the membranes where endothelial cells 

meet pericytes (173, 174). When N-cadherin gene activation occurs in an endothelial cell specific 

manner, it causes a phenotype that resembles that of embryos lacking VE-cadherin. It was also 

described that in cultured cells,
 
reduced N-cadherin expression results in inhibition of VE-cadherin 

expression (175). 

 Beta-catenin has been shown to play an important role in vascular permeability. 

Endothelial cell specific gene activation as well as the effects of beta-catenin null mouse embryos 

show abnormalities in the AJ formation and exhibit hemorrhage with increased blood pressure 

(176). 
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Many of the mechanisms that regulate vascular permeability involve the reorganization of 

AJ. Some of these mechanisms specifically target VE-cadherin by phosphorylation, while cleavage 

and degradation have also been shown to modulate the endothelial barrier functions (148, 157). 

 The current paradigm is that the AJ proteins can be modulated via tyrosine phosphorylation 

induced changes that compromise the endothelial barrier. Previous reports show that compounds 

which increase permeability (histamine, VEGF, platelet-activating factor and TNF-alpha), cause 

tyrosine phosphorylation of VE-cadherin as well as the catenins (beta, gamma, p120) (163, 177-

180). When endothelial cells were sparse, there was more tyr phosphorylation of VE-cadherin than 

in confluent monolayers (181). In addition, the adhesion of immune cells, like leukocytes, can also 

induce phosphorylation of specific tyrosine residues on VE-cadherin, and is required for movement 

of the leukocytes across the endothelium (153, 182, 183). 

 Although the complete mechanisms of tyrosine phosphorylation of VE-cadherin have not 

been elucidated, the tyrosine kinase Src is a candidate. Src activation has been shown to be induced 

in response to VEGF and it has also been shown to directly interact with VE-cadherin (146, 184). 

Furthermore, Src deficient mice or those treated with Src inhibitors exhibit a decrease in Ve-

cadherin tyrosine phosphorylation (147). There are contenders besides Src, however, including 

CSK which inhibits Src by binding VE-cadherin and phosphorylating it at a different tyrosine 

residue (185). PYK2 has been shown to phosphorylate beta-catenin, but it is unknown whether it 

can directly phosphorylate VE-cadherin (182). Kinases are not the only way in which VE-cadherin 

phosphorylation may be regulated. Phosphatases too, may play a role. Inhibition of phosphatases 

could increase VE-cadherin phosphorylation, thereby increasing permeability. Vascular endothelial
 

protein tyrosine phosphatase (VE-PTP) is one endothelial-specific
 
phosphatase that interacts with 

VE-cadherin to prevent its tyrosine phosphorylation (186). Without VE-PTP, mouse embryos can’t 
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survive and exhibit deleterious alterations in blood vessel formation. Similar to VE-cadherin null 

embryos, this indicates that blood vessels are compromised in the presence of continuously 

phosphorylated VE-cadherin (187). There are other phosphatases, that may play a role as well by 

associating either directly or indirectly with VE-cadherin to affect its phosphorylation state: such as 

density-enhanced
 
phosphatase-1 (DEP1), protein tyrosine

 
phosphatase receptor type M (PTPµ), and 

SH2-containing phosphotyrosine phosphatase (SHP2) (188-190). 

 There is extensive evidence that tyrosine phosphorylation of VE-cadherin is important in 

regulating AJ architecture and endothelial permeability. However, it’s important to understand that 

there are different tyrosine residues on VE-cadherin and they are phosphorylated, or 

dephosphorylated, in response to different intracellular signaling events. In Chinese hamster ovary 

(CHO) cells, the ability of VE-cadherin to bind p120- or beta-catenin can be lost if single point 

mutations are made (a single
 
tyrosine-to-glutamic acid) of tyrosines

 
658 or 731 (respectively) (191). 

When VEGF activates Src in endothelial cells, it only phosphorylates VE-cadherin at tyrosine 685 

(192). When ICAM1 induces neutrophil adhesion to the endothelium, VE-cadherin is 

phosphorylated at tyrosines 658 (Src) and 731(PYK2) (182). A different study showed that when 

ICAM interacted with lymphocytes it induced phosphorylation at tyrosines 645, 731 and 733, 

which was mediated not by Src, but by Rho, actin and Ca
2+

 (183). Differences reported might be 

due to differences in the conditions used for different experiments in different laboratories. More 

work needs to be done to address these issues and more completely elucidate the mechanisms by 

which VE-cadherin is differentially phosphorylated and dephosphorylated in response to different 

signaling pathways. 

 The AJ catenins can also act as substrates for the same kinases that phosphorylate VE-

cadherin (180, 181). It still remains unknown, however, what effects, if any, this may have on AJ 
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stability or permeability of the endothelium. There is evidence that beta-catenin can also be 

tyrosine phosphorylated compromising its ability to bind the cytoplasmic tail of VE-cadherin and 

causing an increase in loss of beta-catenin at the AJ (193, 194). This may very well affect 

organization of the cytoskeleton and/or AJ architecture leading to an increase in permeability. 

 It has also been shown that the clathrin-dependent internalization of VE-cadherin can affect 

AJ stability, and increase vascular permeability (195). P120-catenin regulates VE-cadherin levels 

and stabilizes the AJ by preventing this internalization, and also by inhibiting its association with 

activated Src (196). It has also been shown that VE-cadherin internalization can occur through a 

VEGF pathway. In this pathway, VEGF activates Src which phosphorylates VAV2 which activates 

Rac. Activated Rac induces phosphorylation of VE-cadherin at a Serine (665) which recruits beta-

arrestin-2 to VE-cadherin, a process also resulting in clathrin-dependent internalization of VE-

cadherin (197). 

 Increased vascular permeability might also be a result of VE-cadherin lysis. VE-cadherin is 

susceptible to degradation by many different compounds including elastase, trypsin, cathespin G 

and metalloproteases (198-201). These enzymes are produced in large quantities by Leukocytes 

and tumor cells which could result in VE-cadherin digestion with increased cell movement and 

vascular permeability. 

 VE-cadherin has also been shown to associate with FLK1 (aka VEGFR2 or KDR) causing 

a decrease in proliferation signaling induced by the receptor. When this occurs, VEGF is unable to 

induce phospholipase
 
C  (PLC ) or activate MAP kinases to the same degree. This is due to VE-

cadherin
 
inhibition of receptor

 
phosphorylation and subsequent internalization (202). This plays a 

role in VE-cadherin-induced cell growth contact
 
inhibition and requires the

 
phosphatase DEP1 

(188, 203). Furthermore, this interaction of FLK1 and VE-cadherin
 
may contribute to AJ protein 
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phosphorylation by Src inducing increased vascular permeability (147). An interesting note is that 

in vivo angiogenesis does not require Src activation by FLK, a difference that distinguishes 

proliferation from increased permeability (204). The mechanism of the interaction between FLK1 

and VE-cadherin remains unclear. It has been shown that to bind FLK1, VE-cadherin must retain 

the ability to bind beta-catenin, but not p120-catenin (188). 

Specific Aims 

Specific Aim 1) To demonstrate that, direct Junín virus infection of primary human 

endothelial cells, results in decreased monolayer barrier function. 

Hypothesis: The virulent strain of JUNV, Romero, will decrease endothelial cell monolayer barrier 

electrical resistance and increase permeability to FITC-dextran. The avirulent strain, Candid#1, 

will not increase monolayer permeability or decrease monolayer barrier function. 

Rationale: Clinical observations of vascular dysregulation and fluid distribution problems in 

patients with AHF are indicative of an endothelium that has increased permeability. Based on those 

observations and the fact that human endothelial cells can be productively infected with JUNV, 

with no visible cytopathology, this study aims to determine the effects of direct JUNV infection on 

human endothelial cell monolayer barrier function. 

Approach: Use Electric Cell-Substrate Impedance Sensing (ECIS) and transwell permeability 

assays to determine if infection of human endothelial cells with either a virulent (Romero) or 

avirulent (Candid#1) strain alters monolayer barrier integrity or increases monolayer permeability. 
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Specific Aim 2) To demonstrate that, direct Junin virus infection of primary human 

endothelial cells, results in the disruption of endothelial adherens junctions and alters levels 

of one or more of the protein components of these junctions. 

Hypothesis: (1) Adherens junctions will be disrupted during Romero infection, but not Candid#1 

infection of human endothelial cells, which will be evidenced by either changes in the levels or 

localization of any (or all) of the major adherens junction proteins, and/or by disruption of the VE-

cadherin/beta-catenin complexes. (2) Romero infection and not Candid#1 infection will also affect 

the actin architecture of the infected cells. 

Rationale: Adherens junctions play a major role in regulating vascular permeability. Unlike tight 

junctions, AJ are found in all endothelial cells and are necessary for tight junction formation. They 

also stabilize the cells by anchoring the cytoskeleton to the junctions. For those reasons, this study 

focuses on examining the effects of JUNV infection on the adherens junctions of human 

endothelial cell monolayers. 

Approach: Immunocytochemistry, Immunoprecipitations and western blotting will be used to 

determine changes in the major protein components of adherens junctions: vascular endothelial 

cadherin (VE-cadherin), beta-catenin, and p120-catenin as well as actin, one of the major 

components of the cytoskeleton. 

Specific Aim 3) To demonstrate that Junin virus induced alterations in endothelial adherens 

junctions is modulated by at least one Src kinase family member and can be ameliorated by 

its inhibition. 

Hypothesis: The mechanism of JUNV Romero-induced disruption of endothelial barrier function 

involves the activation of Src kinase and can be prevented by its inhibition. 
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Rationale: Src family kinases have been shown to play a key role in regulating adherens junction 

function to regulate permeability during angiogenesis, wound healing and in response to VEGF and 

TNF-alpha. Based on this data, this study aims to examine the role of Src kinase in JUNV mediated 

endothelial cell barrier dysfunction and whether this can be ameliorated with Src inhibitors. 

Approach: (1) Use ELISA to examine levels of activated Src in endothelial monolayers infected 

with JUNV. (2) RNAi or pharmaceutical Src inhibitors will be used during JUNV infection of 

human endothelial cells to determine the effects of Src inhibition on virus-induced barrier 

dysfunction. 
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Chapter 2. Materials and Methods 

Cells 

Endothelial Cells 

 Primary, single donor HUVEC and HMVEC-L (Lonza, Walkerville, MD, USA) were 

cultured in endothelial cell basal medium (EGM-2 and EGM-2 MV bulletkits respectively; Lonza, 

Walkerville, MD, USA) plus 20% fetal bovine serum (Gibco, Aukland, New Zealand) 

supplemented with L-glutamine, antibiotics on plates coated with type I rat tail collagen 

(Millipore/Upstate, Temecula, CA) at 10µg/cm
2
. Cells were used at passages 3-7 in all 

experiments. HUVEC and HMVEC-L cells were infected with Candid#1 or Romero at an MOI of 

4 unless otherwise indicated. At selected time points after infection, whole cell lysates and cell 

culture supernatants were collected. 

Vero Cells 

 Vero E6 cells are a clone of Vero 76 cells from African green monkey kidney epithelial 

cells. These cells were cultured in DMEM plus 10% fetal bovine serum supplemented with L-

glutamine and antibiotics/antimycotics (Gibco). These cells were used to grow viral stocks and to 

titer the virus using plaque assays for this study. 

Viruses 

  Candid#1 was initially developed as a human vaccine.(122) We acquired it from Dr. 

Robert Tesh of the University of Texas Medical Branch at Galveston, after 1 passage in suckling 

mice. It was passaged again in Vero E6 cells, at 35C, which generated the highest stock titers, to 

create a working stock for infections.  The Junín Romero strain was initially isolated from a fatal 

AHF case using MRC5 cells.{Kenyon, 1986 #325} We obtained it from Dr. Mike Holbrook of the 

University of Texas Medical Branch at Galveston.  The virus stock underwent 2 passes in Vero 
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cells at 37C, and then an additional passage in Vero cells at 37C was done to generate the working 

stock (passage 3). All work using the virulent Romero strain of JUNV was performed in the 

University of Texas Medical Branch BSL4 facility according to all institutional health and safety 

guidelines. 

Plaque Assay 

 Plaquing Candid#1 and Romero posed a considerable challenge and the following protocol 

was strictly adhered to. Serial ten-fold dilutions of unknown samples and known controls were 

generated. 6-well plates of barely-confluent Vero E6 cells (<passage 40) were inoculated with 

100ul of each sample dilution and allowed to incubate 1 hour at 37C with gentle rocking every 15 

minutes to distribute the virus inoculum over the monolayer. After the incubation, the wells were 

gently overlaid with 3ml per well of a 1:1 solution of 2X MEM and 1% SeaKem agarose. Plates 

were left undisturbed until the overlay polymerized, at which point they were moved to a 37C 

incubator and allowed to remain undisturbed until the second overlay. The second overlay was the 

same as the first, with the addition of 2% neutral red indicator dye to the solution. This overlay was 

added to the 6-well plates, gently on day 6 after the first overlay for Candid#1, and on day 5 for 

Romero. Again the plates were allowed to remain undisturbed until the second overlay 

polymerized, after which they were moved to the 37C incubator. Plates were examined between 

12-24 hours post second overlay, or the plaques would not be visible. PFU/ml was calculated by: 

(Average number of plaques) X (dilution factor) X (inoculum size) = PFU/ml 

Infection of monolayers 

 HUVEC and HMVEC cells were seeded at 3.3 X 10
4
 cells/cm

2
 and allowed to reach 

confluency. Confluency was defined as the point at which the monolayer barrier function reached 

stable levels as determined by ECIS. When seeded at this density, the monolayers needed 108 
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hours post seeding to reach confluence. Within 6 hours of reaching confluence, monolayers were 

infected as follows with either the Candid#1 or Romero strain of JUNV at an MOI = 4, or were 

mock infected with Vero cell culture supernatant. All work using the virulent Romero strain of 

JUNV was performed in the University of Texas Medical Branch BSL4 facility according to all 

institutional health and safety guidelines 

 To infect the monolayers, culture medium was aspirated from cell culture dishes and 

inoculum added. Infection was allowed to proceed for 1 hour at 37C in a 37C incubator. Every 15 

minutes, culture plates were gently rocked to redistribute the virus. After the incubation time, the 

inoculum was removed and fresh culture media was added to the plates which were then returned 

to the incubator. 

Electric cell-substrate impedance sensing (ECIS™) 

 For determining alterations in transendothelial electrical resistance, the ECIS™ 

system Model 1600R and electrode arrays (Applied Biophysics Inc, Troy, NY) were 

utilized. Specifically, 8W10E+ arrays were used.  The array chambers were coated with 

10µg/cm
2
 of type I rat tail collagen for 30 minutes at 37°C. HUVEC and HMVEC-L cells 

were seeded at a density of 3.3X10
5
 cells/cm

2
 and infected 108 hours post seeding at MOI 

of 4. ECIS measurements immediately following seeding at that density indicated that 108 

hours post-seeding was the time when confluence had been reached and remained stable, 

for both HUVEC and HMVEC-Ls. Resistance, capacitance, and impedance information 

was collected continuously for five days post infection. Each experiment was repeated 3 

times in sextuplicate. 
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Transwell permeability assays 

 Collagen-coated (10 µg/cm
2
) Transwell polycarbonate filters (pore size 0.4 µm, exposed 

area 1 cm
2
; Costar, Brumath, France) were used. HUVECs and HMVEC-Ls were seeded at passage 

5 at a density of 3.3X10
5
 cells/cm

2
 on the filter surface. The upper chamber of the transwell 

contained 0.5 mL culture medium and the lower 1.5 mL of culture medium. Infection was done 108 

hours post-seeding. Fluorescein isothiocyanate (FITC)-labeled dextran (molecular weight of 70 

kDa Sigma) was used as an index of macromolecular diffusion. After infection with Candid#1 at 

MOI=4, 1 mg/ml FITC-dextran in HUVEC medium, was added to the upper chamber of the 

Transwell system. 100L samples were taken from the lower chamber at 24h intervals and the 

same volume of HUVEC medium was replaced in this chamber to prevent fluid movement due to 

hydrostatic pressure. The fluorescence was measured with a spectrophotometer (Fluoroskan Ascent, 

Thermo-Scientific) using 480 nm and 520 nm as the excitation and emission wavelengths, 

respectively. The quantities of all abluminal dextrans were estimated using a standardization curve. 

Immunocytochemistry 

 HUVECs and HMVEC-Ls were seeded at 3.3X10
4
 cells/cm

2 
on collagen coated Permanox 

chamber slides (Nalge Nunc Internationsl, Rochester, NY) and infected 108 hours post seeding.  

Preliminary studies of ECIS growth kinetics indicated 108 hours post seeding was the peak time of 

electrical resistance. Chamber slides were fixed in 4% paraformaldehyde in PBS for 10 minutes at 

room temperature. And then permeabilized in 0.2% TritonX-100 in  PBS for 5 minutes at room 

temperature. Alexa Fluor 488 and Alexa Fluor 594 (both at 1:500; Molecular Probes, Leyden, 

Netherlands) labeled secondary antibodies were used for fluorescence detection. Slides were 

mounted using Prolong Gold anti-fade reagent with DAPI (Invitrogen, Eugene, OR) to stain for 
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nuclei. Confocal images were acquired using Zeiss LSM 510 w.s. software on a Zeiss Axiovert 

200M inverted microscope (both from Carl Zeiss, Oberkochen, Germany). All images are 

representative of 3-5 independent experiments. Table 2.1 contains designated primary antibodies 

along with the dilutions and secondary antibodies used for all immunofluorescence and 

immunoblotting in this study.  

Table 2.1: List of primary antibodies, working dilutions and secondaries used. *Phalloidin is not 

an antibody, it is an Alexafluor conjugated, high affinity F-actin probe. 

 

Immunoprecipitations 

 Immunoprecipitations  were performed after cells were lysed in RIPA buffer (Thermo 

Scientific, Rockford, IL) with Halt Phosphatase Inhibitor (Thermo Scientific) and protease 
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inhibitor cocktail tablets (Roche, Mannheim, Germany). 400μg of protein was used with 4 μg of 

primary antibody and was gently agitated overnight at 4°C. 40 μL of protein A/G beads (Pierce, 

Rockford, IL) were then added to the mixture and gently agitated overnight at 4°C. The beads were 

resuspended by boiling in 6X Laemmli buffer and run on an SDS-PAGE gel and transferred to 

nitrocellulose membranes.  The membranes were then probed with various antibodies.  

Western Blot 

 Detection of proteins was performed by western blotting whole cell lysates from HUVECs 

or HMVEC-Ls grown on 100-mm tissue-culture plates. Lysates from mock infected cells were 

used as a control. Protein concentrations were determined by using the BCA Protein Assay Kit 

(Thermo Scientific). Using the results from the BCA protein assay the amount of protein added for 

each sample was normalized. Cell lysates or immunoprecipitations were run on SDS-PAGE gels 

(Biorad, Hercules, CA) and transferred onto nitrocellulose membranes (Biorad). The membranes 

were blocked with 5% non-fat milk powder diluted in TBST (20mM Tris, pH 7.6, 140 mM NaCl, 

0.2% Tween-20) for 1 hour at room temperature. Proteins were detected using antibodies listed 

above and incubated for 1 hr at room temperature with gentle agitation or overnight at 4°C. The 

blots were then incubated with goat anti-rabbit, anti-mouse or anti-goat horseradish peroxidase-

conjugated secondary antibody (Santa Cruz). Supersignal West Pico (Pierce, Rockford, IL) was 

used to visualize the proteins. ImageJ software from the NIH was used to quantitate bands 

normalized to beta-actin. 

 

Cytokine Analysis 

 Supernatant samples from HUVEC and HMVEC-L monolayers infected with either 

Candid#1, Romero or mock infected, were collected at 24 hour time points for 5 days post 
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infection and analyzed either via Bioplex (Bio-Rad, Hercules, CA), VeriKine ELISAs (41100-1 or 

41410-1, PBL, Piscataway, NJ) or an interferon bioassay. The Bioplex and VeriKine assays were 

performed according to manufacturer’s protocols. For the interferon bioassay, Vero cells were 

seeded in 96 wells plates at 1.5x105 cells/ml and kept in 37C CO2 incubator. After 24 hours, the 

plates were decanted and 110 µl EMEM with 2% FBS was added to each well. 50µl of each cell 

supernatant was added to the wells in duplicate and serially diluted to 1:3. The plates were 

incubated for 24 hours at 37C after which they were decanted and washed 3X with HBSS. After 

the last wash 25µl of a sindbis virus dilution was added to each well except for the cell controls 

which received 25µl of EMEM 2%. Plates were incubated 1 hour at 37C then decanted and 100ul 

of methylcellulose was added. After another 24 hour incubation at 37C, the plates were evaluated 

for plaques which were then stained with crystal violet and counted if present. 

ELISAs 

 PhosphoSrc or VEGF: To measure levels of activated Src kinase or VEGF in the infected 

or mock infected HUVEC and HMVEC-L monolayers the PathScan phosphor Src (Tyr416) 

sandwich ELISA kit (#7953 Cell Signaling Technology, Danvers, MA), or the Human VEGF 

ELISA kits (#EHVEGF, Thermo Scientific, Rockford, Il), were used. Cell lysates from cells either 

infected with Candid#1, Romero or mock infected were analyzed for phosphoSrc tyr416 or VEGF 

levels according to the manufacturer’s protocols for the ELISA kits. 
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Chapter 3. Junín virus infection causes decreased endothelial 

cell monolayer barrier integrity and increased monolayer 

permeability 
 

Summary  

 Endothelial dysregulation is a key component of the hemorrhagic fever caused by Junín 

virus, although the pathogenesis of this dysfunction is unclear (87, 91).  One study demonstrated 

that JUNV infection altered endothelial cell nitric oxide production and adhesion molecule 

expression, with no cytopathology, but that study did not address the effects of JUNV infection on 

permeability or cell-cell junction integrity (87). This study reports that direct JUNV infection of 

human endothelial cells with either the virulent Romero strain, or the non-virulent Candid#1 strain, 

does decrease monolayer barrier electrical resistance and increase permeability.  

Introduction 

 The endothelium is the primary barrier maintaining separation of blood and tissues. As 

such, it is critical that it not be compromised so that it can effectively regulate the exchange of 

nutrients and molecules into and out of the blood.  A healthy, properly functioning endothelium is 

the gatekeeper: a powerful semi-permeable sentry that is responsible for, among other things, 

allowing the transmigration of leukocytes during immune responses, preventing anything 

unwelcome from crossing over into the brain and maintaining tissue fluid balances. Endothelial 

permeability refers to the movement of solutes through paracellular junctions, a process regulated 

by diffusion and dynamic function of interendothelial junctions (205). The junctions must be able 

to respond as needed to extrinsic and intrinsic cellular signals, often concomitant, which can induce 

the intercellular contacts between cells to dissolve or reform as needed. Permeability is critical in 

many normal physiological processes such as wound healing, immune cell recruitment and 
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angiogenesis. Inflammation cannot occur without permeability, but it can contribute to disease 

when it occurs inappropriately, such as during lead poisoning, sepsis and cancer metastasis (145, 

147). Some pathogenic permeability is a result of endothelial damage while some instances are 

more subtle, the result of inappropriate signaling which results in the opening of intercellular 

junctions rather than cell damage or death. This can compromise vascular homeostasis and 

otherwise deleteriously affect the surrounding tissues. 

 JUNV has been shown to productively infect human umbilical vein endothelial cells 

(HUVECs) without causing overt cell damage, and several questions regarding JUNV pathogenesis 

have been addressed using HUVECs as a model but most are limited to the attenuated Candid#1 

because the virulent strains of JUNV are CDC category A agents that must be handled in  BSL4 

facility. The effects of JUNV infection, on the barrier function of an endothelial monolayer, have 

not yet been investigated. It has been reported that patients infected with JUNV exhibit increased 

levels of TNF-alpha and INF-alpha, which can contribute to endothelial permeability, and may play 

a role during disease progression (94). It is possible that direct infection of the endothelium could 

contribute to the vascular syndrome associated with AHF, so this study aims to determine if and 

how JUNV infection impacts endothelial cell monolayers.  

 To determine if direct infection plays a role in pathogenesis of JUNV infection, primary, 

single donor human endothelial cells were infected with either the attenuated vaccine strain, 

Candid#1, or the virulent Romero strain of JUNV and monolayer barrier function was assessed via 

ECIS and transwell permeability assays. Because HUVECs are a well-established and highly 

characterized model of endothelial function they were chosen as the initial model in which to 

examine the questions posed in this study. However, because JUNV most likely infects the 

microvascular cells of the lungs upon initial exposure, which is most often inhalation of aerosols, 
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HUVECs may not be considered the most physiologically relevant of the endothelial cell subtypes 

for this investigation. For that reason, this study also used human microvascular endothelial cells 

from the lungs (HMVEC-Ls) as an additional model of endothelial JUNV infection. 

 

Results 

Infection with JUNV decreases HUVEC and HMVEC-L monolayer electrical resistance  

 To determine whether JUNV infection could disrupt endothelial cell monolayer barrier 

integrity, electric cell-substrate impedance sensing (ECIS) was used to measure trans-endothelial 

resistance. Using ECIS, infected HUVEC and HMVEC-L monolayers were continuously evaluated 

for barrier integrity after infection. Confluent monolayers of passage 4 HUVECs or HMVEC-Ls 

were infected with JUNV and monitored via the ECIS system. In this model, the cell membranes 

impede the electrical current as they grow on the electrodes. This forces the current to flow 

between or under the cells, resulting in increased impedance. Impedance data are converted to 

resistance (ohms, ) and capacitance and reported and documented using the ECIS software. 

Monolayers were seeded and allowed to reach confluency. Pre-infection resistance levels were 

used to verify that confluence was achieved and maintained and that the cells exhibited normal low 

levels of resistance variations. Decreased resistance indicates reduced monolayer barrier integrity. 

Mock infection was performed using uninfected Vero cell culture supernatant. As shown in Figure 

3.1, at approximately 60 hours post infection, electrical resistance of both the HUVEC (3.1 A) and 

HMVEC-L (3.1B)  monolayers infected JUNV decreased relative to mock-infected cells. 

Productive infection was verified by using supernatant samples to generate growth curves which 

are depicted in Figure 3.2. 
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Figure 3.1. JUNV Decreases HUVEC and HMVEC-L Electrical Resistance. Cells were seeded onto 

collagen-coated gold electrode arrays and allowed to reach confluence (108h post seeding). 

Monolayers were then infected with JUNV or mock infected and evaluated by ECIS. HUVECs (A) 

or HMVEC-Ls (B) infected with JUNV show decreased electrical resistance beginning at 

approximately 60 hours post infection (~85 hours after plates were connected to ECIS machine.).  

Mock infected show no decrease in electrical resistance. Images are representative of 3 or more 

independent experiments.  

A. 

B. 

A. 

B. 
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Figure 3.2 Growth curve of JUNV Romero in HUVECs and HMVEC-Ls indicate productive 

infection and viral titer during ECIS experiments. Each point represents the mean ± standard 

deviation from three experiments 
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Infection with JUNV increases HUVEC and HMVEC-L monolayer permeability to 70kD 

FITC-dextran 

 To establish the physiological relevance of the ECIS data, transwell permeability assays 

were performed to determine if the drop in electrical resistance coincided with increased 

permeability of the HUVEC or HMVEC-L monolayer to FITC-dextran. Confluent monolayers of 

passage 4 HUVECs or HMVEC-Ls were infected with JUNV or mock infected with Vero cell 

culture supernatant. After the infection, 70 kDa FITC-dextran was added to the upper chambers 

and samples from the lower chambers were taken at 24 hour intervals. Any fluorescence detected 

in the lower chambers was attributed to movement of the FITC-dextran from the upper chamber 

through the monolayer. This allowed us to evaluate whether molecules approximately the size of 

albumin would be able to move through the monolayer during JUNV infection. JUNV infection 

significantly increased the amount of 70 kDa FITC-dextran allowed to pass through HUVEC and 

HMVEC-L monolayers compared to mock infected cells (Figure 3.3). Supernatant samples were 

also taken to calculate viral titers over the time course of the experiment. Viruses were 

productively infecting the monolayers of both cell types, as shown in Figure 3.4. 
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B. 
B. 

Figure 3.3 Transwell permeability assay. ECs were grown on transwell inserts then infected with 

JUNV. Samples were taken every 24h for 5 days. HUVECs (A) or HMVEC-Ls (B) infected with 

JUNV show an extremely significant increased permeability to 70 kDa FITC-Dextran in the 

absence of visible cytopathology (P<0.0001 by paired t-test). Data are the mean ± standard 

deviation from three experiments.  

 

 

A. 

B. 
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Figure 3.4 Growth curves of JUNV indicate productive infection and viral titer during 

transwell experiment. Growth of JUNV Romero in HUVECs and HMVEC-Ls during the first 96 

hours of the transwell experiment. Each point represents the mean ± standard deviation from three 

experiments. 
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Gamma irradiation of JUNV prevents the decrease in electrical resistance in HUVEC and 

HMVEC-L monolayers 

 To determine if viral replication and productive cellular infection are necessary for the 

increase in permeability, gamma irradiated virus was used to infect the cells. Although this 

question as not within the original scope of this study, the results would give us important 

information about the nature of the virus/cell interaction that is occurring to cause increased 

permeability. There was no detectable decrease in electrical resistance with infection with killed 

JUNV, in either endothelial cell type tested (Figure 3.5). 

 

 

 

 

Figure 3.5 Killed JUNV Does Not Decrease HUVEC and HMVEC-L Electrical Resistance. 

Cells were seeded onto collagen-coated gold electrode arrays and allowed to reach confluence 

(108h post seeding). Monolayers were then infected with JUNV Romero killed with gamma 

irradiation (5MRad) and evaluated by ECIS. Gamma irradiated JUNV infection does not decrease 

HUVEC and HMVEC-L monolayer electrical resistance.  Data are representative of 3 independent 

experiments. 
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HUVEC and HMVEC-L monolayers exhibit no overt visible cytopathology during infection 

with JUNV  

 It has been reported that JUNV infection in HUVECs causes no cytopathology, an 

observation confirmed in this study, by phase contrast microscopy and immunoblotting for 

platelet–endothelial cell adhesion molecule (PECAM), an endothelial cell marker that is present in 

healthy monolayers (206). As is seen in Figure 3.6, the relative amounts of PECAM detected in cell 

lysates of HUVECs and HMVEC-Ls infected with JUNV are the same at 48 and 72 hours post 

infection. Densitomtery of the western blot bands confirm the visual assessment (3.6 B). Because 

permeability and resistance changes occurred after 60 hours post infection, the western blot data in 

this dissertation includes 72 and 96 hours post infection. 

 Visual confirmation of healthy, confluent HUVEC and HMVEC-L monolayers is seen in 

Figure 3.5, which shows phase contrast microscope images of the monolayers infected with either 

JUNV Romero at 72 hours post infection. Viral titers were also calculated to verify productive 

infection during the experiment in which the phase contrast photos were taken and PECAM 

samples generated (Figure 3.7). 
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A. 

 

 

 

 

B. 

 

 

 

 

 

Figure 3.6 (A.) Western blot of PECAM. There are no detectable differences in PECAM between 

Romero-infected and mock in both cell types. (B.) ImageJ Analysis of immunoblotted bands was 

used to measure relative band density. The results were normalized to beta-actin and are 

representative of 3-5 independent experiments. 
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Figure 3.7 Phase contrast microscope observations of HUVEcs and HMVEC-Ls during 

infection with JUNV.  Cells were seeded onto collagen-coated cell culture plates and allowed to 

reach confluency before infected with JUNV. Both cell types exhibit healthy monolayers during 

infection with JUNV Ronmero at 72 hours post infection. Images are representative of 3-5 

independent experiments. 
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Discussion  

 Clinical manifestations of AHF indicate vascular dysregulation with increased vascular 

permeability in the absence of overt endothelial damage. Patients exhibit thrombocytopenia, 

leucopenia, proteinuria and fluid distribution problems. Vomiting and dehydration can cause rising 

hematocrits, but even hospitalized patients receiving fluid replacements experience 

hemoconcentration (94). Hemorrhage occurs, but clinically is usually more than ITP or other non 

VHF conditions at similar levels of thrombocytopenia. These observations implicate an 

endothelium which, although not visibly damaged, is altered enough to perhaps initiate a 

permeability increase that, when combined with other physiological factors during infection, may 

contribute to development of disease.  The presence of a vascular syndrome, in the absence of overt 

vascular damage, reminds us that it is possible for a viral infection to affect cellular processes 

without overt cellular injury. For example, LCMV, another arenavirus, alters growth hormone 

levels in the pituitaries of CH3/ST mice while leaving housekeeping functions undisturbed (89, 

207, 208). It is possible that the endothelial cellular response to JUNV infection contributes to 

disease progression and understanding that response is necessary to effectively prevent and treat 

AHF. 

For that reason, the role of direct infection of endothelial cells with JUNV was 

investigated, with results indicating that JUNV infection alone does, in fact, decrease HUVEC and 

HMVEC-L monolayer barrier function, and increase HUVEC and HMVEC-L monolayer 

permeability to FITC-dextran in the absence of visible cytopathology. Because JUNV infection 

decreases endothelial barrier function, it is important to find out the mechanism so that possible 

therapeutic targets can be identified. Since approximately 90% of the outcomes in patients with 

AHF who enter the hemorrhagic phase are fatal, finding treatments that target the vascular 
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syndrome is critical in saving lives. To achieve this, the mechanisms underlying these changes in 

barrier function need to be elucidated.  

Although the results indicate that the permeability observed allows 70kD dextran to move 

through the monolayer, there are many things to consider when evaluating this information. The 

ability of a molecule to move through gaps in the endothelium is dependent on several things, and 

size is merely one factor. The shape as well as the charge of a molecule can also affect its ability to 

move through the monolayer. So although this data indicates the relative size of the molecules 

measured, moving through the monolayer, it does not definitely indicate which physiologically 

relevant molecules might actually make it across if this were to occur during disease development. 

The fact that inactivated virus does not cause the same changes in permeability or 

resistance, indicates that productive viral infection and replication within the cells is required for 

these changes in endothelial barrier integrity. This is not surprising based on reports that viral 

replication requires interaction with the actin cytoskeleton (209, 210). It is possible that it is this 

very interaction which initiates the intracellular signaling changes to disrupt the monolayer. 

Adherens junctions are directly connected to the actin cytoskeleton via catenins, so disruptions in 

the actin network could affect the junctional architecture. The actin data presented in Chapter 4 

indicates that there are alterations in actin that, although not enough to compromise the overall 

health of the cells, may be sufficiently altered that it would not be unexpected to be mechanistically 

involved in the increased permeability seen here.  

These experiments were also carried out using the non-virulent vaccine strain of the JUNV, 

Candid#1. There were no differences found between Candid#1 and the virulent Romero strain in 

these studies, so the Candid#1 data has been included in the appendix at the end of this dissertation. 

Although the lack of any differences between the two strains here was unexpected, it is revealing in 
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that it indicates that the attenuation of Candid#1 may be due to reasons other than an inability to 

cause the same intra-endothelial cellular changes as the virulent strain. Some possible explanations 

include that attenuation of the vaccine strain may be due to a decreased ability of that strain to 

replicate and disseminate in a human. This could either be due to deficiencies in the virus’s ability 

to replicate in a human, or an increase in susceptibility to the innate immune response; two 

important aspects of JUNV pathogenesis that we are unable to replicate in this in vitro model. 
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Chapter 4. JUNV infection differentially alters endothelial cell 

monolayer adherens junction protein levels and actin 

architecture in the absence of overt cytopathology 
 

Summary 

 Because adherens junctions (AJ) are ubiquitous and critical in regulating 

permeability, this study focused on elucidating any changes specifically within AJ, rather 

than tight or gap junctions. AJ are also directly connected to the cytoskeleton through the 

catenins, an interaction which could affect changes in monolayer permeability during 

infection with JUNV. It has been reported that JUNV replication within the cell requires 

interaction with actin so actin was also investigated in this study (209, 210). The data 

shows that in vitro JUNV infection of HUVEcs and HMVEC-Ls causes changes in 

adherens junction protein levels and affects the protein interactions within the junctions. 

VE-cadherin and p120-catenin levels are decreased while beta-catenin levels remain 

unchanged. The data also indicate that the actin architecture of infected cells may be 

altered sufficiently that it would not be unexpected that this be mechanistically involved in 

the increased permeability seen in the absence of visible cytopathology.  
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Introduction 

 The endothelium contains different types of junctions that function in different ways to 

regulate the semi-permeable state of the vasculature: gap junctions, tight junctions (TJ) and 

adherens junctions (AJ). Unlike the epithelium, within the endothelium the AJ can be found 

intermingled with TJ along the intercellular cleft . Although AJ and TJ junctions are formed by 

different molecules they share some characteristics.  For example in either junction, homophilic 

adhesion is through transmembrane proteins that form zipper-like structures along the cell border 

(166). TJ are crucial in maintaining vascular integrity, especially in tissues such as the brain which 

require strict regulation of permeability.  However, only AJ are ubiquitous throughout the 

vasculature and there is substantial evidence that AJ and TJ are interconnected and that AJ may 

influence TJ organization (149).  AJ are formed early in vessel development followed by TJ, once 

the AJ are stabilized.  Furthermore, many substances known to increase vascular permeability have 

been shown to directly alter AJ organization by activation of specific tyrosine kinases and/or 

phosphatases (148). For these reasons, the studies here focused on adherens junctions. 

 VE-cadherin is the endothelial cell specific cadherin.  VE-cadherin proteins on adjacent 

cells bind each other via their extracellular domains. The cytoplasmic domain binds to beta-catenin, 

gamma-catenin and p120-catenin which link VE-cadherin to the actin network via alpha-catenin. A 

delicate balance between kinases and phosphatases controls adherens junction stability, disruption 

of which can cause junction discohesion (150). 

 To determine if the changes in endothelial permeability and resistance that were observed, 

were a result of changes in AJ, immunocytochemistry, immunoprecipitations and western blotting 

were performed on HUVEc and HMVEC-L monolayers either infected with JUNV Romero or 

mock infected. The diagram from Figure 1.4 has been included again here for convenience. 
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Figure 1.4: Diagrammatic representation of relevant VE-cadherin protein-protein interactions in 

Adherens junctions. Transmembrane VE-cadherin binds extracellularly to an adjacent VE-

cadherin, and intracellularly with various catenins leading to actin associations. p120-catenin binds 

near the cell membrane, while beta-catenin and gamma-catenin associate more distally. Beta-

catenin and p120-catenin are believed to be involved in the assembly of actin based structures.
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Results 

JUNV infection corresponds to a reduction in VE-cadherin/bet-catenin complexes in HUVEC 

and HMVEC-L monolayers 

 

 In addition to being a crucial component of the Wnt nuclear signaling cascade, beta-catenin 

participates in anchoring AJ to the cytoskeleton by associating directly with VE-cadherin. 

Disruption of this complex affects cell-cell adhesion and barrier function so the stability of this 

interaction was examined during infection of HUVEc and HMVEC-Ls during infection with 

JUNV. To determine if the AJ association between VE-cadherin and beta-catenin is disrupted 

during JUNV infection, confluent monolayers were infected. Because the barrier function changes 

occurred after 60 hours post infection, cell lysates were made at 72 and 96 hours post infection. 

Cell lysates were immunoprecipitated for beta-catenin and immunoblotted for VE-cadherin.  

 The data gathered indicate that during infection with JUNV, the complexes between VE-

cadherin and beta-catenin are disrupted. Less VE-cadherin is pulled down with beta-catenin in 

infected cell lysates, than in mock infected cell lysates (Figure 4.1A). Densitometry on the bands 

indicates that the levels of VE-cadherin pulled down with beta-catenin in infected cell lysates is 

less than half than that pulled down in mock infected lysates (Figure 4.1B). 

 Representative viral titers corresponding to infections in which VE-cadherin IP data were 

gathered are shown in Figure 4.2 and indicate that there was productive viral infection during these 

experiments. 
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Figure 4.1. (A.) Western blot of VE-cadherin pulled down with beta-catenin. Mock infected 

immunoprecipitates show more VE-cadherin pulled down with beta-catenin than infected IPs do. (B.) ImageJ 

Analysis of immunoblotted bands was used to measure relative band density compared to mock. The results 

were normalized to beta-actin and are representative of 3-5 independent experiments. 

 

Figure 4.2 Growth curves of JUNV indicate productive infection and viral titer. Growth of 

Romero in HUVECs and HMVEC-Ls during the first 96 hours of the beta-catenin IP experiment. 

Data are representative of 3-5 independent experiments. Each point represents the mean ± standard 

deviation from three experiments. 
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In HUVEC and HMVEC-L monolayers, JUNV infection corresponds to reduced levels of 

VE-cadherin, and p120-catenin; does not change beta-catenin levels and modifies the actin 

architecture without decreasing overall actin levels 

 

Adherens junctions are critical in maintaining endothelial barrier integrity and VE-cadherin 

is the main protein component of these junctions. Under normal physiological conditions VE-

cadherin is degraded and resynthesized as cellular and tissue requirements demand. P120-catenin is 

a critical component of adherens junctions and has been shown to play a role in vascular 

permeability during metastasis of certain tumor types (211). It binds to the juxtamembrane domain 

of VE-cadherin and has been shown to modulate intracellular levels of VE-cadherin by regulating 

clathrin-mediated endocytosis (195, 212). Immunofluorescent staining of infected HUVECs and 

HMVEC-Ls was used to determine whether JUNV infection alters the levels of VE-cadherin or 

p120-catenin. As early as 24 hpi, infected cells show decreased VE-cadherin (Figure 4.3) and 

p120-catenin (Figure 4.4).  As increasing viral antigen is detected, expression of both proteins 

decreases until levels are nearly below visualization levels at 96 hpi. This contrasts with mock-

infected cells in which VE-cadherin and p120-catenin expression remain strong throughout the 

time course.  

Viral titers were calculated during the experiments to indicate virus levels in supernatants 

during the infections that corresponded to the VE-cadherin data and the p120-catenin data (Figure 

4.3 C and 4.4 C, respectively). 
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Figure 4.3 Immunocytochemistry of VE-cadherin. JUNV infection greatly decreases VE-cadherin staining in 

HUVECs (A) and HMVEC-Ls (B). Cell monolayers were infected at an MOI of 4 or mock infected and fixed at 24 hour 

time points for 5 days.  Alexafluor 488 green: VE-cadherin; Alexafluor 594 red: Junin virus and blue: DAPI. HPI is hours 

post infection. All time points for HUVECs are shown and a representative time point is shown for HMVEC-Ls. All 

images are 40X magnification. (C). Growth curves of JUNV Romero in HUVECs and HMVEC-Ls during the first 96 

hours of the experiment in which the VE-cadherin data was gathered. (D.) and (E) Western blots and Image J analysis of 

density relative to mock-infected, and normalized to beta-actin, confirm imaging data. Each point represents the mean ± 

standard deviation from three experiments. 
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Figure 4.4 Immunocytochemistry of p120-catenin isoform 1. JUNV infection greatly decreases p120-

catenin isoform 1 staining in HUVECs (A) and HMVEC-Ls (B). Cell monolayers were infected at an MOI of 

4 or mock infected and fixed at 24 hour time points for 5 days.  Alexafluor 488 green: p120-catenin; 

Alexafluor 594 red: JUNV and blue: DAPI. HPI is hours post infection. All time points for HUVECs are 

shown and a representative time point is shown for HMVEC-Ls. All images are 40X magnification (C.) 

Growth curves of JUNV Romero in HUVECs and HMVEC-Ls during the first 96 hours of the experiment in 

which p120-catenin data was gathered. (D.) and (E) Western blots and Image J analysis of density relative to 

mock-infected, and normalized to actin, confirm imaging data. Each point represents the mean ± standard 

deviation from three experiments. 

C. 
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Beta-catenin is another important component of adherens junctions. It binds directly to VE-

cadherin and connects the junction to the actin cytoskeleton via alpha-catenin. Immunostaining of 

infected or mock infected HUVEC and HMVEC-L monolayers was used to see if beta-catenin 

levels were altered during JUNV infection. JUNV infection did not result in reduced beta-catenin 

levels relative to mock-infected HUVECs (Figure 4.6A) or HMVEC-Ls (4.6B).  

 Immunocytochemistry of actin filaments was also used to visualize the effects of JUNV 

infection on cellular architecture. Because the actin cytoskeleton is so important in cellular 

architecture, the effects of JUNV infection on actin staining were evaluated in infected HUVECs or 

HMVEC-Ls.  As shown in Figure 4.7 we found no alterations in the relative amounts of actin 

staining, although we did see a difference in the relative distribution of actin.  EC monolayers 

infected with JUNV, show small, distinct gaps between the cells as well as apparent minor 

alterations in the overall shape of the actin cytoskeleton.  For example, if you look more closely at 

the cells you can see that in infected cells, the actin fibers stretch across the center of the cells 

rather than remain more distinctly near the perimeter (Figure 4.7C). This is characteristic of a 

monolayer that would allow the passage of small molecules through the junctions while 

maintaining the overall health of the monolayer. 

 JUNV titers were calculated from supernatant samples taken during the course of the 

experiments to determine virus growth. Growth curves of samples taken during beta-catenin and 

actin experiments are shown in Figure 4.6C and 4.7D respectively. 
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Figure 4.6. Immunocytochemistry of beta-catenin. JUNV infection does not reduce beta-catenin staining 

in HUVECs (A) or HMVEC-Ls (B). Cell monolayers were infected at an MOI of 4 or mock infected and 

fixed at 24 hour time points for 5 days.  Alexafluor 488 green: beta-catenin; Alexafluor 594 red: Junin virus 

Romero and blue: DAPI. HPI is hours post infection. All time points for HUVECs are shown and a 

representative time point is shown for HMVEC-Ls. All images are 40X magnification (C.) Growth curves of 

JUNV Romero in HUVECs and HMVEC-Ls during the first 96 hours of the experiment in which beta-

catenin data was gathered. (D.) and (E) Western blots and Image J analysis of density relative to mock-

infected, and normalized to actin, confirm imaging data. Each point represents the mean ± standard deviation 

from three experiments. Each point represents the mean ± standard deviation from three experiments. 
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Figure 4.7 Immunocytochemistry of F-actin. JUNV infection alters the actin architecture of HUVECs (A) and 

HMVEC-Ls (B) without compromising overall actin levels. Cell monolayers were infected at an MOI of 4 or mock 

infected and fixed at 24 hour time points for 5 days.  Alexafluor 488 green: phalloidin; Alexafluor 594 red: Junin virus 

Romer and blue: DAPI. HPI is hours post infection. All time points for HUVECs are shown and a representative time 

point is shown for HMVEC-Ls. Insets depicting close up views of a few representative cells is also shown (C). All 

images are 40X magnification. (D.) Growth of JUNV Romero in HUVECs and HMVEC-Ls during the first 96 hours of 

the experiment in which the actin data was gathered. (E.) and (F.) Western blots and Image J analysis of density relative 

to mock-infected, and normalized to actin, confirm imaging data. Each point represents the mean ± standard deviation 

from three experiments. 
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Discussion 

 Determining the involvement of adherens junctions in JUNV induced endothelial 

dysfunction is an important step in defining the mechanisms underlying the pathogenesis of the 

vascular syndrome seen during AHF. This study reports that this dysfunction is associated with 

changes in adherens junction stability including loss of VE-cadherin, disruption of adherens 

junction protein complexes and alterations in the actin cystoskeleton. These findings indicate that 

direct viral infection contributes to endothelial cell function alterations resulting in increased 

endothelial dysfunction and decreased endothelial barrier integrity. 

 VE-cadherin functions in numerous ways to dynamically regulate vascular permeability 

under normal physiologic processes such as angiogenesis and wound healing (213, 214). Myriad 

pathways are involved and finely regulated by cellular signaling events. The specific signaling 

events involved determine the exact nature of the junctional remodeling. Many of the AJ proteins 

play more than one role in the endothelial cells and can be activated, inactivated or degraded based 

on the specific signaling cascade involved. In addition to functioning at the membrane within AJ, 

beta-catenin is critical in the nuclear Wnt cascade. p120-catenin wears more than one hat as well 

and the function of its individual isoforms is only recently being investigated. 

 Many disease processes involving adherence junction disruption and inappropriate 

permeability, such as lead poisoning, involve VEGF signaling and Src kinase activation (215). 

TNF-alpha activates Fyn during sepsis which opens the AJ and contributes to multi-organ failure 

(216). P120-catenin mismanages the turnover of VE-cadherin allowing the permeability required 

for some kinds of tumor metastasis (217). More recently it was demonstrated that Andes 

hantavirus-induced endothelial permeability was due to VEGFR2 signaling via Src which 

destabilized the VE-cadherin junctional complex and could be decreased through Src and VEGFR2 

inhibitors (218, 219). Because the data shows that AJ are compromised during JUNV infection, the 
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next logical step would be to investigate whether Src kinase is involved in the intracellular 

signaling that leads to AJ disruption. If it is, then it would be possible to address the issue by 

testing FDA approved Src inhibitors as potential therapies to ameliorate the vascular syndrome 

seen during AHF. 

 Based on reports that JUNV interacts with the actin cytoskeleton and that this interaction is 

necessary for viral entry and replication, it was important to investigate the effects of JUNV on the 

actin cytoskeleton in this model (209, 210).  Here, alterations in the actin framework of infected 

cells, correlates to increases in permeability and decreases in electrical resistance that were 

observed. The alterations shown here, in the actin cytoskeleton during JUNV infection, speak to the 

interactions others have shown, as well as provide a possible role for actin in the increased 

permeability and decreased electrical resistance demonstrated here.  

 Again, it must be noted, that both virus strains, the virulent Romero and the attenuated 

Candid#1, caused similar changes in the adherens junctions proteins examined, as well as in actin 

(Data in appendix). This lends more support to the conclusion that the attenuation of Candid#1 is 

through some mechanism other than the pathogenic effects on the endothelium. 
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Chapter 5. JUNV infection alters intracellular HUVEC and 

HMVEC-L signaling and cytokine profiles to induce alterations 

in adherens junctions, without inducing Src kinase activation 

Summary 

 To better understand the intracellular signaling occurring during JUNV infection that 

results in adherens junction disruption, two major regulators of permeability were investigated first: 

VEGF and Src kinase. Unexpectedly, this study reports that there is no increase in VEGF 

production during in vitro infection of HUVEC and HMVEC-Ls with either the virulent or 

attenuated strains of JUNV. As a critical component in regulating VE-cadherin levels 

intracellulary, p120-catenin became a logical target for further study. The data reported here 

indicates that there is an isoform switch of p120-catenin during JUNV infection, from isoform 1 to 

isoform 2. Although many cytokines were examined during JUNV infection, including but not 

limited to TNF-alpha and type I and type II interferons, the only cytokine profile changes reported 

in this study are that during in vitro infection of HUVEC and HMVEC-Ls with either Candid#1 or 

Romero, MCP-1 and IL-6 production increases. 

 

Introduction 

  VEGF is made by endotheial cells to stimulate the formation of new blood cells and can 

also act mitogenically to induce the endothelial cells to divide and multiply. It also functions to 

facilitate vascular permeability which is critical in angiogenesis and wound healing (220). There 

are several members of the VEGF family: VEGF-(A), B, C, D, E, F and PlGF.  The identification 

of these different isoforms brings the possibility of therapeutic targets, for diseases in which 

angiogenesis is critical, such as rheumatoid arthritis and cancer (221). VEGF inhibitors might be 

appropriate targets for some conditions, but the side effects for such a broad inhibitor could present 
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serious problems. It has been reported that anti-VEGF treatments have adverse effects on 

coagulation, as is evidenced by bleeding and thrombotic events (222, 223). VEGF-defective mice 

exhibit progressive motor neuron degeneration, which might be another concern in therapies 

directed at inhibiting VEGF (224). Finally, it’s possible, although not documented, that VEGF 

inhibition during ischemic heart disease could aggravate it by preventing the development of 

compensatory vasculature. A more specific therapeutic alternative to VEGF inhibition would be 

Src kinase, which has been shown to be critical in cellular signaling involving VEGF and TLR2 

and its inhibition has already been shown to ameliorate some instances of pathogenic increases in 

vascular permeability (146). Determining the role of both VEGF and Src kinase in JUNV induced 

permeability might prove quite useful in developing novel therapeutic targets, so this study aimed 

to define the roles of each during in vitro JUNV infection of endothelial cells.  

 P120-catenin has also been shown to play a critical role in maintaining levels of VE-

cadherin in healthy endothelial cells and this role is only beginning to be well understood. In some 

cases, p120-catenin affects internalization of VE-cadherin and subsequent junction opening, while 

in other situations p120-catenin appears to direct phosphorylation changes of VE-cadherin which 

causes the junctions to open in the absence of VE-cadherin internalization (196, 225). There are 

four possible isoforms of p120-catenin, based on different splicing events during translation and 

the roles of these isoforms in AJs organization and control is only beginning to be understood 

(226). It has been reported that the p120-catenin isoform profile can affect tumor metastasis, 

possibly through opening AJ (217). The loss of p120-catenin seen earlier in this study was, in fact, 

the specific loss of isoform 1. For this reason, it was important to follow up by examining other 

p120-catenin isoforms during JUNV infection. 
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Results 

Infection with JUNV does not increase VEGF levels 

 There are many documented instances in which inappropriate permeability is caused by the 

iunduction of VEGF: myocardial infarction, lead poisoning and stroke among others. Some 

infectious organisms also induce VEGF production in endothelial cells, such as rickettsia and 

dengue virus. VEGF functions to increase permeability through Src kinase action on adherens 

junctions, so determining if endothelial cells infected with JUNV showed an increase in VEGF 

production would indicate if Src kinase might be involved. Suprisingly, the data from this study 

shows no increase in VEGF levels in HUVECs or HMVEC-Ls infected with JUNV (Figure 5.1). 

 Supernatant samples were also used to calculate virus titer during the infection from which 

samples were taken for VEGF analysis. Virus growth indicates a productive infection as has been 

observed in all previous infections and are shown in Figure 5.1 C. 
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Figure 5.1 VEGF ELISA. Infected or mock infected HUVEC (A) or HMVEC-L (B) cell lysates were 

analyzed by ELISA to determine levels of VEGF.  Activation of cells with thrombin at 1 IU/ml for 12 hours 

was used as a positive control for VEGF induction. JUNV did not increase VEGF levels in either cell type. 

(C.) Growth curves of JUNV Romero in HUVECs and HMVEC-Ls during the first 96 hours of the 

experiment. Each point or bar represents the mean ± standard deviation from three experiments. 
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Infection with JUNV does not increase Src kinase activity 

 Adherens junctions are regulated by complicated intracellular signaling cascades that often 

involve Src kinase and there are approved Src inhibitors that are in clinical trials for the treatment 

of inappropriate permeability during different disease processes. It has also been reported that Src 

inhibition can prevent increased permeability in HUVECs by hantaviruses (218, 219). To see if Src 

was involved in the changes seen during JUNV infection, cell lysates were analyzed by ELISA 

specific for c-Src phosphorylated at the active site (tyr416). As is seen in Figure 5.2, there was no 

increase in the levels of phosphorylated c-Src  in JUNV infected HUVEC (A) or HMVEC-L (B) 

lysates compared to mock. Cells stimulated with VEGF, a known inducer of c-Src activity, were 

used as a positive control. Virus growth curves indicate productive infection as has been observed 

in all previous infections and are shown in Figure 5.2 C. 
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Figure 5.2 Phospho-Src ELISA. Infected or mock infected HUVEC (A) or HMVEC-L (B) cell lysates 

were analyzed by ELISA to determine levels of activated pSrc (Tyr416). VEGF at 25ng/ml for 12 

hours was used as a positive control. JUNV did not increase pSrc levels in either cell type. Data are 

means ± SEM representing 3-5 independent experiments. (C.) Growth of JUNV Romero in 

HUVECs and HMVEC-Ls during the first 96 hours of the experiment. Each point or bar represents 

the mean ± standard deviation from three experiments. 
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Infection with JUNV alters the p120-catenin isoform profiles of HUVEC and HMVEC-Ls 

 P120-catenin has been shown to be critical in regulating VE-cadherin levels and adherens 

junction stability (195, 227). Binding directly to VE-cadherin, p120-catenin helps maintain 

appropriate levels of VE-cadherin and contributes to regulation of endothelial cell phenotype 

switching from adhesive to motile (227). In addition, p120-catenin isoform switching has been 

shown to differentially affect some cellular processes including cancer metastasis. For these 

reasons the levels and isoform profiles of p120-catenin were investigated in this study. The initial 

evaluation of p120-catenin levels was done using an antibody specific for isoform 1, so the levels 

of other p120-catenin isoforms, during JUNV infection of HUVECs and HMVEC-Ls, were 

investigated. The data show that during infection with JUNV, in both endothelial cell types, p120-

catenin isoform 1 (Figure 5.5) decreases while isoform 2(Figure 5.6) increases. 
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Figure 5.3 P120-catenin Isoform 1 decreases over time compared to mock infected cells. Cell monolayers were 

infected at an MOI of 4 or mock infected and lysates made at 24 hour intervals.  (A.) Western blots 

show an increase in p120-catenin isoform 1 in infected cell lysates compared to mock infected. (B.) 

Image J analysis of density relative to mock-infected, and normalized to actin, confirm imaging 

data. (C.) Growth curves of JUNV Romero in HUVECs and HMVEC-Ls during the first 96 hours 

of the experiment. Each point represents the mean ± standard deviation from three experiments. 
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Figure 5.4 P120-catenin Isoform 2 increases over time compared to mock infected cells. Cell monolayers were 

infected at an MOI of 4 or mock infected and lysates made at 24 hour intervals.  (A.) Western blots 

show an increase in p120-catenin isoform 2 in infected cell lysates compared to mock infected. (B.) 

Image J analysis of density relative to mock-infected, and normalized to actin, confirm imaging 

data. (C.) Growth curves of JUNV Romero in HUVECs and HMVEC-Ls during the first 96 hours 

of the experiment. Each point represents the mean ± standard deviation from three experiments. 
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Infection with JUNV induces HUVEC and HMVEC-L production of MCP1 

 Because there was no evidence that the adherens junction alterations seen in this study 

were due to increased VEGF production or Src kinase activation, cytokine levels in cell culture 

supernatants were determined using Bio-Plex® bead array system. Table 5.1 shows the cytokine 

data measured. Many of the cytokines were below detectable levels including TNF-alpha, while 

some showed no changes compared to mock infected cells, including INF-gamma, INF-beta and 

INF-alpha. Only two of the cytokines measured were found to be significantly different in infected 

cells than in mock infected cells: MCP-1 and IL6. 

 

 Table 5. 1  Cytokine analysis. HUVEC and HMVEC-L supernatants were analyzed for 

cytokine levels during infection with JUNV or mock infected. Supernatant samples were taken 

every 24 hours post infection and subjected to either Bioplex cytokine analysis, ELISA or the 

interferon bioassay. The only cytokines measured that were changed compared to mock infected 

cells were IL-6 and MCP1, which were both significantly increased compared to mock infected 

cells. Data are representative of 3-5 independent experiments. 
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 To confirm comparable, productive JUNV infection during the experiment in which 

samples were taken for cytokine analysis, viral growth was calculated and is shown in Figure 5.7. 

Virus growth indicates similar titers as in all previous infections. 

 

 

 

 

 

 

 

 

Figure 5.5 Growth curves of JUNV indicate productive infection and viral titer. Growth of Romero 

in HUVECs and HMVEC-Ls during the first 96 hours of the cytokine experiment. Each point 

represents the mean ± standard deviation from three experiments. 

 

 Monocyte chemotactic protein-1, (MCP-1) is a member of the small inducible gene (SIG) 

family of proteins. MCP-1 recruits leukocytes when needed at injury or infection sites. The MCP1 

gene is located on chromosome 17 (17q11.2-q12). MCP-1 has been implicated in inflammation, 

leukocyte recruitment and signaling to open tight junctions in the brain (228). It has also been 

found to be elevated in patients with dengue shock although its role in endothelial permeability is 

still largely unclear. Interestingly, this study reports that MCP-1 was elevated in cell supernatant 

samples infected with JUNV Romero (Figure 5.6). 
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Figure 5.6 MCP-1 production in JUNV Infected Endothelial Cells. HUVECs (A) and HMVEC-

Ls (B) infected with JUNV Romero show an increase in MCP-1. Cell monolayers were infected at 

an MOI of 4 or mock infected and supernatant samples were taken every 24 hours post infection 

and subjected to Bioplex cytokine analysis. Data are extremely significant by a two-way repeated 

measure ANOVA test (***p-value<0.0001). Each bar represents the mean ± standard deviation from 

three experiments. 

 

 

Infection with JUNV induces HUVEC and HMVEC-L production of IL-6 

 Il-6 is a pro-inflammatory cytokine that is a marker of vasculitis, can increase permeability 

and is associated with adverse outcomes in many diseases including the prototypical VHF, yellow 

fever (229). IL-6 is released in response to different cytokines including IL-1 and TNF-b. The IL-6 

receptor is found on many cell surfaces and can lead to the transcription of a wide variety of 

proteins through three major signaling cascades: protein kinase C (PKC), cAMP/protein kinase A, 

and the calcium release pathway (230). IL-6 has several isoforms and each one serves a different 

function when secreted by different cells in distinct situations (231). 

 In this study, an increase in IL-6 levels in the cell culture supernatants of endothelial cells 

infected with JUNV (Figure 5.7) is reported. 



 

80 
 

A

. 
B.  

 

 

 

Figure 5.7 IL-6 production in JUNV Infected Endothelial Cells.  HUVECs (A) and HMVEC-Ls (B) 

infected with JUNV Romero show an increase in IL-6. Cell monolayers were infected at an MOI of 

4 or mock infected and supernatant samples were taken every 24 hours post infection and subjected 

to Bioplex cytokine analysis. Data are extremely significant by a two-way repeated measure ANOVA 

test (***p-value<0.0001). Each bar represents the mean ± standard deviation from three experiments. 
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Discussion 

 VEGF is a well-established inducer of vascular permeability in many situations including 

wound healing and angiogenesis (197). It has also been shown to cause inappropriate permeability 

that leads to disease in situations such as myocardial infarction (146). Increased VEGF levels were 

expected in light of the data indicating adherens junction dissociation and increased permeability 

during JUNV infection. It is somewhat surprising that VEGF is not increased in this system. 

Nevertheless, Src levels were measured because Src kinase is involved in several intracellular 

signaling pathways, only one of which involves VEGF. Finding no increase in Src kinase 

activation in this study was also rather surprising, since most of the adherens junction proteins have 

been identified as Src substrates. Needless to say, these data indicate that the JUNV induced 

permeability seen in this study must be the work of an as of yet unidentified signaling cascade. 

P120-catenin has been shown to be critical in regulating VE-cadherin levels, so it was the logical 

target of the next investigation in this study. The isoform switch seen in p120-catenin during 

infection with JUNV may indicate the involvement of one of many signaling pathways specific for 

p120-catenin, which are still poorly understood. To more closely examine the signaling occurring 

during JUNV infection, cytokine profiles of the infected endothelial cells were examined. 

 The only cytokines found altered following JUNV infection in this study, were MCP-1 and 

IL-6. In the endothelium, IL-6 is a known inducer of angiogenesis, and can also cause endothelial 

permeability and induce the production of MCP-1, which was also found increased during infection 

with JUNV (232-234). MCP-1 plays a role in angiogenesis and wound repair, has been shown to 

induce permeability and is found significantly increased in dengue hemorrhagic fever patients as 

well as in human endothelial cells infected with Rickettsia in vitro (235, 236). Increased levels of 

both MCP-1 and IL-6 are not surprising considering that increased production of reactive oxygen 

species can increase levels of both in endothelial cells (237). Although Gomez et al only found 
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increased NO in HUVECs infected with the virulent Junin strain, NO is only one ROS and it is 

possible that other ROS are produced in JUNV infected endothelial cells as well (87). Levels of 

both MCP-1 and IL-6 were increased, and the biphasic nature of this increased expression is not 

completely unexpected as it has been seen with IL-6 and MCP-1 in other pathogenic circumstances 

such as irradiation, and a mouse model of otitis media with effusion (238, 239). Considering that 

these two cytokines have been shown to function synergistically to increase vascular inflammation, 

it is likely that they function together during JUNV infection to induce signaling which leads to 

adherens junction dysregulation with subsequent permeability increases (240). Because visible 

changes were only observed in cells infected with JUNV and expressing viral proteins, the 

mechanism of action on the adherens junction proteins appears to involve an intracellular cascade 

rather than intercellular signaling, with no paracrine effect. Studies using neutralizing antibodies 

against MCP-1 or IL-6 could help define their role here. Again, an in vivo system is needed to more 

closely investigate the role of these cytokines during JUNV infection. 

 Circulating interferon levels play important roles in arenavirus caused diseases. Increased 

levels of circulating interferon correlate to increased severity of the disease (241-244). In the 

studies presented here, IFN-alpha, beta or gamma were not detected in ECs infected with JUNV. 

Although this means that the ECs themselves are not responding to infection with JUNV by 

expressing interferon, it does not mean that circulating interferons do not play a role in 

pathogenesis. In vivo studies will be critical in addressing this issue. 

 Again, these studies were repeated using the vaccine strain of JUNV, Candid#1 and no 

differences were found between it and the virulent Romero strain. (Data in appendix).  
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Chapter 6. Discussion And Future Directions 
 

Discussion  

 AHF is a public health concern for those who live or work in the endemic area, as well as 

for anyone traveling to such areas, or who might be targeted and/or respond in the event of a 

bioweapons attack. It is imperative that the pathogenesis of this disease is better understood, so that 

it can be successfully prevented, accurately diagnosed, and effectively treated. The etiological 

agent of AHF is Junín virus, the pathogenesis of which is still poorly understood. Because it is 

highly infectious by aerosol with a high mortality rate, it is a CDC category A agent and must be 

handled in a BSL4 facility. This makes it much more difficult to study, and consequently limits not 

only the amount of information available already, but also the scope of research being performed. 

 Clinical manifestations of AHF such as rising hematocrits, edema and tissue congestion 

indicate vascular dysregulation with increased vascular permeability in the absence of overt 

endothelial damage. Patients exhibit thrombocytopenia, leucopenia, proteinuria and fluid 

distribution problems (94). Vomiting and dehydration can cause rising hematocrits, but even 

hospitalized patients receiving fluid replacements experience hemoconcentration. Hemorrhage 

occurs, but clinically is usually more than ITP or other non VHF conditions at similar levels of 

thrombocytopenia. These observations implicate an endothelium which, although not visibly 

damaged, is altered enough to perhaps initiate a permeability increase that, when combined with 

other physiological factors during infection, may contribute to development of disease.   

 The presence of a vascular syndrome in the absence of overt vascular damage reminds us 

that it is possible for a viral infection to affect cellular processes without overt cellular injury. For 

example, LCMV, another arenavirus, alters growth hormone levels in the pituitaries of CH3/ST 

mice while leaving housekeeping functions undisturbed.(207, 208) It is possible that the 
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endothelial cellular response to JUNV infection contributes to disease progression, and 

understanding that response is necessary to effectively prevent and treat AHF. 

 Recently, Cuevas et al reported that viral infection and replication are not required for 

Candid#1 to induce the immune response in macrophages; that interaction with the macrophages 

via TLR2 is enough (245).  Endothelial cells, including HUVEcs and HMVEc-Ls express TLR2 so 

it is possible that Candid#1 or Romero might interact with the endothelial cells in the same way, 

initiating some kind of intracellular response (246, 247). Inducible TLR tyrosine phosphorylation 

has been linked to activation of Src family kinases, which seem to be an integral part of the TLR2 

and TLR3 signaling complex (248). The fact that productive viral infection is needed for the 

changes seen in barrier function, and that Src kinase is not activated, it seems plausible that the 

signaling involved in this study is not through a TLR2/Src dependent pathway. This is not to say 

that JUNV/TLR2 signaling does not affect pathogenesis on some level, perhaps even 

synergistically with the intracellular viral inductions that are likely responsible for the replication-

dependent changes reported here. 

 In addition to the VEGF/Src kinase pathways, other signaling cascades affect and help 

regulate adherens junctions. P120-catenin is a critical component of VE-cadherin regulation at the 

junctions; it regulates VE-cadherin levels and controls its availability, but the functions and 

signaling cascades in which p120-catenin are involved are not fully understood (195). There is 

significant data indicating that p120-catenin both suppresses tumors and promotes metastasis, 

perhaps through modulating adhesion at adherens junctions (227). However, p120 alone is not 

sufficient to stabilize adhesion, and in fact, signaling through its amino-terminal domain has been 

shown to disrupt adhesion (227). This study reports an isoform switch of p120-catenin during 

infection with JUNV, which lends support to the idea that the VE-cadherin loss seen during JUNV 

infection is a result of p120-catenin signaling rather than VEGF signaling. The specific roles of 
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p120-catenin isoform 2 in junction maintenance are not well known and more research is needed in 

this area. 

 Endothelial cells can produce different cytokines in response to different physiological 

conditions, including infection. The cytokine profile of infected endothelial cells in this study, 

show that JUNV infection stimulates production of IL-6 and MCP-1, but not TNF-alpha or 

interferons. IL-6 and MCP-1 have been reported to increase endothelial permeability, either on 

their own or synergistically (240). The data presented here provide evidence that IL-6 and MCP-1 

are working in a bi-phasic, synergistic manner to affect adherens junction changes. AHF patients 

have high levels of circulating TNF-alpha and INF-gamma from immune cells during disease. 

Those cytokines, combined with the data here, suggest that the combination of circulating 

cytokines and endothelial expressed cytokines are working together to exacerbate permeability and 

worsen the vascular syndrome. 

 Finally, the fact that the attenuated vaccine strain causes the same changes in endothelial 

cell permeability and adherens junctions during infection is unexpected and very interesting. It 

indicates that Candid#1 attenuation is not due to pathogenic mechanism attenuation – in so far as 

pathogenic mechanisms relate to direct endothelial cell infection and alterations in barrier function. 

Instead, it appears that Candid#1 must not be able to disseminate, and or replicate, to the same 

degree as the wild-type, virulent Romero strain. Perhaps this involves some level of temperature 

sensitivity or less successful mechanisms for evading immune responses. Recently, a study to 

rescue JUNV strains from Cloned cDNAs, suggests that Candid#1 does, in fact, replicate more 

slowly than Romero (249). This is also supported by the fact that, in these studies at 37C, Romero 

consistently reached approximately 0.5 log higher than Candid#1, and to get high enough titer 

stocks of Candid#1 for these experiments , the virus had to be grown at 35C, instead of 37C, which 

is the temperature at which Romero stocks were generated. Of course, in this in vitro system, there 
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are no immune responses of any kind, so in vivo studies need to be done to evaluate the effects of 

immune responses to Candid#1 replication and dissemination within a live, immune competent 

organism. 

  

Future Directions 

 This study reports an unexpected absence of VEGF and Src kinase signaling during JUNV 

infection. Instead, p120-catenin appears to be playing a role, as do the interactions of actin with 

adherens junction and perhaps with the virus itself. More studies need to be done to elucidate 

exactly how p120-catenin might be functioning in this process of opening adherens junctions in the 

absence of Src signaling, and also to determine how and when the virus interacts with the actin 

cytoskeleton, and if altering these interactions changes the kinetics junctional changes. High 

resolution imaging studies, in which co-localization of p120 with actin, and actin with the virus, 

would be very helpful in answering these questions. Another effective approach for delineating 

these interactions would be to generate mutant viruses lacking specific virion components, and 

assessing their ability to co-localize with cellular components or induce changes in adherens 

junctions. Additionally, microarray analysis would help to further define the signaling cascades 

that are involved and could help narrow down the search for potential therapeutic targets. 

Testing the addition of cytokines alone, in this system, would most certainly cause 

permeability and adherens junction changes, but because the effects seen during JUNV infection in 

this study were limited to cells expressing viral antigens, it does not appear that a paracrine effect 

plays a role. A more effective approach for future studies would be to add exogenous 

antibodies, directed against IL-6 and MCP-1, to help define the extent to which they are affecting 

the adherens junction changes and barrier function disruption. Ideally, doing this with each 

cytokine alone, and also together, at different time points, would help define the role each plays in 
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junction disruption during infection, and also if this effect can be reduced, or ameliorated,  with 

antibodies against the cytokines. 

 3-dimensional modeling of the adherens junctions during infection would offer more 

insight into the role that virus/actin interaction might be playing in junction disassembly. In 

addition to allowing better special and temporal investigations into the protein interactions, it 

would also allow modeling to include intravascular forces such as sheer stress and flow dynamics, 

as well as perhaps help identify more specific protein-protein interactions that were not 

investigated here, or that might not even be considered relevant in the current permeability 

paradigm. 

 As more animal models are developed for studying Junín virus, it will become easier to get 

in vivo data that can substantiate or refute the in vitro data that has been generated. Monitoring the 

endothelium in an infected animal over time, would provide answers to many questions still 

unanswered about the vascular dysfunction during JUNV infection, such as how much of the 

endothelium gets infected? Is the extracellular matrix playing a role? Can the endothelium be 

successfully targeted for therapeutics? Immunohistochemistry and cutting-edge in vivo imaging 

systems would provide an entirely new perspective for answering these questions that simply 

cannot be done using an in vitro system. 

 This study has provided solid footing on which to further explore the mechanisms of 

vascular dysfunction seen in arenavirus hemorrhagic fevers, but finding the answers to these 

questions, as well as those yet to be asked, will require animal studies and, ideally, evaluation of 

human tissue samples from patients who have either survived, or succumbed to, disease. Moving 

forward with this line of research will be critical in understanding JUNV pathogenesis and 

transmission, strengthening preventative measures, and generating treatments that include therapies 

that will provide better outcomes for patients stricken with AHF. 
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Appendix 

 All of the studies presented in this dissertation were also performed using the attenuated 

JUNV vaccine strain Candid#1. There were no significant differences found between these studies 

and those with the virulent Romero strain. Because there were no differences found and so as not to 

confuse the reader, the Candid#1 data are presented here rather than in the main body of the 

dissertation. 

CANDID#1 RESULTS 

Infection with Candid#1 decreases HUVEC and HMVEC monolayer electrical resistance 

      

Figure A.1 Candid#1 Decreases HUVEC and HMVEC-

L Electrical Resistance. Cells were seeded onto collagen-

coated gold electrode arrays and allowed to reach confluence 

(108h post seeding). Monolayers were then infected with 

JUNV Candid#1 or mock infected and evaluated by ECIS. 

HUVECs (A) or HMVEC-Ls (B) infected with JUNV 

Candid#1 show decreased electrical resistance beginning at 

approximately 60 hours post infection (~85 hours after plates 

were connected to ECIS machine). (C.) Growth of 

Candid#1in HUVECs and HMVEC-Ls during the first 96 

hours of the IP experiment. Each point represents the mean ± standard deviation from three experiments. 

A. 
B. 

C. 
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Infection with Candid#1 increases HUVEC and HMVEC-L monolayer permeability to 70kD 

FITC-dextran. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.2 Transwell permeability assay. Cells were seeded onto transwell inserts and infected with JUNV 

Candid#1. Samples were taken every 24h for 5 days. HUVECs (A) or HMVEC-Ls (B) infected with 

Candid#1 show an extremely significant increased permeability to 70 kDa FITC-Dextran in the absence of 

visible cytopathology (P<0.0001 by paired t-test). (C.) Growth of Candid#1in HUVECs and HMVEC-Ls 

during the first 96 hours of the IP experiment. Data are representative of 3 or more independent experiments. 

Each point represents the mean ± standard deviation from three experiments. 

  

A. B. 

C. 
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Gamma irradiation of Candid#1 prevents the decrease in electrical resistance. 

Figure A.3 Killed JUNV Does Not Decrease HUVEC and HMVEC-L Electrical Resistance. Cells were 

seeded onto collagen-coated gold electrode arrays and allowed to reach confluence (108h post seeding). 

Monolayers were then infected with JUNV Romero killed with gamma irradiation (5MRad) and evaluated by 

ECIS.. Gamma irradiated JUNV infection does not decrease HUVEC and HMVEC-L monolayer electrical 

resistance.  Data are representative of 3 independent experiments. 

 

HUVEC and HUMVEC-L monolayers exhibit no overt cytopathology during infection with 

JUNV Candid# 

   A.      B.  

 

 

  

 

Figure A.4 (A.) Western blot of PECAM. There are no detectable differences in PECAM between 

Candid#1-infected and mock in both cell types. (B.) Image J analysis of density relative to mock-infected, 

and normalized to actin, confirm imaging data and are representative of 3-5 independent experiments. 
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HUVEC and HMVEC-L monolayers appear healthy when observed with phase-contrast 

microscopy during JUNV Candid#1 infection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A.5 Phase contrast microscope observations of HUVEcs and HMVEC-Ls during infection 

with JUNV Candid#1.  Cells were seeded onto collagen-coated cell culture plates and allowed to reach 

confluency before infected with JUNV Candid#1. Both cell types exhibit healthy monolayers at 72 hours 

post infection. Images are representative of 3-5 independent experiments. 
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Infection with Candid#1 corresponds to a reduction in VE-cadherin/beta-catenin complexes 

in HUVEC and HMVEC-L monolayers. 

 

A.  

 

 

B.  

 

  

 

 

 

C.  

 

  

 

 

 

 

Figure A.6 Western blot of VE-cadherin pulled down with beta-catenin. (A.) Mock infected 

immunoprecipitates show more VE-cadherin pulled down with beta-catenin than infected IPs. (B.) Image J analysis of 

density relative to mock-infected, and normalized to actin, confirm imaging data. (C.) Growth of Candid#1in HUVECs 

and HMVEC-Ls during the first 96 hours of the IP experiment. Each point represents the mean ± standard deviation from 

three experiments.  
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Infection with Candid#1 in HUVEC and HMVEC-L monolayers decreases VE-cadherin 

staining. 

A.          B. 

 C.      D. 

 

         E. 

 

 

Figure A.7 Immunocytochemistry of VE-cadherin. JUNV Candid#1 infection greatly decreases VE-cadherin 

staining in HUVECs (A) and HMVEC-Ls (B). Cell monolayers were infected at an MOI of 4 or mock infected and fixed 

at 24 hour time points for 5 days.  Alexafluor 488 green: VE-cadherin; Alexafluor 594 red: Junin virus and blue: DAPI. 

HPI is hours post infection. All time points for HUVECs are shown and a representative time point is shown for 

HMVEC-Ls. All images are 40X magnification. (C.) Growth curves of JUNV Candid#1 in HUVECs and HMVEC-Ls 

during the first 96 hours of the experiment in which the VE-cadherin data were gathered. Each point represents the mean 

± standard deviation from three experiments. (D.) and (E) Western blots and Image J analysis of density relative to mock-

infected, and normalized to actin, confirm imaging data.  
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Infection with Candid#1 in HUVEC and HMVEC-L monolayers decreases p120-catenin 

isoform 1 staining. 

 

   A.          B. 

  C.      D. 

 

   E.  

 

 

Figure A.8 Immunocytochemistry of p120-catenin isoform 1. JUNV Candid#1 infection greatly decreases 

p120-catenin isoform 1 staining in HUVECs (A) and HMVEC-Ls (B). Cell monolayers were infected at an MOI of 4 or 

mock infected and fixed at 24 hour time points for 5 days.  Alexafluor 488 green: p120-catenin; Alexafluor 594 red: 

JUNV and blue: DAPI. HPI is hours post infection. All time points for HUVECs are shown and a representative time 

point is shown for HMVEC-Ls. All images are 40X magnification (C.) Growth curves of JUNV Candid#1 in HUVECs 

and HMVEC-Ls during the first 96 hours of the experiment in which p120-catenin data were gathered. Each point 

represents the mean ± standard deviation from three experiments. (D.) and (E) Western blots and Image J analysis of 

density relative to mock-infected, and normalized to actin, confirm imaging data. 
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Infection with Candid#1 in HUVEC and HMVEC-L monolayers does not alter beta-catenin 

staining. 

     A.          B. 

     C.      D. 

 

 

           E. 

 

   

Figure A.9. Immunocytochemistry of beta-catenin. JUNV Candid#1 infection does not reduce beta-catenin 

staining in HUVECs (A) or HMVEC-Ls (B). Cell monolayers were infected at an MOI of 4 or mock infected and fixed at 

24 hour time points for 5 days.  Alexafluor 488 green: beta-catenin; Alexafluor 594 red: Junin virus Candid#1 and blue: 

DAPI. HPI is hours post infection. All time points for HUVECs are shown and a representative time point is shown for 

HMVEC-Ls. All images are 40X magnification (C.) Growth curves of JUNV Candid#1 in HUVECs and HMVEC-Ls 

during the first 96 hours of the experiment in which beta-catenin data were gathered. Each point represents the mean ± 

standard deviation from three experiments. (D.) and (E) Western blots and Image J analysis of density relative to mock-

infected, and normalized to actin, confirm imaging data. 
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Infection with Candid#1 in HUVEC and HMVEC-L monolayers modifies actin architecture 

without affecting the overall level of staining. 

    A.          B. 

 

 

 

D.      E. 

 

  F. 

 

 

Figure A.10 Immunocytochemistry of F-actin. JUNV Candid#1 infection alters the actin architecture of HUVECs (A) 

and HMVEC-Ls (B) without changing overall levels of actin staining. Cell monolayers were infected at an MOI of 4 or 

mock infected and fixed at 24 hour time points for 5 days.  Alexafluor 488 green: phalloidin; Alexafluor 594 red: Junin 

virus Candid#1 and blue: DAPI. HPI is hours post infection. All time points for HUVECs are shown and a representative 

time point is shown for HMVEC-Ls. Insets depicting close up views of a few representative cells is also shown (C). All 

images are 40X magnification. (D.) Growth of JUNV Candid#1 in HUVECs and HMVEC-Ls during the first 96 hours of 

the experiment in which the beta-catenin data was gathered. Each point represents the mean ± standard deviation from 

three experiments. (E.) and (F.) Western blots and Image J analysis of density relative to mock-infected, and normalized 

to actin, confirm imaging data. 
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. 

B. 

C

. 

Infection with Candid#1 in HUVEC and HMVEC-L monolayers does not increase VEGF 

levels. 

 

  

 

 

 

 

 

  

 

 

 

 

 

 

Figure A.11 VEGF ELISA. Infected or mock infected HUVEC (A) or HMVEC-L (B) cell lysates were analyzed by 

ELISA to determine levels of VEGF.  Activation of cells with thrombin at 1  IU/ml for 12 hours was used as a positive 

control for VEGF induction. JUNV Candid#1 did not increase VEGF levels in either cell type. Data are means ± SEM 

representing 3-5 independent experiments. (C.) Growth curves of JUNV Candid#1 in HUVECs and HMVEC-Ls during 

the first 96 hours of the experiment. . Each point represents the mean ± standard deviation from three experiments. 
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B. 

C

. 

Infection with Candid#1 in HUVEC and HMVEC-L monolayers does not increase Src 

activity. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

   

 

Figure A.12 Phospho-Src ELISA. Infected or mock infected HUVEC (A) or HMVEC-L (B) cell lysates were 

analyzed by ELISA to determine levels of activated pSrc (Tyr416). VEGF at 25ng/ml for 12 hours was used as a positive 

control. JUNV Candid#1 did not increase pSrc levels in either cell type. Data are means ± SEM representing 3-5 

independent experiments. (C.) Growth of JUNV Candid#1 in HUVECs and HMVEC-Ls during the first 96 hours of the 

experiment.  Each point or bar represents the mean ± standard deviation from three experiments. 
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Infection with Candid#1 in HUVEC and HMVEC-L monolayers decreases p120-catenin 

isoform 1. 

 

 A. 

 

 

 

 

 B. 

 

 

 

 

 

 C. 

 

 

 

 

 

Figure A.13 p12-catenin Isoform 1 decreases over time compared to mock infected cells. Cell monolayers were 

infected with JUNV Candid#1 at an MOI of 4 or mock infected and lysates made at 24 hour intervals.  (A.) Western blots 

show an increase in p120-catenin isoform 1 in infected cell lysates compared to mock infected. (B.) Image J analysis of 

density relative to mock-infected, and normalized to actin, confirm imaging data. (C.) Growth curves of JUNV Candid#1 

in HUVECs and HMVEC-Ls during the first 96 hours of the experiment. Each point represents the mean ± standard 

deviation from three experiments. 
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Infection with Candid#1 in HUVEC and HMVEC-L monolayers increases p120-catenin 

isoform 2. 

 

 A. 

 

 

 

 

 

 B. 

 

 

 

 

 C. 

 

 

 

 

 

 

Figure A.14 P120 Isoform 2 increases over time compared to mock infected cells. Cell monolayers were infected 

with JUNV Cnadid#1 at an MOI of 4 or mock infected and lysates made at 24 hour intervals.  (A.) Western blots show an 

increase in p120-catenin isoform 2 in infected cell lysates compared to mock infected. (B.) Image J analysis of density 

relative to mock-infected, and normalized to actin, confirm imaging data. (C.) Growth curves of JUNV Candid#1in 

HUVECs and HMVEC-Ls during the first 96 hours of the experiment. Each point represents the mean ± standard 

deviation from three experiments. 
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Infection with Candid#1 in HUVEC and HMVEC-L monolayers induces production of 

MCP1. 

 

 

 

 

 

 

 

 

 

 

Figure A.15 MCP-1 production in JUNV Candid#1 Infected Endothelial Cells. HUVECs (A) and HMVEC-Ls (B) 

infected with JUNV Candid#1 show an increase in MCP-1. Cell monolayers were infected at an MOI of 4 or mock 

infected and supernatant samples were taken every 24 hours post infection and subjected to Bioplex cytokine analysis. 

Data is extremely significant by a two-way repeated measure ANOVA test (***p-value<0.0001). (C.) Growth curves of JUNV 

Candid#1in HUVECs and HMVEC-Ls during the first 96 hours of the experiment. Each point or bar represents the mean 

± standard deviation from three experiments. 

 

 

 

 

A. 

C. 

B. 
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Infection with Candid#1 in HUVEC and HMVEC-L monolayers induces production of IL-6. 

 

 

 

 

 

 

 

 

Figure A.16 IL-6 production in JUNV Candid#1 Infected Endothelial Cells. HUVECs (A) and 

HMVEC-Ls (B) infected with JUNV Candid#1 show an increase in MCP-1. Cell monolayers were infected 

at an MOI of 4 or mock infected and supernatant samples were taken every 24 hours post infection and 

subjected to Bioplex cytokine analysis. Data is extremely significant by a two-way repeated measure ANOVA 

test (***p-value<0.0001). (C.) Growth curves of JUNV Candid#1in HUVECs and HMVEC-Ls during the first 

96 hours of the experiment. . Each point or bar represents the mean ± standard deviation from three 

experiments. 

  

C. 

A. B. 
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