BMMD CALIBRATION REPORT (BLIND STUDY)

BY : PRADIP SHAH GE GOVT. SERVICES

The objective of this study is to obtain the calibration curve equation for the data collected from the Body Mass Measurement Device (BMMD). The numerical technique used to obtain the equation is the interpolation with the divided difference method.

DIVIDED DIFFERENCE METHOD

The treatment of divided difference table assumes that a function, $f(x)$, is known at several distinct values for x :

$$
\begin{array}{lll}
x_{0} & f_{0} \\
x_{1} & f_{1} \\
x_{2} & f_{2} \\
x_{3} & f_{3} \quad \text { and so on. }
\end{array}
$$

The x's are not assumed to be evenly spaced nor the values are arranged in any particular order (in the case of BMMD, the x's are readings and f's are masses). DEFINITION OF INTERPOLATING POLYNOMIALi Consider the nth degree polynomial:

$$
\begin{aligned}
P_{n}(x)=a_{0} & +\left(x-x_{0}\right) a_{1}+\left(x-x_{0}\right)\left(x-x_{1}\right) a_{2}+\ldots \ldots \ldots \ldots \ldots \ldots . ~ \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots \ldots
\end{aligned}
$$

If we choose a_{i} so that $P_{n}(x)$ equals $f(x)$ at the $n+1$ known points, $x_{0}, x_{1}, \ldots \ldots . ., x_{n}$, then $P_{n}(x)$ is an interpolating polynomial. Also, for the interpolating polynomial, it must match the table for all $n+1$ entries:

$$
P_{n}\left(x_{i}\right)=f_{i} \quad \text { for } i=0,1,2, \ldots \ldots \ldots, n .
$$

It can be shown that the above a_{i} are readily determined by using what are called the divided differences of the tabulated values. A special notation is used for divided differences:

$$
f\left[x_{0}, x_{1}\right]=\left(f_{1}-f_{0}\right) /\left(x_{1}-x_{0}\right) \text { is called the first divided }
$$

difference between x_{0} and x_{1}. The second and higher order divided differences are defined in terms of lower order difference. For example:

$$
\begin{aligned}
& f\left[x_{0}, x_{1}, x_{2}\right]=\left\{\left\{\left[x_{1}, x_{2}\right]-f\left[x_{0}-x_{1}\right]\right\} /\left(x_{2}-x_{0}\right) .\right. \\
& f\left[x_{0}, x_{1}, \ldots \ldots . x_{n}\right]=\left\{f\left[x_{1}, x_{2}, \ldots \ldots, x_{i}\right]-f\left[x_{0}, x_{1}, \ldots \ldots \ldots, x_{i-1}\right]\right\} /\left(x_{i}-x_{0}\right) .
\end{aligned}
$$

This concept is extended to a zero order difference : $\mathfrak{f}\left[\mathrm{x}_{\mathrm{s}}\right]=\mathrm{f}_{\mathrm{s}}$. Using this notation, a divided difference table, in symbolic form, is shown below.
$\left.\begin{array}{llllllll}x & f & {\left[x_{1}, x_{1}\right]} & f\left[x, x, \ldots, x_{1}\right] & f[x, x, x, x\end{array}\right]$

Using the definition of interpolating polynomial, the polynomial obtained will be,

$$
\begin{aligned}
& P_{3}(x)=f_{0}+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right) f\left[x_{0}, x_{1}, x_{2}\right]+\ldots . . \\
& \ldots \ldots+\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots \ldots \ldots . . .\left(x-x_{3}\right) f\left[x_{0}, x_{1}, x_{2}, x_{3}\right] .
\end{aligned}
$$

Similarly, for $n+1$ data points, the polynomial will be,

$$
\begin{aligned}
& P_{n}(x)=f_{0}+\left(x-x_{0}\right) f\left[x_{0}, x_{1}\right]+\left(x-x_{0}\right)\left(x-x_{1}\right)\left\{\left[x_{0}, x_{1}, x_{2}\right]+\right. \\
& +\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots \ldots \ldots \ldots . .\left(x-x_{n-1}\right) f\left[x_{0}, x_{1}, \ldots \ldots \ldots \ldots x_{n-1}\right] .
\end{aligned}
$$

BMMD DATA ANALYSIS: The BMMD data were obtained with no mass (zero reading), $29.67 \mathrm{lbs}, 59.29 \mathrm{lbs}$, subject alone, subject +29.67 , and subject +59.29 . Thus, six data points are known. But, for the calibration purposes, the subject weight must be assumed to be unknown. Hence, this data point was eliminated from the data set and the interpolating polynomial of fourth order was obtained from known five data points. Ten calibration equations were obtained. Ten subjects alone also
took the readings. Their readings were substituted in the calibration curve equations to predict their masses. The following tables show the results. It is noted here that the values under column D, the difference, is obtained by subtracting the actual mass from the predicted mass. Whereas the percentage difference (column E) is the ratio of difference and the actual mass. The results show that the differences obtained are within the 2.25 lb limit (or within 1%) except for the subject with 133.33 lbs when predicted from the calibration curve used from the readings taken for the subject with a 117.381 lbs . The predicted mass for this case is 134.67 lbs and the \% difference is negligibly higher than $1 \%(1.003 \%)$. Thus, it can be concluded that the interpolation technique utilizing the divided differences is a suitable tool to generate the calibration equation and subsequently, to predict the mass from the data taken for the BMMD.

BMMD TABULATED RESULTS

	A	B	C	D	E
1					
2	READING	ACTUAL MASS	PREDICTED MASS	DIFFERENCE	\% DIFFERENCE
3		(LBS)	(LBS)	(LBS)	
4	BJECT \#1 CALIBRATION EQUATION: 157.261 LBS				
5	5.93261	133.33	134.0973028	0.7673028	0.575491487
6	6.76327	182.466	183.6073337	1.1413337	0.625504861
7	5.63984	117.56	117.9817562	0.4217562	0.358758251
8	6.91293	191.793	193.0788644	1.2858644	0.670443864
9	6.52479	167.926	168.8483943	0.9223943	0.549286174
10	6.59123	171.867	172.9179858	1.0509858	0.61151111
11	6.28027	153.314	154.1613111	0.8473111	0.552663879
12	6.59984	172.239	173.4477813	1.2087813	0.701804644
13	7.11703	205.025	206.2438464	1.2188464	0.594486721
14	5.58313	114.307	114.945311	0.638311	0.55841812
15					
16					
17					
18	BJECT \#2 CALIBRATION EQUATION: 159.704 LBS				
19	5.93261	133.33	134.0421966	0.7121966	0.534160804
20	6.76327	182.466	183.452804	0.986804	0.540815275
21	5.63984	117.56	117.9442557	0.3842557	0.326859221
22	6.91293	191.793	192.894795	1.101795	0.574470914
23	6.52479	167.926	168.7323413	0.8063413	0.480176566
24	6.59123	171.867	172.7921837	0.9251837	0.538313754
25	6.28027	153.314	154.0755293	0.7615293	0.496712172
26	6.59984	172.239	173.3206634	1.0816634	0.62800144
27	7.11703	205.025	206.0116712	0.9866712	0.481244336
28	5.58313	114.307	114.9105691	0.6035691	0.528024618
29					
30					
31 3JECT \#3 CALIBRATION EQUATION: 154.735 LBS	3JECT \#3 CALIBRATION EQUATION: 154.735 LBS				
32	5.93261	133.33	133.6388295	0.3088295	0.231627916
33	6.76327	182.466	182.9875241	0.5215241	0.285819879
34	5.63984	117.56	117.5408166	0.0191834	0.016317965
35	6.91293	191.793	192.3844542	0.5914542	0.308381536
36	6.52479	167.926	168.3092092	0.3832092	0.228201231
37	6.59123	171.867	172.360358	0.493358	0.287058016
38	6.28027	153.314	153.669671	0.355671	0.231988599
39	6.59984	172.239	172.8875556	0.6485556	0.376543988
40	7.11703	205.025	205.4090667	0.3840667	0.187326765
41	5.58313	114.307	114.5080631	0.2010631	0.175897452
42					
43					

Page 2

	A	B	C	D	E
138					
139	READING	ACTUAL MASS	PREDICTED MASS	DIFFERENCE	\% DIFFERENCE
140		(LBS)	(LBS)	(LBS)	
141 JECT \#10 CALIBRATION EQUATION: 144.469 LBS	JECT \#10 CALIBRATION EQUATION: 144.469 LBS				
142	5.93261	133.33	134.449388	1.119388	0.839561989
143	6.76327	182.466	184.0117353	1.5457353	0.847136069
144	5.63984	117.56	118.2742772	0.7142772	0.607585233
145	6.91293	191.793	193.4573333	1.6643333	0.867775831
146	6.52479	167.926	169.2662149	1.3402149	0.798098508
147	6.59123	171.867	173.3351081	1.4681081	0.854211745
148	6.28027	153.314	154.5652385	1.2512385	0.816128012
149	6.59984	172.239	173.8646525	1.6256525	0.94383531
150	7.11703	205.025	206.560188	1.535188	0.74878088
151	5.58313	114.307	115.2255601	0.9185601	0.803590419
152					
153					
154					
155					
156					
157					
158					
159					
160					
161					
162					
163					
164					
165					
166					
167					
168					
169					
170					
171					
172					
173					
174					
175					
176					
177					
178					
179					
180					
181					

BLIND STUDY CAL EQUATION CURVES (TEN)

CALIBRATION EQUATIONS FROM BLIND STUDY (OCT ‘92)

CAL EQN BASED ON SUBJECT\#1:

$$
\begin{aligned}
y= & (x-2.70593) * 30.88566+(x-2.70593)(x-3.66657) * 4.752144 \\
& +(x-2.70593)(x-3.66657)(x-4.42499) *(-0.04981263) \\
& +(x-2.70593)(x-3.66657)(x-4.42499)(x-6.83242) *(-0.024357993)
\end{aligned}
$$

CAL EQN. BASED ON SUBJECT\#2:

$$
\begin{aligned}
y= & (x-2.70602) * 30.89723831+(x-2.70602)(x-3.66630) * 4.736262145 \\
& +(x-2.70602)(x-3.66630)(x-4.42503) *(-0.051263035) \\
& +(x-2.70602)(x-3.66630)(x-4.42503)(x-6.875512) *(-0.027024517)
\end{aligned}
$$

CAL EQN. BASED ON SUBJECT \# 3:

$$
\begin{aligned}
y= & (x-2.706044)^{*} 30.89315259+(x-2.706044)(x-3.666451) * 4.56652349 \\
& +(x-2.706044)(x-3.666451)(x-4.430486) *(0.007410326) \\
& +(x-2.706044)(x-3.666451)(x-4.430486)(x-6.7989925)^{*}(-0.05134891)
\end{aligned}
$$

CAL EQN. BASED ON SUBJECT \# 4:

$$
\begin{aligned}
y= & (x-2.70577) * 30.91107986+(x-2.70577)(x-3.66562) * 4.759190578 \\
& +(x-2.70577)(x-3.66562)(x-4.42344) *(-0.045210185) \\
& +(x-2.70577)(x-3.66562)(x-4.42344)(x-5.99615) *(-0.018736277)
\end{aligned}
$$

CAL EQN. BASED ON SUBJECT \# 5:

$$
\begin{aligned}
y= & (x-2.70629) * 30.89916894+(x-2.70629)(x-3.66651) * 4.741844172 \\
& +(x-2.70629)(x-3.66651)(x-4.42504)((-0.0417715281) \\
& +(x-2.70629)(x-3.66651)(x-4.42504)(x-6.5493) *(-0.026655905)
\end{aligned}
$$

CAL EQN. BASED ON SUBJECT \# 6:

$$
\begin{aligned}
y= & (x-2.70628) * 30.90431848+(x-2.70628)(x-3.66634) * 4.740597853 \\
& +(x-2.70628)(x-3.66634)(x-4.42483)(-0.046780969) \\
& +(x-2.70628)(x-3.66634)(x-4.42483)(x-6.37053) *(-0.019335521)
\end{aligned}
$$

CAL EQN. BASED ON SUBJECT \# 7:

$$
\begin{aligned}
y= & (x-2.70581) * 30.91558908+(x-2.70581)(x-3.66552) * 4.710170103 \\
& +(x-2.70581)(x-3.66552)(x-4.42477) *(-0.033932645) \\
& +(x-2.70581)(x-3.66552)(x-4.42477)(x-6.58906) *(-0.030577471)
\end{aligned}
$$

CAL EQN. BASED ON SUBJECT \# 8:

$$
\begin{aligned}
y= & (x-2.70576) * 30.90689389+(x-2.70576)(x-3.66574) * 4.763891327 \\
& +(x-2.70576)(x-3.66574)(x-4.42348) *(-0.027091221) \\
& +(x-2.70576)(x-3.66574)(x-4.42348)(x-6.02807) *(-0.054254941)
\end{aligned}
$$

CAL EQN. BASED ON SUBJECT \# 9:

$$
\begin{aligned}
y=(x & -2.70590) * 30.91204601+(x-2.70590)(x-3.66572) * 4.754776284 \\
& +(x-2.70590)(x-3.66572)(x-4.42366) *(0.006299436) \\
& +(x-2.70590)(x-3.66572)(x-4.42366)(x-6.17017) *(-0.081598626)
\end{aligned}
$$

CAL EQN. BASED SUBJECT \# 10:

$$
\begin{aligned}
& y=(x-270587) * 30.91494483+(x-2.70587)(x-3.66560) * 4.762522147 \\
&+(x-2.70587)(x-3.66560)(x-4.42326) *(-0.038329713) \\
&+(x-2.70587)(x-3.66560)(x-4.42326)(x-6.621904) *(-0.036791118)
\end{aligned}
$$

NOTE: $y=$ predicted mass and $x=B M M D$ reading
This blind study data were collected during the month of October (1992) Ten subjects worked with the cal weights and obtained readings to help generate ten cal equations. Additional ten subjects obtained readings by themselves only. Their readings were substituted in each of the ten cal equations to predict their masses. The comparison was made between the predicted masses and their scale weights (See report on BLIND STUDY DATA analysis)

