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2—4 BASIC VIBRATION THEORY

PHASE ANGLE. Equation (2.5) for the displacement in oscillatory motion can be
written, introducing the frequency relation of Eq. (2.6),

z = A sinwpt + B cos wyt = C sin (wat 4+ 0) 2.9)
where €' = (A2 + B%% and 0 = tan—! (B/A). The angle 0 is called the phase angle.

STATIC DEFLECTION. The static deflection of a simple mass-spring system is the
deflection of spring k as a result of the gravity force of the mass, 8, = mg/k. (For ex-
ample, the system of Fig. 2.4 would be oriented with the mass m vertically above the
spring £.) Substituting this relation in Eq. (2.8),

fm g L (2.10)
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The relation of Eq. (2.10) is shown by the diagonal-dashed line in Fig. 2.5. This relation
applies only when the system under consideration is both linear and elastic. For ex-
ample, rubber springs tend to be nonlincar or exhibit a dy-

S IV namic stifiness which differs from the static stiffness; hence,

: Eq. (2.10) is not applicable.
I

¥, FREE VIBRATION WITH VISCOUS DAMPING L=3

m {
E Tigure 2.6 shows a single degree-of-freedom system with a
viscous damper. The differential equation of motion of mass

¢ 7, corresponding to Eq. (2.4) for the undamped system, is

I'16. 2.6. Single degree-of-
freedom syst[ém with vis- mz + ¢t +hz =0 (2.11)
cous damper.

The form of the solution of this equation depends upon
whether the damping coefficient is equal to, greater than, or less than the critical damp-
wng coefficient cq:

¢ = 2Vikm = Zinw, (2.12)
The ratio § = ¢/c, is defined as the fraction of critical damping.
LESS-THAN-CRITICAL-DAMPING. If the damping of the system is less than erit-

ical, ¢ <1; the: the solution of Eq. .
(2.11) is o810 T T

z = e~ 4 sin wgt 4 B cos wal)

= Ce~ctl2m gin (wyt -+ ) (2.13)
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where C and 0 are defined with reference | ‘ T \ I
to Eq. (2.9). The damped natural fre- S g5 ‘
quency is related to the undamped natural £ [ \
frequency of Eq. (2.6) by the equation = w ‘ A\
"y | :
we = on(l — )% rad/sec (2.14) - | L\
o i
Equation (2.14), relating the damped and. 5 |
undamped natural frequencies, is plotted = 9 i l i
in Fig. 2.7, L 0 0.5 10
CRITICAL DAMPING. When ¢ = ¢, COMEED NATORAL ERCEUENGY .o
there is no oscillation and the solution UNDAMPED NATURAL FREQUENCY wn
of Eq. (2.11)is F1a. 2.7. Damped natural frequency as a fune-

tion of undamped natural frequency and frac-
z = (A -+ Bt)e—ctlzm (2.15) tion of critical damping.
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SINGLE DEGREE-OF-FREEDOM SYSTEM 2-5
GREATER-THAN-CRITICAL-DAMPING. When { > 1, the solution of Eq. (2.11) i

e e—cl/zm(‘,iew,,\/fz*l t + Bc—w,,\/f.!?l t) (2.16)

This is a noneseillafory motion; if the system is displaced from its equilibrium position,

it tends to return vrr.mually

LOGARITHMIC DECREMENT. The degree of dampm(' in & system having ¢ <1
may be defined in terms of successive pe :ak values in a record of a free oscillation. Sub-

stituting the éxpression for critical ds Lmv)m;,
from Tq. (2.12), the expression for free vi-
bration of a dumpcd system, Eq. (2.13),
becomes

z = Cetu! sin (wyt - 0)  (2.17)

Consider any two maxima (i.e., value of =
when dx/di = 0) separated by n cycles of

oscillation, as shown in Fig. 2.8. Then the

ratio of these maxima, is

In _ —2mndl =¥ (2.18)
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Values of z,/z, are plotted in Fig. 2.9 for
several values of n over the range of ¢ from
0.001 to 0.10.

The lu./ar,tlumc decrement A is the natural
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Fia. 2.8. Trace of damped free vibration
showing amplitudes of displacement maxima.

logarithm of the ratio of the amplitudes of two successive cycles of the damped free vi-
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I'1c. 2.9. Effect of damping upon the ratin of
displacement maxima of & damped free vii
tion.

Z T
=log= or Z_,a (2.19)
£y 21

A comparison o
(2.18) when =
expression for A:

this relation with Eq.
1 gives the following

!l £,

B 2wt
L — g

The logarithmic decrement can be ex-
pressed in terms of the difference of
successive amplitudes by writing Eq.
(2.19) as follows:

(2.20)

= e P TR
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Writing e~ in terms of its infinite ser e;

the follo\vmg expression is obtained which

gives a good approximation for ¢ < 0.2:
L] — Iy

=A 2.
~ (2.21)

For small values of ¢ (less than about
0.10), an approximate relation between



