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Dengue virus (DENV) is a mosquito-transmitted flavivirus that presents a 

substantial threat to public health worldwide. One third of the global population is at risk 

of infection and over 400 million cases of dengue are reported per year. DENV is 

maintained in two transmission cycles: a sylvatic cycle between mosquitos and non-

human primates (NHP), and an urban cycle between mosquitos and human hosts. The 

human-endemic lineages of DENV-1-4 each emerged from sylvatic ancestors maintained 

in a cycle between NHP and arboreal Aedes mosquitoes. Ancestral strains are still 

persisting in both Southeast Asia and West Africa, posing a risk for the contemporary 

emergence of sylvatic strains into the human population. In this study I describe the 

discovery and characterization of a novel DENV, isolated from a febrile patient in the 

Malaysian state of Sarawak, which presumably represents the prototype virus of a new 

dengue serotype. A complete genetic and serologic analysis was performed to 

characterize this isolate and to demonstrate that it represents a distinct virus among the 

other members of the DENV serogroup. The infection was assessed in a NHP model 

using rhesus macaques to study pathogenesis and homotypic and heterotypic responses to 
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this novel DENV. A productive infection in NHP was demonstrated, as well the ability of 

this host to transmit the virus to mosquitoes, which implies the virus can be sustained a 

transmission cycle in nature.  Furthermore, the vector competence of Aedes aegypti and 

Aedes albopictus mosquitoes, the two main vectors of human-endemic DENV, was 

evaluated. The potential of these vectors to be infected and transmit the novel virus was 

demonstrated. Initial structural studies were performed to determine molecular 

differences could be present in this novel DENV compared to the other DENV serotypes. 

Collectively, my study describes the emergence of a novel DENV serotype and its 

biological characteristics. It also brings new insights to the future development of 

diagnostics, therapeutics and vaccines. 
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CHAPTER 1: THE EMERGENCE OF INFECTIOUS VIRAL DISEASES: A 

GLOBAL PROSPECT WITH EMPHASIS ON MEDICALLY IMPORTANT 

ARBOVIRAL DISEASES 

Emerging infectious diseases (EID) are described as infections that have recently 

appeared in a population, and are quickly increasing in frequency or geographic range 

(Morse 1995). For a disease to emerge, several factors are required, including the 

introduction of a pathogen and its spread into the human population, followed by its 

ability to be maintained in nature. Many pathogens require adaptation to emerge into a 

new environment, while for others adaptation is not necessary. Human behavior and 

ecology are two distinct factors that play a role in the emergence of diseases (Schrag and 

Wiener 1995; Hahn, Shaw et al. 2000; May, Gupta et al. 2001). For example, the 

geographical expansion of human populations has facilitated the appearance of emergent 

viruses, as well as the intensification of agriculture and the disturbance of habitats due to 

climate change and deforestation (Taylor, Latham et al. 2001; Jones, Patel et al. 2008). 

It has been recognized that only a few infectious diseases are restricted to humans. 

The majority of emergent etiologic agents that affect humans are often maintained in 

enzootic cycles (Lloyd-Smith, George et al. 2009). In the past 70 years, emerging 

zoonoses made up most of the emerging infectious diseases identified in people and have 

caused economic damage exceeding hundreds of billions of U.S. dollars (Jones, Patel et 

al. 2008; Newcomb, Harrington et al. 2011; Karesh, Dobson et al. 2012). Zoonotic 

diseases account for billions of cases of illness and millions of deaths every year that 

constitute long-lasting health problems worldwide (Institute 2012). 
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The host range expansion of the zoonotic diseases requires multiples steps to establish 

transmission into the human population. Anthropogenic changes related to agriculture 

practices and deforestation are factors that bring humans in close contact with zoonotic 

reservoirs. Many wildlife species have been identified as reservoirs of important 

pathogens that can be transmitted to humans (Levins, Epstein et al. 1993; Morse 1994). 

For example, bats represent one major source of zoonotic viruses (Calisher, Childs et al. 

2006), including Nipah virus (NiV), SARS coronavirus (SARS-CoV) and Ebola virus 

(EBOV) (Taylor, Latham et al. 2001; Woolhouse, Haydon et al. 2005).  

 

 

Figure 1.1. The emergence of infectious diseases into rural and urban areas.  Distinct 
stages are implicated in the introduction of infectious diseases to human environments. 
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Many other zoonotic viruses are also transmitted to humans by hematophagous 

insects (mosquitoes, sandflies, black flies, biting midges, ticks) and are defined as 

arthropod-borne viruses (arboviruses) (Higgs and Beaty 2005). Most arboviruses 

affecting humans worldwide are classified into the families Flaviviridae, Togaviridae and 

Bunyaviridae (Blair, Adelman et al. 2000) and are transmitted mainly by Aedes and 

Culex mosquitoes (Kuno and Chang 2005). In recent years, the prevalence of vector-

borne diseases has expanded considerably, due to intensification of human travel and 

transcontinental commerce. The number of cases has increased in endemic regions and 

also spread into new regions where the viruses never existed before (Gubler 2002; 

Weaver and Reisen 2010; Weaver 2013; Weaver 2014). Additionally, the development of 

mosquito resistance to insecticides has complicated even more the control and eventual 

elimination of diseases from specific areas (Saavedra-Rodriguez, Suarez et al. 2012; 

Bisset, Marin et al. 2013).  

The Impact of Emerging Infectious Diseases 

Since 1973, several reports of the World Health Organization (WHO) have 

identified at least 30 new infectious disease agents affecting humans; and for many of 

them no specific treatment is available to cure the infection (Satcher 1995; Murray 1996; 

WHO 1996; WHO 1998; Zaki, van Boheemen et al. 2012; Morrison 2014; PAHO 2015; 

WHO 2015; WHO 2015; WHO 2015). The impact of emerging infectious diseases 

(EIDs) not only as a public health threat, but also their economic burden, has both direct 

and indirect consequences. The total investment for the development of tools for early 

detection of pathogens, as well as, sustainable surveillance for potential pathogens 

emerging into a population, are factors that must be considered as a direct consequence of 
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EIDs economic impact. These costs are applied not only in diagnostic laboratory settings, 

but also directly in the field, hospitals or other point-of-care (POC) health care facilities. 

Examples of indirect costs accountable for the economic burden of EIDs are productivity 

losses from work absence, short-term disability and impairment of patient quality of life. 

Further steps following the introduction of EID should be considered such as, training of 

health care and other professionals dealing with the emerging pathogen, reducing the 

possibility of transmission to a larger population, and treatment responses, if available.  

The World Economic Forum has listed the spread of EIDs as one of the top risk 

factors to cause potential economic loss to the world population (WEF 2015). Although 

the economic impact of EIDs is difficult to be accurately determined, several studies have 

been conducted to estimate their economic burden to society (Newcomb 2003; 

Zohrabian, Meltzer et al. 2004; Zohrabian, Hayes et al. 2006; Barber, Schleier et al. 

2010). For example, during the emergence of severe acute respiratory syndrome (SARS) 

in 2003, in Asia, the virus rapidly spread in several countries in Asia, Europe and South 

and North America, in only a few months, affecting 8,098 people resulting in 774 deaths 

(CDC 2003). Its economic impact was estimated between 50 to 100 billion U.S. dollars 

(Newcomb 2003). The economic impact of the 2002 outbreak of West Nile virus (WNV) 

in Louisiana, which resulted in 24 deaths of the total 329 reported cases, was estimated to 

cost approximately to 20 million U.S. dollars. These costs included inpatient and 

outpatient visits, loss of work productivity, costs incurred by the public health department 

and mosquito control (Zohrabian, Meltzer et al. 2004; Zohrabian, Hayes et al. 2006). The 

spread of WNV in California and an outbreak in Sacramento County in 2005 resulted in 

163 human cases, whose economic impact was estimated to be near 3 million U.S. 
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dollars, which included medical visits and treatment, job productivity loss and mosquito 

control (Barber, Schleier et al. 2010).  

Additional studies have also attempted to anticipate the cost of potential 

outbreaks. In Australia, as one example of an isolated geographic area, the introduction of 

exotic diseases, as well as, pests and weeds could have a potential cost of over $1 billion 

Australian dollars (Murray, Skerratt et al. 2012). A study on the next influenza pandemic 

in the United States, estimated 89,000 to 207,000 deaths and an economic loss of 71.3 - 

166.5 billion U.S. dollars.  The cost was based on estimations for patient hospitalizations, 

outpatient visits and expenses for drug treatment and did not account for indirect costs 

interfering with commerce and community activities in affected areas (Meltzer, Cox et al. 

1999). Overall, these examples highlight the impact EIDs can create for human 

populations and demonstrate the importance of controlling these diseases. One example 

would be the use of immunizations, when a vaccine is available.  

The (re)-emergence of non-arboviral diseases 

Several viruses transmitted by vertebrate hosts, including SARS and MERS 

coronaviruses, influenza, Ebola and HIV, have demonstrated the potential to (re)-emerge 

and cause a significant impact in the human population. SARS and MERS coronavirus 

(CoVs), members of the order Nidovirales, family Coronaviridae, are enveloped viruses 

containing a positive sense RNA genome of approximately 29,700 nucleotides long, 

infecting humans and a broad range of animals (Lai, Perlman et al. 2007). There are 

several hypotheses for the actual mechanism that CoVs use to jump from one species to 

another. Virus entry and innate immune response are the two most popular hypotheses 

playing a role in the process of CoV adaptation to a new host. However, the exact 
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mechanism employed for viral host switching is not completely understood (Muller, Raj 

et al. 2012; Raj, Mou et al. 2013). Direct zoonotic transmission from bats to human is not 

known to occur (Tang, Li et al. 2009). Therefore, the transmission involving other 

animals besides the known intermediate host (civets), for example carnivores or 

ungulates, although unusual, cannot be disregarded (Tang, Li et al. 2009; Graham and 

Baric 2010; Annan, Baldwin et al. 2013). Other factors, such as recombination should 

also be considered, which has been described in the emergence of feline infectious 

peritonitis viruses (FIPV) type 2 (Herrewegh, Smeenk et al. 1998) and has been 

speculated to play a role in the emergence of SARS-CoV (Hon, Lam et al. 2008; Graham 

and Baric 2010; Lau, Li et al. 2010; Yuan, Hon et al. 2010) and HCoV-OC43 genotypes 

(Lau, Lee et al. 2011).    

Influenza virus, a member of the Orthomyxoviridae family, contains a segmented 

RNA genome, infecting mostly mammals and birds.  Influenza types A and B are the two 

principal types of influenza virus. The type B of influenza infects only humans and is less 

common than influenza A (Hay, Gregory et al. 2001). The most pathogenic for humans is 

type A viruses, which are responsible for the majority of the observed severe disease.  

The classification of influenza viruses is based on the hemagglutinin (HA) and the 

neuraminidase (NA) proteins. Influenza A viruses contain 18 hemagglutinin and 11 

neuraminidase subtypes (Brankston, Gitterman et al. 2007). H17N10 and H1N11 

subtypes are reportedly found in bats; all others influenza A subtypes are found in birds. 

The source of all animal influenza A viruses is considered to be wild birds, which 

represent the primary reservoir to all influenza A viruses (Pascua and Choi 2014). Human 

strains of influenza virus can contain genomic material from different sources through 
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reassortment in swine, human and avian hosts. This reflects an adaptable property of the 

virus to change and re-infect new populations, as was recently documented in the human 

infections of H6N1 and H7N9 in Taiwan and China, respectively (Wei, Yang et al. 2013; 

Leung, To et al. 2015). The emergence of a new influenza pandemic is quite likely, 

because wild aquatic birds, the main reservoir of these viruses, cannot be eradicated. The 

rapid increase and concentration of human populations due to uncontrolled urbanization, 

as well as increased populations of swine and birds, have precipitated higher chances for 

virus exchange between species and for re-assortment of their genes (Lin and Wu 2015).  

Ebola virus (EBOV), a member of the Filoviridae family, contains a single-

stranded RNA genome and a lipid envelope and is responsible for a severe and highly 

contagious hemorrhagic fever in humans and other non-humans primates (Sanchez, 

Geisbert et al. 2007). EBOV was identified in 1976 in Central Africa and still a major 

threat to the world population. Fruit bats are considered the reservoir host and non-human 

primate hosts are important players in the maintenance of the virus in nature (Leroy, 

Epelboin et al. 2009; Olival, Islam et al. 2013). Some frugivorous and insectivorous bat 

species, recognized as reservoirs of the virus, may facilitate the transmission by 

contaminating fruits with their infected saliva, urine or feces that are later ingested by 

wildlife species (Leroy, Kumulungui et al. 2005; WHO 2014). Similarly, the unique 

behavior of chimpanzees make this species of NHP a very important player in the 

emergence of EBOV, as these animals are predators of other wildlife, hunting 

cooperatively and sharing meat among their social groups and carrying meat away from 

the place of predation. This particular behavior had previously associated with the 

occurrence of EBOV in Côte d'Ivoire, where several chimpanzees were affected. The 
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transmission of EBOV to humans usually occurs through direct contact with body fluids 

of infected animals, manipulation and ingestion of bushmeat, direct human contact during 

care or treatment of patients or preparation for burial (Bausch, Towner et al. 2007). In the 

recent Ebola outbreak in 2014, several factors have been associated with the exceptional 

expansion and emergence of EBOV in West Africa, including war, population growth, 

poor health infrastructure and poverty (Alexander, Sanderson et al. 2015). Another aspect 

influencing the spatial spread of diseases such as Ebola in West Africa is human 

migration across the landscape, generated by sociological and economic factors 

(Awumbila, Benneh et al. 2014). The rapid movement of infected people from their 

original infected village to other locations has led to human introduction of EBOV into 

major urban centers (Merler, Ajelli et al. 2015). The characteristic of transmission of 

EBOV is intensely affected by cultural and behavior factors that happen at the household, 

community and hospitals. Some countries, such as Liberia, consist of many cultural and 

ethnic groups, each representing its own language, dialect, religion and traditions 

(Johnston 2008). Specific practices and local rituals may have contributed to the spread 

on EBOV in those areas.  

Human immunodeficiency virus (HIV), a virus that belongs to genus Lentivirus, 

family Retroviridae, has emerged into the human population as a consequence of 

zoonotic or cross species transmission, facilitated from different African primates 

infected with simian immunodeficiency virus (SIV) (Gao, Bailes et al. 1999). The various 

lineages of HIV that radiated for the first emergence events have been demonstrated to be 

more complex and volatile than first recognized and present the extraordinary properties 

of insidious disease initiation, persistence, recombination and escape from immune 



9 

system or pressure under drug exposure (Hahn, Shaw et al. 2000). It is not completely 

known how HIV first emerged into the human population, although recent studies 

suggest that occurred through the direct human contact with SIV-infected chimpanzees in 

Africa as early as the 1920s (Hahn, Shaw et al. 2000; Korber, Muldoon et al. 2000; 

Worobey, Gemmel et al. 2008). Current evidence also suggests that the introduction of 

HIV into the human population is derived from multiples events in different geographic 

areas, which have contributed to the emergence of distinct types and subtypes of HIV 

strains (Gao, Yue et al. 1992; Chen, Telfier et al. 1996; Gao, Bailes et al. 1999; Sharp, 

Bailes et al. 2000). Nevertheless, HIVs have accumulated an enormous sequence 

diversity, following its establishment of transmission in humans. This indicates that the 

virus evolution is occurring at a very rapid rate. Most of the genetic modification among 

HIV strains is due to properties of the viral replicative enzyme, reverse transcriptase, 

whose high mutation rate (Roberts, Bebenek et al. 1988; Abram, Ferris et al. 2010; 

Sanjuan, Nebot et al. 2010; Cuevas, Geller et al. 2015) is in the range of ca. 2.2 to 5.4 x 

10-5 nucleotides changes per site per replication cycle (Mansky and Temin 1995; Gao, 

Chen et al. 2004). Consequently, these nucleotide substitutions play a critical role in 

contributing to the high genetic variability of HIV and highlight the remarkable plasticity 

and adaptive potential of its genome (Coffin 1992; Holland, De La Torre et al. 1992; 

Coffin 1995; Mansky and Temin 1995).  

Zoonotic arboviruses and factors associated with their emergence 

Arboviral diseases are caused by viruses that are maintained through transmission 

cycle between vertebrate hosts and blood-sucking arthropods such as mosquitoes, 

sandflies, midges and ticks. To complete the transmission cycle, it is essential that the 
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virus produce a sufficiently high level of viremia in the vertebrate host for the arthropod 

to become infected while taking a blood meal (Karabatsos 2001). There are at least 135 

arboviruses that have been known to cause human disease. The infection can range from 

asymptomatic to severe and fatal disease. The clinical symptoms are generally 

categorized as systemic febrile illness, hemorrhagic fever and invasive neurological 

disease (Gubler and Vasilakis 2016). The vast majority of arboviruses are RNA viruses, 

belonging to several genera, including Alphavirus, Flavivirus, Bunyavirus, Nairovirus, 

Phlebovirus, Orbivirus, Vesiculovirus and Thogotovirus. Among DNA viruses, African 

swine fever virus (Asfivirus genus) represents the only DNA arbovirus (Calisher and 

Karabatsos 1988; King, Lefkowitz et al. 2011). 

For arbovirus emergence to reach epidemic levels, it requires a recurrent 

interconnection of the susceptible vertebrate and invertebrate hosts within a permissive 

environment. Several factors involved in the emergence of arboviruses are related to 

distinct elements, such as the pathogen genetic selection, the susceptibility of the vector 

or host populations and anthropogenic influences that alter the environment configuration 

(land reclamation for agriculture, deforestation, etc) (Weaver and Reisen 2010). 

In the last few decades, the total number of arboviral epidemics has significantly 

increased (Gubler and Vasilakis 2016). With the exception of few regions of the world 

not affected by arboviral epidemics, in most cases the emergence of arboviral diseases 

were caused by viruses previously considered to be controlled or recognized as harmless 

for the public health (Gubler and Vasilakis 2016). The expansion of the geographic areas 

where the mosquito vectors and viruses circulate have been associated with larger 

epidemics, such as dengue fever. Introduction of viruses into new geographic areas, e.g. 
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WNV in the United States, where naïve vertebrate and arthropod hosts were able to 

sustain infection also contributed to the occurrence of major outbreaks. In other cases, 

epidemics were associated with the regional dissemination of viruses initially contained 

into a restricted geographic area, e.g. Rift Valley fever, Ross River encephalitis, Japanese 

encephalitis and Venezuelan equine encephalitis. Other scenarios are represented by the 

potential of viruses to cause global public health problems due to regional advantages for 

viruses to maintain their transmission in specific regions, e.g. yellow fever in the urban 

areas of the tropics (Gubler and Vasilakis 2016).  

 



 

Table 1.1. Examples of important arboviruses affecting humans. 
 
Virus Family Vector Vertebrate hosts Geographic distribution References 
Chikungunya Togaviridae Mosquitoes: Aedes and Culex spp. Primates, birds, cattle, and rodents Africa, Asia, Europe, Americas, Oceania 37, 370, 410 
Mayaro  Togaviridae Mosquitoes: Haemagogus spp. Primates, other mammals, birds South and Central America 299, 384 
Ross River Togaviridae Mosquitoes: Aedes and Culex spp. Marsupials, other mammals, birds Oceania and Asia 191, 301 
O’nyong-nyong Togaviridae Mosquitoes: Anopheles spp. ? Africa 300, 410 
Sindbis Togaviridae Mosquitoes: Aedes, Culex, and Culiseta spp. Birds Europe, Africa, Oceania, Asia 96, 205 
Barmah Forest Togaviridae Mosquitoes: Aedes and Culex spp. Birds? Marsupials, Others? Oceania 98, 275 
Eastern equine 
encephalitis 

Togaviridae Mosquitoes: Culiseta, Aedes, Coquillettidia, and 
Culex spp. 

Birds, horses, other mammals Americas 49, 57, 442, 467 

Western equine 
encephalitis 

Togaviridae Mosquitoes: Culex, Aedes, Ochlerotatus, and 
Coquillettidia spp. 

Birds, horses, other mammals Americas 57, 442, 467 

Venezuelan equine 
encephalitis 

Togaviridae Mosquitoes: Culex, Ochlerotatus, Anopheles, 
Mansonia, Psorophora, Aedes spp. and others 

Horses, Rodents, Other mammals, Birds Americas 57, 442, 467 

Dengue Flaviviridae Mosquitoes: Aedes spp Primates Asia, Americas, Africa, Europe, Oceania 48, 416 
Yellow Fever Flaviviridae Mosquitoes: Aedes and Haemogogus spp. Primates South America, Africa 115, 461 
West Nile Flaviviridae Mosquitoes: Culex spp Birds, Horses, Other Mammals Africa, Asia, Europe, Oceania, Americas 55, 217, 238, 345 
Japanese encephalitis Flaviviridae Mosquitoes: Culex spp Birds, Pigs Asia, Oceania 99, 142, 168, 238 
Murray Valley encephalitis Flaviviridae Mosquitoes: Culex spp Birds Oceania 52, 238, 355 
Zika virus Flaviviridae Mosquitoes: Aedes spp Primates Africa, Asia, Oceania, Central and South 

America 
42, 56, 148, 449 

Rocio Flaviviridae Mosquitoes: Psorophora and Aedes spp Birds South America 252, 258, 362 
St. Louis encephalitis Flaviviridae Mosquitoes: Culex spp Birds, Bats, Other Mammals Americas 54, 196, 316 
Kyasanur Forest disease Flaviviridae Ticks: Hemaphysalis spp. Primates, Rodents, Other Mammals Asia 50, 159 
Omsk hemorrhagic fever Flaviviridae Ticks: Dermacentor and Ixodes spp 

Mosquitoes: ? 
Rodents, Volves, Other Mammals  Europe 53, 336 

Tick-borne encephalitis Flaviviridae Ticks: Ixodes spp  Rodents, Goats, Sheep, Cows, Other 
Mammals, Birds? 

Europe, Asia 27, 100 

Sandfly fever Bunyaviridae Sandflies:  
Phlebotomus spp. 

Birds? Mammals? Europe, Asia, Africa 132, 398 

Rift Valley fever Bunyaviridae Mosquitoes: Aedes, Ochlerotatus, Stegomyia, 
Anopheles, Culex, Neomelaniconion, 
Eretmapodites and others 

Cows, Sheep, Camels, Goats and Other 
Mammals 

Africa, Asia 277, 287, 376 

La Crosse encephalitis Bunyaviridae Mosquitoes: Aedes spp Rodents North America 51, 146 
      
Crimean-Congo 
hemorrhagic fever 

Bunyaviridae Ticks: Hyalomma spp Cows, Sheep, Goats, Hares and Other 
Mammals 

Europe, Asia, Africa 65, 358, 399, 447 

Oropouche Bunyaviridae Midges: Culicoides sp Primates? Sloths? Birds? Central and South America 9, 265, 284, 411 
Severe febrile 
thrombocytopenia 
syndrome 

Bunyaviridae Ticks: Haemaphysalis sp ? Asia 372, 464, 466 

Chandipura Rhabdoviridae Sandflies:  
Phlebotomus and Sergentomyia spp. 

Hedgehogs, 
others? 

Asia and  
Africa 

103, 242, 254, 315, 
383, 385 

Bluetongue Reoviridae Midges: Culicoides spp Sheep, Cows, Other Mammals Africa, Asia, Europe, Oceania, Americas 
(all except Antarctica) 

239, 285 

 



 

WNV emergence in the Americas and Europe has been attributed mostly to 

commerce and dispersal of Culex pipiens complex mosquitoes, which are competent 

vectors of WNV transmission (Vinogradova 2000; Komar 2003; Fonseca, Keyghobadi et 

al. 2004). Other factors may include the introduction of house sparrows, climate change 

and the decline of SLEV (Weaver and Reisen 2010). The emergence of WNV was also 

associated with viral genetics, as the nucleotide sequence of the virus isolated in 1999 in 

the United States demonstrated a close relationship with a strain isolated in Israel in 

1998, where a common mutation in the helicase gene was responsible for the high 

viremia and mortality in American crows (Brault, Huang et al. 2007). 

Japanese encephalitis virus (JEV) is another arbovirus that has been associated 

with a significant public health impact following its emergence. JEV belongs to the genus 

Flavivirus, family Flaviviridae and forms a serocomplex including WNV. First described 

in Japan in the 1800s, JEV has expanded its geographic distribution in the Asian 

continent, Oceania and the Indian subcontinent (Burke and Leake 1988). There is 

discordance in how JEV evolution and distribution have occurred and which factors were 

responsible for the virus emergence and spread to different areas (Solomon, Ni et al. 

2003). Increases in human population, and uncontrolled expansion of agricultural use, 

such as increases rice field acreage facilitated by irrigation and pig farming, were the 

most relevant factors associated with its rapid emergence (Erlanger, Weiss et al. 2009; 

van den Hurk, Ritchie et al. 2009). However, on the Indian subcontinent, birds may have 

played a major role in the emergence of JEV, because in these areas pig farming is 

limited (Boyle, Dickerman et al. 1983; Jamgaonkar, Yergolkar et al. 2003). In the 
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isolated Pacific islands of Guam and Saipan, air transport of mosquitoes has been 

correlated with the cause of JEV outbreaks (Mitchell, Savage et al. 1993).  

 In the case of yellow fever virus (YFV), the prototype virus of the genus 

Flavivirus, family Flaviviridae, phylogenetic studies demonstrated its African origin and 

dispersal to the New World by the slave trade during the 16th century (Monath 1988; 

Monath 2001; Bryant, Holmes et al. 2007). Numerous yellow fever epidemics occurred 

in port cities of North and South America in the early 17th century and were associated 

with the introduction of the Ae. aegypti vector. Non-human primates (NHPs) and canopy 

dwelling mosquitoes, such as Hemagogus janthinomys were responsible for the 

establishment of YFV sylvatic cycles in the Neotropics; despite immunization with the 

highly effective human vaccine 17D, both cycles continue at present days representing an 

unceasing risk of spillover to humans (Monath 2001; Bryant, Wang et al. 2003; Hanley, 

Monath et al. 2013). Despite exhaustive research to elucidate the factors attributed to 

YFV emergence, several questions remain unanswered. Severe and extended rainy 

seasons play a major role in YFV emergence in many geographic regions of the world, as 

exemplified in Nigeria and Brazil in 1987 and 2000, respectively. In Brazil, heavy rains 

and increasing temperatures precipitated the occurrence of epizootics and resulted in 

deaths among monkeys concurrent with human cases reported in several different states 

(Vasconcelos, Mota et al. 2000). Deforestation for land use in agriculture and cattle 

grazing are also contributing to the emergence of YFV, especially because these activities 

have brought humans in close contact with canopy dwelling mosquitoes inside or near the 

forest that are potentially infected with the virus (Najera, Oliva et al. 2013). In 

conclusion, it is essential to stress that the complex interactions between viruses, vector, 
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host, weather and environment remain only superficially understood in the emergence of 

YFV.  

Rift valley fever virus (RVFV), a member of genus Phlebovirus, family 

Bunyaviridae, is responsible for sporadic epidemics in Africa. Sheep and cattle are 

severely affected by the disease, and humans are at risk of infection through spillover 

(Madani, Al-Mazrou et al. 2003). The factors associated with the emergence of this virus 

include warming caused by El Nino Southern Oscillation (ENSO) in the Pacific area and 

rainfall events, which cause the stimulation of hatching of a large numbers of mosquito 

eggs resistant to desiccation during drought seasons. This combination between rainy 

seasons and the presence of wild and domestic animals have guaranteed that mosquitoes 

have enough vertebrate hosts to feed on during warm humid weather conditions, making 

virus transmission successful and increasing the probability of it to emerge into vertebrate 

hosts including humans (Linthicum, Davies et al. 1985).  

The emergence of epidemics caused by the Venezuelan equine encephalitis virus 

(VEEV), an alphavirus present only in the New World, is dependent on a combination of 

ecological factors and virus genetics that must interconnect in time and space (Weaver, 

Ferro et al. 2004; Anishchenko, Bowen et al. 2006). Since its first description as a disease 

during the 1930s in South America, it was reported periodically until 1973 (Walton and 

Grayson 1988). Subsequently, epidemics have occurred every 10–20 years, possibly due 

to the decrease of global herd immunity of equids generated either by lower vaccination 

efforts or absence of natural exposure to the virus (Anishchenko, Bowen et al. 2006; 

Weaver and Reisen 2010). Another factor associated with the emergence of VEEV is the 

enhancement of virus replication of enzootic strains in the amplification host (equids) by 



16 

the acquisition of specific mutations, such as the E2213T→R (Brault, Powers et al. 2002; 

Anishchenko, Bowen et al. 2006). This allowed for the production of sufficient viremia to 

maintain the transmission cycle with the potential of spillover transmission to humans 

(Weaver and Reisen 2010). On the other hand, the emergence of VEEV is not exclusively 

dependent on viral genetics. Transportation of equids that carry and amplify the 

competent mutants to new areas where naïve equids and invertebrate vectors are 

abundant also is important to VEEV emergence (Weaver and Barrett 2004). Destruction 

of the tropical forest to expand ranching or other agriculture practices may also have 

contributed to increased risk of VEEV emergence (Weaver and Reisen 2010). 

Another arbovirus that is increasing significantly and conquering new territories is 

chikungunya virus (CHIKV). It belongs to genus Alphavirus, family Togaviridae, and 

was historically found in the Old World (Jupp and McIntosh 1988). There are indications 

that the virus was originated in Africa, where it is believed that it is maintained in an 

enzootic transmission cycle between NHP and arboreal Aedes mosquitoes (Powers, 

Brault et al. 2000; Volk, Chen et al. 2010). Spillover transmission to the human 

population have occurred possibly multiple times resulting a continuous transmission 

cycle between humans and anthropophilic Ae. aegypti and Ae. albopictus competent 

vector mosquitoes (Diallo, Thonnon et al. 1999; Volk, Chen et al. 2010; Diallo, Sall et al. 

2012). In 2004, CHIKV emergence was reported in the costal area of Kenya (Chretien, 

Anyamba et al. 2007) following a global expansion to different regions of Africa, Asia, 

several islands in the Indian Ocean (Hochedez, Jaureguiberry et al. 2006; Lanciotti, 

Kosoy et al. 2007; Taubitz, Cramer et al. 2007) and temperate areas in Europe (Rezza, 

Nicoletti et al. 2007; Grandadam, Caro et al. 2011). The contributing factor for the 
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emergence of CHIKV was presumably via travelers who became infected in 

endemic/epidemic areas and returned home contributing to the establishment of 

autochthonous transmission (Hochedez, Jaureguiberry et al. 2006; Lanciotti, Kosoy et al. 

2007; Taubitz, Cramer et al. 2007).   

Four genotypes of CHIKV have been identified since its discovery in 1952: East-

Central-South African (ECSA), West African, Asian, and the Indian Ocean Lineage 

(IOL) (Powers, Brault et al. 2000; Volk, Chen et al. 2010). The different CHIKV lineages 

can exhibit distinct patterns of infectivity and transmissibility in the mosquito vectors 

(Arias-Goeta, Mousson et al. 2013; Vega-Rua, Zouache et al. 2013). The acquisition of 

specific mutations in the E1 (Tsetsarkin, Vanlandingham et al. 2007; Vazeille, Moutailler 

et al. 2007) and E2 (Tsetsarkin and Weaver 2011; Tsetsarkin, Chen et al. 2014) envelope 

glycoprotein of emerging IOL strains allowed virus adaptation and consequent increased 

transmission in the peridomestic mosquito Ae. albopictus. This adaptation may contribute 

to the spread and continuous transmission of CHIKV in tropical urban areas where Ae. 

aegypti is abundant and also to peridomestic and/or temperate habitats where Ae. 

albopictus is more adapted (Leisnham, LaDeau et al. 2014). 

Despite the presence of both Ae. aegypti and Ae. albopictus mosquito vectors and 

reports of imported cases from the 2006-2009 period (Lanciotti, Kosoy et al. 2007) in the 

Americas, local transmission of CHIKV was only been reported recently. In 2013, an 

Asian lineage of CHIKV was introduced into the Caribbean island of Saint Martin and 

established the first mosquito-human cycle in the Americas (Leparc-Goffart, Nougairede 

et al. 2014). Subsequently, cases of autochthonous transmission of CHIKV were reported 

throughout the Caribbean and Central America, South America and Florida (Weaver and 
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Forrester 2015). In Brazil, two different CHIKV lineages were detected (Nunes, Faria et 

al. 2015). The Asian lineage reported in North Brazil possibly originated from travelers 

coming from the Caribbean, while the index case for the ECSA lineage reported in the 

northeast region (Bahia state) probably was introduced from a resident returning from 

Angola (Nunes, Faria et al. 2015).  

Zika virus (ZIKV) is another arbovirus of the Flaviviridae family, genus 

Flavivirus, that is rapidly expanding its geographic distribution and has been recently 

introduced into areas not previously reported. The disease is characterized by a broad 

range of clinical symptoms, including fever, rash, headache, retro-orbital pain, myalgia, 

arthritis or arthralgia, conjunctivitis and vomiting, which are clinical signs similar to 

dengue disease and many other diseases of viral (e.g chikungunya and Mayaro fevers) 

and parasitic (e.g. scrub typhus and leptospirosis) aetiologies (Macnamara 1954; Olson, 

Ksiazek et al. 1981; Duffy, Chen et al. 2009; Foy, Kobylinski et al. 2011; Kutsuna, Kato 

et al. 2014). ZIKV was first isolated in 1947 from the blood of a sentinel rhesus monkey 

exposed in the canopy of Ziika Forest in Uganda during epidemiologic studies of yellow 

fever (Dick, Kitchen et al. 1952). Subsequent isolations of the virus were made from 

Aedes africanus, Ae. luteocephalus and Ae. furcifer (all tree-hole breeding mosquitoes 

implicated in the sylvan cycle of yellow fever virus) in Uganda, Senegal, Nigeria, 

Burkina Faso, Ivory Coast and the Central African Republic (Haddow, Schuh et al. 

2012). These reports were interpreted as evidence that ZIKV is maintained in forested 

areas of tropical Africa in a cycle similar to that of sylvan yellow fever (i.e. arboreal 

mosquitoes and non-human primates). ZIKV was first isolated from humans in 1954 

from a 10 year old Nigerian female (Macnamara 1954). The virus was isolated from mice 
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inoculated with the patient’s serum sample; two other human cases were also confirmed 

from the same country. In 1969, ZIKV was isolated for the first time outside the African 

continent from Ae. aegypti mosquitoes collected in Malaya (Marchette, Garcia et al. 

1969) and in 1977, the first human case was described in Indonesia (Olson, Ksiazek et al. 

1981). The factors associated with the emergence of ZIKV are not understood. On the 

island of Yap, in Micronesia, where the first large outbreak was reported in 2007, ZIKV 

was speculated to have been introduced by either viremic travelers or infected mosquitoes 

originating from the Philippines, since travel exchange between Yap state and Philippines 

is very frequent. 

In 2013 a major epidemic of ZIKV was reported in French Polynesia, where 

human subjects were presenting dengue-like symptoms and rash. Interestingly, few of the 

affected patients presented severe neurological complications and non-vector borne 

transmission (sexual and transfusion-associated cases) were also described (Cao-

Lormeau, Roche et al. 2011; Musso, Roche et al. 2015). Although the total number of 

confirmed cases remains unknown, the number of patient consultations presenting 

symptoms of Zika fever was estimated to be about 28,000. A retrospective serosurvey, 

estimated the overall infection rate at 50-66% of the total population (Aubry, Teissier et 

al. 2015). The virus strain involved in French Polynesia outbreak was phylogenetically 

closely related to strains isolated in Yap and in Cambodia, suggesting that ZIKV could 

have been introduced from these regions (Cao-Lormeau, Roche et al. 2014; Musso, Nilles 

et al. 2014). In 2014, ZIKV cases were reported in New Caledonia in the South Pacific; 

unlike other Pacific regions where the virus source was unknown, in this outbreak the 

majority of the cases originated from individuals who have been in French Polynesia 
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(ProMEDmail 2014; Dupont-Rouzeyrol, O'Connor et al. 2015). In Easter Island, a local 

festivity that happens every year may have facilitated the introduction of ZIKV through 

people who came from several Pacific regions including French Polynesia (ProMEDmail 

2014; Musso 2015). Following the introduction of imported cases from French Polynesia, 

other human infections were described and the presence of autochthonous cases of ZIKV 

was confirmed in the Cook Islands and on Easter Island in 2014 (ECDC 2014; 

ProMEDmail 2014; WHO 2015).  

In 2015, ZIKV reached the Americas. The first country to report the virus was 

Brazil, where an outbreak of exanthematic disease was described and affected more than 

6,000 people in Northeast region of that country (ECDC 2015; ProMEDmail 2015; 

Zanluca, de Melo et al. 2015). The state of Bahia was the first state to report 

autochthonous transmission of ZIKV; however, the virus easily spread across the 

country, where 14 states described autochthonous transmission (PAHO 2015; WHO 

2015). Several factors may have played a role in the emergence of ZIKV in Brazil. The 

abundance of Ae. aegypti and Ae. albopictus vectors probably facilitated the virus 

emergence. There is speculation that ZIKV was introduced in Brazil through people 

attending in the 2014 World Cup, although many countries with reported cases of ZIKV 

did not participate in the competition (Salvador and Fujita 2015). Similarly athletes 

attending the World canoe championship, which took place in Rio de Janeiro, may also 

have been responsible for ZIKV’s introduction, as many represented countries had major 

epidemics at the time (e.g. French Polynesia, New Caledonia, Cook Island and Chile). 

Concurrent phylogenetic analysis identified the Brazilian ZIKV as an Asian strain, 

suggesting that the virus may indeed have been entered Brazil through Asia or the South 
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Pacific (Musso 2015). Since ZIKV introduction in Brazil, autochthonous transmission 

has been reported in 31 countries/territories in the Americas (PAHO/WHO 2016). 

Origin of dengue virus and dengue disease 

The earliest evidence of dengue-like disease came from reports found in the 

Chinese medical encyclopedia dating back to AD 265-420 (further edited in AD 610 and 

AD 992) (Nobuchi 1979). The disease was linked to the presence of water-associated 

flying insects and thus named ‘water poison’. Other reports of dengue-like disease were 

described in the West Indies in 1635 and in Panama in 1699 (Howe 1977; McSherry 

1982). Following this period, numerous epidemics of disease resembling dengue were 

described in the continents of Asia, Africa and North America. Between 1779 and 1788, 

countries including Indonesia, Egypt, Spain and USA have reported dengue-like illness 

(Bylon 1780; Christie 1881; Hirsch 1883; Pepper 1941; Howe 1977) characterizing the 

wide geographic distribution of the disease.  

The main urban dengue virus vector Ae. aegypti is believed to have had its origins 

in the African continent, suggesting that dengue virus was also originated in Africa 

(Gaunt, Sall et al. 2001). On the other hand, genetic studies showing the deep 

phylogenetic position of the Asian sylvatic strains the fact that the four serotypes are 

present in both humans and monkeys in Asia, strongly suggests that DENV had an Asian 

rather than an African origin (Wang, Ni et al. 2000).  

In Asia, dengue viruses probably first emerged into the human population during 

deforestation practices for the establishment of agricultural settlements in areas adjacent 

to the jungle. The peridomestic Ae. albopictus mosquito was likely the bridge vector in 

the transmission of DENV in these areas (Gubler 2006). Consequently, human migration 
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and trade facilitated introduction and establishment of DENV transmission into more 

populated areas of tropical Asia, where the Ae. albopictus and other peridomestic 

Stegomyia mosquito species were abundant (Gubler 2006). 

In Asia, as well as in the New World the introduction of the anthropophilic 

African mosquito Ae. aegypti aegypti was facilitated by the sea-borne and slave trade. 

Beginning in the 17th century, a wide distribution of Ae. aegypti was present throughout 

the tropics, starting in port cities and expanding inwards into the continent as part of the 

human urbanization expansion. As a result, a favorable environment was established for 

the transmission of DENV and major dengue epidemics have occurred, which rapidly 

became pandemics following World War II and continuing until now (Halstead 1992; 

Gubler 1997).  

Following World War II, a new dengue-associated disease affecting 

predominantly children was described in endemic areas of Southeast Asia (Gubler 1998). 

An initial outbreak in Manila in 1953/1954, followed by a larger outbreak in Bangkok in 

1958, provided the first clinical description of dengue hemorrhagic fever (DHF) 

(Hammon, Rudnick et al. 1960). 

DENV (and Yellow Fever virus) epidemics in the Americas were restricted by a 

control campaign initiated in 1947 by the Pan American Health Organization (PAHO) 

aiming to eliminate Ae. aegypti from Central and South America. However, with the 

suspension of the control campaign in the 1970s, the region was reinfested with Ae. 

aegypti and the incidence of dengue started to rise again, reaching the pre-campaign 

levels by 1995. Since then the geographic distribution of dengue have increased not only 

in the Americas, but also in other regions of the world, from non-endemic to, in some 
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circumstances, hyperendemic levels (Gubler and Clark 1995; Gubler 2002; Shepard, 

Coudeville et al. 2011). 

DENV transmission cycles 

Dengue viruses are maintained in nature through two evolutionary and 

ecologicaly distinct transmission cycles: a sylvatic cycle, where the virus is transmitted 

among non-human primates by several arboreal Aedes spp mosquitoes, and the 

urban/human cycle, where virus transmission occurs between humans and mainly the 

domestic Ae. aegypti mosquito (Vasilakis, Cardosa et al. 2011).  

The human transmission cycle is by far the most important cycle, considering its 

impact to public health and by the fact that it is occurring throughout the tropics. 

Although the Ae. aegypti mosquito is the major vector, the peridomestic Ae. albopictus 

and Ae. polynesiensis can play a role as secondary vectors of transmission (Gubler, Nalim 

et al. 1979; Gubler and Trent 1994). While currently Ae. aegypti is highly prevalent 

throughout sub-tropical and tropical areas, until the 15th century this vector was located 

exclusively in Africa (Lounibos 2002). The ability to adapt and survive in anthropogenic 

breeding sites, such as water storage containers in early agricultural settlements and later 

in ships, enabled this vector to take advantage of the slave trade and commerce to spread 

globally. Early reports support this notion as dengue fever was described as a disease of 

ports and coastal regions throughout the tropics and neotropics (Leichtenstern 1896).  

Linkage of Ae. aegypti mosquito with dengue disease was inferred from surveillance 

studies thorough several seaports of Southeast Asia and Indonesia (Theobald 1901; 

Stanton 1919). Ae. aegypti are anthropophilic and feed throughout the day and they lay 

their eggs in artificial containers usually found in domestic environments such as water 
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buckets, water storage cisternae and old tires. Human-to-mosquito DENV transmission 

depends on the magnitude of human viremia necessary to infect mosquitoes and their 

vector competence (Vazeille-Falcoz, Mousson et al. 1999; Bennett, Olson et al. 2002). 

Previous studies demonstrated that none or little transmission was achieved when the 

blood meal titer was below 103 viral RNA copies/ml and the level of transmission 

reached close to 100% when a dose was above 109 viral RNA copies/ml (Nguyen, Lee et 

al. 2013).  

The capability of DENV to survive in dry climates during interepidemic periods 

has not completely elucidated; however there is evidence that the virus could be 

maintained through vertical transmission. The first evidence of arbovirus transovarial 

transmission (TOT) was demonstrated using phlebotomus flies and Ae. triseriatus in 

studies of vesicular stomatitis virus (VSV) and La Crosse encephalitis virus (LACV), 

respectively (Tesh, Chaniotis et al. 1972; Watts, Pantuwatana et al. 1973). The first 

evidence that DENV could be maintained in nature by TOT was with DENV type 2 

(DENV-2) isolated from an Ae. taylori mosquito in Africa in 1980 (Roche, Cordellier et 

al. 1983). Subsequent studies in Senegal and Southeast Asia showed evidence of natural 

TOT of DENV-2 in Ae. aegypti (Khin and Than 1983). TOT was further demonstrated in 

India for DENV-3 and Trinidad Tobago for DENV-4  (Hull, Tikasingh et al. 1984; Joshi, 

Singhi et al. 1996) and later confirmed for the other serotypes (Thongrungkiat, Maneekan 

et al. 2011). TOT was also demonstrated for the four DENV serotypes in Ae. albopictus 

and for DENV-1 serotype in Ae. aegypti (Rosen et al., 1983).   

Comparison of Ae. aegypti and Ae. albopictus populations from diverse 

geographic regions demonstrated substantial disparity in DENV susceptibility between 
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both vectors (Gubler and Rosen 1976; Gubler, Nalim et al. 1979). Ae. aegypti exhibited 

less susceptibility to DENV infection than Ae. albopictus (Gubler, Nalim et al. 1979; 

Jumali, Sunarto et al. 1979; Rosen, Roseboom et al. 1985; Gubler 1987). Moreover, the 

strain of the infecting virus could affect the susceptibility of the vector and the dynamic 

of DENV transmission (Gubler and Rosen 1977; Anderson and Rico-Hesse 2006; 

Hanley, Nelson et al. 2008). Considering the lower susceptibility of Ae. aegypti, the virus 

probably will need to achieve high viremia levels in the human host to be transmitted to 

mosquitoes during the blood meal, suggesting a natural selection of viruses that would 

potentially cause more severe dengue disease (Gubler 1987; Cologna, Armstrong et al. 

2005).  

Emergence of dengue virus  

The emergence of DENV serotypes from a common sylvatic ancestor occurred 

thousand years ago, congruent with the establishment of early human settlements large 

enough to sustain transmission and was associated with vector changing from arboreal 

Aedes to peridomestic/domestic Aedes spp. and human reservoir hosts (Wang, Ni et al. 

2000). Emergence of the serotypes occurred independently and repeatedly in allopatric 

regions prior to their expansion in sympatric regions, using similar non-human primate 

hosts (Vasilakis, Hanley et al. 2010; Vasilakis, Cardosa et al. 2011).  

Phylogenetic studies demonstrated DENV was dispersed rapidly into new 

locations with the advent of air travel that enabled the movement of humans during the 

viremic phase of infection, resulting in the shift or extinction of local lineages (Rico-

Hesse, Harrison et al. 1997; Carrington, Foster et al. 2005; Myat Thu, Lowry et al. 2005; 

Diaz, Black et al. 2006). Ecological factors are also involved in the emergence of DENV. 
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Deforestation is one of the major factors driving sylvatic DENV emergence. As people 

are exploring new resources deep into the forest, living in areas previously unexplored, 

the chances of sylvatic DENV emergence are also increasing (Patz, Daszak et al. 2004). 

In regions of Asia and Africa, where rapid and uncontrolled urbanization takes place, the 

risk of sylvatic dengue emergence is high.  

Genetic diversity of dengue viruses    

 Genetic diversity and rapid evolution is a common thread among many RNA 

viruses. DENVs display a pronounced genetic diversity, as demonstrated by the presence 

of four distinct serotypes (Kuno, Chang et al. 1998). Phylogenetic analyses of the 

individual DENV serotypes also demonstrated the presence of multiples genetic subtypes 

(Rico-Hesse 1990; Wang, Ni et al. 2000; Twiddy, Farrar et al. 2002; Twiddy, Woelk et 

al. 2002; Holmes and Twiddy 2003; Twiddy, Holmes et al. 2003; Araujo, Nogueira et al. 

2009; Vasilakis, Hanley et al. 2010; Villabona-Arenas and Zanotto 2011). DENV-1 is 

classified into five subtypes (I-V) (Rico-Hesse 1990; Chen and Vasilakis 2011); DENV-2 

contains six subtypes (I-VI), with subtype III been further classified into sublineages IIIa 

and IIIb (Lewis, Chang et al. 1993; Salda, Parquet et al. 2005; Chen and Vasilakis 2011); 

DENV-3 contains four subtypes and DENV-4 is also classified into four subtypes 

(Lanciotti, Lewis et al. 1994; Lanciotti, Gubler et al. 1997). Multiples serotypes and 

subtypes are broadly dispersed and can cocirculate in different geographic areas (Rico-

Hesse 1990; Lewis, Chang et al. 1993; Lanciotti, Lewis et al. 1994; Lanciotti, Gubler et 

al. 1997). This observed diversity is attributed mainly to the error-prone RNA-dependent 

RNA polymerase, generating on average one mutation per round of genome replication 

(Steinhauer, Domingo et al. 1992; Drake 1993). 
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 Studies on selective pressures, measured as the ratio of nonsynonymous to 

synonymous amino acid substitutions, indicate that most DENV mutations are deleterious 

and subject to strong purifying selection (Holmes 2003). Conversely, the ability of 

DENV to adapt to changing niches or to engage new ecological niches undoubtedly could 

be generated from the genetic diversity. Consistently, the rate of substitution/site/year of 

DENV is calculated to be approximately 1x10-4, which is lower compared to numerous 

RNA viruses known to be transmitted directly between vertebrate hosts (Zanotto, Gould 

et al. 1996; Jenkins, Rambaut et al. 2002; Twiddy, Holmes et al. 2003; Bennett, Holmes 

et al. 2006; Dunham and Holmes 2007; Ramirez, Fajardo et al. 2010; Sall, Faye et al. 

2010). 

Recombination has also been suggested as a potential mechanism in the 

generation of DENV diversity. The concomitant geographic distribution of multiple 

subtypes of the same serogroup has been implicated to contribute with the occurrence of 

DENV recombination (Lorono-Pino, Cropp et al. 1999). In addition, the behavior of Ae. 

aegypti, which can feed multiple times on different hosts, also poses the potential for 

simultaneous exposure with more than one DENV strain and consequently increase the 

chances for recombination (Scott, Naksathit et al. 1997). On the other hand, 

recombination between viruses of distinct serotypes is unlikely, especially because the 

broad sequence divergence among the four DENV serotypes (Holmes and Burch 2000).  

Recombination events have extensively been reported in DENV genomes 

(Holmes, Worobey et al. 1999; Worobey, Rambaut et al. 1999; Tolou, Couissinier-Paris 

et al. 2001; Uzcategui, Camacho et al. 2001; AbuBakar, Wong et al. 2002; Craig, Thu et 

al. 2003; Twiddy and Holmes 2003; Domingo, Palacios et al. 2006; Chen, Yu et al. 2008; 
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Perez-Ramirez, Diaz-Badillo et al. 2009); however, they have not been supported 

experimentally, but only by computational phylogenetic analyses, which requires caution 

when drawing conclusions about putative recombination among DENV genomes. 

Furthermore, demonstration of viable clonal recombinant flavivirus genomes using 

experimental approaches has been unsuccessful (Chuang and Chen 2009; Taucher, 

Berger et al. 2010; McGee, Tsetsarkin et al. 2011). The natural recombination leading to 

the transmission of recombinant genomes should be confirmed by demonstration of the 

recombinant crossover at molecular level, detection of the recombination multiple times 

in clonal populations of viable virus and demonstration of sequence preservation during 

post-recombination evolution. One of the most persuasive events of DENV 

recombination was described in the Pacific region of New Caledonia where multiple 

DENV-1 isolates containing both parental and recombinant viruses were detected in the 

same patient (Aaskov, Buzacott et al. 2007). The data was verified by phylogenetic 

analyses with further genetic confirmation of identical crossover break points (Aaskov, 

Buzacott et al. 2007). 

Genetic diversity can also be introduced in a population through the migration 

process. The increase and concentration of the vector and human population, combined 

with increase in transportation have provided more opportunities for DENV 

dissemination and diversification in highly populated areas. Historically, dissemination of 

mosquito vector in Southeast Asia in the 1950’s and extensive movement of population, 

mainly battle troops in the World War II are examples that support the importance of 

migration in building the DENV antigenic diversity (Rosen 1977; Gubler 1997). 
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The re-introduction of DENV in the Americas was greatly accelerated by the 

termination of eradication programs implemented in the 1970s, which consisted in the 

extinction of Ae. aegypti, the primary DENV vector. As a consequence, the mosquito was 

re-introduced and re-colonized in several regions of Central and South America. 

Additionally, several Latin American countries progressed from non-endemic or hypo-

endemic to hyperendemic in the 1980s and 1990s (Lorono-Pino, Cropp et al. 1999). 

Hence, the substantial augmentation of genetic diversity could be the result of serotypes 

and genotypes introduction into extended geographical areas where strains genetically 

distant are already endemics (Chen and Vasilakis 2011).  

Antigenic relationship of dengue viruses    

Historically, flaviviruses were classified into serocomplexes based on serologic 

relationships, such as the virus neutralization profile (Calisher, Karabatsos et al. 1989). 

The serological cross-reactivity is determined by the presence of common epitopes in the 

virion surface (Trent 1977). The envelope (E) glycoprotein is considered the major target 

of flavivirus neutralizing antibodies (Pierson, Fremont et al. 2008). The classification of 

DENV into distinct serotypes was based on observations that following primary DENV 

infection, the monotypic immune response generates a full protection against 

homologous viruses, but partial and transient protection, lasting for only a few months, 

against heterologous DENV strains (Sabin 1952). As a result, a single person can 

potentially be infected with all four DENV serotypes during her lifetime (Rothman 

2011).  

Antigenic differences among viruses are determined by amino acid substitutions 

that can promote changes in the protein structure and consequently altering the 
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recognition and binding of antibodies. Among the DENV serocomplex, the amino acid 

sequence of E protein can diverge by up to 37%, but contains conserved regions that can 

induce the production of cross-neutralizing antibodies (Heinz and Stiasny 2012). The 

modifications on the protein structure that lead to an antigenic effect can be the result 

from a single to multiples amino acid substitutions and sometimes amino acid changes 

have no antigenic effect (Koel, Burke et al. 2013; VanBlargan, Mukherjee et al. 2013). 

Therefore, it is difficult to predict differences in antigenicity only from the genetic 

sequence, so the characterization must include an antibody neutralization assay to 

determine the antigenic relationship among viruses (Calisher, Karabatsos et al. 1989). 

To determine the antigenic relationships among the DENV, it is common to 

represent their neutralization profile against a panel of several different sera know to 

react with specific DENV types (Vasilakis, Durbin et al. 2008). It has been demonstrated 

that sera obtained from humans during a primary infection or immunized with DENV 

exhibit strong homotypic neutralization against different urban and sylvatic DENV, 

where the heterotypic neutralization is absent or last for a short period of time (Vasilakis, 

Durbin et al. 2008). However, many times these analyses are difficult to interpret due the 

intrinsic variability among samples derived from different hosts or infection histories 

(Thomas, Nisalak et al. 2009; van Panhuis, Gibbons et al. 2010). More recently, the 

antigenic relationships of DENV have been studied using antigenic cartography to reduce 

some measurements errors of neutralization against multiple serotypes (Katzelnick, 

Fonville et al. 2015). The analyses of a panel of human and non-human primate sera 

derived from experimental infection, as well vaccination and natural infection 

demonstrated that the majority of DENV isolates were clustered into each DENV type 
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classification. However, a number of viruses were located more adjacent to another 

DENV type than its own type and the distance within and between types was similar. The 

neutralization profile of antisera demonstrated similar trend, with groups close to the 

homologous virus type, but also close to a heterologous DENV (Katzelnick, Fonville et 

al. 2015).  

 Requirements for dengue emergence?  

The four currently known DENV serotypes are considered to be originated from 

independent evolutionary events that most likely occurred repetitively in Asia, resulting 

in the emergence of endemic DENV derived from sylvatic ancestors (Vasilakis and 

Weaver 2008). Vector switching from arboreal primatophilic mosquito species to 

peridomestic mosquito vectors (Ae. aegypti and Ae. albopictus) is also attributed to have 

facilitated the emergence and adaptation of sylvatic strains into the urban transmission 

cycle (Wang, Ni et al. 2000). The expansion of non-human primates and human 

populations in different geographic areas allowed the sustained transmission of DENV 

into the major tropical regions of the world. 

The Ae. albopictus was most likely the primary human mosquito vector 

responsible for DENV transmission. With the advance of navigation and consequent 

expansion of commercial trade routes, Ae. aegypti also start to colonize the tropical areas, 

especially in port cities where dengue became endemic. To understand if adaptation of 

sylvatic DENV was necessary to sustain transmission in these peridomestic vectors and 

establish an urban cycle, Moncayo et al. evaluated vector competence using endemic and 

sylvatic DENV-2 strains to infect Ae. albopictus and Ae. aegypti mosquitoes originated 

from southeast Asia and Americas (Moncayo, Fernandez et al. 2004). The study showed 
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a higher susceptibility of Ae. albopictus to endemic DENV-2 strains than Ae. aegypti 

independently of mosquito location. However, when data from both mosquito groups 

were combined, although endemic DENV-2 have higher rates of infection, the 

dissemination of sylvatic and endemic strains from the midgut were similar between the 

two mosquito species, suggesting no need for adaptation of sylvatic DENV to sustain 

transmission in urban transmission cycle.  

The possibility of sylvatic strains to enter the human transmission cycle was also 

recently evaluated by both in vitro and in vivo human models of DENV replication. The 

purpose of those studies was to verify if any adaptation is required to sylvatic DENV 

strains been established in a new transmission cycle. DENV-2 infection of human 

monocyte-derived dendritic cells (moDCs) and severe combined immunodeficient 

(SCID) mice xenografted with human hepatoma (Huh-7) cells demonstrated no 

significant differences in replication between sylvatic and human strains (Vasilakis, Shell 

et al. 2007). Interestingly, sylvatic DENV-2 replication in moDCs was comparable with 

human DENV-2 strains, suggesting they can promptly infect human hosts (Vasilakis, 

Shell et al. 2007). Other study using cell lines representing human (Huh-7), monkey 

(Vero) and mosquito (C6/36) hosts demonstrated that the human strains only have higher 

level of viral replication in the human cell, but virus titer were similar in the monkey and 

mosquito cell lines (Vasilakis, Fokam et al. 2008). Collectively, these studies 

demonstrate the ability of sylvatic DENV strains to replicate in a range of host cells, 

suggesting that their emergence in the human population is not dependent on adaptation 

to new hosts, but most dependent on the opportunity of the sylvatic virus to infect a wide 

range of hosts and eventually emerge into a human transmission cycle.   
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Conclusions 

The majority of viruses with potential to produce important epidemics are 

zoonotic, which means that they are originated in an animal hosts and are driven by 

several emergence forces, including changes in ecological and social behaviors, 

supporting the possibility to spill over into the human population. To clearly comprehend 

and anticipate the occurrence of sylvatic DENV emergence is fundamental to clarify the 

ecological and epidemiological aspects related to this virus cycle. There is enough 

evidence to support the existence of endemic serotypes as a result of independent events 

through cross-species transmission of sylvatic DENV.  However, there is clear indication 

that sylvatic DENV come into close contact with humans in Asia and Africa, and 

possibly in other parts of the world, originating sporadic severe dengue disease that can 

spillover in the urban environment.  

The sylvatic cycle of DENV has not being intensively explored and not 

considerable attention is given to the consequences involved in viruses coming from 

unexplored habitats. Additionally, different of what was proposed in the past, recent 

studies indicated that the emergence of sylvatic DENV represent a real threat to people 

considering the inexistence of an adaptation barrier to sylvatic viruses emerge into the 

human population. Moreover, the diversity of DENV strains and the emergence of new 

isolates have important consequences in the development of therapeutics, including 

vaccines currently in the developmental and clinical trial phases. 

 

 



CHAPTER 2: Discovery and Characterization of a Novel Dengue Virus 

Serotype 

 

INTRODUCTION 

The four extant DENV serotypes that represent both sylvatic and urban 

transmission cycles emerged from sylvatic strains in the forests of Southeast Asia. The 

emergence of the ancestral viruses is believed to have occurred repeatedly over time 

congruent with the establishment of human settlements large enough to support a self-

sustained transmission cycle several thousand years ago. The persistence of these 

ancestral strains, which are still extant in both Southeast Asia and West Africa, enables us 

to study those initial emergence events.  However, continued circulation of sylvatic 

strains also poses a risk for the contemporary emergence of sylvatic strains into the 

human population. 

Previous experimental work in the Vasilakis laboratory demonstrated that: (1) 

emergence of endemic DENV strains from ancestral sylvatic strains may not have 

required adaptation to replicate more efficiently in human reservoir hosts (Vasilakis, 

Shell, et al., 2007) or mosquitoes (unpublished data); (2) endemic and sylvatic DENV-2 

share similar rates of evolutionary change and patterns of natural evolution (Vasilakis, 

Holmes, et al., 2007); (3) unrecognized outbreaks of sylvatic DENV-2 are taking place in 

urban settings (Vasilakis, Tesh, & Weaver, 2008); (4) there is robust homotypic cross-

immunity between human sera (from natural DENV infections as well as vaccinees) and 

sylvatic DENV (Durbin et al., 2013; Vasilakis, Durbin, et al., 2008); (5) sylvatic and 

endemic DENV-2 and DENV-4 do not share significant differences in their progeny 
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output in vertebrate or invertebrate hosts (Durbin et al., 2013; Vasilakis, Fokam, et al., 

2008); and (6) slower than expected rates of mutation accumulation for both endemic and 

sylvatic DENV occur in mosquitoes (Vasilakis et al., 2009). Collectively, these lines of 

evidence imply that the sylvatic cycles in Asia and West Africa will remain a source of 

re-emergence. Although the currently licensed DENV vaccine and others under 

development may facilitate the eradication of endemic DENV strains (because humans 

are the only reservoir hosts) sometime in the not so distant future, the sylvatic strains are 

not amenable to control and will probably remain a source of re-emergence. Nonetheless, 

human herd immunity from repeated exposure to endemic DENV strains and immunity 

generated by some vaccines is capable of sylvatic strain neutralization, indicating that 

sustained vaccination may be able to prevent future re-emergence into the human 

transmission cycle. 

Serendipitous investigations of febrile illness in Senegal and Southeast Asia 

suggest that sylvatic DENV infection can cause dengue (DEN) disease.  Almost all of 

these cases were concurrent with amplification of sylvatic DENV in arboreal Aedes 

mosquitoes [reviewed in (Vasilakis, Cardosa, Hanley, Holmes, & Weaver, 2011; 

Vasilakis, Hanley, & Weaver, 2010; Vasilakis & Weaver, 2008)]. Importantly, these 

cases demonstrated that illness due to sylvatic DENV infection is indistinguishable from 

classic dengue fever (DF) infection with the ecologically and genetically distinct DENVs 

from the human transmission cycle.  However in 2008, two events were linked to sylvatic 

dengue virus activity in humans in West Africa (Franco et al., 2011) and Southeast Asia 

(Cardosa et al., 2009) demonstrated that sylvatic DENV infection can also lead to severe 

DEN disease.  The implications from both cases are significant because: (i) the virus 
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responsible for the human infection in Southeast Asia was maintained in nature without 

detection for nearly 4 decades; (ii) they represent the first documented human cases that 

sylvatic DENV infections can cause severe DEN disease; (iii) both confirm our previous 

evidence from West Africa that re-introduction of sylvatic DENV into the human 

transmission cycle is possible (Vasilakis, Tesh, et al., 2008). 

The aim of this study is to describe and characterize the discovery of a novel new 

dengue virus isolated from a febrile patient in the Malaysian state of Sarawak, which 

presumably represents the prototype virus of a new dengue serotype. 

 

MATERIALS AND METHODS 

Viruses 

DENV isolates included in this study were the following: DENV-1, Hawaii; 

DENV-2, NGC; DENV-3, H87; DENV-4, H241, LF32 and 1120; DENV-5, DKE121. 

Low passage viruses were propagated in C6/36 cultures to obtain high titer stocks. Cell 

supernatants were clarified from cellular debris by low-spin centrifugation (630 x g, 10 

min at 4°C), stabilized with the addition of 1X SPG (2.18 M Sucrose, 0.038M KH2PO4, 

0.072M K2HPO4 and 0.054M L-glutamate), aliquoted and stored at -80°C. Viral stocks 

were quantified by focus-forming assay (FFA) as previously described (Vasilakis, Shell, 

et al., 2007). 

Next Generation Sequencing 

Confluent monolayers of C6/36 cells (T25 flask) were infected with DKE-121 

and harvested 7 days later when CPE was observed. Viral RNA was prepared and 

processed for sequencing as described previously (Vasilakis, Forrester, et al., 2013). The 
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de novo assembly program ABySS (Simpson et al., 2009) was used to assemble the reads 

into contigs, using several different sets of reads, and k values from 20 to 40. A nearly 

full-length contig was obtained from 150,000 reads and a k value of 37. Reads were 

mapped back to the contig using bowtie2 (Langmead & Salzberg, 2012), and visualized 

with the Integrated Genomics Viewer (Robinson et al., 2011) to verify that the assembled 

contig was correct. About 3.5% of the reads in the sample mapped to the viral contig, 

resulting in about 2.1 million reads mapped out of about 60 million total. 

Phylogenetic Analysis 

The novel DENV genome was manually aligned to a subsample of representative 

full genome sequences of each genotype along with all available full genome sequences 

of sylvatic origin obtained from GenBank, using Se-AL (version 2.0a11 Carbon, 

http://tree.bio.ed.ac.uk/software/seal). Sequences were examined for evidence of 

recombination using the Bootscan, Chimaera, GENECONV, MaxChi, RDP, and SisScan 

methods with default parameters, implemented in the RDP3 software package (Martin et 

al., 2010), in which potential recombinant sequences are identified when three or more 

methods within RDP3 were in agreement with P<0.001.  No evidence of recombination 

was shown within the dataset.  The phylogenetic tree was inferred from nucleotide 

sequences under the maximum likelihood (ML) method available in PhyML (Guindon & 

Gascuel, 2003), using the GTR+G4 model of nucleotide substitution with SPR branch-

swapping and 1000 bootstrap replications, as determined by ModelTest (Posada & 

Crandall, 1998). An additional phylogenetic tree (not shown) was constructed from 

amino acid sequences using the JTT+G4 model of amino acid substitution with SPR 

branch-swapping and 1000 bootstrap replications, as determined by ModelGenerator  
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(Keane, Creevey, Pentony, Naughton, & McLnerney, 2006). P-uncorrected nucleotide 

and amino acid differences were calculated using Geneious (v8.1.7). 

Generation of Mouse Hyperimmune sera 

 Specific hyperimmune mouse ascitic fluids were prepared by four intraperitoneal 

injections to CD1 mice, given at weekly intervals, with 10% suspensions of homogenized 

infected mouse brain in PBS mixed with Freund's adjuvant. Sarcoma 180 cells were 

given intraperitoneally after the final immunization to induce ascites formation. 

Plaque Reduction Neutralization Test (PRNT) 

PRNTs were performed in 24-well plates, as previously described (Durbin et al., 

2013). Briefly, constant virus amount (1,500 FFU/mL) was mixed with an equal volume 

of 2-fold dilutions (1:10-1:2,560) of human serum or mouse hyperimmune ascitic fluid 

(MIAF). Human serum samples were obtained from patients with known monotypic 

DENV-1 to -4 infection (Iquitos, Peru) or from a panel of human sera containing naïve 

(flavivirus negative samples), Japanese encephalitis virus (JEV)-exposed, monotypic 

DENV-1 to -4 or polytypic DENV infection (Armed Forces Research Institute of Medical 

Sciences – AFRIMS, Thailand). MIAF were raised against homologous DENV-1 to -5 

antigens. The serum-virus mixture was incubated 1hr at 37°C. Subsequently, 100 µL of 

the mixture was transferred into 24-well plates containing Vero cells at circa 70% 

confluence and incubated 1hr at 37°C. A 1.0 mL volume of 0.8% methyl cellulose in 

OPTIMEM-I (GIBCO) overlay was placed in each well and the plates were incubated at 

37°C for 4-5 days depending on the virus phenotype. The cells were then fixed with 

acetone and methanol (1:1) solution and immune-stained as previously described 

(Vasilakis, Durbin, et al., 2008). The PRNT titers were scored as reciprocal of the highest 
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dilution of serum that inhibited 80% of foci (PRNT80) according the NIAID Laboratory 

of Infectious Diseases (LID) Plaque Reduction Web Tool available at 

exon.niaid.nih.gov/plaquereduction/index.html. 

Antigenic Cartography 

The antigenic cartography maps were generated as described previously 

(Katzelnick et al., 2015). Briefly, each neutralization titer Nij was transformed into a table 

antigenic distance Dij between virus i and antiserum j by calculating the difference 

between the titer for the virus best neutralized by each antiserum j, defined as bj, and the 

measured titer for each virus Nij against that antiserum: Dij=log2(bj)-log2(Nij). To find the 

map distances, represented by the Euclidean distance dij between each virus i and 

antiserum j, the differences between the map and table distances were minimized, as 

defined by the error function E=∑ije(Dij,dij).  The error of a serum-virus pair was defined 

as e(Dij,dij)=(Dij-dij)2 when the neutralization titer was numeric (meaning that 

neutralization titer was within the limit of detection of the neutralization assay).  The 

error was defined as e(Dij,dij)=(Dij-1-dij)2 (1/1+e-10(Dij-1-dij)) for threshold titers (defined 

as titers below the limit of detection, <1:10), so that the titer contributed to the stress only 

if the map distance was less than the minimum specified target distance (dij < Dij-1). 

Further description of the antigenic cartography technique has been published previously 

(Fouchier & Smith, 2010). To identify the antigenic map for which the distances between 

viruses and antisera most closely matched the table distances, viruses and antisera were 

assigned random starting coordinates and the error function was minimized using the 

conjugate gradient optimization method.  In order to increase the likelihood of finding a 

good minimum, 5,000 independent optimizations were performed. The observed 
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minimum error map is demonstrated on a grid matrix in which each square side 

corresponds to a two-fold antiserum dilution, or one antigenic unit (AU), in any direction, 

on the antigenic map. Thus, two grid square sides are a four-fold antiserum dilution, three 

grid square sides are an eight-fold antiserum dilution, and so on. 

 
RESULTS AND DISCUSSION 
 
Case Description 

On 21 May 21, 2007, a 36 year old male Bidayuh farmer residing in the state of 

Sarawak, Malaysian Borneo, first became ill exhibiting symptoms of high fever, chills 

and rigor. On day 3 post onset of symptoms, when illness persisted with headache, retro-

orbital pain, myalgia, arthralgia and 2 episodes of spontaneous but self-limiting gum 

bleeding, the patient presented into the nearby community clinic. When full blood count 

showed leukopenia and thrombocytopenia, he was referred to Sarawak General Hospital 

located in the state capital of Kuching, which was 45 km away. On examination, he 

looked flushed, mildly dehydrated, with a blood pressure (BP) of 120/90 mm Hg, pulse 

86/min, low platelet count and elevated liver enzymes, body temperature 37.8°C rising to 

38.2°C the next day before defervescence by the fifth day after onset (Table 2.1). He 

presented with mild non-tender hepatomegaly, 1 cm below costal margin, and no other 

abnormalities. He was diagnosed with grade II dengue hemorrhagic fever based on WHO 

dengue diagnosis guidelines, was treated and discharged after remaining well for 36 hrs 

after defervescence. Although at the time no attempt was made to screen by PCR, the 

sample was biobanked for further investigation at the Institute of Health and Community 

Medicine (IHCM) at the Universiti Malaysia Sarawak (UNIMAS). Further investigation 
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by the public health authorities showed that other villagers also fell ill with similar 

symptoms and vector control had carried out fogging activities in the area.  

 
Table 2.1:  Results of the laboratory investigation  

 

 
 
Genomic Sequence and Phylogenetic Analysis of the Novel Dengue Virus 
 

In 2009, scientists at IHCM started a retrospective characterization of biobanked 

samples. Based on serologic diagnostic assays used at that time and the sequencing and 

BLASTing of a poorly amplified PCR product (Johnson, Russell, & Lanciotti, 2005), the 

patient’s sample was misclassified as DENV-4. Further attempts to obtain the full 

genomic sequence of this isolate were unsuccessful.  The sample, designated as DKE-

121, was then send for further characterization at the Vasilakis laboratory at the 

University of Texas Medical Branch. Upon receipt, the virus was amplified in C6/36 cells 

to generate adequate virus stocks. The full genomic DENV sequence of DKE-21 was 
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later obtained by de novo next generation sequencing (NGS) using the laboratory’s 

developed protocols (Vasilakis, Forrester, et al., 2013; Vasilakis, Widen, et al., 2013). 

The genome is comprised of 10,677 nucleotides (nt) of single stranded RNA of positive 

polarity. A single open reading frame (ORF) of 10,164 nucleotides is flanked by 

untranslated regions (UTRs) at both 5’ and 3’ ends. The 5’- UTR is 101 nt long and the 

412 nt 3’-UTR lacks a polyadenylation site. The ORF encodes three structural (capsid 

(C), premembrane/membrane (prM/M) and envelope (E)) and seven nonstructural (NS1, 

NS2A, NS2B, NS3, NS4A, NS4B and NS5) proteins. The sequences of both the 5’ and 3’ 

UTR are highly conserved and sequence motifs and secondary structural elements [such 

as the RCS2, CS2 and CS1, as well as the pentanucleotide sequence (CPS) within the 3’ 

UTR stem-loop (SL)] within these regions are conserved among all flaviviruses (data not 

shown) [reviewed in (Rossi et al., 2012; Vasilakis, Fokam, et al., 2008)]. Comparison of 

both nt and amino acid (aa) sequences from representative taxa from each genotype of the 

known four dengue serotypes suggested significant divergence (Table 2.2). Genome-wide 

divergence is observed to greater between DKE-121 and serotypes 1-3 than between 

DKE-121 and DENV-4,  suggesting a closer genetic and possibly antigenic relationship. 

Similar observations were made with comparisons at the gene level (Figure 2.1). 

 

Table 2.2: Percent (%) nucleotide and amino acid identity genome-wide between DKE-
121 and viruses from representative taxa of dengue serotypes 1-4. 
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Figure 2.1: Gene-specific percent nucleotide and amino acid identity between DKE-121 
and viruses from representative taxa of dengue serotypes 1-4. 

 

The next step in the characterization of this isolate was to determine its 

phylogenetic relationship to other DENV. The open reading frames (ORF) of 64 

representative strains from both sylvatic and human transmission cycles were manually 

aligned using Se-AL and their phylogenetic relationships were inferred by maximum 

likelihood (ML) as described in the materials and methods section above. While 

phylogenetic analysis of the virus isolate (DKE-121) strongly suggests its sylvatic origin 

(black arrow, Fig. 2.2), it is substantially divergent from its closest relative, sylvatic 

DENV-4. Importantly the branch length of the divergent DKE-121 is deeper than the 

branch length of DENV-2 emerging from its ancestral progenitors but shallower than the 

branch lengths of the sister serotypes DENV-1 and DENV-3, suggesting the unique 

origin of this virus and implying the emergence and detection of a new dengue serotype. 
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Figure 2.2: Evolutionary relationships of DKE-121. Phylogeny derived from complete 
ORF sequences. Green branches indicate predicted ancestral sylvatic 
lineages and red branches indicate human lineages. 

 

This human infection (sample DKE-121), along with the sylvatic DENV-2 

infection described above (Cardosa et al., 2009) and the newly documented and highly 

divergent lineage of sylvatic DENV-1 (Pyke et al., 2016) offer ample evidence, following 

five decades of surveillance vacuum that at least three different lineages of sylvatic 

DENV are currently circulating in Southeast Asia suggesting that DENV has been 

maintained continuously in its zoonotic reservoir over the last 4 decades. Moreover, 

isolation of strain DKE-121 and the sylvatic DENV-1 described in Pyke et al extend the 



	
   45	
  

documented geographic range of sylvatic DENV circulation [reviewed in (Vasilakis et 

al., 2011)] to include Borneo, the world’s third largest island.  

Serologic Relationships of DKE-121 with other Dengue Serotypes 

Calisher and colleagues (Calisher et al., 1989) defined quantitative serologic 

criteria for the definition of a DENV serotype as a 4-fold or greater difference between 

homologous and heterologous neutralizing antibody titers. To serotype strain DKE-121, 

in collaboration with Dr. Tesh, curator of the World Reference Collection of Emerging 

Viruses and Arboviruses (WRCEVA), antigens as well as hyperimmune mouse ascitic 

fluids (HMAF) to the prototypic viruses of each of the 4 DENV serotypes (DENV-1 

Hawaii; DENV-2 NGC or 16681; DENV-3 H87; DENV-4, H241) and to DKE-121 were 

generated using established methodologies (Vasilakis, Widen, et al., 2013). The cross-

neutralization data with shown in Table 2.3 indicate a 4-fold difference in cross-

neutralization between homologous and heterologous neutralizing antibody titers.  

Although several DENV studies (Vasilakis, Durbin, et al., 2008; Williams et al., 2014) 

use lower reduction percentages to report titers (e.g. PRNT60), here a 80% endpoint was 

used to estimate conservatively in vivo protection. However, limited cross-reactivity 

among some of the serotypes is observed underlying the presence of cross-neutralizing 

epitopes, which are thought to play a role in the observed pathogenicity of heterologous 

infections in nature. 
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Table 2.3: Cross-neutralization titers of prototype strains of DENV-1-4 serotypes and the 
novel DENV strain DKE-121 using mouse hyperimmune sera (MIAF) raised 
against homologous DENV-1-4 and DKE-121 antigens. Highlighted in yellow 
are the homologous neutralization titers. 

	
  

 
 The next step in the characterization was to serotype DKE-121 against a panel of 

well-characterized monotypic human sera.  A panel of 12 monotypic DENV sera and 4 

naïve sera were obtained from Dr. Rick Jarman of Walter Reed Army Institute of 

Research (WRAIR), Viral Diseases Branch. The neutralization assays were performed 

using the prototypic viruses of each of the 4 DENV serotypes (DENV-1 Hawaii; DENV-

2 NGC or 16681; DENV-3 H87; DENV-4, H241) and DKE-121. As above, serotype 

specific MIAFs were used for the development of the assay and an 80% endpoint to 

estimate conservatively in vivo protection. The cross-neutralization data with shown in 

Table 2.4 indicate a 4-fold difference in cross-neutralization between homologous and 

heterologous neutralizing antibody titers. Surprisingly, DKE-121 is neutralized as equally 

as DENV-4 by its homotypic sera, suggesting that DKE-121 and DENV-4 viruses share 

antigenic epitopes with strong neutralizing potential. Based on the close genetic (Fig. 2.1) 

and evolutionary (Fig. 2.2) relationships of DKE-121 with DENV-4 viruses it’s likely 
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that DKE-121 shares a close antigenic relationship to DENV-4, similar to DENV-1 to its 

sister clade of DENV-3. 

 

Table 2.4: Cross-neutralization titers of prototype strains of DENV-1-4 serotypes and the 
novel DENV strain DKE-121 using a well-characterized panel of monotypic 
DENV-1-4 human sera obtained from WRAIR. Highlighted in yellow are the 
homologous neutralization titers. 

 
 DENV 
 

 
DENV-1 
Hawaii 

DENV-2 
NGC 

DENV-3 
H87 

DENV-4 
H241 

DENV-4 
LF32 

DENV-4 
1120 

DKE-121 

Naïve Serum <20 <20 <20 <20 <20 <20 <20 
Naïve Serum <20 <20 <20 <20 <20 <20 <20 
Naïve Serum <20 <20 <20 <20 <20 <20 <20 

DENV-1 Serum 20 <20 <20 <20 <20 <20 <20 
DENV-1 Serum <20 <20 <20 <20 <20 <20 <20 
DENV-1 Serum 80 <20 <20 <20 <20 <20 <20 
DENV-2 Serum <20 <20 <20 <20 <20 <20 <20 
DENV-2 Serum <20 <20 <20 <20 <20 <20 <20 
DENV-2 Serum <20 80 <20 <20 <20 <20 <20 
DENV-3 Serum 80 <20 80 <20 <20 <20 <20 
DENV-3 Serum <20 <20 40 <20 <20 <20 <20 
DENV-3 Serum <20 <20 <20 <20 <20 <20 <20 
DENV-4 Serum <20 <20 <20 80 <20 <20 20 
DENV-4 Serum <20 <20 <20 160 20 <20 40 
DENV-4 Serum <20 <20 <20 20 <20 <20 <20 

	
  
 

Antigenic Cartography of the Novel Dengue Virus 
 
 Antigenic cartography is a powerful tool that positions viruses and antisera as 

points on a map. It is based on the simple principle their position on the map is derived 

from the corresponding neutralization titer in the tabulated data. As a result, this method 

exploits the host response variation to determine their location (sera and viruses) on the 

map by measuring angles to it (e.g. location of antiserum) from known points at either 
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end of a fixed baseline, rather than measuring distances to the point (e.g. location of 

antiserum) directly. Thus, in principle cartography optimally triangulates the map, and as 

such it reduces measurement errors by measuring each virus against multiple antisera and 

vice versa and in the process accurately interprets inherent contradictions in the dataset. 

 Recently, the paradigm of antigenically-homogenous serotypes has shifted with 

the discovery that, although geographically and spatiotemporally diverse DENVs cluster 

in four genetically into distinct serotypes, antigenically they do not cluster in the same 

manner (Katzelnick et al., 2015).  Likewise, as described earlier (see Fig. 2.2 and Fig. 

2.3A) the novel DENV strain DKE-121, is quite divergent from the geographically and 

spatiotemporally diverse DENVs that cluster into four genetically into distinct serotypes 

(Fig. 2.3B). 

 

	
  

Figure 2.3: Genetic analyses of the DENV panel (n=64). (A) Phylogenetic tree 
showing the evolutionary relationships of DENV ORFs. (B) Amino acid 
map of DENV E protein sequences (493 to 495 amino acids in length). The 
total amino acid differences between pairs of E sequences correspond to 
distances between points on the geometric display. Blue – DENV-2; Green 
– DENV-3; Orange – DENV-1; Red – DENV -4; Mauve – DKE-121. 
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Therefore, further investigation of DKE-121 with a panel of monotypic human 

and NHP sera (provided by Drs. Jarman, WRAIR, and Whitehead, NIAID, respectively) 

was carried out. The neutralization assays were performed using the prototypic viruses of 

each of the 4 DENV serotypes (DENV-1 Hawaii; DENV-2 NGC or 16681; DENV-3 

H87; DENV-4, H241) and DKE-121. As described above, serotype specific MIAFs were 

used for the development of the assay, but using a 50% endpoint to estimate in vivo 

protection. Neutralization titers were estimated as the intercept of a two-parameter 

logistic regression (top, or ‘no neutralization’ constrained to 1, bottom, or “full 

neutralization” constrained to 0, all with estimated slope).  ‘No neutralization’ is defined 

as 2*(value set for 50% neutralization in raw data). For all data sets, the neutralization 

curves were estimated from all plaque counts simultaneously (so if duplicates, both 

values included in logistic regression). Titers estimated by the logistic regression that fall 

between 10 and 20 are included as their estimated value; titers estimated from the logistic 

regression that are less than 10 are set to <10, and titers where the logistic function could 

not estimate a curve are set to <20.  Titers that are higher than the measured dilutions are 

set to a two-fold above the highest measured titer. Fig. 2.4A shows that that DKE-121 is 

antigenically distinct from DENV-4 and is as different from human DENV-4 viruses as 

other sylvatic DENV-4, and is less well neutralized by DENV-4 antisera than the human 

DENV-4 viruses. Fig. 2.4B indicates that antisera raised against DENV-4 recognize 

DKE-121, but that DKE-121 does not induce a response that consistently neutralizes 

DENV-4 better than other DENV types. DKE-121 is less well neutralized by DENV-4 

antisera than the human DENV-4 viruses.   
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Figure 2.4: Antigenic relationships of DKE-121. (A) Antigenic relationships of DKE-
121 to a monotypic panel of human DENV sera. (B) Antigenic relationships 
of DKE-121 to a monotypic panel of NHP DENV sera. Each unit of 
antigenic distance (length of one grid square side, measured in any 
direction) is equivalent to a two-fold dilution in the neutralization assay. 
Each antiserum (open shape) and virus (closed shape) is colored according 
to the infecting genetic type. The size and shape of each point is the 
confidence area of its position. 

 
 

Collectively, the phylogenetic relationship to sylvatic DENV-4 lineages (Fig. 

2.2), the cross-neutralization data shown in Tables 2.3 - 2.4 and the antigenic cartography 

to monotypic human and NHP sera (Fig. 2.4), indicate that DKE-121 is the prototype of a 

sylvatic DENV-5 serotype. Following the pioneering work of Rudnick on sylvatic DENV 

ecology in Malaysia in the 1960s (A. Rudnick, 1965; A Rudnick, 1986; A. Rudnick, 

Marchette, & Garcia, 1967) our knowledge of these viruses, and indeed of most sylvatic 

arboviruses in Asia, has been gleaned from serendipitous isolations from clinical cases. 

Indeed, the discovery of DENV-5 is another example of a serendipitous event. While 

spillover of sylvatic DENV in Malaysia, resulting in severe forms of dengue disease, has 

recently been documented (Cardosa et al., 2009; Pyke et al., 2016), there have been no 

systematic field studies of sylvatic DENV in its “cradle of emergence” in the last forty 
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years. However, the Asian sylvatic DENV-2 cycle has spawned a geographically 

discontinuous sylvatic cycle including West Africa, and the Vasilakis Lab and 

collaborators have been studying this system intensively over the last ten years with a 

combination of field, lab and modeling approaches (B.M. Althouse et al., 2015; Diallo et 

al., 2014; Hanley et al., 2014). The fieldwork in Senegal in collaboration with the Institut 

Pasteur has revealed that sylvatic DENV amplifications in primatophilic Aedes 

mosquitoes occur at ca. 8 year intervals, punctuated by “silent” periods during which the 

virus is not detectable in these mosquito vectors (B. M. Althouse et al., 2012). Proximity 

to large forests influences the distribution of putative sylvatic DENV vectors as well as 

the distribution of sylvatic arboviruses. Moreover, the Vasilakis laboratory studies have 

shown that, although sylvatic DENVs occupy a distinct ecological niche, these viruses do 

not require further adaptation to humans or peridomestic vectors to emerge into the 

human-endemic transmission cycle (Cardosa et al., 2009; Vasilakis, Shell, et al., 2007; 

Vasilakis, Tesh, et al., 2008). Additionally the Vasilakis Lab has demonstrated that the 

emergence of sylvatic DENV-1-4 strains into the human cycle would be constrained by 

homotypic immunity produced by natural infection with the homologous serotype in the 

human-endemic cycle, or by vaccination with the homologous serotype (Durbin et al., 

2013; Vasilakis, Durbin, et al., 2008). However this last point must now be subject to a 

significant caveat – that the canonical DENV types are antigenically diverse, with major 

implications for their dynamics of immunity, evolution and vaccine development. 

However in DENV, unlike most other arboviruses, spillover led to emergence into 

human transmission cycles, transmitted primarily by the domestic mosquito Aedes 

aegypti (Weaver, 2013). Phylogenetic analysis (Fig. 2.2), clearly shows that each of the 4 
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human-endemic serotypes emerged independently from the homologous serotype in a 

sylvatic cycle (Gubler, 1997; Holmes & Twiddy, 2003; Vasilakis et al., 2011; Vasilakis 

& Weaver, 2008; Wang et al., 2000) demonstrating the facility of DENV to jump 

between primate hosts. As described above, there is abundant ecological opportunity for 

sylvatic DENV to spill over into populations living near foci of transmission and ample 

evolutionary scope for emergence of novel DENV strains from the sylvatic cycle into 

human-endemic cycles. Moreover, longstanding faith in the ability of homologous 

antibody responses to protect against infection by all lineages within a serotype has 

recently been shaken by groundbreaking antigenic cartography on these viruses 

(Katzelnick et al., 2015). Despite the evident threat posed by the continued circulation of 

sylvatic DENV, its diversity in Asia, the nidus of viral radiation, has not been adequately 

characterized, nor has the frequency of sylvatic DENV spillover, or the burden of 

resulting disease, ever been quantified. 



CHAPTER 3: Characterization of Dengue Virus Serotype 5, a Newly 

Emerged Dengue Virus in Non-Human Primates  

 

INTRODUCTION 

Dengue virus (DENV) belongs to the Flavivirus genus of the Flaviviridae family. 

Historically, DENV has been classified into four antigenically distinct serotypes (DENV-

1, DENV-2, DENV-3 and DENV-4) that are genetically related (Calisher, Karabatsos et 

al. 1989). Each serotype is sustained in nature in two transmission cycles, which are 

ecologically and evolutionary distinct (Rudnick 1986). In the human transmission cycle, 

domestic and peridomestic Aedes spp. (Aedes aegypti and Ae. albopictus) are important 

transmission vectors and humans are the only reservoir and amplification hosts for the 

virus (Hanley and Weaver, 2008). In the sylvatic cycle, various non-human primates 

(NHPs) species and arboreal Aedes spp. mosquitoes have been implicated as hosts and 

vectors of DENV transmission, respectively (Rudnick 1986). Evidences demonstrated 

that all sylvatic serotypes circulate concurrently in the forests of Southeast Asia (Rudnick 

1965; Rudnick 1986; Saluzzo, Cornet et al. 1986), but only sylvatic DENV-2 is present in 

West Africa (Saluzzo, Cornet et al. 1986; Rodhain 1991; Diallo, Ba et al. 2003; Diallo, 

Sall et al. 2005). There is no documented sylvatic DENV transmission cycle in the 

Americas (Vasilakis and Weaver 2008; Vasilakis, Cardosa et al. 2011). Besides humans, 

NHPs represent the only natural mammalian host that is infected with DENV.  

Several aspects of DENV infection and disease have been elucidated through 

studies using rhesus macaques as animal model (Sariol and White 2014). There is enough 
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indication that DENV isolated from the human cycle are able to replicate in rhesus 

macaques without the requirement of any adaptation, however the virus do not cause 

clinical disease in the infected NHP (Halstead and Palumbo 1973; Rodhain 1991; Peiris, 

Dittus et al. 1993). DENV infection via subcutaneous and intramuscular routes showed to 

successfully imitate the natural route of mosquito infection in NHPs. The period of 

viremia in NHPs and humans seem to be similar, although the replication level is inferior 

in NHPs (Marchette, Halstead et al. 1973; Zompi and Harris 2012). In fact, studies 

showed that dengue severe disease is not evident in NHPs and the viremia titer is 

significantly lower when compared to humans that were suffering of dengue hemorrhagic 

fever (DHF) and dengue shock syndrome (DSS) (Whitehead, Chaicumpa et al. 1970; 

Marchette and Halstead 1974; Halstead 1979; Rosen, Roseboom et al. 1985). The 

occurrence of hemorrhagic disease was only demonstrated in NHPs when a higher dose 

of DENV via intravenous route was employed (Onlamoon, Noisakran et al. 2010). NHPs 

from this particular study showed hemorrhagic signs including petechiae and hematomas, 

coagulopathy with increased D-dimers, a fibrin degradation product that is related to 

disseminated intravascular coagulation (DIC). On the other hand, no other signs of fever, 

anorexia or lethargy were described (Onlamoon, Noisakran et al. 2010). 

  Despite the low occurrence of pathology in NHPs infected with DENV (Halstead 

and Palumbo 1973; Koraka, Benton et al. 2007), they share several similarities with 

human disease. NHPs have naturally high levels of platelets, and thrombocytopenia is not 

frequently documented in these animals. However modest decrease in platelet numbers 

already has been reported in rhesus macaques (Halstead, Shotwell et al. 1973; Onlamoon, 

Noisakran et al. 2010). Other aspect related to human infection and also observed in 
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infected NHPs is a reduced DENV-specific antibody response during secondary 

homologous infection (Omatsu, Moi et al. 2011). Additionally, antibodies generated in 

primates during DENV infection are described to be highly cross-reactive against other 

closely related flaviviruses (Scherer, Russell et al. 1978). 

Recently, a new strain of sylvatic DENV (DKE-121) was isolated from a human 

patient in Malaysia (Vasilakis, Mayer et al., in preparation). Serological studies and 

phylogenetic analysis demonstrated that this isolate represent a new DENV serotype 

(DENV-5) within the DENV serocomplex (Vasilakis, Mayer et al., in preparation). The 

objective of the present study was to characterize DENV-5 infection in non-human 

primates, evaluating several aspects of the disease and the innate and adaptive immune 

response during homotypic and heterotypic infection. 

 
 
MATERIALS AND METHODS 

Cells 

Vero cells were maintained at 37°C in Dulbecco’s Minimal Essential Medium 

(DMEM) (GIBCO, Life Technologies, Carlsbad, CA) supplemented with 5% heat 

inactivated fetal bovine serum (FBS) (Hyclone, Thermo Scientific, Logan, UT) and 

100U/mL of penicillin and 100µg/mL of streptomycin (P/S) (GIBCO). C6/36 mosquito 

cells were propagated at 28°C in DMEM supplemented with 5% FBS, 100U/mL and 

100µg/mL of P/S and tryptose phosphate broth (TPB) (Sigma-Aldrich, Saint Louis, MO).  

Viruses 

Low passage DENV isolates (DENV-1, Hawaii; DENV-2, NGC; DENV-3, H87; 

DENV-4, H142; DENV-5, DKE121) were propagated in C6/36 cultures to obtain high 
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titer stocks. Cell supernatants were clarified from cellular debris by low-spin 

centrifugation (630 x g, 10 min at 4°C), stabilized with the addition of 1X SPG (2.18 M 

Sucrose, 0.038M KH2PO4, 0.072M K2HPO4 and 0.054M L-glutamate), aliquoted and 

stored at -80°C. If necessary, viruses were further concentrated through AMICON filters 

(membrane with NMWL of 100 kDa, Millipore) following the manufacturer’s protocol 

and purified on a sucrose gradient. Viral titers were determined by focus-forming assay 

(FFA) as previously described (Vasilakis, Shell et al. 2007). 

Animals 

Young adult male rhesus macaques (Macaca mulatta) (Chinese genetic 

background) tested seronegative for flavivirus infections were used in this study. In the 

first experiment, one group of animals (n=3) was inoculated subcutaneously (s.c.) with 

1x103 focus-forming units (FFU) and the second group (n=3) with a dose of 1x105 FFU 

of DENV-5 DKE-121. After 6 months all the animals were re-challenged with 1x105 

FFU of DENV-5 DKE-121 (homologous challenge). A second experiment (n=4) was 

conducted at the Caribbean Primate Research Center (CPRC). Rhesus macaques (Indian 

genetic background) were inoculated s.c. with a dose of 5x105 FFU of DENV-5 DKE-

121. After 6 months, one group (n=2) was re-challenged with a human DENV-4 strain 

(LF32) and the other group (n=2) with a sylvatic DENV-4 strain (P75-514) at the dose of 

1x105 FFU (heterologous challenge). 

All animal work was reviewed and approved by the Institutional Animal Care and 

Use Committees (IACUC) with oversight of staff veterinarians at the AAALAC-

approved Animal Resources Centers (ARC) at the University of Texas Medical Branch 

(UTMB) and at the Medical Sciences Campus, University of Puerto Rico (UPR). 
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Quantification of the viremia titer 

Viremia was assessed by focus-forming assay (FFA) on VERO cells as previously 

described (Vasilakis, Shell et al. 2007) using serial dilutions of serum samples collected 

from the NHPs on days 1 to 10 post-infection (pi). The number of foci was determined by 

immunostaining using a DENV-specific polyclonal antibody that recognizes all DENV 

serotypes as previously described (Rossi, Nasar et al. 2012).  

Natural mosquito infection 

Ae. albopictus (Galveston colony) were maintained at 28°C with 80% relative 

humidity and a 12/12 (light/dark) hour photoperiod. Mosquitoes were allowed to feed for 

5-10 minutes in the NHPs infected with DENV-5 during the viremic phase at days 2, 3, 5 

and 6 p.i. Engorged mosquitoes were collected and maintained at 28°C for 14 days. After 

14 days, bodies and legs of mosquitoes were dissected, homogenized usiang a 

TissueLyser (Qiagen, Valencia, CA) and inoculated in C6/36 cells to determine the 

presence of virus by FFA and immunostaining (Rossi, Nasar et al. 2012).  

Plaque reduction neutralization test (PRNT) and immunohistochemistry (IHC)  

PRNTs were performed in 24-well plates, similarly as previously described 

(Durbin, Mayer et al. 2013). Constant virus inoculum (1,500 FFU/mL) was mixed with 

an equal volume of 2-fold serum dilutions (1:10-1:2,560) and the mixture was incubated 

1hr at 37°C. Then, 100 µL of the serum-virus mixture was placed into Vero cultures and 

incubated 1hr at 37°C. A 1.0 mL volume of 0.8% methycellulose in OPTIMEM-I 

(GIBCO) overlay was placed in each well and the plates were incubated at 37°C for 4-5 

days depending on the virus phenotype. The cells were then fixed with acetone and 

methanol (1:1) solution and immunostained as described previously (Vasilakis, Shell et 
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al. 2007; Vasilakis, Fokam et al. 2008). The PRNT titers were scored as reciprocal of the 

highest dilution of serum that inhibited 80% of foci (PRNT80). 

Multiplex serum cytokine assay 

Antibody-coated magnetic microbeads optimized for quantifying NHPs specific 

cytokines and chemokines (Novex, Life Technologies) were used according the 

manufacturer's instructions. The cytokines assayed included interferon (IFN)-γ, 

interleukin (IL)-2, IL-4, IL-10 and tumor necrosis factor (TNF)-α (5-Plex Panel), IL-8 

(Singleplex) and monocyte chemotactic protein-1 (MCP-1) (Singleplex).  The data were 

acquired on a Luminex® 200 IS™ machine equipped with Bio-Plex Manager Software 

(version 5.0) (Bio-Rad, Hercules, CA) to determine each cytokine concentration. 

Enzyme-linked immunosorbent assay (ELISA) 

 DENV-specific IgM and IgG responses were measured by using anti-human 

capture ELISAs (InBios International, Seatle, WA or Focus Diagnostics, Cypress, CA) 

following the manufacturer's instructions. Serum levels of DENV NS1 antigen was also 

measured by an ELISA assay system for the detection of NS1 in human serum (InBios 

International or Focus Diagnostics, Cypress, CA) following the manufacturer's 

instructions. 

Blood analyses and clinical chemistry 

Animals from experiment one (homotypic challenge) were submitted under 

complete blood count (CBC) examination using whole blood collected at days -3, 0, 3, 6 

and 28 post-infection. CBC was run using a Drew Scientific HEMAVET 950FS 

Hematology System machine. Analysis included white blood cells (WBC), neutrophils 

(NEUT), lymphocytes (LYMPH), monocytes (MONO), eosinophils (EO), basophils 
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(BASO), red blood cells (RBC), hemoglobin (HGB), hematocrit (HCT) and blood 

platelets (PLT). 

Clinical chemistry was conducted on total blood samples in both experiments 

using Abaxis VETSCAN VS2 machine. Analysis included lactase dehydrogenase (LDH), 

aspartate aminotransferase (AST) and alanine aminotransferase (ALT). 

 

RESULTS 

Non-human primate (NHP) infection with DENV-5 (DKE-121) and homotypic 

challenge  

Prior to infection, the rhesus macaques were assessed for general health status and 

any previous exposure to flaviviruses. All animals presented good health condition and 

were seronegative for all DENV serotypes and other flaviviruses including St. Louis 

encephalitis (SLEV), West Nile virus (WNV) and Japanese encephalitis virus (JEV). Six 

NHP used in this study were segregated into two groups. As the infectious dose during 

the transmission of DENV by mosquito bite is not known, one group of rhesus macaques 

was inoculated with a lower dose (103 FFU) and the other group with a higher dose (105 

FFU) of DENV-5 DKE-121 isolate. The rhesus macaques were monitored during 4 

weeks for clinical signs of dengue disease, including rash and hemorrhage. No clinical 

manifestations of the disease were observed in any of the rhesus macaques challenged 

with DENV-5, which is consistent with previous studies using similar challenge doses 

and different serotypes (Halstead, Shotwell et al. 1973). The body weight and 

temperature of the NHP also were monitored; however no significant changes were seen 
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during the time course of the study (Fig.3.1). NHP also did not present any changes in 

behavior.  

 
 
Figure 3.1. Changes in body weight and temperature of the NHP inoculated with 

DENV-5 DKE-121. Rhesus macaques inoculated subcutaneously with a 
dose of 103 FFU (blue lines) or a dose of 105 FFU (red lines) of DENV-5 
DKE-121 isolate were monitored during four weeks. 

 

To determine the viral load in the blood of NHP, samples were collected from 

days 1 to 10 pi. In the group inoculated with the lower dose of DENV-5, the viremia was 

detected starting at day 3 up to day 7 pi, with peak viremia titer near to 104 FFU/mL as 

determined by FFA (Fig. 3.2A). In the group inoculated with the higher dose, viremia 

was detected from days 1 to 6 pi, showing a biphasic pattern with peak titer reaching over 

104 FFU/mL in one animal at day 4 after the infection (Fig. 3.2A). To further evaluate if 

the NHPs were infected with DENV, samples were tested in a capture ELISA to detect 

DENV NS1 presence in the serum of NHPs during the acute phase of infection. Five of 

six NHPs infected with DENV showed detectable NS1 in serum in at least 1 of the days 

tested (Fig.3.2B). Some of NHPs showed detectable NS1 as early as 1 dpi, with 

prevalence of detection during the first week of infection. At day 12, NS1 detection 

started to decline and was completely cleared by day 18pi (Fig.3.2B). There was no 

correlation between the infectious dose and the level of NS1 protein detected. 
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Figure 3.2. Viremia and DENV NS-1 secretion in the serum of the NHP 

inoculated with DENV-5 DKE-121. Viremia level tested by focus 
forming assay are shown in panel A. DENV NS-1 secretion tested by 
ELISA are shown in panel B. Rhesus macaques inoculated subcutaneously 
with a dose of 103 FFU (blue lines) or a dose of 105 FFU (red lines) of 
DENV-5 DKE-121. 

 

After six months, the animals were re-challenged with DENV-5 (homotypic 

challenge) with an infectious dose of 105 FFU. After re-challenge, no clinical 

manifestations of the disease, nether viremia or DENV NS1 detection in the serum were 

detected in any of the animals.  

Non-human primate (NHP) infection with DENV-5 (DKE-121) and heterotypic 

challenged with DENV-4  

Four rhesus macaques were inoculated subcutaneously with DENV-5 DKE-121 

strain with an infectious dose of 5x105 FFU. Prior to infection, all NHP were assessed for 

general health status and any previous exposure to flaviviruses as described above. As 

expected, no clinical manifestations of the disease were observed in the rhesus macaques 

challenged with DENV-5. The body weight and temperature of the NHP also were 
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monitored; however no significant changes were seen during the time course of the study 

(Fig.3.3). NHP also did not present any changes in behavior. 

 

 
 
Figure 3.3. Changes in body weight and temperature of the NHP inoculated with 

DENV-5 DKE-121. Rhesus macaques inoculated subcutaneously with a 
dose of 5x105 FFU of DENV-5 DKE-121 isolate were monitored during 
four weeks. 

 

Viremia was detected in only one animal at day 5 pi (Fig.4.4A). Likewise, NS1 

was detected in the same animal during the acute phase of infection starting at day 5 pi 

and peak at day 6 pi, following with a gradual decline during the course of infection 

(Fig.4.4B). 

After six months, the animals were segregated in two groups and re-challenged 

with DENV-4 (heterotypic challenge). Two NHPs were inoculated subcutaneously with a 

human DENV-4 (LF32) and two with a sylvatic DENV-4 strain (P75-514) with an 

infectious dose of 105 FFU. No clinical manifestations of the disease were observed after 

challenge with any of those DENV-4 strains. Also, we were unable to detect any viremia 

by cell-based assays. Further, all animals were negative for DENV-NS1 secretion in the 

serum.   
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Figure 3.4. Viremia and DENV NS-1 secretion in the serum of the NHP 

inoculated with DENV-5 DKE-121. Viremia level tested by focus 
forming assay are shown in panel A. DENV NS-1 secretion tested by 
ELISA are shown in panel B. Rhesus macaques inoculated subcutaneously 
with a dose of 5x105 FFU of DENV-5 DKE-121. 

 

White bloods cells, platelet counts and serum biochemistry during DENV-5 

infection  

As DENV infection can cause alterations in cellular patterns and tissue damage, 

blood samples were collected in different time points with the objective of detect changes 

in blood cells population of DENV-5 infected NHP before (Fig. 3.5A) and after (Fig. 

3.5B) homotypic challenge. A very modest leukopenia was observed in most of infected 

animals, however lowest levels of WBC were observed at 6 days pi in all animals and at 

days 1 and 12 post-homotypic challenges. Neutrophils levels were not evident decreased 

after DENV-5 infection, even though we observed some fluctuation among the course of 

infection and had a slightly variation among all animals.  
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Figure 3.5. Changes in blood cell populations of the NHP inoculated with DENV-
5 DKE-121. Blood were collected at the indicated time points and 
submitted to complete blood count (CBC) examination. (A) CBC values 
after primary DENV-5 infection. (B) CBC values after homotypic DENV-
5 challenge. Rhesus macaques inoculated subcutaneously with a dose of 
103 FFU (blue shapes) or a dose of 105 FFU (red shapes) of DENV-5 
DKE-121. 
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Blood samples were also analyzed at 3 days prior infection and at day 3, 6 and 28 

post-infection to measure liver enzymes levels. In the first experiment any alteration in 

liver enzymes after DENV-5 infection was detected. However, in the second experiment 

increased levels of AST and ALT were detected in the serum of all four animals, 

suggesting that these animals had liver injury after inoculation with DENV-5 (Fig.3.6).  

 

 
Figure 3.6. Changes in liver enzyme levels of the NHP inoculated with DENV-5 

DKE-121. Blood were collected at the indicated time points and submitted 
to clinical chemistry examination. Rhesus macaques inoculated 
subcutaneously with a dose of 5x105 FFU of DENV-5 DKE-121. Values 
after primary DENV-5 infection. AST: aspartate aminotransferase; ALT: 
alanine aminotransferase. 

 

DENV-specific IgM antibody response 

To further confirm if NHPs were infected with DENV-5 and evaluate the DENV-

specific antibody response, IgM response was measured by ELISA in the serum collected 

at different time points, from days 0 to 150 pi and after challenge from days 28 to 150 

post-challenge (see details in the figure legend). The serum IgM levels were increased 

starting at day 10 pi, with peak values between days 12 and 14 pi (Fig.3.7A). IgM levels 

still elevated at day 18, but started to decline reaching the initial levels by 28 dpi 

(Fig.3.7A). With the exception of one animal, the IgM levels between NHP infected with 

AST

Baseline 3 6 10 30
0

20

40

60

80

100

120 M971
M979
M975
MA006

Days Post Infection

U
/L

ALT

Baseline 3 6 10 30
0

20

40

60

80 M971
M979
M975
MA006

Days Post Infection

U
/L



 66 

the lower and higher doses were very similar. After the homotypic challenge at day 180 

pi the IgM levels were not altered (Fig.3.7A). 

 

 
Figure 3.7. IgM and IgG antibody responses in the NHP inoculated with DENV-5 

DKE-121 (homotypic challenge). Serum samples from the indicated time 
points were analyzed by using anti-human capture ELISA (InBios 
International, Seatle, WA) to detect DENV-specific IgM (A) or IgG (B) 
responses. Rhesus macaques inoculated subcutaneously with a dose of 103 
FFU (blue lines) or a dose of 105 FFU (red lines) of DENV-5 DKE-121. 
The arrow indicate the homotypic challenge at 180 dpi. Immune Status 
Ratio (ISR) was calculated by dividing the DENRA (DENV recombinant 
antigen) OD with the NCA (normal cell antigen) OD. 

 

In the second NHP study (heterotypic challenge) the IgM levels were very similar 

(Fig. 3.8A). However, when we measured IgM levels after heterotypic challenge with 

DENV-4, we observed a small peak in IgM levels very characteristic of a DENV 

secondary immune response in humans (TDR/WHO press 2009). 
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Figure 3.8. IgM and IgG antibody responses in the NHP inoculated with DENV-5 
DKE-121 and re-challenged with DENV-4 (heterotypic challenge). 
Serum samples from the indicated time points were analyzed by using 
anti-human capture ELISA (Focus Diagnostics, Cypress, CA) to detect 
DENV-specific IgM (A) or IgG (B) responses. Rhesus macaques 
inoculated subcutaneously with a dose of 5x105 FFU of DENV-5 DKE-
121 and re-challenged with a human DENV-4 (LF32) or a sylvatic 
DENV-4 strain (P75-514) at the dose of 105 FFU. The arrow indicate the 
heterotypic challenge at 180 dpi.  

 

DENV-specific IgG antibody response  

The DENV-specific IgG response was evaluated using an ELISA test to measure 

IgG in the serum collected at several time points from days 0 to 150 post-infection and 

from days 28 to 150 after challenges (see details in the figure legend). The serum IgG 

levels started to rise at day 8 to 10 post-infection in the first experiment (homotypic 
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challenge) and kept a robust response until approximately one year after primary 

infection that correspond to the end of the experiment (Fig. 3.7B). Similar trend was 

observed when we measured IgG levels in our second NHP experiment after DENV-5 

infection (Fig. 3.8B). After heterotypic challenge with two different DENV-4 strains 

(either human or sylvatic origin), a strong anamnestic response resembling a secondary 

infection in humans (TDR/WHO press 2009) was elicited in all four animals (Fig. 3.8B).  

Detection of DENV neutralizing antibodies after primary DENV-5 infection and 

homotypic challenge  

The neutralization activity of the serum of DENV-5 infected NHP was assessed 

by measuring the host neutralizing antibody response after primary DENV-5 infection 

and after the homotypic challenge. Neutralizing antibodies were detected in all six NHP 

infected with DENV-5 at day 28, 42, 150 and 180 dpi, with antibodies titers ranging from 

160 to 1280 (PRNT80) (Table 3.1). Six months after infection (180 dpi), the animals were 

re-challenged with DENV-5 (homotypic challenge). DENV neutralizing antibodies were 

detected in all animals at day 28 and 3, 5 and 6 months after the homotypic challenge, 

with levels ranging from 160 to 1280 (Table 3.1). 

Table 3.1. Homotypic neutralization of serum samples from NHP inoculated with 
DENV-5 DKE-121 (homotypic challenge experiment). 

 
Animal 

ID# 
Days post infection 

28 42 150 180* 208 270 330 360 
76135a 640c 640 320 320 320 160 320 160 
98091a 320 640 1280 1280 1280 640 640 1280 
88249a 160 640 640 640 640 640 320 320 
98029b 640 640 1280 640 1280 1280 1280 1280 
98041b 1280 640 640 640 320 320 320 320 
76165b 640 640 320 320 320 320 320 320 
a	
  Monkey	
  inoculated	
  with	
  103	
  FFU;	
  b	
  Monkey	
  inoculated	
  with	
  105	
  FFU;	
  c	
  PRNT80;	
  
*	
  Homotypic	
  challenge	
  at	
  180	
  dpi	
  (105	
  FFU).	
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 Cross-neutralization activity against the other DENV serotypes also was 

measured in the serum collected at the day of the homotypic challenge (180 dpi). As 

expected, any strong neutralization activity against the other DENV serotypes was 

observed. However, all animal sera tested against DENV-5 serotype demonstrated robust 

homotypic neutralization with more than fourfold increase compare to all other four 

serotypes (Table 3.2).   

Table 3.2. Cross-neutralization titers of the serum from NHP inoculated with DENV-5 
DKE-121 (homotypic challenge experiment). 

 
 

Virus type (strain) 
Serum* 

76135a 98091a 88249a 98029b 98041b 76165b 
DENV-1 (Hawaii) <20c 20 <20 <20 NT <20 
DENV-2 (16681) 20 20 <20 20 NT <20 
DENV-3 (H87) <20 <20 <20 <20 NT <20 
DENV-4 (H241) 20 80 40 20 NT 40 
DENV-5 (DKE-121) 320 1280 1280 640 NT 320 

a	
  Monkey	
  inoculated	
  with	
  103	
  FFU;	
  b	
  Monkey	
  inoculated	
  with	
  105	
  FFU;	
  c	
  PRNT80;	
  
*	
  Non-­‐human	
  primate	
  serum	
  at	
  180	
  days	
  post	
  infection;	
  NT:	
  not	
  tested.	
  

 

In the second NHP experiment a strong neutralization activity (PRNT80) against 

DENV-5 serotype was also detected at day 30, 60, 90 and 180 pi (Table 3.3). Cross-

neutralizing antibodies against the other DENV serotypes were also measured, showing 

only a slightly cross-neutralization activity against DENV-4 and no levels of neutralizing 

antibodies against DENV-1, DENV-2 or DENV-3 (Table 3.3). The level of neutralizing 

antibodies against DENV-5 (DKE-121) presented an increase during the time course of 

the infection with titers ranging from 160 to 320 at day 180 pi (Table 3.3). The 

heterotypic challenge with DENV-4 strains promoted the induction of strong 

neutralization titers in all NHP (Table 3.4).  

 



Table 3.3. Cross-neutralization titers of the serum from NHP inoculated with DENV-5 DKE-121a (heterotypic challenge experiment). 
 
Virus type 

(strain) 
30 days post infection 60 days post infection 90 days post infection 180 days post infection* 

M971 M979 M975 MA006  M971 M979 M975 MA006  M971 M979 M975 MA006 M971 M979 M975 MA006 
DENV-1 
(Hawaii) <20c 20 40 20 20 20 20 20 20 20 20 20 20 20 20 20 

DENV-2 
(NGC) <20 <20 <20 20 <20 <20 20 20 <20 <20 <20 20 <20 <20 20 20 

DENV-3 
(H87) 20 20 40 20 <20 20 20 20 20 20 20 20 <20 <0 20 20 

DENV-4 
(H241) 80 40 40 80 40 80 160 160 40 80 80 80 40 80 160 160 

DENV-5 
(DKE-121) 160 40 40 320 160 320 320 320 320 320 160 320 160 320 320 320 

a	
  Monkeys	
  inoculated	
  with	
  5x105	
  FFU;	
  c	
  PRNT80;	
  *	
  Day	
  of	
  heterotypic	
  challenge;	
  c	
  PRNT80.	
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Table 3.4. Cross-neutralization titers of the serum from NHP inoculated with DENV-5 DKE-121a and re-challenged with DENV-4 
LF32b or P75-514b strains (heterotypic challenge experiment). 

 
 DENV-5 (DKE-121) DENV-4 (p73-1120) DENV-4 (p75-514) DENV-4 (LF32) 

Animal 
ID# 

Days post re-challenge Days post re-challenge Days post re-challenge Days post re-challenge 
10 15 22 30 10 15 22 30 10 15 22 30 10 15 22 30 

M971d 160c 160 160 640 80 80 40 160 160 80 40 160 80 80 80 160 
M979 d 640 320 320 320 160 160 160 160 160 160 160 160 320 320 160 160 
M975 e ≥1280 ≥1280 ≥1280 ≥1280 640 ≥1280 ≥1280 ≥1280 ≥1280 ≥1280 ≥1280 ≥1280 640 ≥1280 ≥1280 ≥1280 

MA006 e 320 ≥1280 ≥1280 ≥1280 160 ≥1280 ≥1280 ≥1280 320 ≥1280 ≥1280 ≥1280 160 ≥1280 ≥1280 ≥1280 
a	
  Monkeys	
  inoculated	
  with	
  5x105	
  FFU;	
  b	
  Monkeys	
  re-­‐challenged	
  with	
  105	
  FFU	
  on	
  day	
  180	
  post	
  primary	
  infection;	
  c	
  PRNT80;	
  	
  
d	
  Monkeys	
  re-­‐challenged	
  with	
  the	
  human	
  DENV-­‐4	
  strain	
  (LF32);	
  e	
  Monkeys	
  re-­‐challenged	
  with	
  the	
  sylvatic	
  DENV-­‐4	
  strain	
  
(P75-­‐514).	
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Serum cytokine changes after primary DENV-5 infection and after homotypic and 

heterotypic challenge 

The profile of cytokine and chemokine response to DENV-5 serotype was 

characterized after primary infection and after both homotypic and heterotypic 

challenges. Serum levels of cytokines and chemokines were measured using multiplexed 

microsphere protein-based assay. The cytokines and chemokines tested included IL-8, IL-

2, IL-4, IL-10, IFN-γ, MCP-1, and TNF-alpha. After the primary infection with DENV-5 

all animals from the first experiment (homotypic challenge) did presented IL-2, IL-10 

and TNF-alpha below the levels of detection (Fig. 3.9). IL-4 levels were not elevated 

during the acute phase of primary DENV-5 infection. However, IFN-gamma, IL-8 and 

MCP-1 levels were slightly increased in most of the NHP (Fig.3.9). After homotypic 

challenge, IL-10 and TNF-alpha were also below the level of detection in all six NHP and 

two out of six animals had IL-2 secretion in the serum between days 8 to 10 post 

challenge (Fig.3.10). Similarly to the primary infection, IFN-gamma, IL-8 and MCP-1 

have slight increased levels in some of the NHP after the homotypic challenge (Fig.3.10). 
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Figure 3.9. Cytokine and chemokine profile in the NHP inoculated with DENV-5 
DKE-121 during primary infection (homotypic challenge experiment). 
Serum samples from the indicated time points were analyzed by using a 
multiplex cytokine assay. Rhesus macaques inoculated subcutaneously 
with a dose of 103 FFU (blue lines) or a dose of 105 FFU (red lines) of 
DENV-5 DKE-121. 
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Figure 3.10. Cytokine and chemokine profile in the NHP inoculated with DENV-5 
DKE-121 after homotypic challenge (180 dpi). Serum samples from the 
indicated time points after the homotypic challenge were analyzed by 
using a multiplex cytokine assay. Rhesus macaques inoculated 
subcutaneously with a dose of 103 FFU (blue lines) or a dose of 105 FFU 
(red lines) of DENV-5 DKE-121. 
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In the second experiment (heterotypic challenge) any IL-10 was detected during 

the primary DENV-5 infection (Fig.3.11) or after the challenge with DENV-4 strains 

(Fig.3.12). Although, with some level variation among the animals, IFN-gamma was 

detected in all four NHP after primary infection (Fig.3.11) and in two out of four NHP 

after heterotypic challenge with DENV-4 (Fig.3.12). Levels of TNF-alpha and IL-4 

increased in all animals during the primary DENV-5 infection with a peak at days 3 and 4 

after the infection that remained consistently high until day 10 post-infection, the last day 

they were measured (Fig. 3.11). However, no TNF-alpha or IL-4 were detected after the 

heterotypic challenge (Fig. 3.12). IL-2 was detected in three out of four animals after 

primary DENV-5 infection (Fig. 3.11), however after heterotypic challenge this cytokine 

was below level of detection in all animals (Fig. 3.12). Levels of IL-8 elevated after 

primary infection (Fig. 3.11), however after heterotypic challenge this cytokine had very 

modest secretion only in one NHP (Fig. 3.12). MCP-1 levels were slightly increased 

before and after heterotypic challenge (Fig. 3.11 and 3.12, respectively). 
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Figure 3.11. Cytokine and chemokine profile in the NHP inoculated with DENV-5 
DKE-121 during primary infection (heterotypic challenge 
experiment). Serum samples from the indicated time points were 
analyzed by using a multiplex cytokine assay. Rhesus macaques 
inoculated subcutaneously with a dose of 5x105 FFU of DENV-5 DKE-
121.  
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Figure 3.12. Cytokine and chemokine profile in the NHP inoculated with DENV-5 
DKE-121 after heterotypic challenge. Serum samples from the indicated 
time points after the heterotypic challenge were analyzed by using a 
multiplex cytokine assay. Rhesus macaques were inoculated 
subcutaneously with a dose of 5x105 FFU of DENV-5 DKE-121 and re-
challenged at 180 dpi with a human DENV-4 (LF32) (monkeys #M971 
and M979) or a sylvatic DENV-4 strain (P75-514) (monkeys #M975 and 
MA006) at the dose of 105 FFU.  
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DISCUSSION 

Non-human primates (NHPs) are a suitable animal model for viremia and host 

immune response studies in dengue disease. However they have been described to not 

mimic acute dengue fever or dengue hemorrhagic fever and the occurrence of pathology 

is very limited (Clark, Onlamoon et al. 2013; Hickey, Koster et al. 2013). Despite this 

model does not present remarkable pathology and symptoms that can be correlated to 

human DENV infection, they still share a variety of characteristics to human disease. For 

example, the period of viremia, the occurrence of leukopenia (Onlamoon, Noisakran et al. 

2010) and modest levels of platelets ( (Halstead and Palumbo 1973; Onlamoon, 

Noisakran et al. 2010) had been described in some species of NHPs infected with DENV. 

Another observation in DENV infection such as the reduction of specific antibodies 

during the initial phase of a secondary exposure by a homologous DENV serotype in 

human patients has been described in studies using marmosets as NHP model (Omatsu, 

Moi et al. 2011). Additionally, similar to what happen in humans, infection of NHP by 

DENV has been reported to stimulate a robust innate immune response leading to 

activation of T, NK and NKT cells in marmoset’s studies (Sariol, Munoz-Jordan et al. 

2007; Yoshida, Omatsu et al. 2013). In first experiment (homotypic challenge), virus was 

detected in the serum of all six rhesus macaques (Chinese genetic background) infected 

with DENV-5 serotype (Fig.3.2A). The viremia started at day 1 and extended until day 8 

post-infection, with animals having some variation between the higher (105 pfu) and 

lower (103 pfu) virus dose. The peak of viremia was observed at day 4 post-infection for 

animals infected with the higher dose and at 6 days post-infection for ones infected with 
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the lower dose. These results are similar regarding the period of secreted virus in the 

blood and peak of viremia to studies in rhesus macaques where all DENV serotypes were 

used (Halstead and Palumbo 1973). Similarly, a more recent study in rhesus macaques 

infected with DENV has demonstrated that the peak of viremia was reached at day 5 

post-infection and lasted until day 8 (Hickey, Koster et al. 2013). Another study using 

green monkeys (Chlorocebus sabaeus) also corroborate with the current data showing 

longer viremia in animals inoculated with a lower dose compared to a higher dose of 

DENV (Martin, Hermida et al. 2009). In the second experiment (heterotypic challenge), 

viremia was detected in only one animal at day 5 post-infection (Fig.3.4A). It is possible 

that the differences observed between the two experiments maybe the result of the 

particular stronger innate immune response, particularly the TNF-alpha response (Figure 

3.11), which could result in the control of DENV replication and dissemination in these 

animals with a different genetic background.  

Blood levels of aspartate aminotransferase (AST) and alanine aminotransferase 

(ALT) are affected in a variety of diseases including dengue. There are several reports of 

liver damage being mediated by DENV infection (Jessie, Fong et al. 2004; de Macedo, 

Nicol et al. 2006; Tristao-Sa, Kubelka et al. 2012). An evident increase of serum AST 

and ALT levels was observed in all rhesus macaques in experiment two (Indian 

genotype) after primary DENV-5 infection. This is consistent with previous reports in 

animals infected with all other four serotypes (Hickey, Koster et al. 2013). However, no 

alteration in AST and ALT were observed in the rhesus macaques of Chinese origin 

infected with DENV-5.  

The infection of NHPs with the new DENV serotype resulted in a modest 
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decreased of lymphocytes and neutrophils in animals from the first experiment. The 

reduction of neutrophil levels associated with DENV infection has been described in 

studies from Singapore (Thein, Lye et al. 2014). Furthermore, dengue disease has also 

been described to caused lymphopenia and neutropenia in human patients from French 

Polynesia during a DENV-2 epidemic (Deparis, Roche et al. 1998). Similar results were 

observed in DENV studies using rhesus macaques inoculated with different DENV 

serotypes (Hickey, Koster et al. 2013). In the current study a slight decrease in monocyte 

levels were observed after DENV-5 inoculation, contrasting with other groups work, 

where the levels of monocytes were described to be elevated during DENV infection in 

human and NHPs (Hickey, Koster et al. 2013; Kwissa, Nakaya et al. 2014).  

Antibodies are important elements in dengue disease considering they provide 

immunity that can last for life; likewise they are tightly related to development of severe 

disease. So, studies of DENV antibodies in NHP as animal models can elucidate several 

aspects of dengue pathogenesis. Primary infections induce strong IgM and IgG responses 

while heterotypic secondary infections results in a modest increase in the IgM levels and 

a robust IgG levels boost. However secondary exposition to same serotypes does not 

induce detectable IgM or IgG levels as result of a sterilizing immunity after the primary 

infection (TDR/WHO press 2009). In the current study, the levels of DENV specific IgM 

and IgG antibodies were measured after primary DENV-5 primary infection and after 

homotypic and heterotypic challenges with DENV-4 serotype. All animals did produce 

DENV-specific IgM and IgG antibody responses after the primary infection in both 

experiments, demonstrating that DENV-5 serotype was able to infect the animals. 

Similarly to previous studies in NHPs measuring IgM response against the other four 
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DENV serotypes, IgM antibodies were detected in the NHPs cohorts exposed to DENV-5 

at least until 28 days post-infection (Koraka, Benton et al. 2007; Martin, Hermida et al. 

2009; Hickey, Koster et al. 2013). Furthermore, the magnitude of IgM levels measured 

after the challenge with DENV-4 serotype indicated a typical heterotypic immune 

response, supporting that both viruses do not belong to the same serotype classification as 

suggested by phylogenetic analyses (Vasilakis, Mayer et al., in preparation). This fact is 

confirmed by the absence of IgM response after the homotypic challenge. 

  In addition, detection of IgG antibodies was presented in a robust level and 

lasted for at least 180 days post primary infection before the challenges. IgG levels 

remains without changes after the homotypic challenge; however they were boosted more 

than 3 times after the challenge with DENV 4 strains providing additional serological 

evidence in support of DKE-121 being a new serotype. 

Serum from the NHPs inoculated with DENV-5 were tested for the ability to 

build a robust neutralization response before and after challenging them with homologous 

and heterologous viruses as well as if there was cross neutralization activity against the 

other DENV serotypes using a heterotypic neutralization panel. A strong homotypic 

neutralization response was observed in all animals after the primary infection supporting 

the IgG results. More relevant is the fourfold increase in the neutralizing titers against 

DENV-5 compared to DENV-4 serotypes at day 180 after the primary infection. Six 

months after infection is considered an accepted period of time to expect the cross-

neutralizing antibodies fading while remaining only the specific neutralizing antibodies. 

This result confirms that the immune system of the NHP exposed to DKE-121 recognized 

this strain as a different serotype, even to the closest relate serotype, the DENV-4. 
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The severity of dengue disease has been associated with elevated pro-

inflammatory cytokines and chemokines in individuals presenting symptoms of dengue 

hemorrhagic fever before and during the time of plasma leakage (Srikiatkhachorn and 

Green 2010). A slight increase in IFN-gamma and MCP-1 levels was detected before and 

after homotypic challenge with DENV-5. Likewise, the serum level of MCP-1 was 

slightly increased before and after the heterotypic challenge with DENV-4. Secretion of 

MCP-1 had being described to have a potential role in dengue pathogenesis. Previous 

studies have correlated the effect of MCP-1 in promoting alteration on vascular 

permeability of tight junctions on endothelial cells (Yamada, Takasaki et al. 2001; 

Stamatovic, Keep et al. 2003). Furthermore, chemokines such as MCP-1 is secreted in 

response to signals of proinflammatory cytokines and they are crucial in the recruitment 

of lymphocytes, monocytes and neutrophils to the site of inflammation (Loetscher, 

Pellegrino et al. 2001).  IL-8 also has detected in the serum of the NHPs, especially in the 

second experiment, after the primary infection with DENV-5.  Several studies in human 

subjects had associated this cytokine to severe dengue (Raghupathy, Chaturvedi et al. 

1998; Juffrie, van Der Meer et al. 2000). Some studies supported that his cytokine can act 

through the mechanism involving IL-1 and TNF-alpha induction (Hoffmann, Dittrich-

Breiholz et al. 2002). Furthermore, there is strong evidence of its role in the alteration of 

the cytoskeleton and tight junctions of the microvascular endothelium, altering its 

permeability and playing a role in the vascular leakage during the severe dengue disease 

in humans (Talavera, Castillo et al. 2004).  IL-4 had slightly elevated levels after the 

homotypic challenge with DENV-5. Interestingly, all animals from the second 

experiment (heterotypic challenge) had a sustained increased in IL-4 levels only after the 
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primary DENV-5 infection. This data imply that DENV-5 rather then DENV-4 serotype 

is a trigger for the secretion of IL-4 in this NHP dengue model. Similar trend was 

observed when we analyzed IL-2 levels in the serum, as this cytokine was detected after 

primary infection with DENV-5 and after the homotypic challenge only, and no detection 

was observed after DENV-4 challenge. The current data are in agreement with previous 

rhesus macaque experiments using all four DENV serotypes where variation in cytokine 

levels were observed among the different groups, indicating that certain serotypes trigger 

specific profile of cytokines, suggesting that are likely virus-related differences in the 

immune response (Hickey, Koster et al. 2013). Nevertheless, the data contrast with other 

studies, where no up-regulation of genes associated with severe dengue disease was 

detected in rhesus macaques infected with DENV-1 (Sariol, Munoz-Jordan et al. 2007). 

TNF-alpha was another cytokine that was found increased in the serum of the NHPs from 

the second experiment (heterotypic challenge) after the primary DENV-5 infection. TNF-

alpha has been described to play a role in both protection and immunopathogenesis of 

dengue disease. After DENV infection, biological mediators including IL-6 and TNF-

alpha are released and although they are important in the initiation and control of 

inflammatory and adaptive immune responses to clear the pathogen, their actions can also 

be frequently involved in lethal manifestation associated with vascular leakage and shock 

syndrome (Tracey and Cerami 1994; Iwasaki and Medzhitov 2010; Kawai and Akira 

2011). In mice model, elevated levels of TNF-alpha in the serum were detected after 

DENV infection (Chen, Ng et al. 2015), which is in agreement with studies in dengue 

patients where elevated TNF-alpha and IL-6 were detected (Hober, Poli et al. 1993; 

Pinto, Oliveira et al. 1999; Restrepo, Isaza et al. 2008). In addition the antiviral role of 
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TNF-alpha have been documented (Hober, Poli et al. 1993; Gagnon, Mori et al. 2002). It 

can be suggested that the lack of viremia after primary infection with DENV-5 in the 

second experiment in contrast with the detected viremia in the NHP in the first 

experiment maybe related to the early and high levels detected of that cytokine. 

In summary, these studies demonstrated a systematic analysis of the infection and 

immune response against a new DENV serotype isolated from a human case in Malaysia. 

Using a NHP animal model, it was showed that the virus has the potential to be 

transmitted among NHPs and mosquitoes, which could result in the establishment of a 

sylvatic transmission cycle. The homotypic and heterotypic response was characterized, 

showing the antibody response against homologous and heterologous DENV strains. In 

addition, some aspects of the innate immune response, which is relevant to studies of 

DENV pathogenesis, were evaluated. Overall, the data presented in this study support the 

existence of a new dengue serotype and open more question about the future of an 

effective therapy or vaccine against dengue. Also this work confirms the value of the 

NHP as a suitable model to study different aspect of dengue virus, including infection 

and pathogenesis. 



CHAPTER 4: Vector Competence of Ae. aegypti and Ae. albopictus 

mosquitoes for Dengue Virus Serotype 5, a Newly Emerged Dengue 

Virus 

 

INTRODUCTION 

The incidence and geographic range of dengue disease, including severe dengue 

disease such as dengue hemorrhagic fever (DHF) have increased dramatically in recent 

decades (Chen et al., 2005; Higa, 2011; Bhatt et al., 2013). Four serotypes of dengue 

virus (DENV-1-4) circulate in a human-endemic cycle in which Ae. aegypti is the 

primary vector, while Ae. albopictus and, to a lesser degree, Ae. polynensiensis play a 

secondary role. Each of the four human-endemic serotypes emerged independently from 

a sylvatic ancestor maintained in a transmission cycle between nonhuman primates 

(NHPs) and arboreal Aedes mosquitoes (Vasilakis, Cardosa et al. 2011). Recently, a fifth 

DENV serotype (DENV-5 DKE-121) has been isolated from a patient in the state of 

Sarawak, Malaysian Borneo who presented clinical symptoms compatible with dengue 

disease including high fever, headache, retro-orbital pain, myalgia, arthralgia and 

episodes of spontaneous gum bleeding (Vasilakis, Mayer et al., in preparation). DENV-5 

DKE 121 is most closely related to sylvatic DENV-4 and clearly infected a human via 

spillover from the sylvatic cycle. Similarly, a unique strain of sylvatic DENV-1 has been 

isolated from a viremic patient who had visited the Malaysian rainforest of Brunei and 

returned to Australia with symptoms of DENV infection (Pyke, Moore et al. 2016). 

Emergence of a fifth DENV serotype into the human-endemic cycle would have 
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profound implications for the development of diagnostics, therapeutics and vaccines. The 

rationale in the development of the current dengue vaccines requires simultaneous strong 

homotypic immune responses to all DENV serotypes, which has not been easy to be 

achieved. The introduction of one more serotype would complicate the production of 

polyvalent DENV vaccines that can prevent infection without the risk of severe disease 

enhancement following natural exposure to the virus.    

The likelihood that DENV-5 will emerge into transmission among humans 

depends on the vector competence, i.e. the ability of a vector to support infection and 

dissemination, of Ae. aegypti and Ae. albopictus for the virus.  The time period required 

for DENV, the extrinsic incubation period (EIP), ranges from 7 to 14 days depending on 

mosquito strain, virus genotype and environmental factors (Watts, Burke et al. 1987; 

Black, Bennett et al. 2002; Anderson and Rico-Hesse 2006; Salazar, Richardson et al. 

2007; Lambrechts, Chevillon et al. 2009; Lambrechts 2010; Lambrechts, Paaijmans et al. 

2011). DENV infects the midgut epithelial cells throughout receptor-mediated 

endocytosis and start to replicate in the first 2 days post-infection (dpi) (Bennett, Olson et 

al. 2002; Rey 2003; Mercado-Curiel, Black et al. 2008). As the infection progresses, the 

virus spreads to adjacent epithelium cells (Salazar, Richardson et al. 2007) and reaches a 

peak titer in the midgut between 7 to 10 dpi (Salazar, Richardson et al. 2007; Xi, Ramirez 

et al. 2008). DENV dissemination from the midgut throughout the body may occur 

through the tracheal system (Salazar, Richardson et al. 2007). Virus can be isolated from 

salivary glands as early as 3 dpi, with peak titers in 12 to 18 dpi (Salazar, Richardson et 

al. 2007). Upon completion of the EIP, DENV can be transmitted to a new host via saliva 

during feeding (Watts, Burke et al. 1987; Black, Bennett et al. 2002; Anderson and Rico-
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Hesse 2006; Salazar, Richardson et al. 2007; Lambrechts, Paaijmans et al. 2011).  

Vector competence for DENV is most often assessed by feeding mosquitoes on 

artificial blood meals spiked with designated concentrations of virus (Althouse and 

Hanley 2015). Using this method, multiple investigators have demonstrated a higher 

degree of salivary gland infection and transmission in Ae. aegypti mosquitos compared to 

Ae. albopictus (Chen, Wei et al. 1993; Vazeille, Rosen et al. 2003; Lambrechts, Scott et 

al. 2010).  Ae. aegypti is also considered to be more efficient vector of DENV to humans 

than Ae. albopictus due differences in their feeding behavior; the former is anthropophilic 

and occurs primarily in urban environments while the latter has a broader host preference 

and occurs primarily in peri-urban and agricultural habitats (Rodhain and Rosen 1997; 

Bonizzoni, Gasperi et al. 2013; Takken and Verhulst 2013). However these differences 

may also make Ae. albopictus a particularly good bridge vector to mediate spillover of 

sylvatic DENV into humans. Another factor that differ between Ae. aegypti and Ae. 

albopictus is that Ae. albopictus is infected with a endosymbiotic bacteria Wolbachia, 

which is not present in Ae. aegypti (Kittayapong, Baisley et al. 2000; Sinkins 2004). The 

presence of this bacteria is described to protect mosquitoes against viral infections in 

nature (Hedges, Brownlie et al. 2008).  

In the present study the vector competence of Ae. aegypti and Ae. albopictus fed 

on artificial bloodmeals containing either DENV-5 DKE-121 or one of two sylvatic or 

two human-endemic strains of DENV-4 was evaluated. Because artificial bloodmeals 

may underestimate vector competence (Althouse and Hanley 2015), the levels of 

infection and dissemination in Ae. albopictus that fed on viremic monkeys infected with 

DENV-5 DKE-121 also was tested. 
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MATERIAL AND METHODS 

Cells and Viruses 

Vero cells were maintained at 37°C in Dulbecco’s Minimal Essential Medium 

(DMEM) (GIBCO, Life Technologies, Carlsbad, CA) supplemented with 5% heat 

inactivated fetal bovine serum (FBS) (Hyclone, Thermo Scientific, Logan, UT), 

100U/mL of penicillin and 100µg/mL of streptomycin (P/S) (GIBCO). C6/36 mosquito 

cells were propagated at 28°C in DMEM supplemented with 5% FBS, P/S as for Vero 

cells and 1% tryptose phosphate broth (TPB) (Sigma-Aldrich, Saint Louis, MO).  

 DENV-5 strain (DKE-121), two human DENV-4 strains (INH6412 and LF32) 

and two sylvatic DENV-4 strains (P75-514 and P73-1120) were propagated in C6/36 

cultures to obtain high titer stocks. Cell supernatants were clarified from cellular debris 

by low-spin centrifugation (630 x g, 10 min at 4°C), stabilized with the addition of 1X 

SPG (2.18 M Sucrose, 0.038M KH2PO4, 0.072M K2HPO4 and 0.054M L-glutamate), 

aliquoted and stored at -80°C. Viruses used in the blood meals were further concentrated 

through AMICON filters (membrane with NMWL of 100 kDa, Millipore) following the 

manufacturer’s protocol and purified on a sucrose gradient. Viral titers were determined 

by focus-forming assay (FFA) as previously described (Vasilakis, Shell et al. 2007). 

Mosquitoes 

Ae. albopictus mosquitoes (Galveston colony - University of Texas Medical 

Branch) and Ae. aegypti (NIH colony and F4 generation from field collected Las Cruces 

NM mosquito population – New Mexico State University) were maintained at 28°C with 
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80% relative humidity and a 12/12 (light/dark) hour photoperiod. Mosquitoes were 

starved overnight prior the bloadmeal feeding. 

Monkeys 

Six young adult male rhesus macaques (Macaca mulatta) (Chinese genetic 

background) were inoculated subcutaneously with a dose of 1x103 focus-forming units 

(FFU) (n=3) or 1x105 FFU (n=3) of DENV-5 DKE-121 (Mayer et al., in preparation). All 

animal work was approved by the Institutional Animal Care and Use Committee 

(IACUC) with oversight of staff veterinarians at the AAALAC-approved Animal 

Resources Center (ARC) at the University of Texas Medical Branch (UTMB). 

Vector competence of Ae. aegypti and Ae. albopictus fed on an artificial blood meal 

Artificial blood meals containing approximately 107 FFU/ml (see Tables 1, 2 and 

3 for stock titers of viruses used) of DENV-5 DKE-121, two strains of human DENV-4 

(INH6412 and LF32) and two strains of sylvatic DENV-4 (P75-514 and P73-1120) were 

offered in Hematek membrane feeders (Discovery Workshops, Accrington, UK) to feed 

50 Ae. aegypti and 100 Ae. albopictus mosquitoes using a 1:1 mixture of virus and 

medium consisting of 2% (w/v) sucrose, 20% (v/v) FBS, 5 mmol of ATP, 33% (v/v) 

PBS-washed human blood cells (UTMB blood bank), and 37% (v/v) DMEM. 

Additionally two serial tenfold dilutions of DENV-5 DKE-121 were also offered in the 

feeders to try to define the oral infectious dose 50 (OID50) of this virus. Fully engorged 

mosquitoes were selected and maintained for an extrinsic incubation period (EIP) of 14 

days at environmental conditions of 28°C and 80% humidity. In each experiment, a small 

aliquot of the feeding suspension was held at room temperature for the duration of 

mosquito feeding, which usually continued for 1 to 2 hours. The suspension was 
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subsequently titrated to determine virus concentration.  

Focus forming immunoassay (FIA) and immunostaining (IHC)  

To assess infection and dissemination, body and legs were dissected and 

individually homogenized in 0.5 ml DMEM (GIBCO) supplemented with 2% FBS and 

2.5 µg/ml amphotericin B (GIBCO) using a TissueLyser (Qiagen, Valencia, CA). Each 

homogenate was inoculated in C6/36 cell monolayers in 96-well plates (for Ae. 

albopictus) or 6-well plates (for Ae. aegypti), and incubated at 28°C and 5% CO2 for 4 

days. Subsequently, plates were fixed with the addition of ice-cold acetone and methanol 

(1:1) for 30 min at room temperature (RT). The fixation solution was aspirated and plates 

were allowed to air dry. Plates were then washed with PBS, followed by 30 min 

incubation with blocking solution (PBS supplemented with 3% FBS) and subsequent 

addition of mouse anti-DENV-4 or -DENV-5 ascites fluid (1:2,000) and incubation 

overnight at RT. The antibody was aspirated and plates washed 3 times in PBS followed 

by addition of secondary antibody conjugated to horseradish peroxidase (HRP) (KPL, 

Gaithersburg) (1:1,000) and incubation at RT for 1 hour. Plates were washed 3 times with 

PBS and aminoethylcarbazole (AEC) substrate (ENZO Diagnostics, Farmingdale), 

prepared according to the manufacturer’s instructions, was added and allowed to incubate 

in the dark for 10 min. Substrate solution was aspirated, washed with water and plates 

were allowed to air dry before scoring. 

Vector competence of Ae. albopictus fed on viremic NHPs infected with DENV-5 

Fifty uninfected, 4-day old female Ae. albopictus were deprived of sugar water for 

20-30 hours. Mosquitoes were allowed to feed in six experimentally DENV-5-infected 

NHPs at days 2, 3, 5 and 6 post-infection (Mayer et al., in preparation) for 5-10 min until 
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they became fully engorged. Fully engorged mosquitoes were selected and maintained for 

an extrinsic incubation period (EIP) of 14 days at environmental conditions of 28°C and 

80% humidity. After 14 days, mosquitoes were dissected in body and legs, homogenized 

and frozen at -80°C until further analysis for the presence of the virus as described above. 

 

RESULTS  

Infectivity and dissemination levels in Ae. aegypti and Ae. albopictus fed on an 

artificial blood meal  

Infection and dissemination of the two human-endemic and two sylvatic strains of 

DENV-4 as well as DENV-5 (DKE-121) in NIH colony Ae. aegypti are shown in Table 

4.1. We detected DENV-5 DKE-121 in mosquitoes that engorged on bloodmeals spiked 

with 7.8 and 6.8 log10 pfu/ml of virus (infectivity of 27% and 7%, respectively) but not 

5.8 log10 pfu/ml. The infectivity level by LF32 was 16%, followed by P73-1120 (9%), 

INH6412 and P75-514 (5%). The highest percentage of dissemination was observed for 

sylvatic strain of DENV-5 (DKE-121) (100%), which had an infectious dose of 6.8 logs, 

followed by the dose of 7.8 logs of DKE-121 (67%), P73-1120 (50%) and LF32 (33%). 

The strains INH6412 and P75-514 were unable to disseminate in the Ae. aegypti vector.  
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Table 4.1. Infection and dissemination of select human and sylvatic DENV-4 strains in Ae. aegypti (NIH colony strain) 
 
Virus isolate 

(H/S)1 
Location/ 
Year of  
Isolation 

Stock Virus 
Titer in C6/36 

cells 
(log10 pfu/mL) 

No.  
Infected/ 

No.  
engorged 

% 
infected 

No. 
disseminated/ 

No.  
engorged 

% absolute 
dissemination 

No. 
Disseminated/ 

No.  
infected 

% 
disseminated 
from infected 

head 
INH6412 (H) Venezuela/1985 7.5 1/21 5 0/21 0 0/1 0 
LF32 (H) Malaysia/1999 7.5 3/19 16 1/19 5 1/3 33 

P75-514 (S) Malaysia/1975 7.3 1/20 5  0/20 0 0/1 0 
P73-1120 (S) Malaysia/1973 7.5 2/23 9 1/23 4 1/2 50 

DKE-121 (S) Malaysia/2009 7.8 6/22 27 4/22 18 4/6 67 

DKE-121 (S) Malaysia/2009 6.8 1/15 7 1/15 7 1/1 100 

DKE-121 (S) Malaysia/2009 5.8 0/21 0 -- -- -- -- 
1 H – DENV isolate from the human transmission cycle; S – DENV isolate from the sylvatic transmission cycle 
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Many previous studies have shown that a given strain of Ae. aegypti differs in its 

vector competence for different strains of DENV (Armstrong and Rico-Hesse 2003; 

Anderson and Rico-Hesse 2006). To extend the analysis of Ae. aegypti, infection and 

dissemination of the same five viruses was also tested in a different strain of the 

mosquito, the F4 generation of Ae. aegypti that were collected from the field in Las 

Cruces, New Mexico. Las Cruces Ae. aegypti were refractory to all the DENV-4 strains 

tested (Table 4.2), but susceptible to DENV-5 DKE-121 at the infectious dose of 6.8 logs, 

with infectivity and dissemination levels of 7% and 33%, respectively. Thus, it was 

demonstrated that the long-colonized NIH strain of Ae. aegypti was more susceptible to 

all strains of DENV tested than the Ae. aegypti strain derived from Las Cruces. This is 

consistent with previous findings showing that the Las Cruces strain of Ae. aegypti is less 

susceptible to DENV-4 than the NIH colony strain (Johnson et al., unpublished data).  
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Table 4.2. Infection and dissemination of select human and sylvatic DENV-4 strains in Ae. aegypti (F4 from field collected Las Cruces NM 
population) 
 
Virus isolate 

(H/S)1 
Location/ 
Year of  
Isolation 

Stock Virus 
Titer in C6/36 

cells 
(log10 pfu/mL) 

No.  
Infected/ 

No.  
engorged 

% 
infected 

No. 
disseminated/ 

No.  
engorged 

% absolute 
dissemination 

No. 
Disseminated/ 

No.  
infected 

% 
disseminated 
from infected 

head 
INH6412 (H) Venezuela/1985 7.5 0/23 -- -- -- -- -- 
LF32 (H) Malaysia/1999 7.5 0/20 -- -- -- -- -- 

P75-514 (S) Malaysia/1975 7.3 0/21 -- -- -- -- -- 
P73-1120 (S) Malaysia/1973 7.5 0/19 -- -- -- -- -- 

DKE-121 (S) Malaysia/2009 7.8 0/24 -- -- -- -- -- 

DKE-121 (S) Malaysia/2009 6.8 3/41 7 1/41 2 1/3 33 

DKE-121 (S) Malaysia/2009 5.8 0/15 -- -- -- -- -- 
1 H – DENV isolate from the human transmission cycle; S – DENV isolate from the sylvatic transmission cycle 
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Infection and dissemination of the two human-endemic and two sylvatic strains of 

DENV-4 as well as DENV-5 (DKE-121) in Ae. albopictus (Galveston colony) are shown 

in Table 4.3. Human INH6412 DENV-4 strain had infectivity level of 67.7%, followed 

by P75-514 (52.8%), LF32 (47.3%), P73-1120 (30.4%) and DKE-121 (12.1%). The 

highest percentage of dissemination was observed for sylvatic strain of DENV-4 P75-514 

(32.1%), followed by LF32 (27.7%), DKE-121 (20%), INH6412 and P73-1120 (14.2%), 

but there were no significant differences among the DENV-4 and DENV-5 strains for this 

vector. Furthermore, comparison of different doses of DENV-5 revealed that Ae. 

albopictus mosquitoes were only infected with the highest dose used in the blood meal.  
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Table 4.3. Infection and dissemination of select human and sylvatic DENV-4 strains in Ae. albopictus (Galveston colony) 
 
Virus isolate 

(H/S)1 
Location/ 
Year of  
Isolation 

Stock Virus 
Titer in C6/36 

cells 
(log10 pfu/mL) 

No.  
Infected/ 

No.  
engorged 

% 
infected 

No. 
disseminated/ 

No.  
engorged 

% absolute 
dissemination 

No. 
Disseminated/ 

No.  
infected 

% 
disseminated 
from infected 

head 
INH6412 (H) Venezuela/1985 7.0 21/31 67.7 3/31 9.6 3/21 14.2 
LF32 (H) Malaysia/1999 7.0 18/38 47.3 5/38 13.1 5/18 27.7 

P75-514 (S) Malaysia/1975 7.0 28/53 52.8  9/53 16.9 9/28 32.1 
P73-1120 (S) Malaysia/1973 7.0 7/23 30.4 1/23 4.3 1/7 14.2 

DKE-121 (S) Malaysia/2009 7.0 5/41 12.1 1/41 2.4 1/5 20 

DKE-121 (S) Malaysia/2009 6.0 0/29 0 -- -- -- -- 

DKE-121 (S) Malaysia/2009 5.0 0/26 0 -- -- -- -- 
1 H – DENV isolate from the human transmission cycle; S – DENV isolate from the sylvatic transmission cycle 
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Natural infection of Ae. albopictus on viremic NHP 

To determine whether Ae. albopictus (UTMB, Galveston colony) showed a 

different pattern in susceptibility to DENV-5 when infected via the natural route, fifty 

starving mosquitoes were fed on one of six DENV-5-infected monkeys at days 2, 3, 5 and 

6 post-infection (pi). These days were chosen because they represent the period that 

viremia was detected in the DENV-5 infected NHP (see Fig.3.2A on chapter 3). One of 

the 6 monkeys used in this experiment transmitted DENV-5 to the mosquitoes at day 5 pi, 

with 4% and 100% of mosquitoes showing infection and dissemination from infected 

bodies, respectively (Table 4.4). Regardless of the low rate of infectivity, it was 

demonstrated that DENV-5 can be transmitted to mosquitoes through the NHPs. 

Considering that total amount of virus and duration of viremia could be important factors 

that reflect in vector competence of a specific mosquito strain, and in this experiment two 

different infectious doses (1x103 and 1x105 pfu/NHP) were used, it can be speculated that 

the longer viremia period presented by NHP infected with low dose virus facilitated 

DENV-5 infectivity to Ae. albopictus. 

 



 98 

Table 4.4. Infection and dissemination of DENV-5 DKE-121 strain in Ae. albopictus fed on viremic rhesus macaques 
 

  Day 2  Day 3 
 
 

Animal 
ID 

Monkey 
viremia 

(log10pfu/ml 
serum) 

No. 
Infected/ 

No. 
engorged 

% 
infected 

No. 
Disseminated/ 

No. 
infected 

% 
disseminated 

 

 
 
 
 

Monkey 
viremia 

(log10pfu/ml 
serum) 

 

No. 
Infected/ 

No. 
engorged 

% 
infected 

No. 
Disseminated/ 

No. 
infected 

% 
disseminated 

 

98091a ≤1.0 0/10 0 0 0  ≤1.0 0/33 0 0 0 
88249 a ≤1.0 0/12 0 0 0  2.3 0/21 0 0 0 

98041 b 2.3 0/20 0 0 0  2.9 0/7 0 0 0 
98029 b 2.7 0/29 0 0 0  2.8 0/33 0 0 0 

76165 b 2.8 0/20 0 0 0  3.3 0/25 0 0 0 

76135 a ≤1.0 NT 0 0 0  ≤1.0 0/8 0 0 0 

  Day 5   Day 6 
98091a 2.9 0/4 0 0 0  3.1 0/10 0 0 0 

88249 a 3.7 1/27 4% 1/1 100%  3.6 0/19 0 0 0 

98041 b ≤1.0 0/23 0 0 0  ≤1.0 0/19 0 0 0 

98029 b ≤1.0 0/20 0 0 0  ≤1.0 0/20 0 0 0 

76165 b 3.3 0/24 0 0 0  1.6 0/16 0 0 0 

76135 a 3.3 0/16 0 0 0  3.7 0/20 0 0 0 
a. Monkey inoculated with 3.0 log10pfu  
b. Monkey inoculated with 5.0 log10pfu 
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DISCUSSION 

Vector competence for arboviruses is greatly affected by the extensive differences 

within mosquito vector species. Several studies based on the mosquito genetics showed 

specific molecular markers closely related to the genetic differentiation present among 

mosquito populations and also the existence of a general genetic difference among 

mosquito species (Cui, Qiao et al. 2007; Huang, Molaei et al. 2008; Edillo, Kiszewski et 

al. 2009; Fonseca, Smith et al. 2009; Sharma, Mendki et al. 2009; Weitzel, Collado et al. 

2009). In the present study it has been demonstrated that the newly emerged DENV-5 

showed similar levels of infectivity when compared to two human strains and two 

sylvatic strains of DENV-4 in Ae. aegypti vector. Similar dissemination rate was also 

observed in this vector. However, when the same DENV strains were used to determine 

the vector competence in Ae. albopictus, it was observed that the highest levels of 

infectivity were for the human DENV-4 strain INH6412 and the lowest for DENV-5. 

Nevertheless, dissemination level in Ae. albopictus vector did not showed variation 

among DENV strains. When comparing the infectivity level between Ae. aegypti and Ae. 

albopictus, it was observed a higher infectivity in Ae. albopictus vector. However, 

dissemination levels were higher in Ae. aegypti for all the viruses tested included DENV-

5. These Ae. aegypti infectivity data are in agreement with Gubler and his group where 

they observed variation in susceptibility of different strains of Ae. aegypti, but the 

susceptibility patterns were similar among different DENV serotypes (Gubler, Nalim et 

al. 1979). However, other studies of DENV infection rate in the field-caught population 

of female Ae. aegypti and Ae. albopictus mosquitoes in Singapore demonstrated a higher 

infection level in Ae. aegypti compared to Ae. albopictus vector from the period of 1997 
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to 2000 (Chung and Pang 2002). Also, it was observed DENV-1 as being the most 

prevalent serotype (Chung and Pang 2002). DENV infectivity studies using several 

strains of Ae. albopictus demonstrated a significant variation in susceptibility for each of 

the four DENV serotypes among vectors collected in different geographic regions 

(Gubler and Rosen 1976). Another study evaluated the vector competence of Ae. aegypti 

in the Island of Santiago, Cape Verde for the four DENV serotypes and demonstrated that 

the local mosquito population had a high vector competence for DENV serotypes 2 and 3 

and a low vector susceptibility for DENV serotypes 1 and 4 (da Moura, de Melo Santos 

et al. 2015). The same study also observed that DENV-4 had lower replication level 

compared to the other three DENV serotypes, suggesting that the population of Ae. 

aegypti from Cape Verde has an efficient midgut escape barrier (MEB) against DENV-4, 

which could reflects in the capability of the virus to disseminate to the salivary glands (da 

Moura, de Melo Santos et al. 2015). Studies using two strains of DENV-2 serotype 

(DEN-2 43 and NGC) have showed that Ae. albopictus midgut and salivary glands are 

infected with both virus strains, however DENV-2 NGC strain was able to generate 

greater percentage of midgut infections than DENV-2 43 strain (Guo, Zhu et al. 2013). 

These data indicate that the higher dissemination level observed for NGC strain could be 

the result of an increased viral replication of DENV-2 NGC in Ae. albopictus. However, 

when the authors investigated the salivary gland infection rate, no difference was 

observed between both DENV-2 strains (Guo, Zhu et al. 2013). In addition, it was 

demonstrated that Ae. aegypti was more susceptible to infection by NGC strain than 

DENV-2 43 (Guo, Zhu et al. 2013). Other studies of vector competence in Ae. aegypti 

mosquitoes to DENV-2 in two cities of Kenya (Nairobi and Kilifi) concluded that the 
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vector population from Nairobi was an inefficient vector for DENV-2 when compared to 

the vector population from Kilifi. The Ae. aegypti population from Nairobi had a weak 

midgut infectious barrier (MIB) and a strong MEB, in contrast to Ae. aegypti from Kilifi 

that showed a moderate MIB and a weak MEB (Chepkorir, Lutomiah et al. 2014). Vector 

competence studies have been investigated comparing DENV serotypes 2 and 4 for Ae. 

aegypti in four different regions of Australia (Torres Strait, Charters Towers, Townsville, 

and Cairns). Mosquito populations from Torres Strait were described to be more 

susceptible to DENV-2 and were more efficient in viral transmission than mosquito from 

the other three regions. When vector competence was determined for DENV-4 serotype 

the group also demonstrated higher levels of susceptibility in mosquito from Torres Strait 

region, however there was not significant difference in the transmission levels among the 

regions for this serotype (Knox, Kay et al. 2003).  Vector competence disparities have 

been extensively described among DENV isolates and different Ae. aegypti strains and it 

can be directly correlated to genetic alterations (Gubler, Nalim et al. 1979; Tardieux, 

Poupel et al. 1990; Tran, Vazeille-Falcoz et al. 1999; Vazeille-Falcoz, Mousson et al. 

1999; Bennett, Olson et al. 2002; Mousson, Vazeille et al. 2002). Mutually, several 

studies have also showed that a certain mosquito strain present variability in infectivity 

for some DENV isolates (Armstrong and Rico-Hesse 2003; Anderson and Rico-Hesse 

2006).  

The present study evaluated vector competence of Ae. aegypti and Ae. albopictus 

to a newly emerged DENV serotype and compared to sylvatic and human DENV-4 

strains. Similar infectivity and dissemination among DENV-5 and DENV-4 strains were 

observed. Additionally, DENV-5 DKE-121 isolate was able to be disseminated in a field-
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caught mosquito population (Las Cruces) showed to be less susceptible to other DENV-4 

strains. Many studies have documented differences among populations of Ae. aegypti in 

vector competence for DENV (Gubler, Nalim et al. 1979; Tardieux, Poupel et al. 1990; 

Tran, Vazeille-Falcoz et al. 1999; Vazeille-Falcoz, Mousson et al. 1999; Bennett, Olson 

et al. 2002; Mousson, Vazeille et al. 2002). Here it is notable, and rather worrying, that 

the only infection observed in the low-susceptibility Las Cruces Ae. aegypti strain was by 

DENV-5 DKE-121. More importantly, it was demonstrated the infection of Ae. 

albopictus mosquitoes feeding on viremic NHPs infected with DKE-121, suggesting this 

newly emerged DENV serotype can establish a sylvatic transmission cycle with the 

potential of spillover to the human population. 

 



CHAPTER 5: Cryo-Electron Microscopy (Cryo-EM) Reconstruction of 

Dengue Virus Serotype 5 (DENV-5, DKE-121) 

 

INTRODUCTION 

Dengue virus (DENV) belongs to the Flavivirus genus into the Flaviviridae 

family and has a positively charged RNA genome of a size of 10.5 Kb. The immature and 

mature particles have a diameter of approximately 600Å and 500Å, respectively. The 

glycoprotein shell is composed of envelope (E) and membrane (M) proteins surrounded 

in a lipid bilayer derived from the cell host. The viral genome inside the virus particle is 

aggregated with the capsid protein (Kuhn, Zhang et al. 2002). It has been demonstrated 

that the surface of DENV particles present a highly dynamic characteristic as the virion 

can endure major structural changes at different stages of the infection cycle  

(Mukhopadhyay, Kuhn et al. 2005). One of the first flavivirus high-resolution studies was 

achieved by Rey and collaborators, where they demonstrated for the first time the 

envelope glycoprotein from tick-borne encephalitis virus (TBEV) at 2Å resolution (Rey, 

Heinz et al. 1995). DENV low-resolution studies were performed by Kuhn and 

collaborators, where they were able to reconstruct the virus particles at 24Å using cryo-

EM and observed that the virus assumed icosahedral symmetry (Kuhn, Zhang et al. 

2002). The structural reconstruction were found to be in agreement with previous 

flavivirus studies (Burke and Monath 2001; Lindenbach, Pragai et al. 2007). Other 

DENV studies showed better reconstruction at 9.5Å, showing a secondary structure 

disposition of 180 copies of the E and 180 copies of the M proteins in the lipid envelope. 

This investigation made possible the observation that the α-helical stem regions of the E 
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protein molecules, as well as part of the terminal section of the M protein were buried in 

the outer leaflet of the viral membrane (Zhang, Hunke et al. 2012). However only high 

resolution studies (3.5 Å) in DENV mature particles were able to shown the latch-type 

interaction between the E and M proteins and determine that this interaction was 

mediated by pH sensitive residues that embraces E in place and blocks premature 

exposure of its fusion peptide (Zhang, Hunke et al. 2012). Moreover, a recent DENV 

study using high-resolution cryo-EM reconstruction compared DENV-4 with DENV-1 

and DENV-2 serotypes. This study found differences in charge distribution among the 

serotypes that could explain the differences in the virus binding to cellular receptors  

(Kostyuchenko, Chew et al. 2014). Other important observation described in the study 

was the variation in amino acid residues involved in the interaction between the E and M 

proteins  (Kostyuchenko, Chew et al. 2014). Moreover, the comparison of DENV-4 

structures demonstrated the occurrence of differences in the virus shell characteristics 

among the other DENV serotypes (Kostyuchenko, Chew et al. 2014). Near atomic 

resolution studies are extremely relevant as they enable to locate regions that are crucial 

in conferring structural stability and also to collect information that is important to 

investigate virus interaction with cellular receptors, antibodies and drugs. The objective 

of the current study was to determine the high-resolution reconstruction of DENV-5 to 

compare differences in the virus structure to the other DENV serotypes.  

 

MATERIALS AND METHODS 

Cells 
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Vero cells were maintained at 37°C in Dulbecco’s Minimal Essential Medium 

(DMEM) (GIBCO, Life Technologies, Carlsbad, CA) supplemented with 5% heat 

inactivated fetal bovine serum (FBS) (Hyclone, Thermo Scientific, Logan, UT) and 

100U/mL of penicillin and 100µg/mL of streptomycin (P/S) (GIBCO). C6/36 cells were 

propagated at 28°C in DMEM supplemented with 5% FBS, P/S as for Vero cells and 

tryptose phosphate broth (TPB) (Sigma-Aldrich, Saint Louis, MO).  

Viruses 

Low passage DENV-5 isolate (DKE-121 strain) was propagated in C6/36 cultures 

to obtain high titer stocks. Cell supernatants were clarified from cellular debris by low-

spin centrifugation (630 x g, 10 min at 4°C), stabilized with the addition of 1X SPG (2.18 

M Sucrose, 0.038M KH2PO4, 0.072M K2HPO4 and 0.054M L-glutamate), aliquot and 

stored at -80°C. Viral titers were determined by focus-forming assay (FFA) as previously 

described (Vasilakis, Shell et al. 2007). 

Virus preparation for Cryo-EM analysis  

Virus was grown in large scale using 20 to 30 T-150 flasks of C6/36 cells at 

confluence of 80% at the time of infection. Cells were infected at the multiplicity of 

infection (MOI) of 0.1 and incubated for 7 days at 28°C and 5% CO2 atmosphere. At day 

7 post-infection (pi), the cell supernatant was harvested and centrifuged at 4,000 rpm at 

4°C for 10 minutes with the objective to remove cell debris. After centrifugation, 

supernatant was collected and filtered using 0.22 µm filter units (Thermo Scientific). 

Virus was further concentrated through AMICON filters (membrane with NMWL of 100 

kDa, Millipore) following the manufacturer’s protocol. The concentrated virus was 

further purified through potassium tartrate-glycerol gradient ultracentrifugation for 18 
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hours as previously described (CR Ashley and E O Caul 1982). After ultracentrifugation, 

the fraction containing the virus was washed with 1X TEN buffer and sent immediately 

to UTMB core lab for cryo-EM study. A small aliquot of the virus was kept to quantify 

the viral titer by focus-forming assay (FFA) as previously described (Vasilakis, Shell et 

al. 2007). 

Cryo-EM microscopy and image data processing  

The manipulations with DENV-5, including sample vitrification, grid transfers 

and microscopy were performed at the UTMB cryo-EM core lab using the appropriated 

personal protection equipment (PPE). All the procedures for cryo-EM reconstruction of 

DENV-5 were followed as previously described (Sherman, Guenther et al. 2006; 

Freiberg, Sherman et al. 2008; Sherman and Weaver 2010). Briefly, virus particles were 

vitrified on holey carbon film grids and the frozen grids were transferred to a cryo-

specimen 626 holder before been loaded to the electron microscope. Grids were kept at 

liquid nitrogen temperature (-172 to -180°C) during imaging acquisition. Viruses were 

imaged with a nominal magnification of 60,000. In total, 4,500 individual virus images 

were collected and selected images were used in the final DENV-5 reconstruction. 

 

RESULTS AND DISCUSSION 

The advantages offered by cryo-electron microscopy (cryo-EM) are abundant in 

the determination of structures of biological machines. Samples submitted to cryo-EM 

studies are analyzed in numerous forms and shapes, such as two or three-dimensional 

crystals of single particles with or without symmetry (Saibil 2000; Gao, Sengupta et al. 

2003; Jiang, Li et al. 2003). Considering the chances of structural elements to be present 
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different from crystalized forms, analyzes using cryo-EM are able to predict the machine 

structure in its native interacting states that are significant to cellular functions (Chiu, 

Baker et al. 2005). In this study it is described the first cryo-EM reconstruction of a 

newly emerged DENV-5 serotype. The diameter of the mature DENV-5 particle was 

approximately 500 Å and the resolution achieved for the cryo-EM map was 18Å 

(Fig.5.1). Cryo-EM images showed spherical particles (Fig.5.1A), which is the typical 

morphology of DENV. The density map of cryo-EM reconstruction of the mature 

DENV-5 particles showed a relative smooth surface (Fig.5.1B). A central cross-section 

revealed a traditional structure of DENV, showing the nucleocapsid surrounded by E 

glycoprotein (Fig.5.1C).  

 

Figure 5.1: Structure of DENV-5 DKE-121. (A) Cryo-EM image showing virus 
particles embedded in vitreous water. Scale bar represents 50 nm. (B) 
Three-dimensional reconstruction of DENV-5 particles at 18Å resolution. 
(C) Central cross-section showing the density maps for nucleocapsid 
(green) and E glycoprotein (blue).  

 

Although the reconstruction of different DENV serotypes is similar in several 

aspects, there are differences among DENV serotypes that can affect the virus function in 

vitro and in vivo. Reconstruction at high resolution of all serotypes is extremely relevant 

to the development of safe vaccines and effective therapeutics as well as studies of 
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infectivity (Kostyuchenko, Zhang et al. 2013; Zhang, Ge et al. 2013). Recent studies 

compared differences in heparan sulfate dependence of DENV-2 and other DENV 

serotypes (Lin, Lei et al. 2002). Their research demonstrated that the infectivity of 

DENV-2 was highly dependent on heparan sulfate (HS), and through cryo-EM analyses 

they found that DENV-2 had more positively charged residues in the E protein when 

compared to the other serotypes. These observation could explain the great preference of 

DENV-2 for cells expressing higher concentrations of HS, mostly because this molecule 

has affinity for positively charged residues (Lin, Lei et al. 2002).  

High resolution studies of DENV-4 has shown that although the general 

organization of shell proteins in this serotype being very comparable to the other 

serotypes already described in cryo-EM studies, there are characteristics in the surface of 

the virus that are clearly distinct (Kostyuchenko, Chew et al. 2014). The study also 

explored differences in the amount of connections that sustain the shell proteins among 

different serotypes, which could explain the differences in the capability to experience 

structural modification at elevated temperatures (Kostyuchenko, Chew et al. 2014).  

 Based on the current knowledge about DENV structure, further investigation of 

the structure of DENV-5 at near-atomic resolution will be important to determine 

differences among the other DENV serotypes, including mechanisms of virus 

neutralization, receptors binding, infectivity and many other characteristics. These will 

not only affect the basic knowledge of the structure of the newly emerged DENV 

serotype, but also will help in the design of therapeutic drugs and vaccines if the virus 

establish a continuous transmission cycle among human beings.  



CHAPTER 6: Production of Monoclonal Antibodies using Cells Derived 

from Non-Human Primates Inoculated with Dengue Virus Serotype 5 

(DENV-5, DKE-121) 

 

INTRODUCTION 

The development of monoclonal antibodies (MAbs) was made possible by studies 

from Georges J.F.Kohler and Cesar Milstein in 1975. The hallmark in this area was the 

development of hybrids between mouse splenocytes and a myeloma cell partner to 

generate a specific antibody-producing cell (Kohler and Milstein 1976). A few years later 

the scientists were recognized for their outstanding contribution and received the 1984 

Nobel Prize in Physiology or Medicine shared with Niels K. Jerne. Since that time 

significant advances have been made, changing the face of biomedicine and the 

contribution of monoclonal antibodies in clinical application (Alkan 2004; Geskin 2015).  

Antibodies are proteins produced by the host, which are found in the plasma and 

extracellular fluids. These proteins function as one of the first specific immune response 

and are considered one of the fundamental effector molecules of the adaptive immune 

system. The host produces antibodies in reaction to pathogens and other antigens in the 

attempt to promote neutralization or elimination of the foreign organism or molecule. 

Antibodies have the capability to attach to the antigen with high level of affinity and 

specificity, which contribute their universal use in a diversity of scientific and medical 

applications. They had an insightful impact on the progress of human health as well in 

animal welfare due their extensive use as diagnostic tool and therapeutic application 

(Lipman, Jackson et al. 2005).   
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Non-human primates (NHPs) play a relevant role in elucidation of several aspects 

of human diseases, mostly because they have a close genetic relationship with humans 

(Wang, Niu et al. 2012). Previous studies of B cell characterization in cynomolgus 

monkeys (Macaca fascicularis) have described that B cell subsets from this specie have 

some characteristic being very similar to those present in other NHP species as well as 

those present in humans. The study had demonstrated that the number of B cells 

presenting a memory phenotype are similar in the blood stream of human and 

cynomolgus monkeys (Vugmeyster, Howell et al. 2004). Resemblance of NHP and 

human antibodies is the subject of several studies. Some studies described that 

immunoglobulin (Ig) genes of NHP are closest to human genes then among different 

NHP species themselves (Andris-Widhopf, Steinberger et al. 2001; Pelat and Thullier 

2009). Another study demonstrated that the immunoglobulin variable region genes from 

NHPs have shown to have 85-98% homology with human immunoglobulin sequences 

(Newman, Alberts et al. 1992). For many different reasons, studies employing 

immunization of NHP is more reasonable then using human subjects. Variable (V) 

domains source of NHPs are suitable to use with constant regions of human IgGs and 

facilitate the generation of primatized antibodies. Examples of primatized antibodies 

already in clinical trials are the anti-CD80 (anti-B7), IDEC-114 used for psoriasis 

(Schopf 2001) and an anti-CD23 Ab, IDEC-152 (lumiliximab) used for allergic 

asthmatics patients (Rosenwasser, Busse et al. 2003). In addition, NHPs have played a 

crucial role in dengue virus (DENV) studies concerning comparison of viremia between 

different serotypes, antibody kinetics during immune response for vaccine evaluation as 

well as therapeutic evaluation (Halstead, Shotwell et al. 1973; Koraka, Benton et al. 
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2007; Koraka, Benton et al. 2007).  

The aim of this study was to establish the development of monoclonal antibodies 

generated from NHP immunized with DENV-5 DKE-121. NHP cells from blood, bone 

marrow and spleens were used in the fusion procedure with the myeloma cell line to 

obtain hybridomas that potentially secreted DENV-specific monoclonal antibodies. 

 

MATERIALS AND METHODS 

Virus propagation 

Low passage DENV-5 isolate DKE121 was propagated in C6/36 cell cultures to 

obtain high titer stocks. Cell supernatants were clarified from cellular debris by low-spin 

centrifugation (630 x g, 10 min at 4°C), stabilized with the addition of 1X SPG (2.18 M 

Sucrose, 0.038M KH2PO4, 0.072M K2HPO4 and 0.054M L-glutamate) and aliquots 

were stored at -80°C. Viral titers were determined by focus-forming assay (FFA) as 

previously described (Vasilakis, Shell et al. 2007). 

Animals 

Young adult male rhesus macaques (Macaca mulatta) tested seronegative for 

flavivirus infections were used in this study (see Chapter 3 for more details). One group 

of animals (n=3) was inoculated subcutaneously (s.c.) with 1x103 focus-forming units 

(FFU) and the second group (n=3) with a dose of 1x105 FFU of DENV-5 DKE-121. All 

animal work was approved by the Institutional Animal Care and Use Committee 

(IACUC) with oversight of staff veterinarians at the AAALAC-approved Animal 

Resources Center (ARC) at the University of Texas Medical Branch (UTMB).  

Tissue collection and single-cell preparation 
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Whole blood was collected from NHPs inoculated with DENV-5 two months 

after homotypic challenge. The separation of buffy coat to obtain peripheral blood 

mononuclear cells (PBMCs) was performed through gradient centrifugation using 

histopaque-1083 (Sigma-Aldrich), according manufacturer protocol. After separation the 

cells were counted and used for the fusion procedure (described below). In the initial 

experiments, B cells were sorted from PBMCs using non-human primate CD20 

MicroBeads (Miltenyi Biotec) following the manufacturer protocol. 

Spleens were collected under sterile conditions and placed into a container on ice 

at the end time point of the experiment (day 350 pi). To make single-cell suspension, 

each spleen was placed into a Petri dish containing RPMI-1640 medium (GIBCO) 

supplemented with 10% fetal bovine serum (FBS) (Hyclone), the connective tissue and 

fat were removed and the spleen was cut in small pieces. Cells were individualized by 

passing through a cell mesh screen (Sigma-Aldrich). Cells were washed by 

centrifugation, counted and part was used for fusion procedure and part was 

cryopreserved in 10% dimethyl sulfoxide (DMSO) and 90% FBS for future use. Bone 

marrow cells were also extracted from the femurs of the NHPs. A longitudinal section 

was made in both extremities of the bone (epiphysis and mataphysis) containing the red 

marrow (spongy bone) and cells were flushed out by injecting medium using a 10 mL 

syringe and 18G needle. Bone marrow cells were washed, counted, and used for fusion 

procedure or cryopreserved as described above. 

Myeloma cells 

The P3X63 Ag8.653 myeloma cells (ATTC, Manassas, VA) resistant to 8-

azaguanine and HAT sensitive (Kearney J et al 1979) were grown in RPMI-1640 medium 
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supplemented with 10% FBS. Prior to at least 3 days of the cell fusion procedure, cells 

were sub-cultured daily to maintain exponencial growth.  

Fusion procedure 

Myeloma cells at exponential growth phase were collected and counted. Different 

ratio of myeloma cells to PBMCs, bone marrow or splenocytes were used depending on 

cell type and total cell numbers. For PBMCs and bone marrow cells, a ratio of 1:3 and 

1:5 were used. For splenocytes, an additional ratio (1:10) was included. PBMCs were 

always used fresh, while bone marrow cells and splenocytes were used fresh or taken 

from the frozen stock. The mixture of cells containing the appropriated ratio was washed 

twice with RPMI-1640 medium containing no additives. The cell pellet was loosening by 

finger-flicking and fusion was performed at 37°C waterbath by slow addition of 1 mL of 

PEG 1000 (Roche) followed by 1 min incubation period. Warm RPMI-1640 medium was 

then slowly added, 1 ml in the first minute interval, followed by 3 ml in the second 

minute and 16 ml in the third minute interval. After fusion, cells were washed twice in 

RPMI-1640 medium and the pellet was resuspended in Hybridoma-SFM medium 

(GIBCO) containing 10% FBS and hypoxanthine-aminopterin-thymidine (HAT) medium 

(Invitrogen). Cells were plated in 96-well plates at density of 105 cells/well. Cells were 

refed with fresh growth medium containing HAT every 2 or 3 days for the period of 3 

weeks. Hybridoma clones from individual wells were expanded and the supernatant 

tested for the secretion of DENV-specific antibodies.  

Hybridoma screening 

Supernatant of hybridoma clones were tested initially by ELISA, using DENV-5 

DKE-121 as antigen. Each clone presenting a positive or suspected DENV-specific 
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reactivity were further expanded and cryopreserved for future single-cell cloning and 

additional testing. Selected clones were also tested by indirect immunofluorescence assay 

(IFA) or immunohistochemistry (IHC) using C6/36 cells infected with DENV-5 DKE-

121.  

 

RESULTS AND DISCUSSION 

Initially, three fusions were performed using sorted B cells from PBMCs of 

DENV-5-infected NHPs. Although the fusion processes were successful, the clones did 

not survived more then a few days or a week at the most. The speculation was that likely 

when the fusion was performed using sorted B cells, some growth factors such as 

cytokines produced by other immune cell types such as macrophages and dendritic cells 

were not present, which could have played a role to keep the cells alive during the first 

days post-fusion. To overcome this problem the protocol was modified and fusion 

process was executed using PBMCs without sorting B cells. This strategy was 

successfully as the cells generated in this procedure survived after the addition of the 

selective medium containing HAT, indicating they were truly hybridomas (Fig.6.1).  

Another important aspect that was considered was the small percentage of plasma B cells 

in the blood. Due to this circumstance and to ensure that truly DENV-specific antibody 

secreting cells were produced, splenocytes and bone marrow cells from the macaques 

challenged with DENV-5 were used in the fusion process. Taking this approach, the 

probability of collecting cells from organs where plasma B cells are in abundance is 

enhanced, which promotes better success in obtaining plentiful numbers of DENV-
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specific plasma B cells and consequently increasing the chances to generate monoclonal 

antibodies against DENV-5.  

 

Fig. 6.1. Production of monoclonal antibodies. Micrograph showing two hybridomas 
after 2 weeks on selective medium at different stages of growth. 

 

Several fusions were performed and the SOP (standard operation procedure) was 

established.  In one particular fusion, 264 hybridomas were generated, expanded and 

stored appropriately. They were initially screened by ELISA. From the 264 hybridomas 

tested, 9 were suspect by ELISA (Fig 6.2). They were further tested by IFA and three of 

them presented a positive reaction (Fig 6.3). Single-cell cloning using limiting dilution 

was performed to select single clones secreting DENV-specific monoclonal antibodies. 
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Although several clones were screened, so far none of the selected clones presented a 

strong positive reaction by ELISA test.   

 

Fig. 6.2. Hybridoma screening. Cell supernatant from individual hybridoma clones were 
tested by ELISA.  

 

There is much evidence that for some particular agents the production of 

monoclonal antibodies (MAbs) in non-human primates (NHPs) is rather advantageous 

when compared with the mouse model. One good example is the development of MAbs 

against malaria, where the parasite antigen can be presented directly from the NHP own 

erythrocytes (Stanley and Reese 1985). In the mouse model, a great percentage of MAbs 

bind to antigens of uninfected erythrocytes, while the majority of MAbs made in NHP are 

known to bind to the parasites or with the antigens at the parasite membrane (Stanley and 

Reese 1985). This is important in the elimination of intense background caused by anti-

erythrocyte response that is extremely common when mouse Mabs are utilized (Stanley 

and Reese 1985). 
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Fig. 6.3. Hybridoma screening. Cell supernatant from individual hybridoma clones 
presenting a suspected or positive reaction on the ELISA were tested by an 
indirect immunofluorescence assay (IFA) using C6/36 cells infected with 
DKE-121. (A) Negative control. (B) Positive control. (C) Clone 24E7. (D) 
Clone 20F4. Nuclei stain (DAPI) in blue and DENV E protein stain (FITC) in 
green. 

 

This study described the production of stable hybridoma using NHP cells from 

animals exposed to the new DENV serotype. Although the hybridomas originated were 

stable, they secreted antibodies for only a short period of time. One possibility to explain 

the transient secretion of monoclonal antibody by these stable hybridomas was the use of 

a mouse cell line as the fusion partner instead of a chimera human-mouse cell line.  

Similar results were described in a previous study using a mouse monoclonal antibody 
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(OKT4- IgG2b) as antigen (Van Meurs and Jonker 1986). Two cell lines of myeloma 

were tested as fusion partners: (i) a mouse myeloma and (ii) a mouse-human 

heteromyeloma for the production of monoclonal antibodies using NHP lymphocytes. 

Similarly, the group demonstrated the transient secretion of monoclonal antibodies when 

they fused primate lymphocytes with the mouse myeloma; however when they used 

mouse-human heteromyelomas, they observed stable hybridomas cells (Van Meurs and 

Jonker 1986) . Another interesting outcome from the study was that only monoclonal 

antibodies using chimpanzee lymphocytes produced a long lasting hybridoma secreting 

antibody contrasting with those produced using rhesus macaques lymphocytes that 

stopped the antibody secretion one month after they being generated, even though mouse-

human heteromyeloma has been utilized as the fusion partner (Van Meurs and Jonker 

1986). One explanation for the chimpanzee’s lymphocytes to be more efficient in 

producing stable hybridomas is due the presence of chromosomes closely related to the 

mouse-human heteromyeloma, considering that chimpanzees are closest related to 

humans then rhesus macaque. Another strategy used to increased the efficiency and the 

length of monoclonal antibody secretion is the cell immortalization by using Epstein-Barr 

virus (EBV) (Fraussen, Vrolix et al. 2010) before the fusion process. However, this 

alternative approach has been described to be lees efficient when using the mouse system 

(Van Meel, Steenbakkers et al. 1985).. Additionally, it is crucial to carefully choose the 

appropriate fusion partner for human and primate hybridomas to increased the success 

not only to obtain stable hybridomas, but also to obtain stable antibody-secreting cells. 

Furthermore, the addition of differentiation factors or cytokines such as interferon after 

fusion could improve the efficiency process of hybridoma generation.  
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In summary, since cell stocks including splenocytes and bone marrow cells from 

the DENV-5 immunized NHPs are still available for the continuation of this work, all the 

aspects described above should be considered to increase the probability to generate 

hybridomas that will sustain the production of NHP monoclonal antibodies for a longer 

period of time.  



CHAPTER 7: Conclusions and Future Directions 

 

 Emerging infectious diseases represent a large threat to the human population. 

Viral diseases including illnesses caused by arboviruses affect hundreds of millions of 

people worldwide every year. With the advance of science, new insights in understanding 

the pathogenesis have become available and control measures have been developed to 

prevent or contain large outbreaks of several infectious diseases. Nevertheless, for many 

illnesses, even with years of research, an effective approach to control their occurrence 

still need to be investigated. Other diseases are emerging in forms that were not seen in 

the past and the reasons most of the times are not promptly understandable, emphasizing 

the importance to constantly study the origin, emergence and establishment of infectious 

diseases. In the past decades, arboviral epidemics have significantly increased with the 

exception of few regions of the world not affected by them.  In most cases, the emergence 

of arboviral diseases were caused by viruses considered to be controlled or recognized as 

harmless for the public health.  One of the most currently explored arbovirus in humans is 

DENV. Emergence of distinct DENV serotypes occurred independently and repeatedly in 

allopatric regions prior to their expansion in sympatric regions, using similar non-human 

primate hosts. Genetic studies demonstrated DENV was dispersed rapidly into new 

locations with the advent of air travel that enabled the movement of humans during the 

viremic phase of infection, resulting in the shift or extinction of local lineages. Ecological 

factors are also involved in the emergence of DENV. Deforestation is one of the crucial 

factors driving sylvatic DENV emergence. As people are exploring new resources deep 

into the forest, living in areas previously unexplored, the chances of sylvatic DENV 
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emergence are also increasing. Regions in Asia and Africa, where rapid and uncontrolled 

urbanization takes place, the risk of sylvatic dengue emergence is high. In this study I 

evaluated the following hypotheses:   

The dengue virus isolated from a febrile patient in Malaysian state of Sarawak, 

represents the prototype virus of a new dengue serotype 

This hypothesis was evaluated in chapter II.  The virus isolated from a clinical 

case from a febrile patient from Malaysia was designated as DKE-121. After received the 

virus sample I amplified it in C6/36 cells to generate adequate virus stocks. The full 

genomic DENV sequence of DKE-121 was later obtained by de novo next generation 

sequencing (NGS). Following the virus sequencing, I stressed out the phylogenetic 

relationship of this isolated with the other DENV serotypes. While phylogenetic analysis 

of the DKE-121 strongly suggests its sylvatic origin, it is substantially divergent from its 

closest relative, sylvatic DENV-4. Importantly the branch length of the divergent DKE-

121 is deeper than the branch length of DENV-2 emerging from its ancestral progenitors 

but shallower than the branch lengths of the sister serotypes DENV-1 and DENV-3, 

suggesting the unique origin of this virus and implying the emergence and detection of a 

new dengue serotype. Further, my cross-neutralization data indicated a 4-fold difference 

in cross-neutralization between homologous and heterologous neutralizing antibody 

titers. I used the 80% endpoint to estimate conservatively in vivo protection. However, 

limited cross-reactivity among some of the serotypes is observed underlying the presence 

of cross-neutralizing epitopes, which are thought to play a role in the observed 

pathogenicity of heterologous infections in nature. I subsequently evaluated the 

neutralization activity of a panel of well-characterized monotypic human sera against 
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DKE-121 virus and the other four well-established DENV serotypes.  I utilized a panel of 

12 monotypic DENV sera and 3 naïve sera obtained from Dr. Rick Jarman of Walter 

Reed Army Institute of Research (WRAIR), Viral Diseases Branch. The neutralization 

assays were performed using the prototypic viruses of each of the 4 DENV serotypes 

(DENV-1 Hawaii; DENV-2 NGC or 16681; DENV-3 H87; DENV-4, H241) and DKE-

121. I have used serotype specific MIAFs for the development of the assay and an 80% 

endpoint to estimate conservatively in vivo protection.  My cross-neutralization data 

indicate a 4-fold difference in cross-neutralization between homologous and heterologous 

neutralizing antibody titers.  Surprisingly, DKE-121 is neutralized as equally as DENV-4 

by its homotypic sera, suggesting that DKE-121 and DENV-4 viruses share antigenic 

epitopes with strong neutralizing potential. Based on the close genetic and evolutionary 

relationships of DKE-121 with DENV-4 viruses it’s likely that DKE-121 shares a close 

antigenic relationship to DENV-4, similar to DENV-1 to its sister clade of DENV-3. My 

data using phylogenetic studies, cross neutralization and the antigenic cartography of 

human and NHP sera is suggestive that the newly emerged DKE-121 is a prototype of a 

sylvatic DENV-5 serotype.  

The newly isolated dengue virus serotype is able to infect rhesus macaque causing 

viremia and stimulating a robust neutralization activity 

This hypothesis was tested in chapter III. I utilized rhesus macaque (Macaca 

mulatta) as a model for two following reasons (i) NHP is the vertebrate host involved in 

the transmission and maintenance of DENV in the sylvatic cycle. (ii) The newly emerged 

DENV virus was isolated from a sylvatic cycle; so I understand by using a natural host 

would be the appropriate approach for this virus characterization.  I utilized two genetic 
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backgrounds of NHP, Asian and Indian rhesus macaques to infect with DENV-5 strain.  

After the primary infection, I challenged one group with a homologous DENV-5 DKE-

121 and the other with a heterotypic DENV-4 serotype, being one sylvatic and one 

human strain.  My in vivo data using NHP as animal model demonstrated that DENV-5 

was able to replicate and viremia was detected all animals infected with DENV-5. Also, 

in my experiment using rhesus macaques from different genetic backgrounds I was able 

to demonstrate that DEN-5 was able to infect and viremia was detected in one of four 

animals. Even though I was not able to detect viremia in all four animals in this 

experiment, I was able to show that all animals were successfully infected with DENV-5 

based on antibodies levels, as represented through IgM levels. When I measured IgM 

levels after the homotypic challenge, I did not observed any reasonable increased levels 

of IgM, what is consistent with homotypic immune stimulation. However, after a 

heterotypic challenge with DENV-4 serotype, I observed a small peak of IgM levels, 

characterizing a typical secondary immune response, very similar what had been 

described in humans.    

I speculate that the differences observed in viremia levels among the two NHP 

experiments after primary infection with DENV-5 serotype could be the result of a strong 

innate immune response in special TNF-alpha secretion in all animals in the Indian 

rhesus macaque group as I clearly showed in my data, the same patterned was not 

observed in the Asian rhesus macaques where I was unable to observed TNF-alpha 

secretion and all of the animals had viremia levels detected after the first exposure with 

DENV-5. I also investigated the virus neutralization activity of DENV-5 infected NHP 

after primary infection, homotypic and heterotypic challenge. I observed a strong 
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homotypic antibody neutralization response in all animals after primary DENV-5 

infection. One of my interesting finding was the fourfold increase in neutralization titers 

against DENV-5 compared to DENV-4 serotype at day 180 after the primary challenge.  

This data is relevant as previous NHP studies demonstrated that six months is in 

agreement what others scientists have showed for cross-neutralization antibodies fading 

and the detection of only the specific neutralizing antibodies.  My data came in 

agreement that the NHP immune system exposed to newly emerge DENV-5 serotype 

recognized this virus strain as a different serotype even to the closest related DENV-4 

serotype. My NHP data confirm the finding in chapter II, where I described the discovery 

of new DENV virus as a newly emerged DENV serotype.  

Ae. albopictus and Ae. aegypti are competent vectors for infection and dissemination 

of  a  newly emerged DENV serotype 

This hypothesis was evaluated in chapter IV. I utilized two mosquito species, Ae. 

aegypti and Ae. albopictus. The first one was chosen because it is a vector responsible to 

maintain the DENV in the urban cycle and has being described to be involved in the 

majority of DENV epidemics. The second one, was used mainly as this vector is believe 

to maintain DENV in the sylvatic cycle, also Ae. albopictus is suggested to be the 

mosquito responsible to carry DENV from the forest to the urban population, acting as a 

bridge vector. As I mentioned in my second chapter, this new DENV serotype is 

genetically close related to DENV-4 serotype. So, I utilized the new emerged DENV-5 

and four different strains of DENV-4 serotype. Also, I utilized DENV-5 viremic NHP as 

a source of blood meal to fed the mosquitoes, considering that artificial blood meal may 

underestimate vector competence studies. I also utilized Las Cruces NM mosquito strain, 
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which is a mosquito strain reported to be less susceptible to to DENV-4 infection.  I 

successfully demonstrated that Ae. albopictus was able to be infected and disseminate the  

newly emerged DENV serotype after feeding on  viremic NHP. In my vector competence 

studies using Ae. aegypti  mosquitoes I showed that DENV-5 presents similar levels of 

infectivity and dissemination when I compared to sylvatic and human strains of  DENV-4 

serotype.  Differently from Ae. aegypti data, two human strains of DENV-4 demonstrated 

higher  percentage of infectivity when compared to DENV-5, although I have not 

observed difference in dissemination levels among the viruses used in this mosquito 

species.  As I expected, I showed that NIH strain of Ae. aegypti had a higher 

susceptibility to all virus strains tested when  compared to  Ae. aegypti Las Cruses strain. 

Future studies utilizing caught field mosquitoes especially from geographic region where 

this virus was isolated but also from different continents regions are necessary to 

demonstrate that the newly emerged DENV-5 serotype is able to infect and disseminate 

in Ae. aegypti and Ae. albopictus vectors contributing for the  emergence of this new 

serotype into the human population.  

The newly emerged DENV-5 serotype has particularities in the virus structure 

compared to the others DENV serotypes what could reflect in host infectivity 

Although the reconstruction of different DENV serotypes is similar in many 

aspects, different serotypes carry distinct characteristic that can reflects the virus function 

in vivo and in vitro. I formulated my hypothesis based on the current knowledge about 

DENV-5 acquired data from chapters II and III where I demonstrated that this new 

DENV is genetically and antigenic different from the others DENV serotypes by using 

human and mouse serum and through NHP studies. The diameter of the mature DENV-5 
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is approximately 500 Å and the virus morphology is a typical morphology of a DENV as 

previous described. In chapter V, I described the first Cryo-EM reconstruction of a newly 

emerge DENV serotype at 18 Å resolution. Although, I was able to obtain a very pure 

and enough virus particles numbers required to performed high-resolution studies using 

Cryo-EM as a tool, I had logistic issues that impaired the complete success of my aim by 

the time of my dissertation defense.  At 18 Å resolution still is not possible to obtain data 

that allow any further conclusions about the differences of this new virus and the others 

serotypes at molecular level. In conclusion, future studies are necessary to obtain a higher 

resolution of this new serotype, what is extremely relevant to the development of safe 

vaccines and effective therapeutics as well as infectivity studies.  

The production of non-human primate DENV-5 monoclonal antibodies are valuable 

tool for neutralization studies what could unravel the mechanism of neutralization 

of DENV as well they can be used as a powerfully instrument for DENV treatment 

in humans 

Non-human primate is relevant specie for DENV studies as they represent the 

only vertebrate host besides human to be infected in nature. Another important aspect of 

the valuable role of NHP in dengue studies is their contribution in the elucidation of 

several aspects of this disease in humans especially because they share in common a 

close genetic relationship (Wang, Niu et al., 2012). In chapter VI, I showed the 

production of stable hybridoma using cells from DENV-5 infected NHP. I collected 

blood; bone marrow and splenocytes from DENV-5 infected NHP and fused with a 

mouse myeloma cell line. Although the hybridomas originated were stable, they secreted 

antibodies for only a short period of time. One possible explanation for the occurrence of 
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this event was probably that the mouse cell line I used in the fusion procedure as have 

being description in previous studies that mouse myeloma could expel the NHP 

chromosome soon after fusion procedure.  One alternative strategy for future experiments   

should be the use of a chimera mouse-human heteromyeloma instead a mouse myeloma 

cell line to fuse with the NHP lymphocytes. Previous studies demonstrated that a mouse-

human heteromyeloma produces more stable hybridomas compared to mouse myeloma, 

based on the rationale that humans and NHP primates are closest then NHP and mouse. 

Another strategy also could be the immortalization of DENV-5 exposed lymphocytes by 

using Epstein-bar virus for the production of stable hybridoma cell line.  

 

FUTURE DIRECTIONS AND LONG TERM GOALS 

Virologic surveillance of DENV 

In the absence of an effective vaccine, the surveillance of DENV is important to 

the implementation of control measures such as mosquito control in attempt to contain 

the appearance of large outbreaks. The introduction of a new DENV serotype into the 

human population and the increase of the Aedes mosquito populations can trigger 

outbreaks of different proportions depending on intrinsic and extrinsic factors of the 

virus/host/environment to cause the disease.  

Here I reported the discovery and characterization of a newly emerged DENV 

(DKE-121) isolated from a febrile patient in Malaysian state of Sarawak and predicted to 

be the prototype strain of a new DENV serotype (DENV-5). Since its discovery in 2007, 

the current status of the emergence of this sylvatic strain into the human population is not 

known. Hence, one of the future directions that my project leads is the virologic 
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surveillance in the area where DKE-121 was isolated to determine if DKE-121 has 

established a human transmission cycle. Additionally, this surveillance is not only 

important to the detection of DENV-5, but also the emergence of other sylvatic DENV 

serotypes or re-emergence of the current known viruses. In the absence of constant 

surveillance, many sylvatic strains and even new serotypes (as example of DENV-5 

DKE-121) can be transmitted silently, without our perception. The detection of these 

viruses would have a great importance in the studies of sylvatic DENV evolution and the 

dynamic of its appearance into the human cycle. As humans are exploring new areas, 

many times causing ecological changes that can facilitate their contact with the natural 

sylvatic reservoirs and vectors deep into the forests, the chances of emergence of new 

viruses are increased. An active surveillance based on isolation of DENV from the serum 

of individuals showing symptoms compatible with dengue disease can be a good 

indicator of the presence of the current serotype(s) circulating in the human population of 

a specific region. The isolation of DENV from the Aedes population also will support the 

human surveillance and in addition will help in the determination of vector densities, 

which in turn will inform the necessity of implementation of mosquito control programs. 

Vector competence 

Studies of vector competence with DENV are important to determine the potential 

of the virus to establish a sustained transmission cycle into the human population. I have 

explored the vector competence of domestic (Aedes aegypti) and peridomestic (Aedes 

albopictus) mosquitoes using laboratory colonies known to be infected and able to 

transmit DENV. Both mosquitoes have shown to be suitable competent vectors for 

DENV-5 DKE-121. The next step will be to investigate if field-caught mosquitoes from 
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the geographic region where DENV-5 DKE-121 was isolated are also competent vectors 

for the transmission of the newly emerged serotype. The assessment of infection and 

dissemination rates of field-caught mosquitoes and comparison with the data from the 

laboratory strains would help to determine the real potential of DENV-5 DKE-121 been 

established into the human cycle of that specific Malaysian region. Moreover, it also can 

provide clues of the dynamic of which mosquito species could be involved as the bridge 

vector responsible for the transmission of the sylvatic virus into the human population. 

Structural studies of DENV-5 DKE-121 

Although the reconstruction of different DENV serotypes is similar in many 

aspects, different serotypes carry distinct characteristic that can reflects the virus function 

in vivo and in vitro. I my studies I demonstrated the first cryo-electron microscopy 

(Cryo-EM) reconstruction of DENV-5 DKE-121 at 18 Å resolution, showing that the 

mature virus has the diameter of approximately 500 Å and the typical morphology of the 

other DENV serotypes. Further studies to obtain a better resolution would be valuable to 

show differences at molecular level.  

The different stages of DENV life cycle involve major structural changes in the 

virion. The determination of the protein structure, including tertiary and quaternary 

structures could reveal important aspects related to host-virus interactions and differences 

among the other DENV serotypes. Amino acid charges also could explain differences in 

cell infectivity, as demonstrated the interaction of positively charged residues to heparan 

sulfate (HS), which serves as a cellular receptor for the virus. Cryo-EM studies are also 

valuable for the rational design of therapeutics, including vaccines and antiviral drugs. 

Near atomic resolution could reveal which regions are important for drugs and antibodies 
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interactions, as well other regions that could be interacting with different cellular 

receptors of target cells.  

Non-human primate monoclonal antibodies against DENV-5 DKE-121 

Monoclonal antibodies (MAbs) are valuable tools not only in diagnostics, but also 

as clinical options to prevent or treat diseases. Antibodies isolated from humans have 

been used in the treatment of viral diseases, which no specific treatment or vaccine is 

available. However, due ethical and practical reasons, humans cannot be immunized with 

all antigens of interest in attempt to isolate therapeutic antibodies. Non-human primates 

(NHP) are a suitable model that can circumvent the necessity of using human subjects. 

NHP and human antibodies are shown to have a great similarity. The immunoglobulin 

(Ig) sequence of NHP has 85-98% homology with the human Ig coded genes. Thus, NHP 

antibodies have a high degree of tolerance for human treatment. 

In my project I have established stable hybridomas using cells from DENV-5 

infected NHP. The continuation of this project will involve the selection of hybridomas 

secreting DENV-specific antibodies, more importantly clones with high affinities and 

neutralizing properties. Although I have selected a few clones that reacted with DENV-5 

antigens, the binding signal was low and the hybridomas lost the ability to secrete the 

antibody most likely due to the chimerization process. So, a future direction may also 

involve the use of alternative strategies such as the immortalization of B cells derived 

from the NHP or the use of a different myeloma cell partner. The isolation of stable 

hybridomas and production of high affinity antibodies will be valuable not only in future 

studies to determine the clinical value as a therapeutic compound, but also in studies of 

the mechanism of virus neutralization. Through the cryo-EM studies, monoclonal 
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antibodies that bind or neutralize specifically DENV-5 could reveal regions that represent 

dominant neutralizing epitopes and show differences or similarities among the other 

DENV serotypes.             
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