DR. THORNTON

WITH SKYLAD, MASS MEASUREMENT IN SPACE FLIGHT

BECAME A MORE OR LESS ROUTINE OPERATION. THIS WAS NOT

ALWAYS TRUE. INDEED THIS WAS THE FIRST EXAMPLE OF SUCH

MEASUREMENT. ONE OF THE FIRST SIGNIFICANT AND GONSISTENT.

OPERATION. THIS WAS NOT

CHANGES SEEN IN CREWMEN RETURNING FROM SPACE FLIGHT

WAS A WEIGHT LOSS WHICH SOMETIME SEEMED TO BE A

There Were other associated

FUNCTION OF FLIGHT DURATION BETRYTTH MANY VARIABLES, however

The therewere the make of flight measures the make the first measures of the mechanism

OF THESE LOSSES INCLUDING: (1) A SHIFT OF FLUIDS CEPHLAD

AFTER REMOVAL OF GRAVITATIONAL FORCES WITH DUMPING

OF THIS APPARENTLY EXCESS FLUID THROUGH DIURESIS;

- (2) FLUID LOSS THROUGH SWEATING FROM INCREASED

 ENVIRONMENTAL TEMPERATURES AND OTHER STRESSES;
- (3) INADEQUATE FLUID OR FOOD INTAKE.

IN 1965, IT WAS OBVIOUS THAT PROPERTY INFLIGHT CARRY BODY)-

(AND INTAKE-OUTPUT)

creamer and their intoke-out UT MASS MEASUREMENTS, WOULD BE REQUIRED THESE CHANGES AND DETERMINE WHICH MECHANISMS WERE RESPONSIBLE. AT THE AIR FORCE'S MEDICAL DIVISION, WE CONCLUDED THAT DEVELOPMENT OF A NON-GRAVIMETRIC MASS MEASURING DEVICE WAS OF FIRST PRIORITY TO INVESTIGATION OF THIS FUNDAMENTAL PROBLEM, AND I BEGAN SUCH DEVELOPMENT. BY 1966 A DEVICE FOR MEASURING MASS OF SPECIMENS OVER THE RANGE OF 25 GRAMS TO 1 KILOGRAM AND A LARGER ONE COVERING THE RANGE OF 1/2 TO 100 KILOGRAMS WERE COMPLETED. SKYLAB HAS BEEN THE FIRST OPPORTUNITY TO DEMONSTRATE THEIR PERFORMANCE IN FLIGHT. SINCE THE METHOD OF MASS MEASUREMENT USED IS A FUNDAMENTAL DEPARTURE FROM WEIGHING MACHINES, THE TECHNIQUE WILL BE DESCRIBED.

MAN HAS BEEN USING THE GRAVIMETRIC BALANCE OR SCALES (FOR AT LEAST)

FOR AT LEAST 5,000 YEARS. IT IS SUCH A SIMPLE, EFFICIENT, AND ACCURATE METHOD THAT NO ALTERNATIVE DEVICES WERE AVAILABLE OR NEEDED. IT IS ONLY WHEN ONE ATTEMPTS TO DEVELOP AN ALTERNATIVE TO WEIGHING THAT THE METHOD IS TRULY APPRECIATED. THE ONLY PRACTICAL ALTERNATIVE TO GRAVIMETRIC ATTRACTION OF MASS IS SOME MEASURE OF ITS INERTIAL PROPERTY. IN 1965, THE METHOD THAT WAS CHOSEN, A METHOD HEAVILY BIASED BY SIZE AND WEIGHT REQUIREMENTS AS WELL AS BY MY PREVIOUS ELECTRONIC EXPERIENCE, WAS A MASS DEPENDENT TRANSLATIONAL MECHANICAL OSCILLATOR.

SLIDE IS A SCHEMATIC OF THE METHOD USED. A

SAMPLE MASS IS CONSTRAINED TO LINEAR MOTION BETWEEN

TWO SPRINGS. IF THE MASS IS DISPLACED FROM ITS REST OR

STABLE POSITION AND RELEASED, IT WILL UNDERGO VIRTUALLY

(UNDAMPED NATURAL)

UNDAMPED NATURAL OSCILLATION WHOSE FREQUENCY IS A FUNCTION ONLY OF THE MASS AND SPRING CONSTANTS. AN ELECTRO-OPTICAL DETECTOR AND COUNTER TIMES EACH CROSSING OF THE ZERO DISPLACEMENT POINT ALLOWING ACCURATE MEASUREMENT OF THE PERIOD OF OSCILLATION.

BY CALIBRATING THE DEVICE WITH A SERIES OF KNOWN MASSES, THE MASS OF AN UNKNOWN SAMPLE CAN BE DETERMINED FROM ITS PERIOD OF OSCILLATION.

SUCH A TECHNIQUE ALLOWS REASONABLE ACCURACIES

WITH SOLD MASSES -- FOR ENAMPLE, IT IS NOT PARTICULARLY

DIFFICULT TO OBTAIN. 01% OR MORE. CONVERSELY, THIS

TECHNIQUE HAS SEVERAL INHERENT LIMITATIONS. ANY MOTION

(JITTER) OF THE SUPPORTING MECHANISM OR OF THE SPECIMEN

WILL PRODUCE ERRORS. ANY NON-RIGIDITY OF SPECIMEN (SLOSH)

WHICH ALLOWS SECONDARY OSCILLATIONS NEAR THE PREMARY

(FREQUENCY)

FREQUENCY WILL PRODUCE ERRORS ALSO. THUS, MEASUREMENT OF ITEM I SUCH AS LIQUIDS AND OF THE HUMAN BODY REQUIRE SPECIAL ARRANGEMENT.

ALTHOUGH EXISTING VIPOATION STUDIES OF THE HUMAN BODY SHOW THAT IT BEHAVES AS A SINGLE RIGID MASS BELOW ONE CYCLE PER SECOND, THIS PROVED NOT TO BE THE CASE.

THE FREQUENCY OF OSCILLATION HAD TO BE LOWERED TO LESS THAN ONE HALF CYCLE SECOND, AND THE BODY FOLDED INTO THE MOST RIGID CONFIGURATION POSSIBLE.

MOTTON PICTURE

Will de sur de sur de la descriter

Film mass la ding the demisser

den enstrading the demisser

EXPERIMENTS MOTA/172 WERE ALSO EXTENDED TO EXPLORE
THE COMPLETE ENVELOPE OF PERFORMANCE OF THIS METHOD,
BUT SINCE ONLY THE INVESTIGATOR HAS DISPLAYED ANY INTEREST
IN THIS ASPECT IT WILL NOT BE MENTIONED EXCEPT TO SAY
THAT ACCURACIES OBTAINED ARE MORE THAN ADEQUATE FOR
ANY CURRENT MEDICAL INVESTIGATIONS — A FEW GRAMS FOR

IN THIS ASPECT IT WILL NOT BE MENTIONED EXCEPT TO SAY
THAT ACCURACIES OBTAINED ARE MORE THAN ADEQUATE FOR
ANY CURRENT MEDICAL INVESTIGATIONS — A FEW GRAMS FOR
IN TOO STATE OF THE LOWER FIGURE.

THERE WAS A GAP OF THE FIRST FEW DAYS ON SKYLAB-2

DURING VEHICLE REPAIRS. VIRTUALLY NO UNEATEN FOOD HAS

BEEN LEFT TO MEASURE. TO SEATHE VOMITUS SAMPLES, ON SL-2,

THE ORDER-OF-109 MILLIGRAM WERE PRODUCED BY ONE

CREW MENERS ON SLAS. ALL FECAL SAMPLES WERE ROUTINELY

MEASURED BUT SHOWED LITTLE EXCEPT THE MARKED VARIATION

(IN HABITS OF)

IN HABITS OF INDIVIDUAL CREWMEN. OTHER MASS MEASUREMENTS
HAVE BEEN ROUTINELY MADE IN SUPPORT OF SPACECRAFT
OPERATIONS INCLUDING URINE POOLS AND THE AMOUNT OF
COOLANT FLUID ADDED TO THE REFRIGERANT SYSTEM.

BODY MASSES HAVE BEEN THE MOST REVEALING. AS A BASELINE SUCH MASSES WERE MADE GRAVIMETRICALLY ON SMEAT -- THE GROUND-BASED CHAMBER SIMULATION.

GRAPHS OF THE CREWMEN'S BODY WEIGHTS WHILE ON THE SKYLAB DIET ARE SHOWN HERE. (SLIDES ____, ___, AND ____.)

NEXT ARE SHOWN THE RESULTS FROM SL-2. THE DATA

HAS BEEN SMOOTHED BY PLOTTING A 3-DAY SLIDING AVERAGE.

WEIGHTS ON BEGINNING THE DIET, ON LAUNCH, AND ON RECOVERY

ARE HIGHLIGHTED. THESE POINTS ARE GRAVIMETRIC WEIGHTS.

SL-2 CDR LOSS CURVE IS TYPICAL OF ALL THREE CREWMEN ON

THIS MISSION. THERE WAS A SMALL BUT DEFINITE LOSS DURING

THE CONTROL PERIOD (I.E., WHILE ON THE SKYLAB DIET AND

(IN QUARANTINE).)

IN QUARANTINE). AFTER LAUNCH THIS RATE OF INCREASE ACCEL RATED BUT REMAINED MORE OR LESS CONSTANT EXCEPT FOR SHARP DROPS ASSOCIATED WITH EVA'S. FOLLOWING RECOVERY THERE WAS A RAPID INCREASE, ACCOMPANIED BY AN OVERSHOOT WHICH, ALTHOUGH NOT SHOWN HERE, PLATEAUED TO A VALUE SOME TWO PLUS POUNDS BELOW LAUNCH WEIGHT. (SLIDE ____) THE PLT'S CURVE HAS THE SAME GENERAL SHAPE WITHOUT THE POSTFLIGHT OVERSHOOT WHILE THE SPT'S CURVE IS MORE VARIABLE. THERE WERE MARKED DIFFERENCES IN SL-2 CURVES IN TWO OF THE SL-3 CREWMEN -- CDR AND PLT. (SLIDE) AFTER THE FIRST DAY OF THE STABILIZATION PERIOD THERE WAS NO LOSS OR POSSIBLY A SLIGHT GAIN. INFLIGHT THERE WAS AN INITIAL LÓSS FOLLOWED BY A LONG STABLE PERIOD UNTIL JUST PRIOR TO THE END OF THE MISSION WHEN A RAPID RATE OF LOSS (SLIDE ____) OCCURRED. -THE SPT HAD A SLIGHT LOSS

(DURING THE)

DURING THE CONTROL PERIOD, A SLOW LOSS WHICH CONTINUED INFLIGHT AFTER A MARKED DECREMENT OVER THE FIRST FEW DAYS. AFTER RECOVERY WE SEE THE TYPICAL RAPID INCREASE FOLLOWED BY A PLATEAU OR INFLECTION.

ALGO SEEN IN THE CONTROL STUDY. CONVERSELY, THERE ARE MORE SUBTLE PATTERNS, ESPECIALLY THE RAPID SHIFTS WHICH MUST BE INTERPRETED IN CONJUNCTION WITH A GREAT DEAL OF OTHER DATA, SOME OF WHICH UNFORTUNATELY DOESN'T EXIST. THIS ADDITIONAL DATA SHOULD INCLUDE INTAKE OUT STUDIES, PHYSICAL CONDITION OF THE ENDIVIDUAL CREWMEN, AMOUNT OF EXERCISE, LEAN BODY AND FAT STUDIES,

FOR EXAMPLE, IT IS VERY TEMPTING TO POSTULATE THAT
THE RAPID CHANGES SEEN FOR THE FIRST FEW DAYS AFTER
ORBITAL INSERTION AND AFTER RECOVERY ARE FLUID SHIFTS.

(HOWEVER,)

WEIGHTLENSNESS (I. E., THEY DID NOT HAVE NAUSEA, AMOREXIA, OR EXCESS ENVIRONMENTAL TEMPERATURES). THERE WAS NO SUCH RAPID LOSS OF WEIGHT SEEN. CONVERSELY, THE CREWMAN WHO HAD NAUSEA SHOWED A "TYPICAL" RAPID LOSS OF A FEW POUNDS FOR THE FIRST FEW DAYS. WE ARE ATTEMPTING A SERIES OF ADDED STUDIES ON SL-4 TO ATTEMPT TO DOCUMENT ANY FLUID SHIFTS.

AS OFTEN HAPPENS, THE INFLIGHT MASS MEASUREMENT

DATA FROM SKYLAB DEMONSTRATED COMPLEMITIES AND RAISED

QUESTIONS NOT ANTICIPATED PRIOR TO SKYLAB. MOST OF THE

LOSS WILL BE EXPLAINED BY THESE AND COROLLARY MEASUREMENT

EQUALLY IMPORTANT ATTENTION WILL BE PROPERLY FOCUSED

ON THE REMAINING UNKNOWNS SUCH THAT PROPER INVESTIGATION

MAY BE IMPLEMENTED.

(FINALLY,)

FINALLY, THERE IS THE QUESTION OF MASS MEASUREMENT

ITSELE ON FUTURE MISSIONS -- MUSSIONS THAT MAY NOT HAVE

ALMOST UNLIMITED RESOURCES. THE MASS MEASUREMENT

DEVICES FLOWN ON SKYLAB, AE RELATIVELY CRUDE, OBSOLESCENT,

AND EXPENSIVE. IN THE INTERVENING TYEARS SINCE THEIR

DESIGN, I HAVE DEVELOPED A SERIES OF SMALLER, SIMPLER,

AND CHEAPER ALTERNATIVES -- SOME OF WRICH ARE ABOUT

TO BE ZERO-G TESTED WHICH SHOULD ALLOW MASS MEASUREMENTS

ON VIRTUALLY ANY OBJECT IN ALMOST ANY SPACECRAFT.

THANK YOU.