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Modern techniques in structural biology, like homology modeling, protein thread-

ing, protein fold classification, and homology detection have proven extremely use-

ful. For example, they have provided us with evolutionary information about protein

homology which has in some many cases lead directly to therapeutics. Due to the

importance of these methods, augmenting or improving them may lead to signifi-

cant advances in understanding proteins. These methods treat the high-resolution

structure as a static entity upon which they operate, however we know that proteins

are not static entities—they are polymers that exist in an enormous array of con-

formational states. Therefore, we propose to model the proteins from a statistical

thermodynamic viewpoint based upon their average energetic properties. We show
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that this model can be used to (1) better characterize the partial unfolding process

of proteins, and (2) reclassify the protein fold space from a new perspective.
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Chapter 1

Introduction

Current methods in structural biology like homology modeling, threading, ab ini-

tio modeling, and fold space classification have proven extremely useful. They

have allowed the elucidation of heretofore unknown evolutionary relationships be-

tween proteins (Holm and Sander, 1993), and in many cases have even led directly

to treating disease (Zhao et al., 2000). While incredibly useful, inherent in all of

these methods is the lack of dynamical information about the proteins. All of these

models consider the protein as a static entity. But, a static structure cannot thor-

oughly account for all the properties of a dynamic macromolecule that samples an

amazingly large array of conformers. Simply put, biologically relevant informa-

tion is lost when one models the protein based solely upon a single static structure.

To illustrate the importance of this point, consider the triosephosphate isomerase

(TIM) barrel family of proteins (see Figure 1.1). The TIM barrels are classified into

one family of structures due to their composition and organization of observed sec-

ondary structures, but the collection of TIM barrel proteins has well over two dozen

1



Figure 1.1: Two representative proteins (PDBID: 1CEN (Domı̀nguez et al., 1996),
right; 1AH4 (Urzhumtsev et al., 1997), left) from the TIM-barrel protein family.
They have similar structure, but different function. 1CEN is an aldose reductase
while 1AH4 is a cellulase. The TIM-barrel family of proteins has over two dozen
known functions, from one similar scaffold.

disparate functional characteristics (Qian et al., 2001). This is one example where

observations belie current dogma: how can a protein that looks very similar to an-

other have completely unrelated function? Consider another important problem:

the evolutionary progression of protein folds. When the protein fold space—the

organized collection of all protein folds—is clustered into a complete hierarchy, we

can surmise that proteins at the very lowest levels (most similar) of the hierarchy

are evolutionarily related by some ancestral fold, but we cannot make any credible

statements about the evolutionary organization of the fold space from the point of

families of folds (higher up in the tree). Figure 1.2 illustrates this concept. At the

lowest parts of the hierarchy, the proteins are related by some common ancestral

fold. However, at the level of grouping families, we cannot make any assumptions

as to the evolutionary history of the families.
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Figure 1.2: Example hierarchy showing four protein families. Each of the four
protein families can be seen as descending from one common ancestral protein.
However, we cannot make any credible statements about the relationship between
the tumor necrosis factor (TNF) family and the cyclic adenosine monophosphate
binding protein (cAMP), or the retinol binding (RBP) proteins.

Protein fold progression and the evolutionary relationship between folds are

part of the foundation used throughout traditional methods of protein comparison.

Homology modeling is successful if the target sequence is similar enough to the

source. The success of protein threading also is directly related to the evolutionary

distance between the target and source. Because the current definition of protein

fold space is undergoing refinement (Honig, 2007; Kolodny et al., 2006), novel

information concerning the relationship between protein folds or their constituent

3



pieces will be of value to the field.

Hypothesis and Goals Noting the lack of dynamical information in current

methods in structural biology, we believe that by representing proteins as dynamic

entities that we can provide novel information, augmenting traditional methods of

structural biology. To that end the goals of my project are to:

• represent proteins as thermodynamic “structures”;

• elucidate the biophysical meaning of the dynamic structures and fragments;

• redefine the protein fold space based upon the dynamic structure model.
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Chapter 2

Background and Significance

Introduction Before discussing our hybrid structural-thermodynamic represen-

tation of proteins, it may be necessary to briefly introduce statistical mechanics and

thermodynamics. Exact mechanics or simply, mechanics, is the science of mov-

ing objects. For example, Newton studied the laws of mechanics and devised his

very well-known three laws of motion. For describing simple objects, mechanics

is helpful. However, when one wants to study a large collection of objects, say for

example gas molecules, or proteins, or even money, one cannot rely simply on ex-

act mechanics due to computational intractability of calculating the exact solution1.

When dealing with large collections of objects, or ensembles, one then takes advan-

tage of statistical mechanics. Statistical mechanics is the application of probability

theory to mechanics.

1Admittedly much progress has been made using exact mechanics for macromolecular research,
called molecular dynamics (MD), but the field is limited by the inherent exponential running
time of the calculations. Thus, biologically relevant time scales are difficult to realize with MD.
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Statistical Thermodynamics Statistical thermodynamics is, similarly, the ap-

plication of probability theory to many-bodied systems under thermodynamic con-

trol. The goal of statistical thermodynamics is to understand the observable macro-

scopic properties of these systems by linking statistical and probabalistic tools to

the thermodynamic equations defining the system. The problem of statistical ther-

modynamics as one of the founders, Schrödinger writes,

. . . is, essentially, only one problem [in statistical thermodynamics]:

the distribution of a given amount of energy E over N identical sys-

tems. (Schrödinger, Erwin, 1952)

There is a basic recipe for most statistical thermodynamic problems. Given some

object to study: (1) make many virtual copies of the object (called a Gibbs’ En-

semble); (2) perturb each copy in some small, but measurable way, (this slightly

perturbed state is called a microstate); (3) calculate an energy for each microstate;

(4) calculate relative probabilities for each microstate by comparing individual mi-

crostates to the sum of all microstates in the ensemble. The sum of all microstates

is also known as the partition function. The energy-weighted properties of the mi-

crostates are then summed up over the entire ensemble. This yields “ensemble-

averaged” macroscopic results—a probabalistic representation of the entire collec-

tion of states. The power of statistical thermodynamics lies in its ability to allow

interpretation of macroscopic observables from microscopic properties.

6



2.1 COREX: A Structural Thermodynamic Model

of Proteins

2.1.1 History

Linking Statistical Mechanical Theory to Observation In the late 1970s,

Freire and Biltonen demonstrated a method to predict the existence of, and thermo-

dynamically characterize, equilibrium folding-unfolding intermediates (Freire and

Biltonen, 1978). They discovered that this statistical mechanical model accurately

represented the observed differential scanning calorimetry (DSC) unfolding pro-

file of various proteins. In fact the theoretical framework was general enough to

be applied to any two-state transition in single domain proteins. The apparent ex-

cess enthalpy, 〈∆H〉, was derived by integrating the excess heat capacity, 〈∆Cp〉,

measured from the DSC unfolding experiments. The partition function Q was then

derived as:

QT = exp

(∫ T

T0

〈∆H〉
RT 2

)
dT ,

where 〈∆H〉 is the calculable excess enthalpy from DSC. This links the theoretical

partition function to the observable enthalpy and allowed the theory to be applied

to various systems and extended to include structural thermodynamics.

Structural Thermodynamics A few years after the theoretical framework of

Freire and Biltonen had been devised, two important experimental observations

arose. The first was the discovery that one could linearly relate the energetics

of unfolding (∆Cp, ∆H , ∆S) of small polypeptides called “model compounds”

7



to the amount of surface area being exposed in the unfolding event (Murphy and

Gill, 1990). And, the next important observation arose from nuclear magnetic res-

onance (NMR) based hydrogen-deuterium exchange (HDex) experiments. This ex-

perimental methodology brought to light the nature of “local unfolding,” showing

the existence of thermodynamically predicted intermediate equilibrium states in

proteins (Baum et al., 1989). In HDex experiments one measures the protection

factor or the rate at which solvent deuteriums exchange with the protein’s hydro-

gens. The residues with more protection—those that are folded away from solvent

or considered more “stable”—have lower rates of exchange.

Knowing that there exist experimentally verifiable equilibrium intermediate

states and a method to link the change in surface area of the intermediate states

to the energetics of the transition, the theoretical model posited by Freire and Bil-

tonen could be further advanced to model the energetics of the transition state in-

termediates through estimable calculations of their surface area changes (Freire and

Murphy, 1991; Murphy and Freire, 1992). For each intermediate state, called a “mi-

crostate”, i, the Gibbs-Helmholtz equation can be used to calculate the free energy,

∆Gi, of the microstate:

∆Gi = ∆Hi − T∆Si ,

which with non-zero ∆Cp expands to

∆Gi = ∆Hi(T0,H)− T∆Si(T0,S) + ∆Cp,i

[
(T − T0,H)− T ln

T

T0,S

]
. (2.1)

I shall explain the derivation of each term in Equation 2.1. First, the change in heat

8



capacity, ∆Cp,i is related to the ∆ASA by the linear function:

∆Cp,i = 0.45∆ASAapol − 0.26∆ASApol . (2.2)

This is the best-fit equation derived from a dataset of model compounds (Murphy

and Gill, 1991; Murphy et al., 1990). Next, it was shown (Xie and Freire, 1994)

that the enthalpy of the reaction, ∆Hi, could also be linearly related to ∆ASA by

∆Hi(T = 60) = −8.44∆ASAapol + 31.4∆ASApol . (2.3)

Lastly, the entropy, ∆Si, at the temperature T is related to the ∆ASA as:

∆Si(T ) = ∆Cp,apol ln

(
T

385

)
−∆Cp,pol ln

(
T

335

)
, (2.4)

where the 385◦K and 335◦K the temperatures at which the apolar and polar sol-

vation entropies are zero, respectively (D’Aquino et al., 1996; Murphy and Freire,

1992).

It is worth noting that because the energy function ∆Gi is based upon the

apolar and polar surface area changes that each thermodynamic quantity discussed,

∆Gi, ∆Hi, ∆Si, can be further decomposed into their apolar and polar contribu-

tions. For example, ∆Gi,total = ∆Gi,apolar + ∆Gi,polar.

Now that the energetics of transition states has been expounded upon, we

can consider the statistical probability of any given microstate being populated in
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the Gibbs’ ensemble. Each microstate was given a statistical weight,

Ki = exp (−∆Gi/RT ) .

The statistical weight when related to the partition function defines the probability

that the given microstate will be populated in the ensemble of states. Symbolically,

the probability of a given microstate i in relation to the partition function Q is:

Pi =
Ki

Q
=

Ki∑N
i=1 Ki

.

Once probabilities of microstates are known, they are weighted against a signal

emitted by that microstate. This is exactly how equilibrium based experiments,

like circular dichroism (CD), HDex, NMR, and X-ray crystallography work. For

example, imagine that we want to monitor the progress of protein unfolding through

the measurement of tryptophan fluorescence. Because the protein is in equilibrium,

sometimes the tryptophan is protected from solvent (emitting) and other times in

solvent (quenched). Ignoring for now the complexities involved in the amount of

photon emission define Ii as the level of emission from state i. Then, as we monitor

the reaction as a function of some variable, we observe that the fluorescence can

be modeled as: 〈I〉 =
∑

PiIi. That is, the observed signal from the states that are

more dominant (higher Pi) in the ensemble are more highly represented that those

states with a lower probability.
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Figure 2.1: A schematic diagram showing how COREX creates the Gibbs’ ensem-
ble. COREX performs combinatorial local unfolding on the native protein struc-
ture. All possible states in the equilibrium folding-unfolding ensemble are sam-
pled. Each state is assigned a probability in the ensemble. Then, the thermody-
namic properties at each state are weighted by that state’s probability. Ensembles
typically contain more than 1,000,000 microstates.

2.1.2 The COREX Model Defined

In 1991, Freire and Murphy defined a method to partition the protein sequence

into windows of unfolding (Freire and Murphy, 1991). For each window a ∆ASA

would be calculated and given a Gibbs’ free energy as explained above. They de-

fined their partition boundaries at secondary structure boundaries. The assumption

was that secondary structural elements would act cooperatively and typically be

more stable. This increased the speed of the calculations of the structural thermo-
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dynamics, at the cost of fine-grained accuracy.

Hilser and Freire, in 1996, devised the sliding-window concept to define

windows of unfolding (Hilser and Freire, 1996; Hilser et al., 1996). This algo-

rithm, while computationally more costly, allowed more precise calculations of the

structural thermodynamics at the residue-level. Instead of fixed window boundaries

aligned with secondary structure boundaries, COREX calculates the local unfold-

ing of fixed-sized windows with sliding boundaries across the entire protien. It then

unfolds each window, combinatorially, and calculates an energy for the microstate.

The protein ensemble is created by sampling all possible states in the equilibrium,

from fully folded to fully unfolded. Figure 2.1 illustrates the partially unfolded

ensemble. COREX unfolds windows, instead of single residues to aide in the prob-

lem of the exponential nature of the calculation. That is, to sample a protein of N

residues by locally unfolding all combinations of a single residue requires 2N − 1

calculations, whereas with a window size of w the calculation is pared down to

2N/w − 1 calculations. COREX also ensures that a residue is sampled close to

and far from boundaries by sliding the windows. This removes edge-effects from

boundary conditions that the residue may experience.

Ensemble-Average Residue-Level Energetics COREX is able to deter-

mine ensemble-average energetics for microstates, as well as for residues. This

allows COREX to calculate local viewpoints of residue energetics across the pro-

tein. Figure 2.2 shows an example stability profile [∆G] for the Kunitz Type Do-

main C5 Protein (PDBID: 1KTH). The ordinate axis units are in energetic units

of (cal/mol). Calculation of the ensemble-average residue-level energetics for a

12
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Figure 2.2: Ensemble average stability profile [∆G] for the Kunitz Type Domain C5
Protein. This plot was made by using Equation 2.13 on the thermodynamic output
data from COREX.

residue is done as follows. For some residue under investigation, r, and the entire

ensemble of states, S, let

Fr = {∀ microstates s ∈ S | residue r is folded in microstate s} ,

and

Ur = {∀ microstates s ∈ S | residue r is unfolded in microstate s}
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be the sets of microstates (subensembles) where residue r is folded and unfolded,

respectively. Then, the energetics associated with the folded subensemble are

〈∆G〉Fr =
∑
Fr

P ·∆G (2.5)

〈∆Hapol〉Fr =
∑
Fr

P ·∆Hapol (2.6)

〈∆Hpol〉Fr =
∑
Fr

P ·∆Hapol (2.7)

〈∆Sr〉Fr =
∑
Fr

P ·∆S . (2.8)

The unfolded-ensemble averages are likewise,

〈∆G〉Ur =
∑
Ur

P ·∆G (2.9)

〈∆Hapol〉Ur =
∑
Ur

P ·∆Hapol (2.10)

〈∆Hpol〉Ur =
∑
Ur

P ·∆Hapol (2.11)

〈∆Sr〉Ur =
∑
Ur

P ·∆S . (2.12)

The differences in the folded and unfolded weighted subensembles for each thermo-

dynamic property yield the residue-level ensemble-average thermodynamic proper-
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ties. Symbolically,

[∆G]r = 〈∆G〉Fr − 〈∆G〉Ur (2.13)

[∆Hapol]r = 〈∆Hapol〉Fr − 〈∆Hapol〉Ur (2.14)

[∆Hpol]r = 〈∆Hpol〉Fr − 〈∆Hpol〉Ur (2.15)

[∆S]r = 〈∆S〉Fr − 〈∆S〉Ur (2.16)

The residue-level energetics in Equations 2.13–2.16 are the basis for amino acid

specificity (Wrabl et al., 2002) and fold discrimination (Larson and Hilser, 2004).

The elucidation of the biophysical meaning of the residue-level ensemble-average

thermodynamics is a major part of this project, and is discussed at length in Sec-

tion 3.3.

Ensemble-based Polar/Apolar Enthalpy with Respect to Polar/Apolar

Accessible Surface Area Changes Using Equations 2.2 and 2.3 we can re-

arrange terms and solve for ∆ASAapolar and ∆ASApolar given ∆Hapolar and ∆Hpolar.

Through collection and rearrangement of terms we see that,

∆H(25) = ∆H(60) + ∆Cp(T − 60)

= −8.44∆ASAapol + 31.4∆ASApol+

[0.45∆ASAapol − 0.26∆ASApol] (T − 60) .

(2.17)
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Let T 0 = T − 60. Which leads to,

∆ASAapol =
∆Hapol(25)

aH + aCp ∗ T 0
, (2.18)

∆ASApol =
∆Hpol(25)

bH + bCp ∗ T 0
. (2.19)

We must be cautious about the interpretation of Equations 2.18 and 2.19. The ∆H

in the numerators are ensemble averages of the difference in enthalpy between the

unfolded subensemble and the folded subensemble. These equations will be used

later on to investigate the biophysical meaning of the thermodynamic environment

space.

2.1.3 Applications and Validation

COREX is founded in the formal theory of statistical thermodynamics. Further-

more, the energy function is derived from experimental observation of ∆ASA and

how it relates to Ki. Here I will show that this foundation provides it with the means

to model various experiments that serve as validation of the methods. Further ap-

plications and validation of the COREX algorithm are discussed below.

Hydrogen-Deuterium Exchange COREX was shown to accurately recreate

the HDex protection factors for hen egg-white lysozyme, equine lysozyme, bovine

pancreatic trypsin inhibitor, staphylococcal nuclease, and turkey ovomucoid third
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domain (Hilser and Freire, 1996). The natural log of the stability constant,

ln κr = ln

∑
Fr

PFr∑
Ur

PUr

,

defined for each residue in the protein models the HDex protection factors men-

tioned above.

Fold Recognition Using COREX it was shown that amino acids had propensi-

ties for certain thermodynamic environments in proteins (Wrabl et al., 2001). Then,

it was suggested that the thermodynamic environments could be used for discrimi-

nation of fold specificity (Wrabl et al., 2002). Larson et al then demonstrated this,

when position-specific scoring matrices were trained with strictly thermodynamic

information instead of amino acids sequence information and then used to detect the

amino acid sequence from a decoy data set (Larson and Hilser, 2004). This method

is similar to the one used by Gribskov (Gribskov et al., 1987), but used strictly ther-

modynamic parameters. The results of this study indicated that: (1) when the entire

space in which the residues lie is partitioned into eight regions, fold recognition is

achieved with 84% success. Interestingly, the eight partitions are independent of

secondary structure. Larson showed that when the PSSM was trained using only

alpha proteins, that when tested against all beta proteins, the fold recognition was

nearly as successful. This indicated the same information was encoded into both

alpha and beta proteins.

This project reaches one step further, to define an energetic fold, not just

discriminate between them.
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Figure 2.3: The natural logarithm of the residue stability constants (black lines)
and residue protection constants (blue lines) calculated for the PHS ensemble. The
COREX model identifies the residues responsible for the observed difference in
proton binding upon acid unfolding with respect to the static calculations. The
residues of interest are those in which the residue stability constants does not match
the residue protection constants. Image courtesy of Steve Whitten. Used with per-
mission.

pH Effects Recently, COREX has been used to represent local pH effects in pro-

teins (Whitten et al., 2005). Local conformational fluctuations have been correlated

to proton binding in staphylococcal nuclease. See Figure 2.3, for details.

Functional Residue Detection Liu et al have shown that COREX can be used

to detect functional residues in proteins. She discovered that residues that are func-

tionally relevant have statistically significant higher effects upon mutation of affect-
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ing the calculated ensemble (Liu et al., 2006).

2.2 Current Methods in Protein Structure

Comparison and Fold Space Classification

Before discussing the dissection of the protein fold space, one needs to understand

how to quantitatively compare proteins. I start with expounding on protein compari-

son using sequence methods then move to structural methods. After the quantitative

methods are introduced, then I discuss how the field puts these methods to use in

protein fold space classification.

2.2.1 Sequence Alignments

The first methods of protein homology detection were through sequence alignment

techniques. In protein sequence alignment, each amino acid is assigned a symbol

from some alphabet. Each protein sequence is then treated as an array of symbols.

Two proteins sequences are considered related if their two sequences have a high

number of overlapping symbols (Altschul et al., 1990) or if a properly weighted

matrix could be used to detect homologous sequences from a database of decoy

sequences (Gribskov et al., 1987). Typically, statistics are used to identify uncom-

monly high matches. For example, one can relate a series of sequences by pairing

together the two sequences with the highest Z-score. The Z-score is a statistical

measure of how far away from the mean a data point is in a normal distribution,

in units of the standard deviation (sd). By choosing paired sequences with a high
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PDBID Amino Acid Sequence Last

1CLL ----EFLTMMARKMKDTDSEEEIREAFR----------VFDK 94
|||||||||||||||||||||||| ||||

1GGZ ----EFLGMMARKMKDTDNEEEIREAFR----------VFDK 94
| || | |

1PXY DGKYAFAEMMTEDVETCRDERCYRLWINSLGIDSYVNNVFED 300

Table 2.1: An example of a multiple protein sequence alignment. The first two
sequences are from homologous proteins (PDBIDs: 1CLL, 1GGZ) (top two rows).
The last is a protein sequence (PDBID: 1PXY) chosen at random to illustrate low
sequence identity. The PDBIDs appear at the left, the sequence in the middle, and
the residue number of the last residue on the right. The vertical bar (|) between two
rows indicates an identity between two sequences.

Z-score we can be statistically assured of a close relationship between the two se-

quences. Table 2.1 shows a sample multiple sequence alignment. Extensions of

these method were introduced like allowing gaps and recalculating penalty scores

for mismatched but biophysically similar residues (Henikoff and Henikoff, 1992;

Schwartz and Dayhoff, 1979). Soon after, multiple sequence alignments (Bateman

et al., 2002; Thompson et al., 1994) were introduced as a way of classifying many

sequences into fold families.

The problem of sequence alignment (for two sequences) is in the class of

polynomial time solvable problems, P. This means exact solutions are essentially

guaranteed and are fast. The standard running time for two protein sequences of

lengths m and n, is Θ(m · n). Most algorithms solve the problem through dynamic

programming (Needleman and Wunsch, 1970; Smith and Waterman, 1981).

Protein sequence alignment is still tremendously useful. And, because there

are far more known protein sequences than high resolution structures, protein se-
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quence alignment will continue to be used in structural biology. But, protein se-

quence alignment suffers from that fact that protein sequences are far less con-

served than are protein structures. Therefore, protein structure alignment exploded

in popularity soon after protein sequence alignment.

2.2.2 Protein Structure Alignments

It was observed early on that protein structures have redundant structural features at

both the secondary-structure (Chothia and Levitt, 1977), and tertiary-structure lev-

els (Holm and Sander, 1996). As an example to illustrate the point, Figure 2.4 shows

four randomly selected helices from the PDB. The four helical segments matched

each other to no more than 0.484 Å RMSD. The four helical structures are so simi-

lar that their four cartoon backbones when superimposed look like one. In fact there

is so much redundancy, that many protocols for protein classification involve a first

step of removing redundancies (Holm and Sander, 1999). Also, structure align-

ments can be improved through consideration of the amino acid sequence (Brenner

et al., 2000).

Structure Definition The problem of structure alignment is important in struc-

tural biology: it is believed that a “high degree” of protein structure implies evolu-

tionary consanguinity. So to attack the problem of protein structure alignment, the

problem should be stated precisely.

Structure alignment has two steps to it. The first step is matching which

residues from the first protein are to be matched to which residues from the second
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Figure 2.4: Image showing four randomly selected helices from the PDB. The he-
lical segments were then aligned using the “super” command in PyMOL (DeLano,
2002). The maximum deviation between the four structures is 0.484 Å RMSD. The
regularity of the helical structure is exemplified in the overlap of the amino acid
sidechains from truly randomly selected proteins.

protein. This step is computationally very expensive. In fact it’s been proven to

be in the set of non-deterministic polynomial time complete (NPC) solvable prob-

lems (Goldman et al., 1999). Therefore, one has to relax the problem or perform

some heuristic optimization to approach the exact solution. The second step is op-

timally aligning and scoring the deviation of the matched residues. This requires a

rigid-body rotation and translation of one set of points onto the other. A beautiful,

closed form solution to the problem of optimal superposition was published Wolf-

gang Kabsch, in 1976 (Kabsch, 1976) and made more accessible in 1978 (Kabsch,

1978). The details of Kabsch’s algorithm are discussed in Section 6.2.4. Since then
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other methods have been established (Coutsias et al., 2003).

2.2.3 Protein Fold Space Dissection and Organization

Once a method of protein alignments has been devised, one can compare each pro-

tein in a data set to each other protein. This yields a (square, symmetric) matrix of

scores identifying the level of similarity among each protein. This similarity matrix

can then be clustered, or otherwise partitioned to define fold families, or classes.

Various methods have been used to cluster the protein fold space (Day et al., 2003;

Holm and Sander, 1993; Hou et al., 2003; Shindyalov and Bourne, 1998). The

concept of protein fold space has been advancing from a discrete definition to a

continuous definition (Kolodny et al., 2006). As a visual example of what it means

to partition fold space, consider Figure 2.5. This image shows the clustering re-

sults of structurally comparing seven families of proteins. Each protein is colored

by which class it has come from. Note how the colors cluster appropriately in the

projected space.
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Figure 2.5: Stereo image showing the virtual (projected) protein fold space. Each
protein is represented by a dot colored according to the family of the protien. This
original space is 13-dimensional. To create this image, I used a linear subspace
decomposition (isoMDS) technique to organize and project the data into a 3D rep-
resentation. Note how each class indeed clusters around some central location in
the projected space. Boundaries for this data would be very easy to draw.
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Chapter 3

The Thermodynamic Structure

Definition of Proteins

3.1 Thermodynamic Structure Definition of

Proteins

The Thermodynamic Definition of a Protein As we know, the typical pro-

tein structure is defined by the atomic coordinates of each atom in the high-resolution

structure file. So, for each atom we have its corresponding (x, y, z) coordinates as

a vector in R3. In this project, we define the thermodynamic structure of a pro-

tein by assigning to each amino acid a vector in R4 defining its location in some

space. The coordinates that define the vectors are the ensemble averaged residue-

level thermodynamic properties from the COREX output [∆G], [∆Hapol], [∆Hpol],

[∆S] (Equations 2.13–2.16). To contrast the ideas and provide an example ther-
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Figure 3.1: Comparison of Protein Structure and Thermodynamically Defined Pro-
tein Structure. (A) A table is shown (top left) with a snapshot of the atomic co-
ordinates for the Monocyte Chemotactic Protein 2 (PDBID: 1ESR). When these
coordinates are plotted into a 3D space, the result is an image of the structure (top
right). (B) A table (bottom left) is shown with a snapshot of the 4D thermodynamic
coordinates for the same protein as above. The first three dimensions of the data are
plotted and the resultant structure shown (bottom right). Both proteins are colored
along their sequence.

modynamic structure, Figure 3.1 shows a comparison of typical structure definition

with our thermodynamic definition.

3.1.1 Thermodynamic Structure Data do not Mirror

Typical Protein Structure Data

Our data set has various attributes that are very different with respect to that of nor-

mal protein structure space. Typical protein structure data observe rules enforced

by physics and chemistry. First, two atoms within a structure cannot occupy the
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Figure 3.2: Comparison of Distances Between Contiguous Residues. Notice how
more than 99% of the typical structure distances are within the range of 3.4–3.8 Å.
TE structure definition has no such constraint. Over 17,000 residue-residue dis-
tances were calculated for these two plots.
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same place at the same time. Our energetic data can, and do. Second, two alpha-

carbon residues contiguous in sequence must be within about 3.4–3.8 Å due to

bond lengths. Our data show that sequence neighbors can have very large energetic

jumps in TE space. A comparison of the contiguous residue distance in typical

structure space and TE space are shown in Figure 3.2. Notice that the variance in

structure data is very small in comparison to our TE data. The plot also indicates

that energetic jumps of up to about 20,000 (cal/mol) are still commonplace.

This deviation from typical structure-based rules is important to recognize.

Current methods in structure alignment make many assumptions about protein struc-

ture to decrease the running time of the algorithm. Because of the features of this

data set, we have to investigate every assumption for validity with our data. In fact,

many changes were implemented from current methods to detect commonalities

in thermodynamically defined protein structures. These changes are discussed in

Section 6.2.3.

3.2 Thermodynamic Environment (TE) Space

We define the thermodynamic environment space, or TE space as the subspace

spanned by energetic dimensions [∆G], [∆Hapol], [∆Hpol], [∆S] of the COREX

output. TE space is simply the space taken up by the collection of points that are

output from COREX. An example of the TE space used in this project is shown in

Figure 3.3. Over 17,000 points in four dimensions are plotted; this is raw output

from the COREX algorithm run over a database of proteins. (The actual database

used in this study is discussed in Section 6.1 on page 87.) The original energetic
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Figure 3.3: The original data is plotted on the original thermodynamic axes. The
entropy dimension is plotted as color.

29



axes are labeled. The entropy dimension, [∆S], is presented as the color of the

points.

Inspecting Figure 3.3, we can see that the TE space spans all of the four

thermodynamic dimensions (again, [∆S] is represented as color). Next, the data

assume an arrowhead shape in the space. These boundaries on the shape of the

space imply some biophysical limitation to the TE space.

3.3 Properties of the Thermodynamic

Environment Space

A major underpinning of this project is a biophysical characterization of this TE

space. Characterizing the structure of this space will allow us to answer questions

that are still unknown about COREX and proteins. For example, why are two dif-

ferent residues in two different secondary structures from different proteins of dif-

ferent lengths positioned near each other in TE space? What can the position in TE

space tell us about residue stability? Can we apply this knowledge? The answers

to these questions hinge on the interpretation of the TE space, and are answered by

this project.

The methods that I carried out to characterize the TE space are presented in

the next two chapters. There are two main portions to the analysis. The first set

of methods we attempted were statistical and cluster based; these are discussed in

Chapter 4. They did not reveal the fine level of detail needed to elucidate the bio-

physical mechanisms behind the TE space. Yet they are included because they do
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provide some information about the TE space. The second set of methods discussed

in Chapter 5 revolves around a linear subspace decomposition of the original data.

We then linked this lower dimensional space back to our original data, and our orig-

inal data back to the microscopic property, ∆ASA. This allowed us to accurately

elucidate the biophysical mechanism behind the organization of the energetic space.

Because the thermodynamic values given to the residues are ensemble-based,

we must change our way of thinking about residues in TE space. All residues now

become ’faceless’ in that they are just place holders; the TE space describes the en-

vironment the residue is in, not the residue itself. This is the result of the methods: if

we are combinatorially unfolding all possible windows of residues and calculating

[◦] = 〈◦〉F−〈◦〉U for all energetic properties, then the energetics come from the dif-

ference of weighted subensembles of very different states where only one window

is fixed. Thus, the energetics cannot be the result of only one window or residue. To

be clear, each residue does contribute to its environment but does not preponderate

the results. This is also the reason why the results from the statical methods for TE

space characterization were not enough to make definite statements.
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Chapter 4

Statistical Methods for Elucidating

the Organization of the

Thermodynamic Environment Space

4.1 Statistical Data Mining Tools: Clustering

Introduction With the advent of large, high-dimensional data sets and the de-

sire to discover patterns or structure in the data, statistical data mining tools, like

clustering(Braak, 1986; Hand, 1997, 1999), linear and nonlinear multidimensional

scaling(Guess and Wilson, 2002; Hill, 1974; Tenenbaum et al., 2000), are timely

solutions(Holm and Sander, 1996). These data mining tools are convenient for de-

termining unbiased (with relation to the investigator) relationships in data.

In this project we use single (HCLUST) and double agglomerative hierarchi-
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cal (HEATMAP) clustering, and partitioning around medoids (PAM; or CLARA for

very large data sets). The input to all data mining tools is either the raw data or a

distance matrix representing interpoint distances. For very high dimensional data

or nonlinear data, the distance matrix can sometimes converted by a topological de-

composition technique such as multidimensional scaling(Tenenbaum et al., 2000)

or locally linear embedding(Roweis and Saul, 2000). The output of these clustering

methods is either a dendrogram representing a phylogeny based upon the similari-

ties of the data, or a label for each point that dictates what family that point belongs

to.

It is interesting to note that the location of a data point in a high-dimensional

space represented by a distance matrix is determined by that point’s similarity to

its spatial neighbors and also its dissimilarity with remote neighbors. Consider an

example of three proteins, A, B and C. Let A and B have great structural overlap,

and C be unrelated to the A and B. Then, A and B will be close together in space

because of (1) their high similarity to each other and (2) their high dissimilarity to

C. If B and C were somewhat similar, then that change make the distance between

A and B larger.

Clustering Methods There are two types of hierarchical clustering, agglomer-

ative and divisive. Agglomerative builds clusters in a bottom-up fashion. It first

considers each point as its own cluster and then tries to build successively larger

clusters depending on where each point is in space and the algorithm. Divisive

clustering is a top-down method. It considers all the points in one large cluster then

tries to form smaller and smaller clusters until each point is then it its own cluster.
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We use Ward’s method of hierarchical clustering(Ward, 1963). Ward’s method

finds clusters such that their members have the highest amount of similarity. The

exact R command we used is shown in Listing4.1.

Source Code 4.1: R Source Code for Clustering Using Ward’s Method

# Assuming the data is a vector of observations,
output <- hclust( dist(data), method="ward" );

# Or, assuming the data is an NxN matrix of similarities,
output <- hclust( as.dist(data), method="ward" );

Ward’s method was used to find fold families in our database of thermodynamically

defined proteins, as discussed in Section 6.3.

Double hierarchical clustering(Eisen et al., 1998) is carried out using the

heatmap function in R. The goal of double hierarchical clustering is similar to

other clustering methods, but gives both a row and column dendrogram. Thus, we

can determine the organization the dimensions that the data are in, as well as the

data themselves. The heatmap algorithm was used to find amino acid and sec-

ondary structure correlations with the structure of our thermodynamic environment

space, described below in this chapter.

PAM, or partition around medoids, is the last cluster method we used(Kaufman

and Rousseeuw, 1990). PAM begins by finding “medoids” or centrally located

points in the data. It then assigns each point to in the data set to the closest medoid.

An objective function that measures the amount of dissimilarity is calculated. If

that objective function can be reduced, by reassigning a point to another cluster, it

does so. PAM stops when it’s objective function can no longer be minimized. PAM1

1Actually, because the database had nearly 80,000 pieces of data CLARA was used. CLARA is a

34



was used to assign a cluster number to each point in our human protein database.

4.2 TE Characterization I: Statistical and

Cluster-based TE Subspace Decomposition

4.2.1 Secondary Structure and Amino Acid Type do not

Define the TE Space

It was demonstrated that the amino acid sequence, and thus protein fold, can be dis-

criminated from decoys by training a position specific scoring matrix (PSSM) using

purely thermodynamic information. Each residue in the thermodynamic database

used to train the PSSM, now by definition, lies in our thermodynamic environment

space. Furthermore, it was shown that this TE space is not organized by secondary

structure rules (Larson and Hilser, 2004). This implies that there is some funda-

mental biophysical meaning to the organization and location of the data in the TE

space.

For example, consider the three points listed in Table 4.1. The table shows

one random residue selected from the database and its two closest neighbors. It

also shows the amino acid type, the secondary structure, and the ensemble averaged

energetics associated with the residues. These three residues were used to help find

their fold among decoys. So, there is some information associated with the location

in TE space with each residue. The randomly selected amino acid (entry number

relaxed version of PAM that is used for large applications.
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Entry No. PDBID AA SS [∆G] [∆Hapol] [∆Hpol] [∆S]

4280 1FP5 PRO-381 Coil -3504 4999 -7391 -3794
4559 1FW1 GLN-121 Helix -3722 4960 -7412 -4103
16106 1ZXQ ALA-140 Turn -3647 4842 -7296 -3470

Table 4.1: Table showing the structural and energetic properties for a random
residue (row 1) and its two closest neighbors in TE space. The residue in row 1,
was randomly chosen from the database. Notice that the secondary structural (SS)
in each of the three residues is different: coil, helix, turn for rows 1–3, respectively.
Also notice that the amino acids (AA) are different at each location. All energetic
units are in (cal/mol). To illustrate the proximity of the two points to the first, their
distances from the first are 222 and 232 (cal/mol), respectively; and, the average
distance for all other points from the first point is 8571 (cal/mol). These points are
relatively very close. The reason why is explicated later in this Section.

4280) was PRO-381 from the Ige Heavy Chain Epsilon-1 (PDBID: 1FP5) protein. It

is in a coil. The closest residue in TE space to PRO-381 is GLN-121 (entry number

4559) from the Glutathione Transferase Zeta (PDBID: 1FW1), shown in row 2. It

is in a helix. The last residue is ALA-140 (entry number 16106) from the ICAM-2

protein (PDBID: 1ZXQ). The alanine is in a hydrogen-bonded turn. Methods of

typical structural comparison would have no reason to place these three residues

nearby each other. So, what biophysical reason is there for these residues to be

close together in TE space? What does it mean for a residue to be positioned where

it is? Why are other residues far away in TE space?

4.2.2 Cluster-based Decomposition of the TE Space

Clustering is a statistical data mining tool used to assign a label to each point in

the data set. Clustering finds families of data in space and attempts to give them
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Figure 4.1: Image showing the CLARA clustering of TE space.

the same label. The algorithm is purely mathematical and so any bias from an in-

vestigator is removed. There are very many clustering algorithms; Jain is a good

review(Jain et al., 1999). Using a method similar to Larson, I have clustered the

entire TE space into eight mutually exclusive regions. The entire data set was clus-

tered using the CLARA (Kaufman and Rousseeuw, 1990) algorithm in R. While

amino acid type and secondary structure do not define the space, I will show that

there is some evidence of non-random propensities for amino acids and secondary
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structures to cluster in TE space. The parameters to CLARA were: “metric,” “man-

hattan”; “samples,” 50; “samp.size,” 5000; “medoids.x,” TRUE; “keep.data,” TRUE,

and “rngR,” FALSE. Figure 4.1, on page 37, shows the data in the TE space, col-

ored by their assigned environment number, TE1–TE8. The Figure shows TE’s 1

and 6 at the extremes of the long axis of the data, while TEs 5 and 8 are the most

extreme on the second axis. This decomposition turns each vector into a number

1–8. Thus, we can now treat the energetic protein structure as a sequence. This

is exactly what Larson did to discriminate protein folds from decoys (Larson and

Hilser, 2004). Given the cluster definitions in TE space, we can gather statistical

evidence of the organization of TE space, for example looking for locations in TE

space with high densities of secondary structure or particular amino acids.

Amino Acid Propensities in TE Space

Larson et al demonstrated the log-odds probability of an amino acid to be in a

certain TE (Larson and Hilser, 2004). That concept is recapitulated here, with my

clustering. The Log-Odds probability is the log of a ratio, usually the propensity

for some object to be in some environment over the propensity for that environment

in relation to all other environments. It’s a population-normalized probability. The

Equation for the Log-Odds propensity for an amino acid to be in a certain TE is:

Log-Odds AA in TE = ln

 AAi∈TEjP20
i=1 TEiPNum. TE

j=1 TEjP
AA

 .
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And, the R Source code to calculate such values from our data is shown in List-

ing 4.2. The algorithm is generalized to calculate the log-odds of each observation

(row element) to be in the column element. So, this same code can be used in the

following section, just with the appropriate data.

Source Code 4.2: R Source Code for Calculating the Log-Odds from an R Project’s

data.frame

##
## logOdds -- find the logOdds of each observation (row element)
## ======= to be in the column element.
##
require(boot)

logOdds <- function( data, fix.data=FALSE )
{

totalRes <- sum(data);
rVal <- matrix( nrow=nrow(data), ncol=ncol(data), dimnames=

dimnames(data), 0 );

for ( i in 1:nrow(data))
{

for ( j in 1:ncol(data))
{

rVal[i,j] <- (data[i,j]/rowSums(data)[i]) / (colSums(
data)[j]/totalRes);

if ( fix.data == TRUE )
{

if ( rVal[i,j] == 0 )
{

rVal[i,j] <- 1/100;
}
else if ( rVal[i,j] == Inf )
{

rVal[i,j] <- 100;
}

}
}

}

return(log(rVal));
}
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Figure 4.2 shows histograms of the propensity for each amino acid to be in

each TE. This figure hints at specific pairings of residues in TE space. For example,

the small residues PRO and GLY tend to pair together in all TEs. Furthermore, the

larger hydrophobic amino acids PHE, TYR and TRP tend to cluster together, and

with opposite tendencies to the small residues. TE3 doesn’t appear to have much

propensity at all (except for CYS). TE8 appears to favor charged residues, CYS,

ASN, ASP, SER, GLU and disfavor PHE, TYR, and TRP. The following general

rules can be created from the data:

• FYW, the aromatics, do not highly populate the low stability environments

TEs1, 2 and 8,

• PG share the same propensities for TEs,

• the aromatics and VIL pair together except where the aromatics don’t show

any propensity for or against populating TE7,

• CND pair together and are highly populated in TEs 2, 4 and 8, and are rarely

found in TE5,

• C diverges from ND in that it is highly populated in TE6, but not TE7, where

ND don’t share that propensity. This may be due to the dual nature of cysteine.

Secondary Structural Elements in TE Space

Next, we investigated the propensity for secondary structures in TE space. Fig-

ure 4.3 shows the Log-Odds propensity for secondary structural unit to be in certain
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Figure 4.2: Log-Odds probability of finding each amino acid in TEs 1–8.
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TEs. Coils and Turns show a moderate or high propensity for TEs 1–3 and 8, and

a low propensity for TEs 5–7. The helical regions interestingly do not always show

the same propensities in the same environments. That is, the 310 Helix and the

Alpha Helix, in TEs 3–8 show differing signs in magnitude of log-odds probability.

Beta sheet shows a positive propensity for TEs 3, 6 and 7.

In general, these magnitudes of the values of the log-odds plots in incapable

of providing definite statements about propensities. However these results help give

support to the final characterization of TE space.

Amino Acid Type and Secondary Structure Combined in TE Space

Continuing the search for the biophysical meaning of the TE space, we then con-

sidered the log-odds joint probability of an amino acid and a secondary structural

element to be in a TE. Deciphering this will indicate how the energetic space is orga-

nized when we consider each amino acid in each secondary structure type. Because

the data are large (the matrix is 127× 8), they are summarized through hierarchical

clustering. Figure 4.4 shows the dendrogram result from hierarchically clustering

the joint-probability log-odds ratio of finding an amino acid–SS pair in a given TE.

The major branches are labeled with their majority preference. This shows us how

secondary structures pair with amino acids in TE space.

These results can be applied to fine-grained mutation studies. We have sta-

tistical relationships bewtwen amino acids, TEs and secondary structures. We also

know about the joint probability of amino acids and secondary structurs to cluster

in certain TEs. This information can be combined to more accurately make residue
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Figure 4.3: Log-Odds probability of finding each secondary structural element in
TEs 1–8.
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Figure 4.4: Figure showing the clustering of the log-odds joint-probability of find-
ing an amino acid–SS pair to be in a TE.
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mutation predictions.
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Chapter 5

Elucidating the Organization of the

Thermodynamic Environment Space

through Linear Algebraic Methods

5.1 TE Characterization II: Principal Component

Analysis (PCA) of the TE Space Reveals

Biophysical Organization

Preliminaries Analyzing the clustering of the TE space provided us with a good

feel for its organization. There are regions of low and high stability, low and high

∆ASAapol/∆ASApol, and high and low entropy. We even know of the existence of

non-random propensities for amino acid types to cluster in certain TEs, but we still
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Figure 5.1: Figure illustrating the MDF procedure.

don’t know why. PCA of the TE space provides these answers. But, before dis-

cussing PCA, it may help to define the mean deviation form and sample covariance

matrix of a data set. All other terms used below are explained above or are common

to the general field of linear algebra and may be reviewed elsewhere(Lay, 2003).

Definition 1 (Mean Deviation Form (MDF)). The mean deviation form of a vector

of observations X is

X̂ = X − 1

N

∑
X .

X̂ is then the vector set of values representing the the original points’ deviation

from the mean, hence the name. The MDF procedure is illustrated by the change of

location of the data in Figure 5.1.

Definition 2 (Sample Covariance Matrix). The sample covariance matrix of a data
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set of N observations in MDF is,

S =
1

N − 1
X̂X̂⊥ .

Sample covariance matrices are square, symmetric, positive semi-definite. This

means they can be orthogonally diagonalized, as discussed below. The entries on

the diagonal are the variance for that given dimension. If an off diagonal element,

Si,j is 0 the two dimensions i and j are “uncorrelated.”

5.1.1 PCA

PCA is a linear method used for subspace decomposition. It takes an p× n matrix

of observations in mean deviation form and finds a special p × p change of basis

matrix. The particular change of basis matrix PCA finds, orthogonally diagonalizes

the sample covariance matrix of the data. Given a matrix A of n observations in

p dimensions, already in MDF, associate with it another matrix S its p × p sample

covariance matrix. PCA finds the p× p change of basis matrix P ,

A = PB ,

such that the dimensions of B are uncorrelated and of decreasing variance. This

orthogonally diagonalizes S. S is symmetric, positive semi-definite, so can be or-

thogonally diagonalized by its eigenvectors, as S = PDP⊥. Let D be the diagonal

matrix with entries Dii = λi the eigenvalues of S ordered so λ1 ≥ λ2 ≥ · · · ≥ λp.

Then, let P be the matrix of unit eigenvectors of S in order of their correspond-

48



●
●

●

●● ●● ●
●

●● ●●

●●

●

●
●
●

● ●●
● ●

●
●
●●

●

●
●

●
●

●
●

●●

●
●

●●●
●
●●

●
●

●● ●

−15 −5 0 5 10

−
15

−
5

0
5

10

Data in Mean Deviation Form

●
●

●
●

●

●

●

●

●
●●

●●

●●

●

●●
●

●
●

●
● ●

●

●
●●

●
● ● ●●

●

●
●

●
●

●

●●●●
●●

●
●

●●
●

−15 −5 0 5 10

−
15

−
5

0
5

10

PCA of the Origina
 Example Data

Figure 5.2: This example shows the result of PCA on an example data set. The im-
age at the left shows the original MDF data. The dash-dot blue line corresponds to
the axis of greatest variance for the example data set. The dashed red line indicates
the axis of second most variance. The image at the right shows the data projected
onto these axes.

49



ing eigenvalues. Then, D = P⊥SP . The unit eigenvectors of S are called the

“principal components.” The first principal component corresponds to the largest

eigenvalue, the second principal component to the second largest eigenvalue, and

so on. Each eigenvalue corresponds to the variance of the given dimension of data

in B.

PCA is useful for a few reasons. First, it can reduce the dimensionality of the

data. Use only the first d < p eigenvectors and this makes B an n by d matrix. This

reduces the data by cutting off the projected dimension(s) with lowest variance. An

example data set was created for illustrative purposes and subjected to PCA. This

example data set is shown in Figure 5.2 on page 49.

Nonlinear methods for subspace decomposition were also tested. IsoMap

(Tenenbaum et al., 2000) and Local Linear Embedding (LLE) (Roweis and Saul,

2000) showed no benefit over PCA. In fact with linear data, IsoMap and LLE de-

compose into PCA.

5.1.2 PCA of the TE Data

PCA was performed on the ensemble-averaged data. First, the data set was put into

MDF. Next, the covariance matrix for the data was calculated. Then, the eigenvector

decomposition for the covariance matrix was calculated. Finally, the data were

projected onto the new orthonormal basis by multiplying the original data by the

eigenvectors of S. All of this is neatly wrapped into the R function prcomp. The

exact call to prcomp is shown in Listing 5.1.
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PC1 PC2 PC3 PC4
[∆G] -0.55 0.15 0.59 -0.57
[∆Hap] 0.65 0.69 0.22 -0.23
[∆Hpol] -0.51 0.70 -0.23 0.44
T [∆Sconf] -0.09 0.11 -0.74 -0.66

Table 5.1: Principal components of the original thermodynamic environment data.
Thus, the axis with most variance is PC1 = −0.47 [∆G] + 0.65 [∆Hapol] +
−0.51 [∆Hpol]− 0.09 [∆S].

Source Code 5.1: R Command for Calculating the Principal Component Analysis

of the TE Data

all.pr <- prcomp( allData[c("delG", "delHap", "delHpol", "dS"),],
scale=F, center=T, retx=T);

5.1.3 Results

Eigenvalues

The first three principal components explained 99.92% of the variance. There is a

sharp decrease in the magnitude of the eigenvalues corresponding to the eigenvec-

tors; this indicates a nonrandom signal in the data, and further supports the use of

PCA as a valid method of dimensionality reduction in our application. The eigen-

values are plotted in Figure 5.3. The proportion of the variance explained by the

eigenvalues is: 75.24%, 22.03%, 2.65% and 0.08%, for PC1–4, respectively. Thus

PC1 alone explains the majority of the variance in the data set.
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Eigenvalues of the PCA of TE Space

Proportion of variance explained by each component:
PC1=75.24%; PC2=22.03%; PC3=2.65%; PC4=0.08%
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Figure 5.3: Magnitude of eigenvalues from the PCA of the TE space. This Figure
is included to support our use of PCA as a valid linear method of subspace decom-
position. Random and nonlinear data matrices tend to have eigenvalues of nearly
equal value, hence our data is not random and can be explained well by PCA.
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Eigenvectors

The rotation matrix returned from the PCA calculation indicates the linear combina-

tion of energetic terms that define the principal axes. The rotation matrix is shown

in Table 5.1. This provides us with the information on how the natural dispersion of

points in TE space is related to the energetic parameters, [∆G], [∆Hapol], [∆Hpol],

and [∆S].

Table 5.1 requires a few comments. First, by considering the first PC (col-

umn 1) we can calculate the change in the four energetic parameters required for

change of equal distance in PC1. For example, a change in 1000 units along the

axis defined by PC1 corresponds to traveling through the original energetic space

by

1000 · PC1 = 1000 (−0.55 [∆G] + 0.65 [∆Hapol]− 0.51 [∆Hpol]− 0.09 [∆S])

= −550 [∆G] + 650 [∆Hapol]− 510 [∆Hpol]− 90 [∆S] .

Therefore, the energetic difference explained by a change of 1000 units exactly

incident with PC1 is −550 (cal/mol) along [∆G], 650 (cal/mol) along [∆Hapol],

−510 (cal/mol) along [∆Hpol], and −90 (cal/mol) along [∆S]. This is a general

rule for analyzing changes in location around TE space: it maps the principal axes

to their original energetic coordinates. Notice that a one unit change along PC2

requires a very small change along the stability axis ([∆G] ≈ 0.15(cal/mol)).

Relation of Cluster Centers to Principal Components Analysis It has

been shown recently (Zha et al., 2002) that the cluster center locations determined
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by the popular K-means algorithm with relaxed constraints are given by the eigen-

decomposition of the covariance matrix and thus are directly related to the principal

components. This explains the organization of the TE cluster centers within our TE

space and their relation to the principal components. As mentioned previously, the

clustered data were used to discriminate folds (Larson and Hilser, 2004); now we

know why the cluster centers are organized as they are.

Equating the Change in Accessible Surface Area to the Principal

Component Axes

Using our rotation matrix from the PCA of the TE data, we can calculate what

ensemble-average energetic changes are required to mirror a concomitant change

along a given PC. From that, we can then calculate the average change in ∆ASA

from the unfolding event for that given residue. More specificly, using Equa-

tions 2.18 and 2.19 on page 16, and given the values from the principal components,

shown in Table 5.1, we can calculate the change in apolar/polar surface area with a

given change in stability on each axis. The data for this conversion, and the ratio of

apolar to polar ensemble-averaged enthalpy are shown in Table 5.2.

This is a valid transformation because the phenomenological effect of sur-

face area exposure relative to energetics is additive (Freire and Murphy, 1991; Xie

and Freire, 1994).
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PC1 PC2 PC3 PC4
[∆ASAapolar] (Å2) -0.027 -0.028 -0.009 -0.009
[∆ASApolar] (Å2) -0.013 +0.017 -0.006 -0.011

Ratio [∆ASAapolar]
[∆ASApolar]

2.15:1 -1.64:1 1.66:1 0.86:1

Table 5.2: Table showing the correspondence between principal component axes
and the change in accessible surface area. Looking down each column we can cal-
culate the average ∆ASA required for a one unit change along the principal com-
ponent. For example, a one unit change along PC1 requires a change of 0.027 Å

2

apolar and 0.013 Å
2

polar accessible surface area in the F → U transition.

5.2 Biophysical Interpretation of the

Characterization of the Thermodynamic

Environment Space

The above analysis in this chapter details the steps we underwent to mathemati-

cally characterize the structure of the thermodynamic space. Here, I shall provide

interpretation of the results and provide examples supporting the analysis.

5.2.1 Biophysical Interpretation of PC1

Recall that Table 5.2 shows the change, and type of change in ASA required for an

accompanying change in energetics. Because a positive change incident with the

first principal component requires a decrease in the average ASA of unfolding of

0.027 Å2 of apolar surface area and 0.013 Å2 of polar surface area and a negative

change incident with the same axis will just change the signs of the ASA changes,

we can state that the biophysical interpretation of PC1 is the simultaneous increase
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or simultaneous decrease in the amount of ASA presented to solvent upon unfold-

ing. Furthermore, because we can look at these ASA changes as ensemble-averaged

residue-level changes for the F → U transition, negative values indicate a larger

change in surface area for the U subensemble than for F . Stated simply, residues

with higher values on PC1 are more stable because their unfolded subensembles

have a very low probability due to the exposure of large amounts of surface area at

a ratio of 2:1 apolar to polar.

We can also make statements about stability from this as well because the

ASA changes are related to the [∆G]. Looking at the table, a protein can be sta-

bilized (negative ∆G) by conservatively exposing both types of accessible surface

area at the approximate 2 to 1 ratio. This includes the area of direct unfolding and

the complementary surface area as well.

To corroborate and illustrate these findings, Figures 5.4 and 5.5 plot the data

spanned across PC1. The first figure shows the data colored by the total surface

area exposed (∆ASAapol + ∆ASApol) against PC1. The second plot shows the

data sorted by rank order along PC1, then colored according to the total amount of

surface area change.

Principal Axis Variance Defines Thermodynamic Structural Features

Because the first principal component has the largest variance associated with it we

will see the largest changes incident with PC1. Thus, the difference vectors asso-

ciated with each contiguous residue pair will have, generally, the smallest angles

away from PC1. On average, PC2 will have difference vectors second most inci-

dent to itself. And this will make it rare to find contiguous residue differences that
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Figure 5.4: Figure Showing the Total Change in Accessible Surface Area Along
PC1. The data are plotted onto PC1 and PC2 and colored by their total ∆ASA
value.
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Figure 5.5: Total Change in Accessible Surface Area with Respect to PC1. This
image shows the data rank ordered along PC1. The data were then colored by their
total change in accessible surface area. This may be thought of as a side view of the
previous image.
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are nearly incident with PC3.

Summarizing PC1: changes in a positive direction exactly parallel with PC1

expose more surface area, while negative changes unfold less at the familiar 2 to 1,

apolar to polar ratio. This 2 to 1 ratio further indicates that the most dominant (be-

cause it is along PC1) unfolding event unfolds nearly twice as much apolar surface

area that polar surface area.

5.2.2 Biophysical Interpretation of PC2

Going back to Table 5.2 we can investigate the biophysical meaning behind PC2 in

the same vein. The table shows that for a one unit change along PC2 the F → U

∆ASAs are −0.028 Å
2

of apolar surface area and 0.017 Å
2

of polar surface area.

This result shows that proteins are slightly de/stabilized (∆∆G ≈ 0.15 (cal/mol))

through a one unit change in PC2. Also, interestingly, a positive change incident

with PC2 requires the exposure of less apolar surface area while exposing more

polar surface area. A negative change along PC2 is then just the reflection of those

results.

Because the stability coefficient of PC2 is relatively small, changes along

PC2 have a smaller effect on stability than do changes along PC1. This can be

seen as a mechanistic way for a protein to change polarity of a region (or set of

microstates) without adversely affecting stability. Thus, PC2 is then more directly

related to the type of surface area being exposed—not necessarily the quantity.

PC2 combined with PC1 gives all possible combinations of exposing more

or less of polar or apolar surface area.
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5.2.3 Biophysical Interpretation of PC3

The table for ASAs shows a change of −0.009 Å
2

apol and −0.006Å
2

pol for a one

unit change along PC3. These values are much smaller that those required for ASA

changes along PCs 1 and 2. This indicates the major energetic component is not

due to solvation enthalpy changes due to unfolding, but something else. Looking

back at Table 5.1, we see that in column 3, that the entropy change for PC3 is three

to five times larger than it is for PCs 1 and 2. So, a very small change in accessible

surface area but a large change in entropy and moderate change in stability is what

defines PC3. The entropy is 55% of the magnitude of PC3; the entropy and stability

change comprise 90% of the magnitude of PC3. This explains why when one looks

at an image of the TE space colored by [∆S] the axis is very close to parallel with

entropy as evinced by the change of color.

5.2.4 Biophysical Interpretation of PC4

The amount of variance of the data that is explained by PC4 is so small, that we

consider it insignificant. This is the purpose of SVD/PCA analysis on multidi-

mensional data—to remove the insignificant dimensions such that the amount of

variance (information) explained still remains high. And, as we’ve seen, with more

than 99.92% of the variance explained by the first three axes, this remains a valid

procedure.

Hence, the fourth principal component can be seen as rank one noise. Rank

one noise, or noise in general from PCA/SVD is discussed at length in Methods

in Enzymology(DeSa and Matheson, 2004; Henry and Hofrichter, 1992) and else-
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where (Lay, 2003).

5.2.5 Center of Mass

We carried out the PCA such that the data were put into MDF. This provides

the views of maximum variance around the center of mass, not the origin. The

residue-level ensemble-average center of mass was determined to be: [∆G] =

−8137.75 (cal/mol), [∆Hapol] = 9535.74 (cal/mol), [∆Hpol] = −11724.89 (cal/mol),

and [∆S] = −4562.23 (cal/mol). In our analysis, this point represents the average

unfolding event around which all other events vary.

5.3 Analysis of Vastly Different Residues Along

the Principal Components

Introduction The next two sections are used to provide examples to illustrate

our findings. Here, we will locate residues very far apart on each of the PCs. We

will then contrast their structural and energetic properties. If our analysis of the

biophysical meaning of the PCs is correct, then we should see that reflected in the

proteins.

To keep the ideas clear it is important to introduce the methodology. First,

the ensemble average values, [∆G] for example, is already a difference vector:

[∆G] = 〈∆G〉F − 〈∆G〉U . Next, calculating the vector from vector â to b̂ is

δ̂ = b̂ − â. Let us take the example of calculating the difference in energet-

ics changes in going from an unstable region to a stable region. Assume that
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[∆G]stable = −20, 000 (cal/mol) is the ensemble average stability for the stable

residue. Likewise, let [∆G]unstable = −1, 000 (cal/mol) for the relatively unstable

residue. Then, the vector from unstable to stable—the vector that explains what

we need to do to traverse to the stable environment—is, [∆G]stable − [∆G]unstable =

−20, 000 − −1, 000 = −19, 000. Therefore, the less stable residue needs to lower

its [∆G] by 19, 000 (cal/mol) to achieve the higher stability. Confusion may arise

because (1) high stability is negative [∆G] and (2) we are discussing the differences

of difference vectors.

Principal Component 1

Starting with PC1 we chose two residues, one from near the maximum positive end

of PC1 and one near the maximum negative end of PC1. The two residues chosen

are depicted in the following table, and shown in Figure 5.6 in their respective

structures.

Index PROT AA RESI SS TE [∆G] [∆Hap] [∆Hpol] [∆S]

9585 1JHJ ILE 156 E 7 -15210 25097 -15500 -7153

7925 1I71 PRO 79 C 1 1346 172 -1413 -2350

Analyzing the accessible surface areas from the differences in the apolar and polar

enthalpies between the two residues, we see that in going from the PRO to the

ILE, there is a increased stability change of 16.5 (kcal/mol), which comes from

a difference of exposing 1030 Å2 and 348 Å2 more of apolar and polar surface

area, respectively. Biophysically, it is unfavorable to expose such large quantities

of surface area to solvent upon unfolding. Thus, the probabilities of the unfolded

62



(a)

(b)

Figure 5.6: Image Showing the Different Residues Chosen to Maximize Their Dis-
tance Along PCA1. The image at top (a) shows the ILE-156 and its unfolding
neighbors (pink colored sticks); the residue at maximum PC1. Notice that upon
removal of these residues there would be a very large amount of change in solvent-
accessible surface area. Water could now fill the entire cavity left by the removal.
The bottom image (b) shows the residue and its unfolding neighbors with lowest
PC1 value. Notice that there is no cavity left to fill, upon removal.
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subensemble are very low for ILE-156. Therefore, the energetics from the folded

subensemble dominate and the residue is seen as “stable”. Likewise, the unfolded

subensemble of PRO-79 unfolds much less surface area which is more favorable.

Therefore, the unfolded subensemble is more stable which means the residue is

more likely to be in an unfolded state—unstable—than the ILE-156.

Principal Component 2

I selected the two residues shown in the table below. They were both far apart

with respect to PC2. Notice the large differences in [∆Hapol] and [∆Hpol]. This

indicates a large difference in the type of surface area being exposed. This seems

reasonable considering the differences in the environments as shown in Figure 5.7.

The difference in apolar surface area observed from the transition from the ARG-471

to LEU-180 is 321 Å2 more exposed. The polar surface area change is −433 Å2.

Thus, as we expect, the unfolding environments are vastly different with regard to

type of surface area exposure when taking large differences along PC2.

Index PROT AA RESI SS TE [∆G] [∆Hap] [∆Hpol] [∆S]

8506 1IFR ARG 471 E 5 -14090 7782 -22628 -6513

6151 1GSM LEU 180 E 3 -6805 15559 -5081 -4115

Principal Component 3

We have chosen two points very far apart on PC3. The points are not necessarily

incident with PC3. This is because it is more difficult to find distal residues directly

parallel with PC3 as the variance of PC3 is much smaller than for PC1 or PC2. Their
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(a)

(b)

Figure 5.7: Example residues chosen based on their (relatively large) distance from
each other on PCA2. The top image (a) shows the ARG-471 and its unfolding
neighbors and pink colored sticks. Notice the relatively large amount of polar sur-
face area (colored red) nearby the ARG-471 residue. The bottom image (b) shows
the much more negative PC2 residue LEU-180 and its unfolding neighbors. Notice
the surrounding surface area is almost completely apolar (colored blue).
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data are summarized in the following table. Notice that the entropy and stability

values vary inversely as indicated in the table of PC axes.

Index PROT AA RESI SS TE [∆G] [∆Hap] [∆Hpol] [∆S]

45 1A17 ILE 63 H 3 -11096 7773 -10180 -374

16971 2ILK ILE 147 H 5 -6263 12835 -14159 -9555

5.4 Employing a “Thermodynamic Cycle” to

Further Support the Biophysical

Characterization of TE Space

Introduction The point of this analysis is to further support our assertions of

the characterization of TE space. We will do so by making a cycle around the

thermodynamic space incident with an embedded plane in the span of PC1 and

PC2 and investigating other possible underlying mechanisms that go on during the

transitions.

We have defined four centroids in TE space. Each centroid is plus or minus

8700 units along PC1, and plus or minus 2800 units off of PC2, from the origin.

These points are far enough from each other to produce significant observable bio-

physical differences while not being too far away as to have no close neighbors.
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Symbolically,

Centroid 1 = +PC1× 8700 units + PC2× 2800 units

Centroid 2 = +PC1× 8700 units − PC2× 2800 units

Centroid 3 = −PC1× 8700 units − PC2× 2800 units

Centroid 4 = −PC1× 8700 units + PC2× 2800 units .

This creates a plane embedded in the span of PC1 and PC2. Because our

eigenvector basis from PCA is clearly a subspace of R3, and due to the orthogonal

decomposition theorem(Lay, 2003), which states that any vector in W a subspace

of Rn can be decomposed into the sum of its orthogonal parts, we can write any

change in this plane as the sum of the change along PC1 and the sum of the change

along PC2—because PCA calculates these as orthogonal vectors. In fact, we can

represent any vector in our PCA space as a combination of PC1, PC2 and PC3

which allows us to separate the biophysical contributions across changes associated

with each axis.

The goal is now to calculate the difference along each axis and quantify the

change in energetics, relate that to ∆ASA and ensure that our assertions from the

previous section are sound.

Figure 5.8 shows the plane embedded in the span of PC1 and PC2. The

information for the four residues closest to the centroids are shown in Table 5.3. As

this diagram shows,
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Figure 5.8: Figure of the plane incident with PC1 and PC2. PC1 is the horizontal
axis; PC2 the vertical. The data are plotted in PCA-TE space as small blue points.
The black squares are the limits of the plane embedded in the TE space. The coordi-
nates of the four corners define our centroids for analysis, detailed in Table 5.3. The
upper right is centroid 1; lower right, centroid 2; lower left, centroid 3; upper right
centroid 4. The thermodynamic cycle will visit the 11 closest points (the closest
point to the centroid, and its 10 closest neighbors) to each corner of the plane. The
11 closest points to the centroids are indicated in small red text, labeled by their re-
spective centroid. At each corner we will dissect the thermodynamic subensembles
and their energetic properties. We will determine the direct unfolding ∆ASA as
well as the complementary surface area exposed upon unfolding.
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Index PROT AA RESI SS TE [∆G] [∆Hap] [∆Hpol] [∆S]
11865 1LCL TRP 127 E 7 -12673 17158 -14213 -5036
8677 1IHK SER 149 E 7 -13182 13178 -18042 -6047

16868 2ILK ASP 44 C 2 -3597 2048 -9273 -3846
4647 1FW1 ASP 209 T 1 -2843 5838 -5424 -3382

Table 5.3: The four residues closest to the corners of the plane embedded in the
span of PC1 and PC2. The 10 closest residues and their properties to each of these
four points, will be investigated in this “thermodynamic cycle”. It should be noted
that the four centroids do not necessarily have to coincide with the coordinates
from a point in our database. Thus we chose to investigate the nearest point to each
centroid and its 10 closest neighbors.

TRP-127Res11865 
 ASP-209Res4647

�� ��

SER-149Res8677 
 ASP-44Res16868

we will start at residue TRP-127 in 1LCL, traverse to SER-149 in 1IHK along -PC2.

We then traverse from SER-149 in 1IHK to ASP-44 in 2ILK along -PC1. Then, the

ASP-44 in 2ILK to ASP-209 in 1FW1 transition will be examined, which is incident

with +PC2. Finally, we examine the last transition, ASP-209 in 1FW1 to TRP-127

in 1LCL, which coincides with +PC1.

The Four Centroids and Their Neighbors

Centroid One The first centroid is located in TE space that is stable as it has

[∆G] ≈ −12, 673 (cal/mol). The selected residues around centroid one are shown

in Table 5.4 on page 73. Using the closest residue to the centroid (row 1) as a

representative point for this area of TE space, we can calculate its change in surface
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Figure 5.9: Two images showing points taken from Table 5.4 to illustrate the mi-
croenvironment near centroid one. Notice that upon removal of the magenta colored
residues that a large amount of surface area would be exposed. Centroid one has
the property that upon the F → U transition it unfolds 700 Å

2
more apolar sur-

face area, and 350 Å
2

more polar surface area. This is the reason why residues
around centroid one are relatively stable: the probability of microstates unfolding
that much surface area is nearly 0.
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area using Table 5.2. From the first row of Table 5.4 and Equations 2.18 and 2.19

we calculate the following:

∆ASAapol,F = 0.04 Å
2

(5.1)

∆ASAapol,U = 709.34 Å
2

(5.2)

∆ASApol,F = 0.02 Å
2

(5.3)

∆ASApol,U = 350.98 Å
2
. (5.4)

Equations 5.1–5.4 show that the U subensemble for residues near this point unfold

a large amount of apolar and polar surface area. This makes the U probabilities

nearly 0. And so these residues stable as we can see from the [∆G]. Also, the

apolar to polar surface area change ratio is about 2 to 1. This characterizes the

microenvironment around these points.

The data for the 10 points nearest the central point are found in Table 5.4.

Figure 5.9 is an image showing two residues chosen randomly from the set of points

near centroid one. When we separate out the surface area changes for the direct

unfolding, versus the complementary surface area we see the results in Figure 5.10.

Centroid Two Using analysis similar to centroid one, we shall consider centroid

two. The representative point is SER-149 from 1IHK. Thermodynamic data for the

11 points nearest the centroid are shown in Table 5.5. The general microenviron-

ment has a high stability, [∆G] ≈ −13, 500 (cal/mol). The results for the changes
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Figure 5.10: Illustration of the Apolar and Polar Changes in Directly Unfolded and
Complementary Surface Areas for Residues Near Centroid One. The centroid is
labeled, “1LCL TRP 127”. The total apolar surface area severely outweighs the
polar surface area. Notice how on average the direct unfolded apolar surface area
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Figure 5.11: Figure Showing the Nearest Neighbors for Centroid 2. The surface of
the protein is colored blue. The pink colored sticks are the residue and its neighbors
of unfolding for points near the second centroid. Notice that because we have not
traversed PC1 to go from centroid 1 to centroid 2, we do not see a large change in
the magnitude of surface area exposure change for points near centroids 1 and 2.
That is, the average apolar surface area change is about 1000 Å

2
and the average

polar surface area change is about 175 Å
2

for both centroids.
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in polar and apolar ASA for both the F and U subensembles are,

∆ASAapol,F = 10.17 Å
2

∆ASAapol,U = 554.98 Å
2

∆ASApol,F = 8.94 Å
2

∆ASApol,U = 454.44 Å
2
.

This microenvironment is characterized by a very slight change in the folded subensem-

ble from the native state (low ∆ASAapol,F and ∆ASApol,F ) and a large—but less

apolar—change in the unfolded state (high ∆ASAapol,U and ∆ASApol,U , but low

apolar to polar ratio of 1.22 to 1).

The barplot showing the direct and complementary surface area for both

apolar and polar surface area changes is shown in Figure 5.12.

Centroid Three The data for centroid three are in Table 5.6. The region around

centroid 3 is unstable, [∆G] ≈ −4, 700. The microenvironment around centroid 3 is

characterized by a slight deviation from the native state for the folded subensemble

and, with respect to centroids 1 and 2, a much smaller deviation from native state

for the unfolded subensemble. Also, this is the first environment to unfold more

polar surface area than apolar at about 2.26 to 1.00. The representative point is

ASP-44 from 2ILK. Because the values in Equations 5.6 and 5.8 are lower than for

centroids 1 and 2, we should see this reflected in the protein structure. Figure 5.14

illustrates this nicely.
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∆ASAapol,F = 22.82 Å
2

(5.5)

∆ASAapol,U = 107.52 Å
2

(5.6)

∆ASApol,F = 13.70 Å
2

(5.7)

∆ASApol,U = 242.67 Å
2
. (5.8)

Centroid Four The microenvironment near centroid four is characterized by,

again, a small deviation from native state for the folded subensemble, but now with

a moderate magnitude of unfolding with a higher apolar to polar surface area change

ratio. This centroid, like centroid 3, unfolds less total area than centroids 1 and 2.

However, unlike centroid 3, it unfolds more apolar surface area. Figure 5.15 shows

the residues in question and Table 5.7 shows the changes and types of surface area.

∆ASAapol,F = 3.30 Å
2

∆ASAapol,U = 244.65 Å
2

∆ASApol,F = 3.03 Å
2

∆ASApol,U = 136.96 Å
2
.
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Figure 5.14: Example Residues from the Neighborhood for Centroid 3. Notice that
in accordance with the unfolding surface areas we are expecting to see much less
change in accessible surface area upon unfolding as we would for centroids 1 and
2. Centroids 1 and 2 upon unfolding would leave large solvent accessible cavities,
centroid 3 does not.
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Figure 5.15: Example Residues for the Fourth Neighborhood.
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Figure 5.16: Accessible Surface Area Changes for Residues in the Fourth Neigh-
borhood.
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Summary This tour around the TE space gives us a more in-depth view of the

energetics changes associated with various parts of the space. Recapping, centroids

1 and 2 expose very large amounts of total surface area with respect to centroids 3

and 4. This is due to the large distance of centroids 1 and 2 from centroids 3 and 4

with regard to PC1. The apolar to polar surface area change ratios for centroids 1

and 4 are much higher, about 2 to 1, with regard to centroids 2 and 3.

As all four tables of accessible surface area changes show, the microstate

energetics of specific microenvironments are all following similar biophysical phe-

nomena. We can make this statement because the energetics of the folded and

unfolded subensembles in each microenvironment are similar. If one considers

that the [∆Hapol] is made up from the difference of two subensembles then there

could be an infinite number of ways of achieving the same [∆Hapol]. (For example,

[∆Hapol] = 10 could be from 〈∆Hapol〉F = 20 and 〈∆Hapol〉U = 10, or it could

be from 〈∆Hapol〉F = −1000 and 〈∆Hapol〉U = −1010. We observe that residues

nearby each other in TE space have similar subensemble energetics: microenviron-

ments are defined by the same, or similar, biophysical process.)

5.5 Discussion of the Interpretation of the

Biophysical Characterization of TE Space

Determination of the Distance Between two Residues in TE Space We

can now entertain some relevant questions with our new biophysical view of the TE

space. The first posited was: why are two residues close together or far apart in TE

85



space, even with amino acid, sequence, secondary structure and other differences?

Two residues are close together in TE space if their differences in the folded and

unfolded subensembles, expose similar amounts and types of surface area.

But, this can be done in more than just one or two ways. The structure and

most stable states could expose a large amount of polar surface area, only to have its

significance (on PC2) wiped reduced by a distal patch of residues unfolding a large

amount of apolar surface area (long-range communication: cooperativity). Inherent

in all COREX data are structure, sequence, solvent accessibility relationships, and

all possible combinations of partial unfolding.

The Arrowhead Shape Given our new interpretation of the shape of TE space,

we can answer this question as well. These boundaries are the limits of the differ-

ences of apolar and polar surface area that a protein can unfolded in all possible

combinations. Towards the point of the arrowhead, the ∆ASAapolar and ∆ASApolar

are coming together because their subensembles are unfolding smaller and smaller

amounts of surface area.

Can we apply this knowledge? Yes. The future implications are discussed in

Chapter 7. But, let me state here that engineering principles for residue mutations,

stability mutations—even fine tuned for secondary structures—can be devised given

our interpretation of the TE space.
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Chapter 6

The Thermodynamic Definition of

Protein Folds

6.1 Database of Homo sapiens Proteins

In order to the study the thermodynamic representation of proteins, we collected

a sample of Homo sapiens proteins from the PDB (Berman et al., 2000). Each

protein had to have the following properties: (1) be of reasonable length, 50–250

amino acids; (2) be a complete structure (no missing atoms); (3) be results from an

X-ray crystallography study of no more than 2.5 Å RMSD. All redundant atomic

coordinates for “alternate locations” were removed.

Relevant Collected Data We employed the Stride (Frishman and Argos, 1995)

algorithm for secondary structure determination for each residue in our Homo sapi-

ens database. Larson donated the list of codons for each amino acid in the database.
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Other information that was collected includes: the molecular weight of each amino

acid; the surface area for each amino acid; the length of each protein in the database;

and the SCOP and CATH protein family information. Table 6.1 lists the proteins

we used in this study.

Table 6.1: Table showing the list of proteins used in this study.

PDBID Protein Name

1a17 Serine/Threonine Protein Phosphatase 5

1a3k Galectin-3

1ad6 Retinoblastoma Tumor Suppressor

1aly Cd40 Ligand

1b56 Fatty Acid Binding Protein

1b9o Alpha-Lactalbumin

1bd8 P19ink4d Cdk4/6 Inhibitor

1bik Bikunin

1bkf Fk506 Binding Protein

1bkr Spectrin Beta Chain

1br9 Metalloproteinase-2 Inhibitor

1buo Promyelocytic Leukemia Zinc Finger Protein Plzf

1by2 Mac-2 Binding Protein

1byq Heat Shock Protein 90

1cbs Cellular Retinoic-Acid-Binding Protein Type Ii

1cdy T-Cell Surface Glycoprotein Cd4
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1cll Calmodulin

1ctq Transforming Protein P21/H-Ras-1

1cy5 Apoptotic Protease Activating Factor 1

1czt Coagulation Factor V

1d7p Coagulation Factor Viii Precursor

1dv8 Asialoglycoprotein Receptor 1

1e21 Ribonuclease 1

1e87 Early Activation Antigen Cd69

1eaz Tandem Ph Domain Containing Protein-1

1esr Monocyte Chemotactic Protein 2

1fao Dual Adaptor Of Phosphotyrosine

1fil Profilin

1fl0 Endothelial-Monocyte Activating Polypeptide Ii

1fna Fibronectin Cell-Adhesion Module Type Iii-10

1fnl Low Affinity Immunoglobulin Gamma Fc Region

1fp5 Ige Heavy Chain Epsilon-1

1fw1 Glutathione Transferase Zeta

1g1t E-Selectin

1g96 Cystatin C

1gen Gelatinase A

1ggz Calmodulin-Related Protein Nb-1

1gh2 Thioredoxin-Like Protein

1glo Cathepsin S
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1gnu Gabarap

1gp0 Cation-Independent Mannose-6-Phosphate Receptor

1gqv Eosinophil-Derived Neurotoxin

1gsm Mucosal Addressin Cell Adhesion Molecule-1

1h6h Neutrophil Cytosol Factor 4

1hdo Biliverdin Ix Beta Reductase

1hdr Dihydropteridine Reductase

1hmt Human Muscle Fatty Acid Binding Protein

1hna Glutathione S-Transferase (Human, Class Mu) (Gstm2-2)

1hup Mannose-Binding Protein

1hzi Interleukin-4

1i1n Protein-L-Isoaspartate O-Methyltransferase

1i27 Transcription Factor Iif

1i2t Hyd Protein

1i4m Major Prion Protein

1i71 Apolipoprotein(A)

1i76 Neutrophil Collagenase

1iam Intercellular Adhesion Molecule-1

1iap Guanine Nucleotide Exchange Factor P115rhogef

1ifr Lamin A/C

1ihk Glia-Activating Factor

1ijr Proto-Oncogene Tyrosine-Protein Kinase Lck

1ijt Fibroblast Growth Factor 4
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1ikt Estradiol 17 Beta-Dehydrogenase 4

1imj Ccg1-Interacting Factor B

1j74 Mms2

1jhj Apc10

1jk3 Macrophage Metalloelastase

1jsf Lysozyme

1jsg Oncogene Product P14tcl1

1jwf Adp-Ribosylation Factor Binding Protein Gga1

1jwo Csk Homologous Kinase

1k04 Focal Adhesion Kinase 1

1k1b B-Cell Lymphoma 3-Encoded Protein

1k59 Angiogenin

1kao Rap2a

1kcq Gelsolin

1kex Neuropilin-1

1kpf Protein Kinase C Interacting Protein

1kth Collagen Alpha 3(Vi) Chain

1l8j Endothelial Protein C Receptor

1l9l Granulysin

1lcl Lysophospholipase

1lds Beta-2-Microglobulin

1ln1 Phosphatidylcholine Transfer Protein

1lpj Retinol-Binding Protein Iv, Cellular
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1lsl Thrombospondin 1

1m7b Rnd3/Rhoe Small Gtp-Binding Protein

1m9z Tgf-Beta Receptor Type Ii

1mfm Copper, Zinc Superoxide Dismutase

1mh1 Rac1

1mh9 Deoxyribonucleotidase

1mj4 Sulfite Oxidase

1mwp Amyloid A4 Protein

1n6h Ras-Related Protein Rab-5a

1nkr P58-Cl42 Kir

1pbk Fkbp25

1pbv Arno

1pht Phosphatidylinositol 3-Kinase P85-Alpha Subunit

1pod Phospholipase A2 (E.C.3.1.1.4)

1qb0 M-Phase Inducer Phosphatase 2 (Cdc25b)

1qdd Lithostathine

1qkt Estradiol Receptor

1quu Human Skeletal Muscle Alpha-Actinin 2

1rbp Retinol Binding Protein

1rlw Phospholipase A2

1sra Sparc

1ten Tenascin (Third Fibronectin Type Iii Repeat)

1tn3 Tetranectin
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1zon Leukocyte Adhesion Glycoprotein

1zxq ICAM-2

2abl Abl Tyrosine Kinase

2cpl Cyclophilin A

2fcb Fc Gamma Riib

2fha Ferritin

2ilk Interleukin-10

2psr Psoriasin

2tgii Transforming Growth Factor-Beta Two (Tgf-B2)

3fib Fibrinogen Gamma Chain Residues

3il8 Interleukin 8

5pnt Low Molecular Weight Phosphotyrosyl Phosphatase

Executing COREX over the Database of Homo sapiens Proteins We

executed the COREX algorithm on each protein in the database. The parameters

used were the same as those from Larson (Larson and Hilser, 2004). The “window

size” was 5, the “minimum window size” was 4. For shorter proteins the entire pro-

tein ensemble was enumerated. For longer proteins, a Monte Carlo (MC) (Metropo-

lis and Ulam, 1949) sampled ensemble was created (Larson and Hilser, 2004), with

the “number of samples kept” at 250,000. Larson had determined that for proteins

with less than 250 amino acids, collecting 250,000 states was sufficient to accu-

rately represent the information in the entirely enumerated ensemble. The “entropy
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scaling factor” was set at 0.5, favoring the native state. The experiments were car-

ried out at the theoretical temperature of 25◦ C.

6.2 Structure Alignment

6.2.1 Introduction and Statement of the Problem

Structure Representation A protein structure is the set of atomic coordinates

in R3 collected from a high-resolution structure determination experiment. Define

the vector ai to be the (x, y, z) coordinates of the ith atom in the set of atomic

coordinates. Then for the problem of structure alignment we augment all the vectors

ai into a matrix, 

a1

a2

...

ai

...

aN


= A ∈ RN×3 , (6.1)

where N is the number of atoms in the protein. For the problem of protein struc-

ture alignment—and in this project—only the atomic coordinates of the α-carbons

are used. This has been shown to be useful because it reduces the number of co-

ordinates needed for comparison and it retains the biologically relevant structural

details (Holm and Sander, 1993; Shindyalov and Bourne, 1998). Thus, for a pro-

tein with n residues its matrix representation would be A ∈ Rn×3, and its transpose
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A⊥ ∈ R3×n.

Statement of the Problem The problem of protein structure alignment is de-

fined as follows. Given two proteins, evolutionarily related or not, determine largest

subsets of equal number of residues from each protein, such that the sum squared

deviation (RMSD) between the optimally superposed subsets is minimized. As

mentioned in the Section 2.2.2, this requires two steps. The first is selecting which

residues in the first protein will be matched with which residues in the second pro-

tein. The second is computing the optimal translation and rotation to determine the

RMSD of the optimal alignment. The details of each step are now considered.

6.2.2 The First Step: Detecting the Near-Optimal Subsets

Introduction There are various methods to determine the near-optimal subsets

of residues from the two proteins to be aligned. The term “near-optimal” is used be-

cause the problem of finding the provably optimal subsets is classified as NPC. The

methods vary greatly from the difference of distance matrices (DALI) (Holm and

Sander, 1993), secondary structure matching combined with the branch-and-bound

method (Holm and Sander, 1996), combinatorial extension of the optimal align-

ment path (Shindyalov and Bourne, 1998), genetic algorithms (Szustakowski and

Weng, 2000), deterministic annealing (Chen et al., 2005), iterated double dynamic

programming (Taylor, 1999) and many more.

In an interesting aside, Godzik compared the alignments from the literature

of some proteins and determined that in many cases the optimal alignments are
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not unique, but exist in a family of optimal alignments (Godzik, 1996). The level

of agreement of various methods often diverged proportional to the divergence of

sequence identity. The two most salient methods in use today are DALI and CE.

Both were implemented for this project. CE was chosen for its greater efficiency

and longer alignments. CE also makes no assumptions about secondary structure,

as DALI does (in its second revision (Holm and Sander, 1996)).

6.2.3 The CE Method

Introduction CE was created by Drs. Shindyalov and Bourne (Shindyalov and

Bourne, 1998); improved with the addition of the “CE Score” (Jia et al., 2004); and

extended for multiple structures using Monte Carlo methods (Guda et al., 2004);

and augmenting sequence information (Ponomarenko et al., 2005). CE is similar to

other methods in that it calculates a global alignment considering the difference of

distance matrices.

Mathematical Necessities In order to discuss the CE method, I first introduce

the necessary mathematical tools, the distance matrix and the similarity matrix.

Definition 3 (Distance Matrix). Let V be a given vector set with m entries in Rn,

like in Equation 6.1. We can write V as a matrix: V =



v1,1 v1,2 v1,n

v2,1 v2,2 v2,n

...

vm,1 vm,2 vm,n


.

Then, a distance matrix for the vector set V is the matrix D such that each element

di,j ∈ D represents the distance, usually Euclidean, from vector vi to vector vj .
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Symbolically,

Di,j =
m∑

i=1

m∑
j=1

√√√√ n∑
k=1

(Vi,k − Vj,k)
2 (6.2)

An example distance matrix for the P14TCL1 protein (PDBID: 1JSF) is

shown in Figure 6.1. Note the symmetry about the main diagonal. Because the dis-

tance from point vi to point vj in some object is the same as the distance from point

vj to point vi, all distance matrices are symmetric. (This brings about many interest-

ing possibilities in linear algebra. First, the matrix is orthogonally diagonalizable,

the matrix is positive semi-definite—which indicates real valued eigenvalues—an

orthonormal eigenspace for the columns of the matrix can be created, and more.

This is discussed further in Section 6.2.5.)

Definition 4 (Similarity Matrix). Let a ∈ Rm×n and b ∈ Rp×n be two vector

sets, with m and p entries in Rn, respectively. Furthermore, let A ∈ Rm×m and

B ∈ Rp×p be their respective distance matrices created from Equation 6.2. The

similarity matrix, S for the two structures is defined as:

Si,j =
1

w

m−w∑
i=1

p−w∑
j=1

w∑
k=1

Ai,i+k −Bj,j+k, (6.3)

where w ∈ Z+ is a fixed window size, here w = 8.

The similarity matrix measures the similarity between two substructures,

one anchored at residue i to i + k ∈ a and the other anchored at j to j + k ∈ b.

High values denote dissimilar regions, low values similar regions, and 0 is an exact

match. Because the distance from points (ai, aj) ∈ A is not necessarily the same
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Figure 6.1: Example Distance Matrix for the P14TCL1 protein. Units of distance
in Å.
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as the distance from point (bi, bj) ∈ B, not all distance matrices are symmetric. In

fact, they’re only symmetric when a ≡ b. Figure 6.2 shows an example similarity

matrix for a protein against itself.

Also, any row, say i, in S describes the similarity of the substructure an-

chored at residue i to i + w ∈ a to every contiguous span of w residues in b.

Analogously, any column in S measures the similarity of the substructure anchored

at some residue in b to all those substructures throughout a. So, the signal in the

rows can be thought of as coming from a and the signal from the columns in b. This

become an important concept for analysis in Section 6.2.5.

Near-optimal paths can be quickly read off of a similarity matrix. For exam-

ple, to find the best path through the similarity matrix in Figure 6.3 just start in the

lower left corner and trace to the upper right corner along the lowest scoring diag-

onal path (dark green). Every (i, j) element in the similarity matrix deemed a good

match then pairs together residue i in protein A to residue j in protein B. Gaps

are allowed: move one or more positions to the up or left, in the similarity matrix.

This figure shows an example similarity matrix for a protein against another with

high structural overlap. To contrast, consider the similarity matrix in Figure 6.4;

this shows an example similarity matrix for a protein and a non-homologous target.

Notice how the optimal path in the latter is not readily apparent. The source code

for creating a similarity matrix is shown in Listing 6.1.

Source Code 6.1: Source Code for Making a Similarity Matrix

1 //===========================================================
2 // Calculates the Similarity matrix, S.
3 //===========================================================
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Figure 6.2: Similarity Matrix for Protein P14TCL1 Against Itself. Notice that the
matrix is indeed symmetric. Finding the optimal alignment is equivalent to finding
the longest path of lowest scores (dark green) from (1, 1) in the lower left corner
to (120, 120) in the upper right hand corner. Repeated substructure is easy to find:
look for rectangular dark colored blocks. Unique substructure is easy to find as
well, look for high scoring regions that run through the entire protein (columns 37-
40, 46-49). These usually correspond to loop/turn regions in proteins. Also, notice
that off-diagonal regions of low scores indicates similar matching substructure at
sequentially distant residues.
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Figure 6.3: In this figure, notice that while it does look symmetric, it is not. The
width of the regions around residues 55–60 are not the same.
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Figure 6.4: P14TCL1 was paired with a much longer protein, Gamma Fibrinogen
(PDBID: 3FIB) which is structurally not similar. The dark green boxes do corre-
spond to good structural overlaps, but they’re localized (of limited length) due to
the repetitive nature of secondary structure.
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4 double** calcS(double** d1, double** d2, int lenA, int lenB,
double winSize)

5 {
6 int i;
7
8 // initialize the 2D similarity matrix
9 double** S = malloc(sizeof(double*)*lenA);

10 for ( i = 0; i < lenA; i++ )
11 S[i] = (double*) malloc( sizeof(double)*lenB);
12
13 double sumSize = (winSize-1.0)*(winSize-2.0) / 2.0;
14
15 int iA, iB, row, col;
16 for ( iA = 0; iA < lenA; iA++ ) {
17 for ( iB = 0; iB < lenB; iB++ ) {
18 S[iA][iB] = -1.0;
19
20 if ( iA > lenA - winSize || iB > lenB - winSize )
21 continue;
22
23 double score = 0.0;
24 for ( row = 0; row < (int) winSize - 2; row++ ) {
25 for ( col = row + 2; col < (int) winSize; col++ ) {
26 score += fabs( d1[iA+row][iA+col] - d2[iB+row][

iB+col] );
27 }
28 }
29
30 S[iA][iB] = score / sumSize;
31 }
32 }
33 return S;
34 }

The CE Method CE finds the longest path of lowest score through the similarity

matrix for two given protein structures. It does this by starting anywhere in the

similarity matrix (although (1, 1) is the best choice, as it ensures consideration of

the longest possible path first) and comparing that starting entry, let’s call it Si,j

with a predefined cutoff measure of 3.0 Å. If Si,j > 3.0 Å then the substructures
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anchored at i and j in proteins A and B, respectively, are not a good match and

thus ignored. If this is the case, Si+1,j is considered. Once i is exhausted, or we

have gapped 30 times, we reset i and increment j. If Si,j < 3.0 Å then that residue

pair (i, j) is stored and (i + 8, j + 8) is considered. The algorithm is repeated until

the similarity matrix is exhaustively searched. At this point, we have the longest

possible, best scoring subsets of residues from the two structures. We can then

move on to the next step, optimal alignment.

I have made my variant of CE available for public use. It is on the PyMOL-

Wiki (http://www.pymolwiki.org/index.php/Cealign).

To cut down on the running time of this algorithm CE partitions the protein

sequence into windows of eight residues, ignores the distances between a residue

and its two neighbors. There are other algorithmic shortcuts discussed below. CE

ignores the distance between a residue and its two neighboring residues because it

adds no information. For example, the distance between an alpha carbon and it’s

immediate neighbors’ alpha carbon is in the range of 3.4–3.8 Å, almost exclusively.

See Figure 3.2. Also, any deviation outside that range is hardly biophysically pos-

sible or of significant magnitude to make an impact on the calculations, and thus

ignored.

Necessary Deviations from the CE Algorithm As noted earlier, the struc-

ture of a thermodynamically defined protein does not follow typical structure-based

rules. This necessitates investigation of every structure-based assumption that the

original authors of CE decided upon. We enumerate the assumptions and necessary

changes, here.
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First, because sequence neighbors can have large jumps in TE space, as

shown in Figure 3.2, during the structure matching step of structure alignment we

must consider neighbor-neighbor distances whereas the original CE algorithm does

not. Our variant of CE has this feature built back in. Listing 6.2 highlights the

change. The indices for counting are changed to include neighbors.

Source Code 6.2: Source Code for Including Neighbor-Neighbor Distance Calcu-

lations

1 for ( row = 0; row < (int) winSize; row++ ) {
2 for ( col = row; col < (int) winSize; col++ ) {
3 score += fabs( d1[iA+row][iA+col] - d2[iB+row][iB+col] );
4 }
5 }

Next, due to the extremely large energetic jumps, some normalization of the

data is necessary. If not, then the extremely large jumps would dominate structure

similarity measures. Our variant of CE was built such that when the distance ma-

trices are being compared to build the similarity matrix, the distance matrices are

locally scaled such that the largest distance in each submatrix is 1.0. This allows

window-based structure scaling. It increases the running time of the algorithm, but

because it is more tolerant of vagaries of scaling, produces more accurate thermody-

namic structure alignments. The source code for this change is shown in Listing 6.3

(the original code is in Listing 6.1 on Page 99).

Source Code 6.3: Source Code for Making a Locally Scaled Similarity Matrix

1 // find the max in this submatrix;
2 double localMaxA = 1.0;
3 double localMaxB = 1.0;
4 for ( unsigned int row = 0; row < winSize; row++ ) {
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5 for ( unsigned int col = 0; col < winSize; col++ ) {
6 localMaxA = (d1[iA+row][iA+col] > localMaxA) ? d1[iA+row][iA+

col] : localMaxA;
7 localMaxB = (d2[iB+row][iB+col] > localMaxB) ? d2[iB+row][iB+

col] : localMaxB;
8 }
9 }

10
11 // Nˆ2 all against all in the submatrix
12 for ( unsigned int row = 0; row < winSize; row++ ) {
13 for ( unsigned int col = 0; col < winSize; col++ ) {
14 score += fabs( (d1[iA+row][iA+col]/localMaxA) - (d2[iB+row][iB

+col]/localMaxB) );
15 }
16 }
17
18 S[iA][iB] = score / sumSize;

The next place we deviate from CE is during the refinement step. CE calls

for a sequence based refinement step. Our project is based solely upon the struc-

ture of the thermodynamically defined proteins so we chose not implement the re-

finement step. The results of CE without the refinement step are still quite rele-

vant (Shindyalov and Bourne, 1998).

The last set of deviations deal with the empirically defined parameters en-

forced by CE. There is a window size (eight residues was the best determined win-

dow size), a maximum gap of 30, a minimum cutoff of 3.0 Å, and a minimum path

(overall) cutoff of 4.0 Å. These values were determined from fine-tuning CE against

know structure databases. We do not have the luxury of known homology in ther-

modynamically defined protein structure. We calculated these tunable parameters

by iteratively comparing three known structure families and clustering the results.

The optimal distance cutoffs discovered were 0.04∗w, where w is the window size.

We set both cutoffs to this value. To find the longest continual substructure, we set
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the maximum gap to 0, but increased the window size iteratively from six to twenty

six. This allows us to find smaller regions as well as larger.

6.2.4 The Second Step: Determining the Optimal

Translation and Rotation to Minimize RMSD

Statement of the Problem Now that we have the two vectors sets of atomic

coordinates representing the longest near-optimal alignment of the two proteins, we

endeavor to find their optimal structural overlap. Given two N -dimensional vector

sets in MDF, xm and ym, of length m, find the best rotation matrix, Q such that

‖xm −Qym‖ , (6.4)

is minimized. There are many ways to solve this problem exactly. In this project,

I use the SVD to solve the linear least squares problem. As shown above, let X be

the augmented matrix for xm and Y be the augmented matrix for ym. To solve the

problem, first construct the correlation matrix, R of the two matrices X and Y :

R = Y ⊥X . (6.5)

R is directly calculated from the two vector sets. The initial error is,

ε0 =
m∑

i=1

Xi ×Xi + Yi × Yi . (6.6)
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I now decompose the correlation matrix using the Singular Value Decomposition

(SVD) theorem. Briefly, the SVD decomposes an m × n matrix into three special

matrices, U, Σ, V . U is the matrix of “left singular vectors,” and represents an

orthonormal basis for the Columns of R. Σ is the upper diagonal matrix of singular

values for R. Finally, V the matrix of “right singular vectors,” is an orthonormal

basis for the Rows of the correlation matrix. Mathematically,

R = UΣV ⊥ . (6.7)

The necessary rotation matrix to superpose the two vector sets is calculated by,

Q = UV ⊥ . (6.8)

Because R is symmetric, positive semi-definite, all its eigenvalues are real and its

eigenvectors can be made into an orthonormal basis for the its columns. Because V

and U are both orthonormal, their product is also orthonormal. This matrix is the

orthonormal projection of the Row space onto the Col space of the matrix R, which

solves the least squares problem. The Python source code to solve this problem is

shown in Listing 6.4.

Source Code 6.4: This is variant of the Kabsch algorithm. This code has been made

available on the PyMOLWiki for public use, see http://www.pymolwiki.

org/index.php/Kabsch.

1 #!python
2 from array import *
3 import numpy
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4
5 def simpAlign( mat1, mat2, name1, name2, mol1=None,\
6 mol2=None, align=0, L=0 ):
7 """
8 optAlign performs the Kabsch alignment algorithm
9 on the two vector sets, mat1 and mat2.

10 """
11
12 # check for consistency
13 assert(len(mat1) == len(mat2))
14
15 # must alway center the two proteins to avoid
16 # affine transformations. Center the two proteins
17 # to their selections.
18 COM1 = numpy.sum(mat1,axis=0) / float(L)
19 COM2 = numpy.sum(mat2,axis=0) / float(L)
20 mat1 = mat1 - COM1
21 mat2 = mat2 - COM2
22
23 # Initial error.
24 E0 = numpy.sum( numpy.sum(mat1 * mat1,axis=0),axis=0)
25 + numpy.sum( numpy.sum(mat2 * mat2,axis=0),axis=0)
26
27 # Perform the SVD
28 V, S, Wt = numpy.linalg.svd( numpy.dot(numpy.transpose(mat2),

mat1))
29
30 # Detect reflections
31 reflect = float(str(float(numpy.linalg.det(V) * numpy.linalg.

det(Wt))))
32 if reflect == -1.0:
33 S[-1] = -S[-1]
34 V[:,-1] = -V[:,-1]
35
36 RMSD = E0 - (2.0 * sum(S))
37 RMSD = numpy.sqrt(abs(RMSD / L))
38
39 if ( align == 0 ):
40 return RMSD;
41
42 #U is simply V*Wt
43 U = numpy.dot(V, Wt)
44
45 # rotate and translate the molecule
46 mat2 = numpy.dot((mat2 - COM2), U) + COM1
47 stored.sel2 = mat2.tolist()
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This algorithm is general: it works in any number of dimensions, not just 3.

In fact, in this project we will be using this for 3D and 4D alignments.

One Interesting Caveat: Reflections One interesting caveat with this method

of optimal alignment is the existence of reflections. That is, there may be two (or

more) solutions of the problem due to chirality. The simple method to check for

a reflection is to recall that the determinate (det) of a matrix is the area of the

parallel piped spanned by its vectors. This implies, that area spanned by an or-

thonormal matrix is always ±1. Thus, if the linear algebraic system resulted in a

reflection, the determinate of either U or V might be −1. Therefore, we check that

det(U) × det(V ) 6= −1. If it is, we have a reflection. To correct for the reflection

we just mirror the least significant axis to optimally properly solve the problem.

6.2.5 The SVD of a Similarity Matrix

The SVD of a Similarity Matrix A similarity matrix is a topological decompo-

sition of a four-dimensional metric space down to a two-dimensional metric space.

What latent information is encoded in the similarity matrix aside from the optimal

path for alignment? Can we find a better—more obvious path? Because path-

finding is NPC, this may help us more quickly determine optimal paths.

Let’s take a look at the SVD and concomitant UV ⊥ calculation and meaning.

This analysis will follow directly from the above definition, while I look for “mean-

ing” along the way. Let us have two vector sets representing the structure of two

arbitrary proteins be a ∈ Rm×n and b ∈ Rp×n. Let A ∈ Rm×m and B ∈ Rp×p be the
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distance matrices for a and b, respectively. Let S ∈ Rm−w,p−w be the similarity ma-

trix created from A and B. Then, let’s calculate the singular value decomposition

of S:

S = UΣV ⊥ (6.9)

The Singular Values of S First, let’s get the singular values and orthonormal

basis for the columns of S. Consider the matrix, S⊥S, it is symmetric, positive

semi-definite, as we know. We also know that we can find an orthonormal eigenba-

sis for the columns of S using S⊥S. So,

‖Svi‖2 = (Svi)(Svi)

= (Svi)
⊥(Svi)

= v⊥i S⊥Svi

= v⊥i λivi

= λi .

(6.10)

What we see is that our singular values can be calculated by multiplying S by the

eigenvectors of S⊥S, vi. Because it’s projecting into a orthonormal basis, v⊥i vi = I

the projection is equal to the amount by which the eigenvectors are scaled. Fur-

thermore, the eigenvector subspace spanned by {v1, v2, . . . , vn} is orthonormal. If

we take the square root of Equation 6.10, Svi = σiui, we see that they are in the

span of the columns of S, because it is a linear combination of the columns of S.

So, the singular values (σi) are the lengths of the projections of the orthonormal

eigenvectors vi through S.
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V , the Orthonormal Basis of ColS Let, V (from the previous paragraph) be,[
v1 v2 · · · vn

]
. This is clearly an orthonormal matrix. Furthermore, V spans

the Col S.

Σ, the diagonal singular values of S Let’s now define Σ, the diagonal matrix

of singular values of S. So, define Σ =

D 0

0 0

.

U , the orthonormal projection space We now have the similarity matrix S;

the orthonormal basis of ColS, V ; the diagonal singular value matrix Σ; and we

need to find U . We start by defining U , then take a look at the properties of U . Let

ui =
1

‖Svi‖
Svi

=
1

σi

Svi,

(6.11)

and let U =

[
u1 u2 · · · ur

]
, where r is the rank of S. That means, if rank S <

m then for k > r the projections Svk will be in the null space of S. Extend this

set such that we just append zeros from r + 1 . . . m. We know that ‖Svi‖ = σi,

but we now want the vector itself, Svi. So, first off, I need to prove that given an

orthonormal matrix U , that the projection of x onto U is Ux and is also orthonormal.

Also, U spans the Row S.

Theorem 1 (The image of a vector projected through an orthogonal matrix is also

orthogonal). Prove that for any orthogonal matrix U ∈ Rn×n and any vector x ∈

Rn that Ux is also orthogonal.

112



Proof. Let U ∈ Rn×n be an orthogonal matrix (the columns of U are all orthogo-

nal). Let x ∈ Rn. Write U as a collection of row vectors, ui:

U =



u1

u2

...

un


.

Then,

Ux = U⊥ · x

=

[
uT

1 uT
2 · · ·uT

n

]


x1

x2

...

xn


=

[
uT

1 x1 uT
2 x2 · · · uT

nxn

]
.

Thus, Ux is just the scalar constants times the columns of U . So, scaling the or-

thogonal vectors does not affect their orthogonality—just their size. Also, if U is

orthonormal, it is a projection matrix and in that case, ‖x‖ = ‖Ux‖.

So, ui are orthonormal (because we scale by 1/σi) and as we have shown

above all vi are orthogonal and as just shown above, that indicates Svi are also

orthogonal and now orthonormal.
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U × V ⊥, of the SVD of S In a typical least squares solution for a correlation

matrix of two equated vector sets the rotation matrix Q = UV ⊥ is the n×n rotation

matrix that provides the optimal rotation to provide the minimal overlap between

the distances of the rows of the vector sets. Here, S is not necessarily square, so

what is the meaning of UV ⊥?

Well, V is the orthonormal (projection matrix) which spans the columns of

S. U is the orthonormal (also a projection matrix) that also spans the columns of S.

Because we know that U spans Col A and V spans Row A, thus, U · V ⊥ is

simply the covariance of the two subspaces.

Results This observation is presented here because to my knowledge this has

not been performed before and may prove useful for those investigating structure

alignment. The result of the multiplication of the U and V ⊥ is shown in Figure 6.5b

and compared to a normal similarity matrix. The similarity matrix shown at the top

is from the structural comparison of two homologous proteins (PDBIDs: 1CLL,

1GGZ). There are many possibly good paths through the similarity matrix. At the

bottom, is the orthonormal basis for the Row space multiplied by the orthonor-

mal basis for the Column space of the similarity matrix shown at the right. Clearly

visible are the elements from the optimal alignment of the two proteins (up the diag-

onal) as determined by the structure alignment program. The elements of maximal

structural overlap are those with the lowest corresponding singular values—which

represent the magnitude of covariance between the substructures anchored at those

points. This presents the possibility of reducing the number of paths searched be-

fore finding the optimal. A variant of CE was produced that used these matrices in
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Figure 6.5: The Similarity Matrix and the SVD of a Similarity Matrix for Two
Structurally Similar Proteins, PDBIDs 1CLL and 1GGZ. The top image shows a
similarity matrix calculated for two structurally similar proteins. The optimal align-
ment runs along the diagonal. This bottom image shows the product of the left and
right singular vectors: UV ⊥ for the top matrix. Notice that the residues with lowest
covariance indicate the best substructural alignment, which for this pair is along the
diagonal. The diagonal is easier to discern in the bottom image.
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place of the typical similarity matrix. The results were promising, but were outside

the main scope of this project, so not more actively pursued.

6.3 Determination of Protein Fold Families

Introduction Given the database of protein structures and a method to compare

them, we may now consider the organization of the thermodynamic protein fold

space. Which proteins are related to which others and why? What families of folds

can we identify. Results from this study will provide us with another viewpoint

from which to consider the evolutionary descent of proteins.

We used our CE variant in an all-against-all fashion over our Homo sapiens

database. We then combine this method with agglomerative hierarchical clustering

tools to determine the phylogeny. Given the phylogeny, we can make comparisons

with the current literature and methods.

The hierarchical clustering techniques we used in this chapter were intro-

duced with all other clustering techniques, in Section 4.1.

6.3.1 Finding the Fold Families

We used our variant of CE, called steph3, to compare each thermodynamically

defined protein structure to each other in the database of Homo sapiens proteins.

The BASH script that iterates over the entire database is shown below in List-

ing 6.5.
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Source Code 6.5: BASH Shell Code to Pairwise Compare Each Thermodynami-

cally Defined Protein Structure in our Database.

1 # Use our locally-scaled CE variant, steph3.
2 S3_COMMAND=˜/Projects/steph3/src/steph3
3
4 # Loop over all relevant window sizes
5 for win in ‘seq 6 26‘; do
6 # Calculate the cutoff given the windowsize.
7 c=‘/home/tree/playground/bc.sh 0.040*$win‘;
8 # Set the options to steph3; all options to steph3 are
9 # listed in the Appendix.

10 S3_OPTIONS=" --cutoff1=$c --cutoff2=$c --window-size=$win --
gap-max=0"

11 # Define the output file
12 OUTFILE=STEPH3.DATA.CBK.w$win;
13 # Iterate over all the thermodynamically defined structures
14 for x in *.st3; do
15 for y in *.st3; do
16 # format data to the output file
17 echo -n -e ‘basename $x .st3‘ >> $OUTFILE
18 echo -n -e ’\t’ >> $OUTFILE
19 echo -n -e ‘basename $y .st3‘ >> $OUTFILE
20 echo -n -e ’\t’ >> $OUTFILE
21 # head -7 => CE_SCORE
22 $S3_COMMAND $S3_OPTIONS -1 $x -2 $y | head -7 | tail

-1 | cut -f2 -d" " >> $OUTFILE
23 done;
24 done;
25 done;

This provides us with a dissimilarity matrix. Now each protein can be thought of

as a point in some high dimensional space. We now desire to divide the space into

mutually exclusive regions to define the fold families. Using the hclust function

with Ward’s method in R, we can cluster the dissimilarity matrix.

Because of the nature of TE space, we chose to restrict gapping to 0. If a

maximum gap of 30, like with the original CE algorithm, is used the alignments

are fragmented: many smaller local alignments across the structures are returned.
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We desire the longest continuous thermodynamic structure alignment, so we set the

steph3 parameter “gap max” to 0. To overcome this and find longer alignment,

we then iterate over window size of 6 to 26 searching for optimal alignments. The

results of each iteration are turned into a distance matrix for that window size.

Then, each distance matrix is averaged into a global distance matrix and that matrix

is clustered. Specifically, for each window size we apply the following binary mask

to its alignment scores matrix,

Mi,j =


0 (i, j) ≤ 25th quantile ,

1 otherwise .

(6.12)

If a protein is “close” to another (within the 25th quantile) then its distance is to be

set to 0. If a protein is not “close” its distance is set to 1. Therefore, for each window

size we are keeping the specific relationship information and disregarding the noise.

The 25th quantile was chosen to keep some longer distances and because if only

comparing a a few families of proteins the 5th quantile would only return such a

small subset of proteins to not be a useful metric. Next, we add the binary-masked

matrices into an averaged matrix for distance representation. This average distance

matrix was then clustered using hclust and Ward’s algorithm. The source code,

in the R language, is shown in Listing 6.6. I will show that this iterative method and

binary mask are valid techniques in the next section.

Source Code 6.6: R Source Code for Creating the Global Distance Matrix for Clus-

tering.
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1 # define the helper function, inF. It reads in a file
2 # from disk that is known to be a square distance matrix.
3 # It then labels the rows and columns from via the
4 # data in the first column.
5 inF <- function( fName ) {
6 t_t <- data.frame( read.table( fName ));
7 t_t <- matrix( t_t[,3], nrow=sqrt(nrow(t_t)), ncol=sqrt(

nrow(t_t)), dimnames=list( levels( t_t[,1]), levels( t
_t[,1])));

8 return(t_t);
9 }

10
11 #
12 # Begin code for average global matrix
13 #
14
15 # clean up in case not first execution
16 if ( exists("allData")) { rm("allData"); }
17
18 # set default min and max window sizes
19 if (!exists("minW")) { minW <- 6; }
20 if (!exists("maxW")) { maxW <- 26; }
21
22 for ( win in minW:maxW ) {
23 # make the filename to read from disk
24 inFileName=paste("STEPH3.DATA.w", win, sep="");
25 # read the filename.
26 inD <- inF(inFileName);
27 # initialize the matrix
28 if ( ! exists("allData")) {
29 allData <- matrix( nrow=nrow(inD), ncol=ncol(inD),

dimnames=dimnames(inD), 0);
30 }
31
32 inD[ which( inD > quantile( inD, 0.25, na.rm=TRUE )) ] <- NA
33 # get only the best scores and make the mask
34 inD[ which( ! is.na(inD)) ] <- 0;
35 inD[ which( is.na(inD)) ] <- 1;
36
37 allData <- allData + inD;
38 rm(inD);
39 }
40
41 plot( hclust( as.dist(allData), method="ward"), main="HCLUST of

the Average Distance Matrix");
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6.3.2 Testing the Method

To test the methods, I have applied our iterative CE variant to a data set of five

small families of homologous proteins. I tested this method on both the typical 3D

protein structures as well as our thermodynamically defined structures. The results

from the typical structure-based and thermodynamic structure-based are shown in

Figure 6.6.

6.3.3 Applying the Method

We pairwise compared all the original 3D protein structures in our database. We

then iteratively compared the thermodynamically defined protein structures, as well.

We provide the results and discussion for a subset of the proteins, and provide the

results for the clustering of the entire set of proteins. The results from the clustering

of the entire database are promising, but muddied due to the existence some proteins

with no structural or thermodynamic neighbors. The smaller subset was of four

randomly chosen protein families from the database.

Hidden Dual Nature The major difference between the arrangement of the

structure-based hierarchy and the thermodynamically-defined hierarchy is the lo-

cation of the 1FNL/2FCB branch. In typical structural terms it has been determined

to have some propinquity with the folds on the right side of the tree. The results

from our clustering show the branch moving to the opposite side of the tree. Why

would that happen? Can we explain it?

First, inspection of the optimal alignments and scores, shows that the 1FNL/2FCB
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Figure 6.7: Figure Showing Ensemble Averaged Energetic Parameters for Two
High Scoring Segments from 1FNL 113:166 and 1M7B 18:71
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branch scores well thermodynamically with the 1M7B brach. Figure 6.7 indicates,

albeit subtly, why. The overlapping segments are residues 113–166 in 1FNL and

18-71 in 1M7B. In Figures 6.7 and 1.1 these two regions are aligned and their

residues renumbered from 1 to more easily discuss the overlapping features. The

overlap generally looks acceptable. There are two regions worth focusing on. The

first is the region spanning residues 10–18. The second region spans the residues

35–42.

The first region shows high overlap on the apolar enthalpy dimension, with

some variation on the polar enthalpy dimension. If one looks at the structures of

these two proteins at these locations we can see what their features are. Figure

XYZ shows the two aligned fragments and hightlights the residues 10–18. The

region from PROTA is consists mainly of apolar residues in a loop fully exposed to

solvent. Thus, upon unfolding of this region, the contribution will be a relatively

low amount of polar surface area (the residues are mainly apolar) with a relatively

low amount of apolar complementary surface area being exposed as well. This

effectively balances the apolar to polar enthalpy ratio—low direct polar exposure,

low complementary apolar exposure. Thus, the apolar enthalpy dimension for the

two proteins should be relatively similar throughout this region, thus the overlap of

apolar enthalpy. This also explains why the entropy values for this region are vastly

different: consider their locations in structure and secondary structure.

The next region of importance is the span of residues 35–42. This region

in both proteins shares a similar polar enthalpy. This turns out to be similar to the

reason why the residues 10–18 matched.
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Thus, exploring these two subsequences shows that proteins have at their

disposal various combinations of methods by which they can modulate their sta-

bility, enthalpy and entropy values even though it would not appear as such when

considering the tenets of, “helices and sheets are stable and loops are unstable.”

Conserved Structural Features We observe common significant substruc-

tural overlap of two proteins with no known homology. For example, consider

the 1FNL and 1M7B proteins. They have a significant substructural overlap of 24

residues determined from our thermodynamic data alone. Figure shows the two

proteins with their thermodynamically aligned segments highlighted. Notice when

superposed they also align very well (3.14 Å RMSD) structurally.

Coil/Loop Anchored Topologies The second observation for the two over-

lapping structures, is that they have a common feature: they have loops or coils in

the same (or nearby) places in sequence. This hints at an underlying principal of TE

alignments being anchored at loops/coils with the differing intervening secondary

structural elements. If the loop/coils align well then the secondary structural ele-

ments in between are there because of their respective topological features not their

type of secondary structure. Figure 6.9 shows a colored coded example from the

above alignment. This should not be too surprising as we know that coils and loops

are typically highly solvent accessible. This implies that loops and coils should en-

ergetically similar with respect to other secondary structure types. This is not the

case for other secondary structures.
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(a)

(b)

Figure 6.8: The top figure (a) shows the structural alignment of the highly similar
TE environments from two non-homologous proteins. The alignment is colored
magenta, green and orange to set the aligned regions apart. The RMSD for the col-
ored overlapping alignments is 3.14 Angstroms. This alignment occurs many times
through our iterative alignment process. The bottom figure (b) is the same align-
ment but with the entire protein structures shown. Notice that the good TE matched
regions actually are structurally similar, but come from structurally nonsimilar pro-
teins.
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Figure 6.9: Changing Alignments Happens Near Coils/Turns. Notice how the color
regions of the alignments change near the loop and coil secondary structure.
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Chapter 7

Conclusions and Future Directions

7.1 Thermodynamically Defined Protein Folds:

A New Vehicle for Reasoning About Proteins

Characterization of TE Space PCA was used to gain insight into the organi-

zation of TE space. We found that certain directions in TE space (PC1) are defined

by the magnitude of the unfolding event. We also discovered that PC2 is most di-

rectly related to the type of surface area being unfolded. Lastly, PC3 was shown to

be most related to a stability and entropy change.

Each point in the TE space is the result of a difference of weighted differ-

ences. When combined with the primary, secondary and tertiary structure informa-

tion of the protein, these values logically define the TE space.

Residues in TE space are stable because their unfolded subensembles expose

a large amount of accessible apolar and polar surface area. This large amount of
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exposed surface area lowers the probability of these microstates to nearly 0. Once

weighted, the majority of the energetic signal of stable residues comes from the

dominant, folded subensemble. The unfolded subensemble for unstable residues is

weighted more favorably because it exposes less surface area.

Structure Alignment and Fold Family Determination We have shown that

we can identify similar thermodynamically defined protein structures. We have also

shown that we can hierarchically cluster and partition the fold space, and that this

fold space is organized differently that is the structure fold space. These results

indicate a method of looking at the protein fold space from a new point of view—

an original goal of this project.

Investigation of the results of the TE structure alignments has shown that (1)

similar energetic substructures can be found in proteins with no known homology;

(2) that in some cases these regions have high typical-structural agreement; and (3)

loops and coils may actually be anchor points for residue-residue pairings.

Targeted Residue Mutations One interesting result gained from these the-

oretical experiments is the correlation between calculable ∆ASA and stability.

Because of this I can propose a simple method for residue mutations based upon

∆ASA. First, calculate the residue-level energetics for a protein. To mutate the

residue follow the results from PC1 or PC2 for stability and surface area changes.

Also, consider mutating distal residues that are positively coupled. Next, more fine-

grained results can be calculated if the secondary structure log-odds probabilities

are considered. That is, a PSSM can be created for each different type of secondary
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structure to better pinpoint the required changes.
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Appendix A

C++ Source Code for the CE Variant

A.1 Our Original CE Variant

Source Code A.1: C++ Source Code for Our CE Variant

1 /************************************************
2 * CE.cpp
3 *
4 * Mon Apr 24 09:47:54 2006
5 * Copyright (C) 2006-2007 Jason Vertrees
6 * javertre@utmb.edu
7 * $Id: CE.cpp 12 2006-12-21 23:49:14Z tree $
8 ************************************************
9 #include "CE.h"

10 #include <tnt_array2d.h>
11
12 #include <float.h>
13 #include <sstream>
14 #include <iomanip>
15 #include "QKabsch.h"
16
17 namespace CE {
18
19 //==========================================
20 // Class typicals (cstrs, dstr, etc.)
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21 //==========================================
22 CE::CE():
23 coordsA(*(new Coords())),
24 coordsB(*(new Coords())),
25 dmA(*(new DM())),
26 dmB(*(new DM())),
27 S(*(new SM(0,0))),
28 paths(),
29 D0(3.0),
30 D1(4.0),
31 winSize(8),
32 winSum((winSize-2)*(winSize-1)/2),
33 gapMax(30)
34 {}
35
36 //FIXME: ADD NEW options to CE and test
37
38 //==============================================
39 // CE copy constructor
40 //==============================================
41 CE::CE( const CE& rhs ):
42 coordsA( rhs.coordsA ),
43 coordsB( rhs.coordsB ),
44 dmA(rhs.dmA),
45 dmB(rhs.dmB),
46 S( *(new SM(rhs.S)) ),
47 paths(),
48 D0(rhs.D0),
49 D1(rhs.D1),
50 winSize(rhs.winSize),
51 winSum(rhs.winSum),
52 gapMax(rhs.gapMax)
53 {}
54
55 //==============================================
56 // CE constructor from 2 coordinate sets
57 //==============================================
58 CE::CE( const Coords& c1,
59 const Coords& c2,
60 double D0,
61 double D1,
62 int winSize,
63 int winSum,
64 int gapMax ):
65 coordsA(*(new Coords(c1))),
66 coordsB(*(new Coords(c2))),
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67 dmA(*(new DM(c1))),
68 dmB(*(new DM(c2))),
69 S(*(new SM(c1.size(), c2.size()))),
70 paths(),
71 D0(D0),
72 D1(D1),
73 winSize(winSize),
74 winSum(winSum),
75 gapMax(gapMax)
76 {
77 assert( (unsigned int) coordsA.size() == dmA.getDim1() );
78 assert( (unsigned int) coordsB.size() == dmB.getDim1() );
79 calcS();
80 }
81
82 //==============================================
83 // CE constructor from 2 distance matrices
84 //==============================================
85 CE::CE( const DM& dmA,
86 const DM& dmB,
87 double D0,
88 double D1,
89 int winSize,
90 int winSum,
91 int gapMax ):
92 coordsA( *(new Coords())),
93 coordsB( *(new Coords())),
94 dmA(*(new DM(dmA))),
95 dmB(*(new DM(dmB))),
96 S(*(new SM(dmA.getDim1(), dmB.getDim1()))),
97 paths(),
98 D0(D0),
99 D1(D1),

100 winSize(winSize),
101 winSum(winSum),
102 gapMax(gapMax)
103 {
104 calcS();
105 }
106
107 //==============================================
108 // CEs Destructor
109 //==============================================
110 CE::˜CE()
111 {
112 delete &dmA;
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113 delete &dmB;
114 delete &coordsA;
115 delete &coordsB;
116 delete &S;
117 }
118
119
120
121 //==============================================
122 // gets coordinates of the atoms that will be aligned
123 //==============================================
124 std::pair<Coords, Coords> CE::getAlignedCoords( unsigned int

pathNo ) const
125 {
126 assert( paths.size() > 0 );
127 assert( pathNo < paths.size() );
128 assert( coordsA.size()>0 );
129 assert( coordsB.size()>0 );
130 assert( (unsigned int) coordsA.size() == dmA.getDim1() );
131 assert( (unsigned int) coordsB.size() == dmB.getDim1() );
132
133 if ( paths[pathNo].size() == 0 ) {
134 return std::pair<Coords,Coords>();
135 }
136
137 // get the path
138 Path path = paths[pathNo];
139
140 // get the true size of the path
141 unsigned int maxPathSize = 0;
142 while ( maxPathSize < path.size() )
143 if ( path[(maxPathSize++)+1].first == -1 )
144 break;
145
146 Coords rC1( coordsA );
147 Coords rC2( coordsB );
148
149 typedef std::set<unsigned int> uintSet;
150 uintSet incA;
151 uintSet incB;
152 // remove those to align from erasure
153 for ( unsigned int i = 0; i < maxPathSize; i++ ) {
154 for ( unsigned int j = 0; j < winSize; j++ ) {
155 incA.insert( path[i].first+j );
156 incB.insert( path[i].second+j );
157 }
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158 }
159
160 rC1.setSlice(incA);
161 rC2.setSlice(incB);
162 assert( rC1.size() == rC2.size() );
163
164 return std::pair<Coords, Coords>( rC1,rC2 );
165 }
166
167
168 //==============================================
169 // main public alignment algorithm; the first will operator on a
170 // well-constructed CE class using its own members. The two-

param
171 // version will work on two givem Distance Matrices
172 //==============================================
173 void CE::align() {
174 align(this->dmA, this->dmB);
175 }
176
177 //==============================================
178 // Main invocation for CE, just converts arguments to DMs.
179 //==============================================
180 void CE::align( const Coords& c1, const Coords& c2 ) {
181 align( DM(c1), DM(c2) );
182 }
183
184 void CE::align( const DM& dmA, const DM& dmB ) {
185
186 assert( dmA.getDim1() == (unsigned int) coordsA.size() );
187 assert( dmB.getDim1() == (unsigned int) coordsB.size() );
188
189 // calculate the Similarity matrix
190 calcS();
191
192 assert( dmA.getDim1() == (unsigned int) coordsA.size() );
193 assert( dmB.getDim1() == (unsigned int) coordsB.size() );
194
195 //find the optimal path through S
196 findPath();
197
198 // align the paths to get the best structure
199 findOptimalPath();
200 }
201
202 //======================================================

143



203 // Calculates the Similarity matrix, S.
204 //======================================================
205 void CE::calcS() {
206 double sumSize = (winSize-1)*(winSize-2) / 2;
207 double score = 0.0;
208 unsigned int lenA = dmA.getDim1(); //- winSize;
209 unsigned int lenB = dmB.getDim1(); // - winSize;
210
211 VVD d1 = *(dmA.getData());
212 VVD d2 = *(dmB.getData());
213 //
214 // This is where the magic of CE comes out. In the similarity

matrix,
215 // for each i and j, the value of ceSIM[i][j] is how well the

residues
216 // i - i+winSize in protein A, match to residues j - j+winSize

in protein
217 // B. A value of 0 means absolute match; a value >> 1 means

bad match.
218 //
219 for ( unsigned int iA = 0; iA < lenA; iA++ ) {
220 for ( unsigned int iB = 0; iB < lenB; iB++ ) {
221 S[iA][iB] = -1.0;
222
223 // the boundary of -1’s are needed.
224 if ( iA > lenA-winSize || iB > lenB-winSize )
225 continue;
226 score = 0.0;
227
228 //
229 // We always skip the calculation of the distance from

THIS
230 // residues, to the next residue. This is a time-saving

heur-
231 // istic decision. Almost all alpha carbon bonds of

neighboring
232 // residues is 3.8 Angstroms. Due to entropy, S = -k ln

pi * pi,
233 // this tell us nothing, so it doesn’t help so ignore it.
234 //
235
236 // UNCOMMENT BELOW FOR ORIGINAL ALGORITHM
237 /* for ( unsigned int row = 0; row < winSize - 2; row++ )

{
238 for ( unsigned int col = row + 2; col < winSize; col++

) {
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239 score += fabs( d1[iA+row][iA+col] - d2[iB+row][iB+
col] );

240 }
241 }
242 */
243
244 // FIXME!!!!!!! The above works well for standard protein

data
245 // FIXME!!!!!!! but, we don’t have standard data, so I

need to
246 // FIXME!!!!!!! start from the neighboring residues

afterall.
247
248 // find the max in this submatrix;
249 double localMaxA = 1.0;
250 double localMaxB = 1.0;
251 for ( unsigned int row = 0; row < winSize; row++ ) {
252 for ( unsigned int col = 0; col < winSize; col++ ) {
253 localMaxA = ( d1[iA+row][iA+col] > localMaxA ) ? d1[iA

+row][iA+col] : localMaxA;
254 localMaxB = ( d2[iB+row][iB+col] > localMaxB ) ? d2[iB

+row][iB+col] : localMaxB;
255 }
256 }
257
258 // Nˆ2 all against all in the submatrix
259 for ( unsigned int row = 0; row < winSize; row++ ) {
260 for ( unsigned int col = 0; col < winSize; col++ ) {
261 score += fabs( (d1[iA+row][iA+col]/localMaxA) - (d2[iB

+row][iB+col]/localMaxB) );
262 }
263 }
264
265 S[iA][iB] = score / sumSize;
266 }
267 }
268
269 // dump an S matrix to image
270 if ( args["verbose"] == "true" ) {
271 for ( int i = 0; i < S.dim1(); i++ ) {
272 if ( (unsigned) i > lenA-winSize ) break;
273 for ( int j = 0; j < S.dim2(); j++ ) {
274 if ( (unsigned) j > lenB-winSize ) break;
275 std::cout << std::setprecision(5) << S[i][j] << "\t";
276 }
277 std::cout << "\n";
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278 }
279 }
280 }
281
282 //==============================================
283 // finds the all paths through S, the similarity matrix
284 //==============================================
285 void CE::findPath() {
286
287 // for neatness; boundaries
288 const unsigned int lenA = dmA.getDim1();
289 const unsigned int lenB = dmB.getDim1();
290
291 VVD dA = *(dmA.getData());
292 VVD dB = *(dmB.getData());
293
294 // create the holder for the BEST path
295 int maxPathLength = std::min( lenA, lenB );
296 Path bestPath( maxPathLength, std::pair<int,int>(-1,-1) );
297 // the best Path’s score
298 double bestPathScore = FLT_MAX;
299 unsigned int bestPathLength = 0;
300
301 //==================================================
302 // for storing the best 20 paths
303 const unsigned int MAX_KEPT = 20;
304 // Just copies in a blank path, MAX_KEPT times.
305 std::vector<Path> pathBuffer(MAX_KEPT, Path(maxPathLength, std

::pair<int,int>(-1,-1)));
306 std::vector<double> scoreBuffer(MAX_KEPT, FLT_MAX);
307 std::vector<unsigned int> lenBuffer(MAX_KEPT,0);
308 unsigned int bufferBest = 0;
309
310 //==================================================
311
312 // a holds the number of residues compared for i windows of

winSize
313 // residues, plus the comparison of the i+1’st window.
314 //
315 std::vector<int> winCache(maxPathLength,-1);
316 for ( int i = 0; i < maxPathLength; i++ ) {
317 winCache[i] = ((i+1)*i*winSize/2 + (i+1)*winSum);
318 }
319
320 //
321 // Keeps a matrix of all gapped scores
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322 //
323 std::vector< std::vector<double> > allScoreBuffer;
324 for ( int indexA = 0; indexA < maxPathLength; indexA++ ) {
325 allScoreBuffer.push_back(std::vector<double>(gapMax*2+1,FLT_

MAX));
326 }
327
328 std::vector<int> traceIndex(maxPathLength);
329 int gapBestIndex = -1;
330
331 //
332 // Investigate all the possible paths starting at [iA][iB]...
333 //
334 for ( unsigned int iA = 0; iA < lenA; iA++ ) {
335 // these are brilliant: if this path will be by definition
336 // shorter than the best, ignore it. Very DFBNB-ish.
337 if ( iA > lenA - winSize*(bestPathLength) )
338 break;
339
340 for ( unsigned int iB = 0; iB < lenB; iB++ ) {
341
342 // heuristic short cuts; if this AFP’s average match
343 // is worse than 3Ang, ignore it.
344 if ( S[iA][iB] >= D0 )
345 continue;
346
347 if ( S[iA][iB] == -1.0 )
348 continue;
349
350 // these are brilliant: if this path will be by definition
351 // shorter than the best, ignore it. DFBNB.
352 if ( iB > lenB - winSize*(bestPathLength) )
353 break;
354
355 // current/best path seen in the while loop
356 Path curPath = Path( maxPathLength, std::pair<int,int

>(-1,-1));
357 curPath[0].first = iA;
358 curPath[0].second = iB;
359 unsigned int curPathLength = 1;
360 traceIndex[0] = 0;
361
362 // total score; eq 11
363 double curTotalScore = FLT_MAX;
364
365 // stop when we have our longest possible path based from
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366 // [iA][iJ]
367 bool done = false;
368
369 //
370 // Build all possible paths satisfying the requirements.

Keep
371 // the longest & best path.
372 //
373 while ( ! done ) {
374 double gapBestScore = FLT_MAX;
375 gapBestIndex = -1;
376 //
377 // Search three things: (i) in place, that is
378 // [iA+winSize-1][iB+winSize-1]; (ii) gap right
379 // [iA+g][iB] and (iii) gap down, [iA][iB+g]. Keep the
380 // best path found and add the pair to the end of the
381 // curBest path.
382 for ( unsigned int g = 0; g < (gapMax*2)+1; g++ ) {
383
384 unsigned int jA = curPath[curPathLength-1].first +

winSize;
385 unsigned int jB = curPath[curPathLength-1].second +

winSize;
386
387 if ( (g+1) % 2 == 0 ) {
388 jA += (g+1)/2;
389 }
390 else { // ( g odd )
391 jB += (g+1)/2;
392 }
393
394 // heuristic checking
395 if ( jA > lenA-winSize-1 || jB > lenB-winSize-1 ){
396 continue;
397 }
398
399 // heuristic to control quality
400 if ( S[jA][jB] > D0 )
401 continue;
402 // There are rows/cols of -1’s around the similarity
403 // matrix -- if we’re into those, we’ve gone to the
404 // end of the matrix -- no more gapping possible.
405 if ( S[jA][jB] == -1.0 )
406 continue;
407
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408 // Here is some sample output on two small proteins
for

409 // following code:
410 //
411 /* 3--11 vs. 3--11 (first pairs)
412 * 10--18 vs. 10--18 (end pairs)
413 * 4--17 vs 4--17 start+1 vs. end-1
414 * 5--16 vs 5--16 start+2 vs. end-2
415 * 6--15 vs 6--15 start+3 vs. end-3
416 * 7--14 vs 7--14 start+4 vs. end-4
417 * 8--13 vs 8--13 start+5 vs. end-5
418 * 9--12 vs 9--12 start+6 vs. end-6
419 */
420
421 //
422 // CE METHOD
423 //
424 double curScore = 0.0;
425
426 // for normalizing
427 double localMaxA = FLT_MIN;
428 double localMaxB = FLT_MIN;
429 for ( unsigned int s = 0; s < curPathLength; s++ ) {
430 localMaxA = (dA[curPath[s].first][jA] > localMaxA) ?

dA[curPath[s].first][jA] : localMaxA;
431 localMaxB = (dB[curPath[s].second][jB] > localMaxB )

? dB[curPath[s].second][jB] : localMaxB;
432
433 localMaxA = (dA[curPath[s].first + (winSize-1)][jA

+(winSize-1)] > localMaxA) ? dA[curPath[s].first
+ (winSize-1)][jA+(winSize-1)] : localMaxA;

434 localMaxB = (dB[curPath[s].second + (winSize-1)][jB
+(winSize-1)] > localMaxB) ? dB[curPath[s].
second + (winSize-1)][jB+(winSize-1)]: localMaxB
;

435
436 for ( unsigned int k = 1; k < winSize-1; k++ ) {
437 localMaxA = (dA[curPath[s].first + k][ jA + (

winSize-1) - k ] > localMaxA ) ? dA[curPath[s
].first + k][ jA + (winSize-1) - k ] :
localMaxA;

438 localMaxB = (dB[curPath[s].second + k][ jB + (
winSize-1) - k ] > localMaxB ) ? dB[curPath[s
].second + k][ jB + (winSize-1) - k ] :
localMaxB;

439 }
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440 }
441
442 for ( unsigned int s = 0; s < curPathLength; s++ ) {
443 curScore += fabs( (dA[curPath[s].first][jA]/

localMaxA) - (dB[curPath[s].second][jB]/
localMaxB));

444 curScore += fabs( (dA[curPath[s].first + (winSize
-1)][jA+(winSize-1)]/localMaxA) -

445 (dB[curPath[s].second + (winSize-1)][jB
+(winSize-1)]/localMaxB) );

446
447 for ( unsigned int k = 1; k < winSize-1; k++ )
448 curScore += fabs( (dA[curPath[s].first + k][ jA +

(winSize-1) - k ]/localMaxA) -
449 (dB[curPath[s].second + k][ jB + (

winSize-1) - k ]/localMaxB) );
450 }
451
452 curScore /= (double) winSize * (double) curPathLength;
453 //
454 // CE METHOD
455 //
456
457 // if this gapped path is over the limit, try another.
458 if ( curScore >= D1 ) {
459 continue;
460 }
461
462 if ( curScore < gapBestScore ) {
463 curPath[curPathLength].first = jA;
464 curPath[curPathLength].second = jB;
465 gapBestScore = curScore;
466 gapBestIndex = g;
467 allScoreBuffer[curPathLength-1][g] = curScore;
468 }
469 } /// ROF -- END GAP SEARCHING
470 // CHECK ENTIRE PATH SCORE AGAINST D1.
471 int jGap, gA, gB;
472 double score1=0.0;
473
474 if ( gapBestIndex != -1 ) {
475 jGap = (gapBestIndex + 1 ) / 2;
476 if ((gapBestIndex + 1 ) % 2 == 0) {
477 gA = curPath[ curPathLength-1 ].first + winSize +

jGap;
478 gB = curPath[ curPathLength-1 ].second + winSize;
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479 }
480 else {
481 gA = curPath[ curPathLength-1 ].first + winSize;
482 gB = curPath[ curPathLength-1 ].second + winSize +

jGap;
483 }
484
485 // perfect
486 score1 = (allScoreBuffer[curPathLength-1][gapBestIndex

] * winSize * curPathLength
487 + S[gA][gB]*winSum)/(winSize*curPathLength+winSum);
488
489 // perfect
490 curTotalScore = ((curPathLength>1 ? (allScoreBuffer[

curPathLength-2][traceIndex[curPathLength-1]]):(S[
iA][iB]))

491 * winCache[curPathLength-1] + score1*(winCache[
curPathLength] - winCache[curPathLength-1]))

492 / winCache[curPathLength];
493
494 // heuristic -- path is getting sloppy, stop looking
495 if ( curTotalScore > D1 ) {
496 done = true;
497 gapBestIndex=-1;
498 break;
499 }
500 else {
501 allScoreBuffer[curPathLength-1][gapBestIndex] =

curTotalScore;
502 traceIndex[curPathLength] = gapBestIndex;
503 curPathLength++;
504 }
505 }
506 else {
507 // if here, then there was no good gapped path
508 done = true;
509 curPathLength--;
510 break;
511 }
512
513 // if our currently best gapped path from iA and iB is

LONGER
514 // than the current best; or, it’s equal length and the

score’s
515 // better, keep the new path.
516 if ( curPathLength > bestPathLength ||
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517 (curPathLength == bestPathLength && curTotalScore <
bestPathScore )) {

518 bestPathLength = curPathLength;
519 bestPathScore = curTotalScore;
520 bestPath = curPath;
521 }
522 } /// END WHILE
523
524 // record this path in the path buffer
525 if ( curPathLength > lenBuffer[bufferBest] ||
526 ( curPathLength == lenBuffer[bufferBest] &&
527 curTotalScore < scoreBuffer[bufferBest] )) {
528 bufferBest = ( bufferBest == MAX_KEPT-1 ) ? 1 :

bufferBest+1;
529 Path pathCopy = Path(bestPath);
530 pathBuffer[bufferBest-1] = pathCopy;
531 scoreBuffer[bufferBest-1] = curTotalScore;
532 lenBuffer[bufferBest-1] = curPathLength;
533 }
534 } /// ROF -- end for iB
535 } /// ROF -- end for iA
536
537 std::cout << std::endl;
538 std::ostringstream ss1, a, b;
539
540 // store the best paths in CE’s internal data structure.
541 for ( unsigned int pC = 0; pC < MAX_KEPT; pC++ )
542 if ( lenBuffer[pC] != 0 )
543 paths.push_back( Path(pathBuffer[pC]) );
544 }
545
546
547 //==============================================
548 // finds the best of all the paths
549 //==============================================
550 void CE::findOptimalPath() {
551 /* Now, this->paths has all the good-scoring paths in it. I

must now
552 * search through all these paths and find the one with the

lowest RMSD
553 * and do some gap wiggling.
554 */
555 if ( paths.size() == 0 )
556 {
557 //FIXME:
558 std::cout << "\nBEST ALIGNMENT\n";
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559 std::cout << "==============\n";
560 std::cout << "Number aligned: 0 -- NO GOOD ALIGNMENT!" <<

std::endl;
561 std::cout << "RMSD: 10" << std::endl;
562 std::cout << "CESCORE: 10" << std::endl;
563 std::cout << "optAlign MOL1 and i. " << ", MOL2 and i. " <<

std::endl;
564 exit(EXIT_SUCCESS);
565 }
566 assert( paths.size() > 0 );
567 // if they are, you were naughty and created a CE without
568 // coordinates; maybe you skipped directly to a distance

matrix?!
569 assert( coordsA.size() != 0 );
570 assert( coordsB.size() != 0 );
571
572 unsigned int bestIndex = 0;
573 double bestScore = FLT_MAX;
574 double bestCEScore = FLT_MAX;
575 double curScore = FLT_MAX;
576 TA2<double> bestRot;
577
578 for ( unsigned int i = 0; i < paths.size(); i++ ) {
579 // ignore if something wrong.
580 if ( paths[i].size() == 0 )
581 continue;
582
583 // get the true size of the path
584 unsigned int maxPathSize = 0;
585 while ( maxPathSize < paths[i].size() ) {
586 if ( paths[i][(maxPathSize++)+1].first == -1 )
587 break;
588 }
589
590 // do a quick align using the QKabsch
591 std::pair<Coords, Coords> c = this->getAlignedCoords(i);
592 TA1<double> w( c.first.size(), 1.0 );
593 QKabsch::QKabsch QK(c.first, c.second);
594 QK.align();
595
596 //
597 // Jia Y., Dewey G.T., Shindyalov I.N., Bourne P.E.
598 // A new scoring function and associated statistical
599 // significance for structure alignment by CE. J. Comp.
600 // Biol., 2004, 11, 787-799.
601 double internalGaps = 0.0;
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602 for ( unsigned int g = 0; g < maxPathSize-1; g++ ) {
603 internalGaps += (double) ( paths[i][g].first + (int)

winSize == paths[i][g+1].first )
604 ? 0.0 : (paths[i][g+1].first - paths[i][g].first - (int)

winSize);
605 internalGaps += (double) ( paths[i][g].second + (int)

winSize == paths[i][g+1].second )
606 ? 0.0 : (paths[i][g+1].second - paths[i][g].second - (

int) winSize);
607 }
608 double aliLen = (double) c.first.size();
609 double numGap = internalGaps;
610
611 curScore = (QK.getRMSD()/aliLen)*(1.0+(numGap/aliLen));
612
613 // find best path based upon RMSD
614 if ( curScore < bestScore ) {
615 bestIndex = i;
616 bestCEScore = curScore;
617 bestScore = QK.getRMSD();
618 bestRot = QK.getU();
619 }
620
621
622
623
624 /* // find best path based upon RMSD
625 if ( QK.getRMSD() < bestScore ) {
626 bestScore = QK.getRMSD();
627 bestIndex = i;
628 double internalGaps = 0.0;
629 for ( unsigned int g = 0; g < maxPathSize-1; g++ ) {
630 internalGaps += (double) ( paths[i][g].first + (int)

winSize == paths[i][g+1].first )
631 ? 0.0 : (paths[i][g+1].first - paths[i][g].first - (

int) winSize);
632 internalGaps += (double) ( paths[i][g].second + (int)

winSize == paths[i][g+1].second )
633 ? 0.0 : (paths[i][g+1].second - paths[i][g].second - (

int) winSize);
634 }
635 double aliLen = (double) c.first.size();
636 double numGap = internalGaps;
637
638 // here I use the CE score as reported in:
639 //
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640 // Jia Y., Dewey G.T., Shindyalov I.N., Bourne P.E.
641 // A new scoring function and associated statistical
642 // significance for structure alignment by CE. J. Comp.
643 // Biol., 2004, 11, 787-799.
644 //
645 bestCEScore = (bestScore/aliLen)*(1.0+(numGap/aliLen));
646 //std::cout << "aliLen: " << aliLen << "; numGap: " <<

numGap << std::endl;
647 }
648 */
649
650
651 }
652
653 //
654 // FIXME:
655 //
656 // INSERT CODE HERE TO MAKE THE GAP-SHIFTED PATHS
657 //
658 // """
659 // A final optimization has been added which contributes to
660 // up to 2A improvement in the RMSD between two protein

structures.
661 // Each gap in this single alignment is evaluated for possible

re-
662 // location in both directions up to m/2 positions, where m is

the
663 // AFP size and if the RMSD of superimposed structures

indicates
664 // improvement, the modified gap positions are adopted.
665 // """
666 //
667
668 // Pseudo-code for optimization
669 // ============================
670
671 //
672 // Report on the best alignment found
673 //
674 std::ostringstream e, d, f;
675
676 unsigned int maxPathSize = 0;
677 while ( maxPathSize < paths[bestIndex].size() )
678 if ( paths[bestIndex][(maxPathSize++)+1].first == -1 )
679 break;
680
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681 for ( unsigned int q = 0; q < maxPathSize; q++ ) {
682 if ( q != maxPathSize-1 ) {
683 e << paths[bestIndex][q].first << "-" << paths[bestIndex][

q].first+(winSize-1) << "+";
684 d << paths[bestIndex][q].second << "-" << paths[bestIndex

][q].second+(winSize-1) << "+";
685 }
686 else {
687 e << paths[bestIndex][q].first << "-" << paths[bestIndex][

q].first+(winSize-1);
688 d << paths[bestIndex][q].second << "-" << paths[bestIndex

][q].second+(winSize-1);
689 }
690
691 for ( unsigned int indiv = 0; indiv < winSize; indiv++ )
692 f << paths[bestIndex][q].first+indiv << "\t" << paths[

bestIndex][q].second+indiv << "\n";
693 }
694
695 // for analysis, I sometimes just want the chosen paths --

nothing else. If so,
696 // just print out the paths or full data, here.
697 if ( args["j"] == "false" ) {
698 std::cout << "\nBEST ALIGNMENT\n";
699 std::cout << "==============\n";
700 std::cout << "Number aligned: " << maxPathSize*winSize <<

std::endl;
701 std::cout << "RMSD: " << bestScore << std::endl;
702 std::cout << "CESCORE: " << bestCEScore << std::endl;
703 std::cout << "optAlign MOL1 and i. " << e.str() << ", MOL2

and i. " << d.str() << std::endl;
704 std::cout << "bestRotation: " << bestRot << std::endl;
705 } else {
706 std::cout << f.str() << std::endl;
707 }
708 }
709 }

156



A.2 Source Code for Taking the SVD of a

Similarity Matrix

This code replaces the matrix S calculated at line 265 in the above code. This code

may be inserted after line 265 to test the SVD of a CE matrix.

Source Code A.2: C++ Source code for Calculating the SVD of a Similarity Matrix

1 //===============================
2 // Test the SVD of the CE matrix.
3 // ==============================
4
5 // left singular vectors
6 TA2<double> W = TA2<double>(lenA, lenA);
7 TA2<double> Ws = *(new TA2<double>( lenA, lenB ));
8
9 // right singular vectors

10 TA2<double> Vt = TA2<double>(lenB, lenB);
11 JAMA::SVD<double> svd = JAMA::SVD<double>( S );
12 svd.getU(W);
13 svd.getV(Vt);
14
15 // need to make this like R does.
16 for ( unsigned int i = 0; i < lenA; i++ )
17 for ( unsigned int j = 0; j < lenB; j++ )
18 Ws[i][j] = W[i][j];
19
20 Vt = QKabsch::transpose(Vt);
21 S = (*new SM(TNT::matmult(Ws, Vt)));
22
23 // find the min of S and add abs(min) to this -- make this a

positive matrix (for CE align)
24 double sMin = FLT_MAX;
25 for ( int i = 0; i < S.dim1(); i++ )
26 for ( int j = 0; j < S.dim2(); j++ )
27 if ( sMin > S[i][j] ) { sMin = S[i][j]; }
28
29 for ( int i = 0; i < S.dim1(); i++ )
30 for ( int j = 0; j < S.dim2(); j++ )
31 S[i][j] += fabs(sMin);
32
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33 //std::cout << "Dims: " << S.dim1() << " and " << S.dim2() << std
::endl;

34
35 //
36 // END
37 //
38 ///////////////////////////////////////////////
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