QUESTIONS FOR CARDIOLOGY HARVEY STUDENTS

1. Define, either in your own words or mathematically;

resistance compliance flow

- 2. Give two examples of compliance in the circulatory system. Compare their compliance values.
- 3. Give an example of a pathological resistance and normal resistance
- 4. Pulse pressure is determined primarily by what two physical characteristics of the circulatory system?
- 5. A hospitalized patient has pale, cool, and dry skin and a heart rate of 120 and BP of 90/70. In the most general terms where is the problem likely to be and why?
- 6. A cardiac output on is done on the above patient and stroke volume found to be 25 ml. What is cardiac output; systemic resistance?
- 7. A 28 .y.o. 50 kg female is seen because of a 7% weight loss in 6 months, weakness and nervousness: Heart rate is 90 and BP 130/60. Her skin is warm and moist. In the most general terms, where is the circulatory anomaly?
- 8. Systemic resistance is 12 mmHg/L/min in the above case. What is her stroke volume?

c:\msoffice\winword\harvwet

Answers for Cardiology Harvey Questions:

1. Resistance is the relation between pressure and flow $\frac{pressure}{flow}$ = resistance.

Compliance is the relation between change in volume and change in pressure.

Compliance =
$$\frac{\Delta pressure}{\Delta resis \tan ce}$$

Flow is the change in volume with time.

$$Flow = \frac{\Delta Volume}{\Delta Time}$$

- 2. Atria, ventricles of heart-arteries and veins. Veins and atria are more compliant.
- 3. Any stenotic valve, increased systemic resistance in E.H.; arterioles.
- 4. Stroke volume and aortic compliance.
- 5. A pump problem (vs systemic problem). Signs indicate poor perfusion. High heart rate indicates attempt to maintain C.O., probably in face of decreased stroke volume.
- 6. 120 PBM x 25 ml/B = 3000 ml/min.

$$\frac{90-70}{3} + 70 \approx 7 + 70 = 77 \text{ mmHg}; \frac{77mmHg}{3L/\min} = 25 \frac{mmHg}{L\min}$$

- 7. Peripheral circulation (decreased resistance).
- 8. $\frac{130-60}{3}+60=20+60=83 \text{ mmHg meanbp}$

Flow (cardiac output) =
$$\frac{pressure}{resis \tan ce}$$
 = $\frac{86 \, mmHg}{12 \, mmHg / L / min}$ = $6 \, \frac{7}{12 \, mmHg / L / min}$.

Cardiac output = SV x HR
$$SV = \frac{CO}{HR} = \frac{6900 \, ml}{90 \, BPM} = 7\frac{4}{6.7} \, ml.$$