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METIHODS OF DETERMINING MASS OR WEIGHT IN A
ZERO-G ENVIRONMENT

By: F. H. Butler

ABSTRACT

Four methods of determining the mass or earth weight in zero-g, non-rotating
space laboratories are investigated in this paper. For the want of more
descriptive names these four methods may be classified as:

l. Energy=Velocity

2. Vibrating Spring and Masses
3. Centrifuge

4, Momentum

Of the four, only one, the momentum method is recommended for weighting non=-
rigid masses, such as man, in a zero-g environment. This is because of the
high accuracy required in laboratory work. All of the first three methods
possess similar characteristics, which lead to inaccuracies, namely re-
arrangement of the soft mass under accelerating forces. In the first method
this results in indeterminant energy losses; in the second method, in unknown
damping effects; and in the centrifuge method, in an indeterminant center of
mass shift from a doubtful original location. Tests may prove these
inaccuracies to be exaggerated; unfortunately only their existence and trend
may be shown analytically. The fourth method, however, provides a way around
these inaccuracies. It utilizes the principle of momentum conservation,

which by=-passes energy losses.

Realistic numbers have been assigned to the centrifuge and momentum methods
for the purpose of determining accuracies, These results are shown in
Figures 4 and 6.




INTRODUCTION

The next step in the exploration of space will include programs which provide
manned orbital laboratories. One of the prime functions of these laboratories
will be to determine man's physiological reactions to this weightless environ=-
ment., To accomplish this will require measuring devices of many different
types, It is difficult to imagine such a laboratory without an instrument for
measuring the mass and mass changes of man, After all, the simplest physical
examination in the doctor's office requires a weight determination. 1In the
author's opinion, the need for scales in orbiting biological laboratories is

definitely established; but these scales will not be as simple as the popular
bathroom variety which operate under the constant accelerating force of
gravity. Since in orbit centrifugal force completely balances the gravita-
tional force, the net result is the well known weightless condition in which
no forces appear to be acting. Therefore, to sense the magnitude of a mass,
artificial forces must be provided. Rotating space stations inherently pro-
vide artificial gravitational forces which can be utilized for mass deter-
mination, The problems would be similar to the centrifuge problems covered
here. However, it is assumed that the first space laboratories will be of
the non-rotating type, to which this discussion is restricted.

It is felt that determining man's mass under zero-g, either because of its
apparent simplicity or because of concentration on more sophisticated
physiological measuring devices, has not received sufficient attention.

This paper explores four methods of utilizing accelerating forces and re-
sulting velocities to determine the magnitude of masses, both rigid and non-
rigid, the latter being representative of the human body. It is not the
intention here to go into actual designs representing these methods, but
rather to cover the principles and criteria which would govern possible
designs.

ENERGY - VELOCITY

Determining the mass of a solid or rigid body in a zero-g field may be
accomplished by converting a known amount of work, such as that stored in a
cocked spring, into kinetic energies., These energies exist only in trans-
lational velocities imparted to both the specimen and the reacting space
station since rotational velocity of the station is eliminated or kept to a
negligible minimum by allowing the line of action to pass through or close
to the c.g. of the station, a proper design feature. See Figure 1, for
schematic., A simultaneous solution of the following taree equations:




ENERGY - VELOCITY SCHEMATIC
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where:
E = stored energy in spring
M. = mass of the specimen to be determined

M, = mass of the station

V. = velocity of M, after spring release

1 1

VS = velocity of station after spring release

VN = measured relative velocity between Vl and V
1 []

To determine the sensitivity of the M. error to errors in inputs, an analysis
was performed on equation (L) using the appropriate substitutions of V. = s/t
where s and t are a measured time and a measured distance, respectively. The
following sensitivity equations resulted:

. 2
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If this same principle of converting energy to velocity is applied to deter-
mining the mass or weight of man, an error is introduced because of man's
non-rigidness. The blood, body fluids, orgens, etc,, tend to move opposite
to the accelerating force and thus absorb part of the work. All have, no
doubt, experienced the blood leaving the head with a sudden rise from the
floor., This energy absorption would appear as an unknown term in the right
hand side of equation (2); thus making simultaneous solution of the three
equations impossible. Some have suggested that it might be impossible to
compensate for this loss of energy by subtracting a predetermined amount of

energy from the original energy. The uncertainties involved make this
suggestion too risky. The ebsorbed energies would no doubt vary from indivi-
dual to individual and could possibly vary within one individual over a period
of time in either a normal or weightless condition, Figure 2 is a simple
demonstration, which shows how the resulting final velocities of equal masses
accelerated by the same spring cen differ, thus reflecting the internal energy
losses, when all portions of the mass do not act as a unit. Figure 2(b) and
(c) are somewhat analogous to the human body. Clay with a coefficient of re=-
stitution of one was used to absorb the internal energy swiftly. With a
spring (which represents the other extreme in restitution) between

the two masses M, and My, the results would have been the same; it would have
just taken longer for the oscillations to die out. It should also be noted
that relative positions of Ml and My do not influence the final resulting
velocity as long as there is no relative velocity between them. Granted this
analogy is a poor representation of the human body; it does show that there
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is an indeterminant energy loss when a non rigid body is accelerated. This
energy degradation cast doubt on the accuracy of any system using this
principle for weighing non rigid masses.

VIBRATING SPRING AND MASSES

Another type of mass or weight measuring instrument might follow some form of
the vibrating spring and masses arrangement as shown in Figure 3. By simply
determining the period of oscillation, T, and by knowing the spring rate, K,
and the station mass, Mg; the mass, Ml, of a rigid body may be calculated
from equation (11) which is a rearrangement of the period equation of 2 masses
connected by a spring., A device based on this principle might provide the
simplest and most accurate space scales for small rigid masses because of two
features. One, the period is independent of the amplitude; and two, the
accuracy of the period may be increased by determining the frequency over a
longer increment of time. The main degrading factors are the energy loss to
internal friction in the spring and aerodynamic damping, both of which may be
kept small, Depending on the relative masses of the specimen and the spring,
it may be necessary to deduct the effective mass of the spring to obtain the
desired accuracy for small masses. An error analysis of the basic equation
gives relationships (12), (13) and (14). From (12) it may be seen that the
percentage of error in the spring constant is reflected almost directly in
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the percentage of error in the mass determination, while in (13) the percen-
tage of error in the period measurement is reflected almost doubly. But, as
mentioned previously the T may be reduced by measuring time over many cycles,
Also worthy of note in (14) is the insignificance of the station mass error.

It is uncertain that this vibrating mass system, when applied to man, will
yield accurate enough measurements. This system is closely related to the
first system where the spring accelerates the mass to a measured velocity;
and for the same reason, energy absorption in the non-rigid body, it falls
short. From a cursory look, the absorption appears to be more of a problem
with this system, because during one cycle of T period two changes in the
direction of acceleration occur., In other words, man's body, being the
vibrating mass, acts as a damper which is not necessarily predictable,
especially under prolonged weightlessness., Consequently, the accuracy of
this system, with an unknown and possibly changing damper is exceedingly
difficult to handle analythically.

CENTRIFUGE

Some of the larger space stations have been displaying internal centrifuges
which are primarily for conditioning the astronaut with artificial g forces.
It doesn't require much imagination to convert one of these centrifuges into
a man weighing device. Substitution in the equation, F = MweR, for measured
or otherwise determined values of F (centrifugal force), w (angular velocity),
and R (arm to center of mass), allows M to be calculated., The degree of
exactness of such a calculation naturally depends on the accuracy of the
individual inputs. There seems to be little question about precision
measurements of the first two items F and wj; both of these can be measured
fairly accurately with existing instruments., However, R, which for simpli-
city in this discussion is considered as not applying to the man and chair

or couch but to the man only, is difficult to obtain with any degree of
accuracy in an orbital laboratory. The combined effects of prolonged weight-
lessness (pooling of the blood, etc.) and the short term induced centrifugal
force could cause the center of mass to shift from any previously determined
location.,

It also is doubtful that a centrifuge weighing system would be considered for
small stations (10 ft., diameter or less) because of space limitations, a
reduction in accuracy with reduced R (see (19)), and labyrinth problems
(disorientation and motion sickness associated with the inner ear). It is
known that astronauts, from both the U.S.S5.R. and U.S.A, have experienced
some difficulties with this problem; and that many people become nauseated
when subjected to a few revolutions per minute on earth. There is much
uncertainty about any threshold numbers pertaining to these physiological
effects.

For the purpose of determining the possible accuracy of the centrifuge type
scales for man in a space lab, sensitivity relations have been derived and
are shown below in equation (19), along with reference equations and realistic




assumptions of numbers for substitutions. The chart in Figure 4 shows the
effects on the calculated mass, of errors in the measured inputs, for centri-
fuge g factors of 0.1, 0.5, and 1.

Reference Equations

F = Mqu = g w2R = centrifugal force (15)
A g Ol a 2
W = 25— = weight in lbs, (g = 32.2 ft/sec”) (16)
w R
- _ sz _ centrifugal force _
N = F/W . ey g g forces (17)
w =,/ gﬁ = angular velocity (18)

From the above chart it may be seen that errors in measurement of centrifugal
force and angular velocity are not nearly as significant as a 1 inch error in
cg location. It is also apparent that the former two decrease with an
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increase in centrifugal g force while the latter appears to remain constant
under any g forces. In reality, the center of mass would tend to shift
outward as the body deformed more under increased g loadings. Even if this
shift could be accounted for on earth, cardiovascular and other physiological
effects over a long weightless period could make any conpensations invalid.
The effect of R on W can only be reduced by increasing R which is generally
limited by the vehicle diameter,

This centrifuge weighing system does not appear to have adequate accuracy for
the 21 foot diameter space lab and even if this diameter is doubled and the

R error halved, the accuracy still seems questionable for experimental
laeboratory work.

MOMENTUM METHOD

The fourth system makes use of the momentum concept which concentrates on the
end conditions and by-passes the unknown energy dissipation occuring during
the acceleration of a non-rigid body, namely man. The sequence of operation
is as follows: A spring with a known amount of stored energy, E, reacts
between the known mass of the space station, Mg and a small known mass, M,
resulting in respective velocities of Vg and V;. Values of these are obtained
from a simultaneous solution of the following momentum and energy equations:

Ml Vl = MS VS (20)
2 2
M.V M,V
S i o S S
E = 5 + S (21)
resulting in:
2 Ml E
V., = (22)
S Mg (MS + Ml)

anl Mg 2 M E
V, = (=) : (23)
i \/ W (M + )

To prevent rotation of the space station and thus to keep equation (21) valid,
the line of action is designed to be through or very near its c.g. Next Ml
contacts the man and supporting carriage, M2, and all move as a unit with
a velocity of V, which is relative to the original velocity of the space
station et al., "By conversation of momentum:

Ml v1 = (Ml + Me) V3

)

(2k)
and
Ml (Vl -V

e v

3

3




Since the station, as a result of its first reaction, is moving slowly in the
opposite direction, a measured velocity VM between the station and carriage

is the sum of VS and V3 or:

V.=V, 6 =V (25)

Substituting (25) into (2L) gives:

M, (V, =V, +V.)

2
V. =
M VS

When V., is measured, the relative position of all parts of the body is
unimportant as long as all parts are moving as a unit. This seems to occur
externally a very short time after the accelerating force is removed (dis=-
place the skin or a muscle and see how quickly the oscillations die out).
There seem to be good reasons to believe that internally the response is
similar., Therefore after a short period of time, a second or so, time
measuring devices measure t over a known distance s. From Vy = s/t, Vy can
be determined., Substitutions into equation (26) will now yield the mass of
the man and carriage.

Next it becomes advisable to determine how accurate this device really is.
Therefore equations, reflecting the sensitivity of M2 to input errors were
developed by differentiation and are shown below:

_[Vi-vm+Vs|
AMz—l—VM—_—VS—J AMI (27)
_|Vs (V1=Vm+Vs)
AM2-— W AMS (28)
Mg Vpy Vs |
AMy = —§é%JijAE 29)
M, Vv, t
2

[ Mpvys |
AMp = | ——— | At €3V
{(s-vst)2 J
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Other degradations to the accuracy of this system exist at the guide rollers
in the forms of inertia and friction., However, the inertia becomes insigni-
ficant if the rollers are small in diameter and are made from some light

plastic material, The frictional losses are investigated in the following
exercise, which includes Figure 5.

[
L}

eccentricity of cg to line of force
JFdt

impulse from M1 impacting M,

fFl dt = resulting impulse at rollers

a]
n

equivalent horizontal coefficient of fraction at roller
contact

Taking moments about cg:

efF at =L /F, dt (32)
2/F dt = 2 Iie- /F dt = total horizontal frictional impulse (33)
M-24290
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but since Ml Vl = fF dt
fe Ml Vl
2 T = horizontal momentum exchange to frictional impulse. (3L4)
AV, = Momentum Change _ 2Ml vl i - (35)
3 M, + M, (Ml +Mé) L

velocity reduction casused by friction.

From equation (2U4) the following sensitivity equation can be obtained:

M. + M
aM, = - (—l-v-;—-z-) av, (36)

This may be reduced by substitutions to:

2(M) + M,)(e)(f)
AM, = = = effects of man's c.g. location (37)
2 L Gokoa
and roller friction

A summation of all sensitivity terms give the maximum possible error for a
given set of assumptions. Finally to apply this error analysis to a
conceivable system, the following assumptions (not necessarily optimum) and
results are shown below:

Ml = 2/32.2 = ,062 slugs (2 1lb, weight)
Mé = 180/32.2 = 5,58 slugs (180 lbs. includes man and carriage)
Ms = 25,000/32.2 = T76.4 slugs
E = 1 ft 1b of energy in the spring
v, = L = 00045k ft/sec (22)
S MS MS + Ml
M,
= (ﬁi) L 5.675 ft/sec (23)
Vy = Ml vl ; Mi ;S i ’s = ,063 ft/sec (26)

1 2
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s = 1,000 ft

t = 15.900 sec.,

L = 8ft

e = ,08 ft (1 inch eccentricity of c.g.)

f = ,007 equivalent coefficient of horizontal friction at the

roller guide, transferred from the roller ball bearing (.015)

aM, = .000068 slugs (1 gram by weight)
AMg = 776 slugs (0.1%)

AE = ,015 ft 1lbs

As = =,0008 ft (,010 inches)

At = .005 secs. (.001 is feasible)

With reasonable assumptions the momentum system shown has a maximum possible
error of approximately .37%, which should be within the accuracy required.
See Figure 6., Since all errors with the exception of friction are plus or
minus, the probable error would be even less. In the above example,
deviations in s and M) are rather effective on the final results. Both of
these along with E can be measured quite accurately before the actual flight.
Another point of interest is the small influence of friction, which is
affected by the mean's cg location., In fact his cg location affects friction
only. Thus, it now appears feasible to retain the man in a sliding chair
rather than a sliding couch and take the chance of the cg being off more,
The chair would reduce the length of the mechanism. See Figure T.

The momentum scales appear to be better adapted for keeping a weight check
on man in space than the other versions studied, because of the following
characteristics:

() A high degree of accuracy.

(b) Insensitivity to man's c.g. location or shift,

(¢) By-passing of energy dissipation, an unknown loss occuring
in the acceleration of man,

(d) Minimizing of motion sickness.
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MOMENTUM METHOD ERROR ANALYSIS

M-24289

TYPE OF ERROR AM, (SLUGS) LM, (LBS) %OF M 5
t 0018 058 032
s .0045 145 081
E .0016 052 029
M, 0062 200 11
Mg 0057 185 102
FRICTION .0008 025 014
POSSIBLE TOTAL ERROR 0206 665 369
FIGURE 6
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CONCLUSION

Of the four mass determining methods studied, none presented any specific
problems for rigid masses. Therefore, the concentration of effort has been
on weighing the non-rigid mass, an operation which can possess problems.

For keeping an accurate weight check on man (a non-rigid mass) under
prolonged laboratory conditions at zero-g, all but the last method, the
momentum method, were found to have possible disqualifying deficiencies.
Indeterminate energy sbsorption in the non-rigid body was shown to degrade
the accuracies of both the energy-velocity and vibrating mass and spring
methods; however, the degree of degradation cannot be determined analytically.
The shortcomings found in the centrifuge method were: (1) an indeterminant
center of mass location; (2) labyrinth problems; (3) small laboratory
limitations., Most of the problems associated with the first three methods
are of an unknown or indeterminate nature, qualities which are undesirable
for laboratory measurements, The fourth method, called the momentum method,
is all but free of the disadvantages noted in the other systems., It is
unaffected by energy losses. The unknown cg location of man, which can
contribute to frictional losses only, has a very small effect on the accuracy
of the system. In fact, this effect is so small that consideration could be
given to & chair arrangement where the location of the cg might fall over a
wider range, instead of to the couch system shown in figure 5. A chair
support would reduce the overall length of the system. Since there is no
rotary motion with the momentum system and rectilinear motion is small,
motion sickness would not be aggravated. One unknown is the time it takes
for the body to settle down and act as one mass after it has been accelerated.
This does not appear to be a problem, though, because of the damping quality
of flesh. Extension of the settling time could slleviate any possible
problem of this nature, Neither is circulation of the blood expected to
affect this system because the net momentum in a closed system can only be
zero. The respiratory system not being a closed system, could provide an
unwanted impulse, depending on the direction of expulsion. This possible
problem can be easily eliminated by having the subject hold his breath.

From a random example with realistic tolerances, it was found that the total
maximum error for the selected momentum system was approximately 0.38%.

This number, although probably acceptable, could no doubt be improved by
optimizing the inputs and tightening the tolerances.

This study, with a preliminary look, has indicated that scales, for weighing
man in a zero-g orbit with assurance of accuracy, could be designed and
built on the momentum principle, whereas devices based on the other methods
may lack the desired precision. However, it would be advisable to further
pursue studies on all these methods, especially as pertains to accuracies,
optimization, station cg locations, degradations, and simulation tests. 1In
the final analysis a certain amount of testing will be necessary, mainly
because of that unknown quantity, the human body.
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