Copyright by Anna Nia 2020 The Dissertation/Thesis/Capstone Committee for Anna Nia Certifies that this is the approved version of the following Dissertation:

Efficient Identification and Comprehension of Molecular Pathways Associated with Irradiation Induced Hepatic Carcinogenesis

Committee:

JE IN pal

Mark Emmett, Ph.D., Supervisor

George Golovko, Ph.D., Chair

Daniel Jupiter

Daniel Jupiter, Ph.D.

lt I Wa Steven Widen, Ph.D.

Hosein Molumani

Hosein Mohimani, Ph.D.

Efficient Identification and Comprehension of Molecular Pathways Associated with Irradiation Induced Hepatic Carcinogenesis

by

Anna Nia, B.S., M.S.

Dissertation

Presented to the Faculty of the Graduate School of The University of Texas Medical Branch in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

The University of Texas Medical Branch March 2020

Dedication

To my beloved parents, who have always been a source of inspiration, encouragement, and stamina to undertake my higher studies

Acknowledgements

I would like to acknowledge everyone who played a role in my academic accomplishments. First of all, my parents, and my brother, who supported me with love and understanding without whom I could not have accomplished this. Additionally, my committee members, each of whom has provided patient advice and guidance throughout the research process. Thank you all for your unwavering support.

My work has been supported by Ground-Based Studies in Space Radiobiology through the National Aeronautics and Space Administration NASA (NNX15AD65G). The funders did not participate in the design of the study, collection, analysis, or interpretation of data, or in writing of the current material.

Chapter 2 is a version of a manuscript published in *BMC Bioinformatics*. <u>Nia,</u>
 <u>A.M.</u>, Chen, T., Barnette, B.L., Khanipov, K., Ullrich, R.L., Bhavnani, S., Emmett, M.R.
 (2020), "Efficient Identification of Multiple Pathways: RNA-Seq Analysis of Livers from ⁵⁶Fe Ion Irradiated Mice", *BMC Bioinformatics*, DOI: 10.1186/s12859-020-3446-5.

Chapter 3 is a version of a manuscript currently in submission and under review at *BMC Genomics*. <u>Nia, A.M.</u>, Khanipov, K., Barnette, B.L., Ullrich, R.L., Golovko, G., Emmett, M.R. (2020), "Comparative RNA-Seq transcriptome analyses reveal dynamic time dependent effects of ⁵⁶Fe, ¹⁶O, and ²⁸Si irradiation on the induction of murine hepatocellular carcinoma", *BMC Genomics*, DOI: 10.21203/rs.3.rs-17127/v1.

Chapter 4 is a version of a manuscript currently in preparation for submission to *Journal of the American Society for Mass Spectrometry (JASMS)*. <u>Nia, A.M.</u>, Shavkunov, A., Ullrich, R.L., Emmett, M.R. (2020), "¹³⁷Cs γ ray and ²⁸Si Irradiation Induced Murine Hepatocellular Carcinoma Lipid Changes in Liver Assessed by MALDI-MSI Combined with Spatial Shrunken Centroid Clustering Algorithm", *Journal of the American Society for Mass Spectrometry (JASMS)*.

Efficient Identification and Comprehension of Molecular Pathways Associated with Irradiation Induced Hepatic Carcinogenesis

Publication No.

Anna Nia, M.D., Ph.D.

The University of Texas Medical Branch, 2020 Supervisor: Mark R. Emmett

As human exploration into deep space continues to expand in the future, risk prediction for irradiation-induced diseases will become an increasingly important task. It will be critical to identify the biological effects of high-charge, high energy (HZE) and low energy 137 Cs γ rays, which are the major components of space irradiation on the human body during longer stay in deep space, including a mission to Mars. It has been shown that there is a significant increase in incidence of Hepatocellular carcinoma (HCC), after exposure to low dose HZE. There is, however, limited knowledge of the effects of low dose irradiation on the formation of HCC. To address this gap in knowledge, RNA-Seq and MALDI-MSI were used to assess the effects of space irradiation on the pathogenesis of HCC. In particular, RNA-seq was used to determine transcriptional changes, and MALDI-MSI to determine lipid changes, in the hepatic microenvironment of ion irradiated compared to non-irradiated controls, in two different strains of mice, at five different time points post-irradiation. For our RNA-Seq datasets, we first present a novel pipeline to perform gene co-expression network analysis, and use this to show that mitochondrial pathways are dysregulated in response to ⁵⁶Fe irradiation compared to non-irradiated

control, in the wildtype mouse strain (C57BL/6NCrl.) Next we performed a comparative transcriptomic analysis in a mouse model for irradiation-induced HCC (C3H/HeNCrl), in order to assess the carcinogenic effects of 600 MeV/n ⁵⁶Fe (0.2 Gy), 1 GeV/n ¹⁶O (0.2 Gy), and 350 MeV/n ²⁸Si (0.2 Gy), compared to non-irradiated control. Our data demonstrated a clear difference in the effects of these HZE ions, particularly immunological, suggesting different molecular mechanisms of tumorigenesis for each ion. Additionally, we observed novel, functionally unannotated transcripts that were significantly affected by HZE. The biological functions of these transcripts were investigated using Self-Organizing Maps (SOMs). Finally, we used MALDI-MSI to identify lipid changes 12 months post-exposure to low dose ²⁸Si and ¹³⁷Cs γ rays' irradiation. We identified a number of lipid species; in particular, we have confirmed the identity of GSL; which is of special interest because its upregulation have been reported in patients with HCC.

Table of Contents

1	List	of Tables	xi		
2	List	of Figures	xv		
2	List of Abbreviations				
3	List of AbbreviationsXVII				
4	Chapter 1: Background				
	4.1 History				
	4.2	Space Radiation Biology	19		
4.3 Incidence of Hepatocellular Carcinoma (HCC) in Mice Irradiated with GeV/nucleon ⁵⁶ Fe Ions			20		
	4.4	Overview of Following Chapters	22		
	4.4.1	Irradiation Induced Transcriptional Changes	23		
	4.4.2	Irradiation Induced Lipid Changes	24		
5	Cha	pter 2: Efficient Identification of Multiple Pathways: RNA-Seq Analy	sis of		
Li	ivers fr	om ⁵⁶ Fe Ion Irradiated Mice	26		
	5.1	Abstract			
	5.2	Introduction	27		
	5.3	Methods	30		
	5.3.1	Animal Experiments and Sample Preparation	31		
	5.3.2	Acquisition of RNA-Seq Data	32		
	5.3.3	Differential Gene Expression Analysis	34		
	5.3.4	Feature Selection (FS)	35		
	5.3.5	WGCNA			
	5.3.6	WGCNA with Modularity Maximization			
	5.3.7	Mitcohondrial Complay I Enguna Activity Assay			
	539	Functional Enrichment Analysis			
	5 4		20		
	5.4	Differential Gana Expression Analysis	20		
	542	Feature Selection			
	5.4.3	WGCNA.			
	5.4.4	WGCNA with Modularity maximization			
	5.4.5	Module Validation and Properties	45		
	5.5	Discussion	48		
	5.6	Conclusions	62		
	5.7	Availability of Data and Materials	63		
	5.8 5.8.1 5.8.2	<i>Tutorial for WGCNA-M</i> Adjacency Matrix Tutorial Manual: WGCNA-M	63 63 67		

6 Ch Time-D	hapter 3: Comparative RNA-Seq Transcriptome Analyses Reveal Dynamic Dependent Effects of ⁵⁶ Fe, ¹⁶ O, and ²⁸ Si Irradiation on the Induction of A Happtocollular Consineme	с 72
Murine	e Hepatocenular Carcinoma	/2
6.1	Abstract	72
6.2	Introduction	73
6.3	Methods	76
6.3.	.1 Animal Experiments and Sample Preparation	76
6.3.	.2 Acquisition of RNA-Seq Data	77
6.3.	.3 Differential Transcript Expression Analysis	81
6.3.	.4 Functional Enrichment Analysis	81
6.3.	.5 SOM Analysis	82
6.4	Results	83
6.4.	.1 Differential expression analysis of ⁵⁶ Fe reveals dynamic time-dependent changes in	~ ~ ~
infla	ammatory response at the whole transcriptome level	84
0.4.	²² Identification of dystegulated molecular pathways corresponding to unannotated transcr	1pts 121
6 4	3 Differential expression analysis of ¹⁶ O reveals dynamic time-dependent changes in	. 121
infla	ammatory response at the whole transcriptome level	. 127
6.4.	.4 Identification of dysregulated molecular pathways corresponding to unannotated transcr	ipts
asso	ociated with ¹⁶ O irradiation, using SOM	. 150
6.4.	.5 Differential expression analysis of ²⁸ Si reveals dynamic time-dependent changes in	
infla	ammatory response at the whole transcriptome level	. 156
6.4.	.6 Identification of dysregulated molecular pathways corresponding to unannotated transcr	1pts
		. 180
6.5	Discussion	. 192
6.6	Conclusions	204
6.7	Availability of Data and Materials	205
7 Ch Carcino Spotial	apter 4: ¹³⁷ Cs γ Ray and ²⁸ Si Irradiation Induced Murine Hepatocellular oma Lipid Changes in Liver Assessed by MALDI-MSI Combined with Shrunkon Controid Clustering Algorithm	206
Spatial	Al / /	200
/.1	Abstract	206
7.2	Introduction	207
7.3	Methods	. 209
7.3.	.1 Animal Experiment	. 209
7.3.	.2 MALDI-MSI Experiment	. 211
7.3.	.3 Data Analysis	. 213
7.3.	.4 MS/MS Validation of Selected <i>m/z</i> -Values	. 214
7.3.	.5 Lipids Identifications	. 215
7.4	Results	. 215
7.4.	.1 Screening of lipid biomarkers in 137 Cs γ ray irradiated tumor, 28 Si irradiated tumor comp	bared
to h	nealthy non-irradiated control tissues	. 215
7.4.	.2 Upregulation of higher m/z-values and downregulation of lower m/z-values from mice l	ivers
in ir	rradiated tumor/HCC vs. healthy segments	. 219
7.5	Discussion	. 220

	7.6	Conclusions22	22
8		Chapter 5: Conclusions22	24
	8.1	New Results of this Work22	<u>2</u> 4
8.2		A Few Notes on the Importance of these Results22	25
	8.3	Future Works 22	27
9	•	References22	29
1()	Vita24	13

1 LIST OF TABLES

Table 1. Sample List and Total Reads.	34
---------------------------------------	----

- Table 3. WGCNA Results with Dynamic Tree Cut Algorithm: deepSplit provides a rough control over the sensitivity to cluster splitting. The higher the value (or if TRUE), the more and smaller clusters will be produced. The Dynamic Tree Cut may identify modules whose expression profiles are very similar. The parameter minClusterSize allows one to control the minimum number of genes in a module, helping to avoid having similar clusters of few genes. As shown in the table, the lower values of minClusterSize increase the 'Total Number of Modules'. Moreover, as this number increases, the 'Number of Genes in Unassigned Module (Grey)' increases as well.
 Table 4. Ingenuity Pathway Analysis on individual modules.
 45
 Table 5. Gene cluster-assignment comparison. Complete list of gene cluster-assignments using Recursive Indirect-Paths Modularity (RIP-M), Weighted Gene Co-Expression Network Analysis with Modularity (WGCNA), and Weighted Gene Co-Expression Network Analysis with Modularity

Maximization (WGCNA-M).....62

Table 6. Sample List and Total Reads	81
--------------------------------------	----

Table 7. Differentially Expressed Transcripts. Total DE shows the total number of differentially expressed transcripts (FDR≤0.05 & fold change ≥2) for each HZE ion at 5 different time points. 86

Table 8. Significant Pathways for differentially expressed transcripts in ⁵⁶ Fe vs. non-irradiated control at 1
month
Table 9. Significant Pathways for differentially expressed transcripts in ⁵⁶ Fe vs. non-irradiated control at 2
months95
Table 10. Significant Pathways for differentially expressed transcripts in ⁵⁶ Fe vs. non-irradiated control at 4
months
Table 11. Significant Pathways for differentially expressed transcripts in ⁵⁶ Fe vs. non-irradiated control at 9
months
Table 12. Significant Pathways for differentially expressed transcripts in ⁵⁶ Fe vs. non-irradiated control at
12 months
Table 13. Number of unannotated transcripts analyzed by IPA. 122
Table 14. Unannotated differentially expressed transcripts in ⁵⁶ Fe experiments at all time points. Each
unannotated ENSEMBLE transcript ID is listed with the corresponding module number in
the SOM Figure 10 126
Table 15. Significant Pathways for differentially expressed transcripts in ¹⁶ O vs. non-irradiated control at 1
month
Table 16. Significant Pathways for differentially expressed transcripts in ¹⁶ O vs. non-irradiated control at 2
months
Table 17. Significant Pathways for differentially expressed transcripts in ¹⁶ O vs. non-irradiated control at 4
months

Table 18. Significant Pathways for differentially expressed transcripts in ¹⁶ O vs. non-irradiated control at 9
months
Table 19. Significant Pathways for differentially expressed transcripts in ¹⁶ O vs. non-irradiated control at 12 months. 150
Table 20. Unannotated differentially expressed transcripts in ¹⁶ O experiments at all time points. Each
unannotated ENSEMBLE transcript ID is listed with the corresponding module number in
the SOM Figure 13 155
Table 21. Significant Pathways for differentially expressed transcripts in ²⁸ Si vs. non-irradiated control at 1 month. 161
Table 22. Significant Pathways for differentially expressed transcripts in ²⁸ Si vs. non-irradiated control at 2
months
Table 23. Significant Pathways for differentially expressed transcripts in ²⁸ Si vs. non-irradiated control at 4 months
Table 24. Significant Pathways for differentially expressed transcripts in ²⁸ Si vs. non-irradiated control at 9 months
Table 25. Significant Pathways for differentially expressed transcripts in ²⁸ Si vs. non-irradiated control at 12 months. 186
Table 26. Unannotated differentially expressed transcripts in ²⁸ Si across all time points. Each unannotated
ENSEMBLE transcript ID is listed with the corresponding module number in the SOM
Figure 16

2 LIST OF FIGURES

Figure 1. Importance of uncovering basic mechanisms of cancer induction by GCR
Figure 2. Incidence of HCC. Percentage incidence of hepatocellular carcinoma after exposure to 137Cs γ rays (solid circles) or 1 GeV/nucleon 56Fe ions (open circles) as a function of the dose 22
Figure 3. Incidence (%) of HCC with metastases after exposure to: 137 Cs γ rays, SPE1972 protons, 600 MeV/n 56 Fe, or 350 MeV/n 28 Si
Figure 4. An overview of the WGCNA and WGCNA with Modularity Maximization (WGCNA-M) workflows
Figure 5. Plot to visualize different FDR thresholds using the Modularity Maximization Algorithm 37
Figure 6. Modularity Maximization Network
Figure 7. Mitochondrial Dysfunction Pathway Genes
Figure 8. Results of Mitochondrial Complex I Functional Assay performed for each time point
Figure 9. IPA of differentially expressed transcripts in ⁵⁶ Fe
Figure 10. ⁵⁶ Fe analysis of self-organizing maps for each time point
Figure 11. ⁵⁶ Fe Analysis of self-organizing maps for each time point
Figure 12. IPA of differentially expressed transcripts in ¹⁶ O 129
Figure 13. ¹⁶ O analysis of self-organizing maps for each time point

Figure 14. ¹⁶ O Analysis of self-organizing maps for each time point
Figure 15. IPA of differentially expressed transcripts in ²⁸ Si
Figure 16. ²⁸ Si analysis of self-organizing maps for each time point
Figure 17. ²⁸ Si Analysis of self-organizing maps for each time point
Figure 18. Segmentation result of the MALDI-MSI dataset using the Spatial Shrunken Centroid Clustering
Algorithm
Figure 19. Structural formula of GalNAcβ1-4(NeuGcα2-3)Galβ1-4Glcβ-Cer (d18:1/22:0)

3 LIST OF ABBREVIATIONS

- GCR Galactic Cosmic Ray
- HZE High Charge High Energy Ions
- HCC Hepatocellular Carcinoma
- IPA Ingenuity Pathway Analysis
- LEO Low Earth Orbit
- MALDI-MSI Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry Imaging
- SOM Self Organizing Map
- UTMB University of Texas Medical Branch
- WGCNA Weighted Gene Co-Expression Network Analysis
- WGCNA-M Weighted Gene Co-Expression Network Analysis Modularity Maximization

4 CHAPTER 1: BACKGROUND

4.1 History

Apollo 17's twelve-day journey to the moon in 1972 remains the most recent time that humans have traveled beyond Earth's protective magnetic field. Space exploration is an important effort, with the potential for discoveries that will benefit humankind, [1] though these benefits come with certain risks for astronauts. A mission to Mars could last up to 3 years, which would lead to a significant amount of whole-body irradiation. Thus, as NASA now prepares for human exploration into deep space, risk prediction and intervention for irradiation-induced diseases will become increasingly important.

As of today, the main health concerns for manned deep space flights are exposure to galactic cosmic rays (GCR) and solar particle events (SPE), which can lead to late-occurring cancers and degenerative diseases. [2] Spacecraft in deep space are not shielded by the Earth's magnetic field or the solid shielding of the planet. Hence, they are exposed to transient irradiation from SPE and high-charge, high energy (HZE) radiation, which are considered to play important roles in the pathophysiology of irradiation-induced cancers. GCR include both low-linear-energy transfer (LET) such as γ rays, which are sparsely ionizing, as well as HZE ions (high LET) such as ⁵⁶Fe, ²⁸Si, and ¹⁶O. [3] Long-duration space missions, such as a mission to Mars, are expected to expose astronauts to substantial cumulative low energy γ rays and HZE irradiation, that are serious health concerns. [4, 5] A necessary step to understanding and assessing these health concerns is investigating the molecular mechanisms instigated by these types of radiation, and which lead to carcinogenesis and degenerative processes that are part of cancer initiation and

progression. Elucidating mechanisms of carcinogenesis due to irradiation may allow the identification of countermeasures and treatments for disrupted pathways and molecular signaling. (Figure 1)

Figure 1. Importance of uncovering basic mechanisms of cancer induction by GCR.

[Reprinted with permission of Elsevier from: Cucinotta FA, Durante M: Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. The Lancet Oncology 2006, 7(5):431-435.][2]

4.2 Space Radiation Biology

Astronauts are exposed to HZE ions as well as low energy γ rays during deep space travel. Even at low doses, exposure to these irradiations can lead to cancer.[6] However, the effects of irradiation encountered in the space environment on the process of formation of cancer are not well understood, because very few people have been exposed to space irradiation. Due to the non-availability of in vivo mechanistic data in humans for HZE exposure, studies in animal models aim to provide relevant information about molecular mechanisms involved in the carcinogenesis of various tumors. Studies generally show that HZE irradiation is more carcinogenic than low-LET γ rays' irradiation. [7-11] Ionizing irradiation affects mammalian cells in a variety of ways, such as DNA damage and chromosomal abnormalities. This damage is mostly due to energy deposition in the cell nucleus. Damage to DNA further leads to changes in transcription, translation, and posttranslational modifications that ultimately affect all other cellular processes. [12-15] The relationship between ionizing irradiation and molecular damage is very complex, since not every interaction leads to identifiable DNA breakage and base damage. In fact, most mammalian cells have molecular machinery providing the capability to attempt DNA damage repair in order to promote cell survival. However, these processes may themselves result in mismatched bases, and activation of pathways controlling inflammation, cell The downstream molecular effects of these processes, in the form of death, etc. transcription, translation, secondary modifications, and lipid peroxidation, may lead to cancer initiation and progression over time.

4.3 Incidence of Hepatocellular Carcinoma (HCC) in Mice Irradiated with 1 GeV/nucleon ⁵⁶Fe Ions

The primary goal of NASA's space irradiation research is to assess the health effects of deep space irradiation on astronauts, in order to provide risk prediction and develop preventive measures against diseases that would slow space exploration. The irradiation encountered in space is a form of galactic cosmic rays (GCR), which include low energy γ rays and particle nuclei of HZE, and other ions that are created during interactions with the spacecraft. [16] A study reported that a significant increase in hepatocellular carcinoma (HCC) was observed at doses as low as 0.1 Gy following 1 GeV/n ⁵⁶Fe irradiation. On the other hand, irradiation with γ rays had only a slight effect on HCC incidence, with doses as high as 3 Gy, as shown in Figure 2. The data estimated that the relative biological effectiveness (RBE) for the induction of HCC is on the order of 50 in ⁵⁶Fe irradiation, relative to ${}^{137}Cs \gamma$ rays. [7] Approximately 25% of those animals from the study which developed HCC had tumors that metastasized to their lungs. Figure 3 shows an increase in HCC metastasis to the lung following HZE-irradiation. [17] Additionally, an increased incidence of HCC has also been reported in animal studies using high-LET neutron exposures. [18] Due to this limited knowledge of the effects of irradiation on the formation of HCC, the development of effective countermeasures requires the characterization of HCC carcinogenesis in animal models using different types and dosages of irradiation. The aim of this research is to establish further mechanistic details on the molecular events that lead to irradiation-induced HCC initiation and progression.

Figure 2. Incidence of HCC. Percentage incidence of hepatocellular carcinoma after exposure to 137Cs γ rays (solid circles) or 1 GeV/nucleon 56Fe ions (open circles) as a function of the dose.

[Open Access From: Weil MM, Bedford JS, Bielefeldt-Ohmann H, Ray FA, Genik PC, Ehrhart EJ, Fallgren CM, Hailu F, Battaglia CL, Charles B et al: Incidence of acute myeloid leukemia and hepatocellular carcinoma in mice irradiated with 1 GeV/nucleon 56Fe ions. Radiat Res 2009, 172(2):213-219.][7]

Figure 3. Incidence (%) of HCC with metastases after exposure to: 137 Cs γ rays, SPE1972 protons, 600 MeV/n 56 Fe, or 350 MeV/n 28 Si.

[Open Access From: Weil MM, Ray FA, Genik PC, Yu Y, McCarthy M, Fallgren CM, Ullrich RL: Effects of 28Si ions, 56Fe ions, and protons on the induction of murine acute myeloid leukemia and hepatocellular carcinoma. PLoS One 2014, 9(7):e104819.][17]

4.4 Overview of Following Chapters

In the following chapters, we discuss our findings regarding irradiation-induced

transcriptional changes as well as irradiation-induced lipid changes.

4.4.1 IRRADIATION INDUCED TRANSCRIPTIONAL CHANGES

HCC carcinogenesis likely begins with the induction of genetic changes such as DNA mutations and/or methylation, that further result in transcriptional alterations leading to a premalignant state. Irradiation activates/inhibits a myriad of transcriptional pathways that are mainly involved in inflammation and oxidative changes. Chronic oxidative stress can lead to the progression of degenerative diseases, irradiation-induced tissue injury, and the development of HCC.[19-21] Profiling of mRNA transcription through RNA-Seq has become an increasingly common technique to understand biological phenomena at the molecular level. This method generates semi-quantitative expression data for all mRNAs present in each experiment. Our RNA-Seq analyses identified all transcript expression changes in response to a variety of irradiation types and dosages. Our data define key molecular components that are driving the HZE and γ rays' irradiation-induced transcriptional changes leading to HCC. In Chapters 2 and 3, we will describe these changes.

First, in <u>Chapter 2</u>, we present a novel pipeline (WGCNA-M) to perform gene coexpression analysis. For applicable RNA-Seq datasets, the pipeline can reduce the problem of parameter selection that occurs with the existing algorithm in Weighted Gene Coexpression Network Analysis (WGCNA). The WGCNA-M pipeline's (WGCNA combined with Modularity Maximization for community detection) robustness and efficacy were evaluated based on data from our RNA-Seq experiment of ⁵⁶Fe irradiated and non-irradiated control mice liver lobes to characterize the irradiation effects of deep space travel on the induction of HCC. Next, in <u>Chapter 3</u>, we describe our findings regarding dynamic time-dependent effects of ⁵⁶Fe, ¹⁶O, and ²⁸Si irradiation on the induction of murine HCC. Specifically, we discuss comparative RNA-Seq transcriptomic analysis to assess the carcinogenic effects of 600 MeV/n ⁵⁶Fe (0.2 Gy), 1 GeV/n ¹⁶O (0.2 Gy), and 350 MeV/n ²⁸Si (0.2 Gy) ions in a mouse model for irradiation-induced HCC. Our findings not only led to a better understanding of the biological mechanisms of underlying risks for HCC after HZE irradiation, but also have important implications for the discovery of potential countermeasures to and identification of biomarkers for HZE-induced HCC.

4.4.2 IRRADIATION INDUCED LIPID CHANGES

Matrix assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) has been used for the identification of novel biomarkers, as well as early detection and recognition of microenvironmental changes in lipid profiles. [22-26] A high abundance of various lipids in biological tissues has rendered MALDI-MSI a suitable method to detect these changes. This technique has been used to identify and quantify (relative to control) polar lipids per sample, providing information on the structural integrity of cells and the potential state of cellular communication. [27-29] Changes in lipid expression have been shown to be involved in numerous pathological states. [30-34]

In <u>Chapter 4</u>, we demonstrate the use of MALDI-MSI combined with the Spatial Shrunken Centroid Clustering algorithm to define key lipid changes that are driving irradiation-induced HCC.

Finally, we conclude the dissertation in <u>Chapter 5</u>, where the contributions of the author of this dissertation are summarized. Our vision for future works in this area is also discussed.

5 CHAPTER 2: EFFICIENT IDENTIFICATION OF MULTIPLE PATHWAYS: RNA-SEQ ANALYSIS OF LIVERS FROM ⁵⁶FE ION IRRADIATED MICE

5.1 Abstract

Background: mRNA interaction with other mRNAs and other signaling molecules determine different biological pathways and functions. Gene co-expression network analysis methods have been widely used to identify correlation patterns between genes in various biological contexts (e.g., cancer, mouse genetics, yeast genetics). A challenge remains to identify an optimal partition of the networks where the individual modules (clusters) are neither too small to make any general inferences, nor too large to be biologically interpretable. Clustering thresholds for identification of modules are not systematically determined and depend on user-settable parameters requiring optimization. The absence of systematic threshold determination may result in suboptimal module identification and a large number of unassigned features.

Results: In this study, we propose a new pipeline to perform gene co-expression network analysis. The proposed pipeline employs WGCNA, a software widely used to perform different aspects of gene co-expression network analysis, and Modularity Maximization algorithm, to analyze novel RNA-Seq data to understand the effects of low-dose ⁵⁶Fe ion irradiation on the formation of hepatocellular carcinoma in mice. The network results, along with experimental validation, show that using WGCNA combined with Modularity Maximization, provides a more biologically interpretable network in our dataset, than that obtainable using WGCNA alone. The proposed pipeline showed better performance than the existing clustering algorithm in WGCNA, and identified a module that was biologically validated by a mitochondrial complex I assay.

Conclusions: We present a pipeline that can reduce the problem of parameter selection that occurs with the existing algorithm in WGCNA, for applicable RNA-Seq datasets. This may assist in the future discovery of novel mRNA interactions, and elucidation of their potential downstream molecular effects.

Keywords: WGCNA, Modularity, Gene Expression Profiling, RNA-Seq, Sequence Analysis, Modularity Maximization, Network Visualization

5.2 Introduction

RNA-Seq, an approach to genome profiling that uses deep-sequencing technologies, has become an increasingly common technique to understand biological phenomena at the molecular level. This method generates quantitative count data on thousands of different mRNAs within each experiment. Comparing the expression of genes between different experimental conditions identifies hundreds of differentially expressed genes, but translating these lists into key functional distinctions between conditions has proved challenging. Since there are thousands of genes in each sample, many researchers filter their gene lists based on different criteria, in order to extract meaningful biological information. One such filtering criteria is based on differential gene expression analysis has traditionally been used to determine genes that are statistically significantly differentially expressed between different experimental conditions based on different metrics, such as non-parametric generalized linear models, independent sample t-tests, and log₂ fold changes. [35] Even though differential gene

expression analysis is one of the most common methods for identifying disease pathways in various experimental conditions, it does not take into consideration the interactions of genes that work as a system to coordinate cellular functions. As a result, using only differential gene expression analysis would limit mechanistic interpretations of the data. mRNAs never act in isolation, but rather in concert with each other and other signaling molecules to define a particular biological pathway and function. Interactions of these signaling molecules can be viewed as networks of interconnected genes and their partners, that are up/down regulated under certain chemical or environmental conditions.

Many algorithms that utilize network theory have found applications in identifying and analyzing these molecular interactions. [36-38] Correlation networks are an example of such algorithms, and describe the co-expression of many genes in response to changing conditions, which can ultimately provide information about the underlying molecular mechanisms or biochemical pathways. [39, 40] In particular, the Weighted Gene Coexpression Network Analysis (WGCNA) method, which is provided as an R software package, has been widely used for performing different aspects of weighted correlation network analysis. [41] The co-expression networks used in WGCNA are constructed based on correlations between the quantitative measurements of each gene, and can be described by an *n* x *m* matrix $X = [x_{ij}]$. Here the row indices (i = 1,...,n) correspond to different genes, and the column indices (j = 1, ..., m) correspond to different sample measurements. While co-expression networks integrate systems-level information to provide a mechanistic interpretation of the dataset, detecting modules (clusters) of closely related mRNAs within the co-expression networks has been a challenging problem. Significant pathways that are identified by different clustering methods often yield tens or hundreds of genes, making biological interpretation and validation challenging. Further, many clustering techniques such as Dynamic Tree Cut utilized in WGCNA rely on user-settable parameters, including minimum module size, and are sensitive to cluster splitting. [42, 43] While many of these module detection methods perform optimally on some datasets, they may fail to effectively detect patterns in other datasets. A practical challenge in terms of discovering modules and determining the total number of modules is the identification of the optimal number of modules in the network, such that the individual modules are neither too large, preventing meaningful interpretation, nor too small, allowing little to no general inference. In general, characterizing and detecting community structures within networks has been a challenging problem in the study of networks. [44-46] One of the most commonly used metrics to investigate community structure is a quality index for clustering known as Modularity. [47-49] In spite of its popularity, Modularity does have drawbacks. The resolution limit (RL) problem is one of the most significant drawbacks, referring to the problem of maximizing Modularity while hindering one's ability to detect communities that contain fewer links. [50] To address this problem, several approaches have been introduced. [51-54] Of these approaches, Modularity Maximization, which utilizes modularity density measures, has been shown to eliminate rather than merely reduce the RL problem in a wide range of networks.[54]

In this study, we propose a pipeline using Modularity Maximization [54] to effectively detect and evaluate modules from co-expression networks obtained from the adjacency matrix, utilizing WGCNA. [38, 41] We employ the above technique to characterize the effects of ⁵⁶Fe irradiation on mice livers, in order to study the potential consequences of deep space travel. In particular, astronauts will be exposed to HZE during

deep space travel. Even at low doses, exposure to HZE can lead to cancer. [55, 56] However, the effects of ions found in the deep space environment on cancer formation is not well understood since very few people have been exposed to space irradiation. As human exploration into deep space increases in the future, characterization of and intervention in irradiation-induced diseases will become more important. Previous studies have shown that irradiation of mice with low-dose HZE, specifically ⁵⁶Fe ions, significantly increases the incidences of HCC. [7, 17] HCC is the most common type of liver cancer, and its formation has mainly been studied in the context of terrestrial risk factors such as chronic hepatitis B/C virus infection, exposure to aflatoxin, obesity, smoking, and heavy alcohol consumption. [57-59] However, there is limited knowledge of the effects of low-dose ⁵⁶Fe ion irradiation on the formation of HCC. To better understand the molecular mechanisms of low-dose ⁵⁶Fe induced HCC, we used RNA-Seq to determine gene expression changes in the hepatic micro-environment of ⁵⁶Fe ion irradiated compared to non-irradiated control mice at 5 different time points post-irradiation. We hypothesized that mitochondrial pathways could be significantly affected, since mitochondria represent a substantial cellular target volume (4-25% depending on the cell). [60] In this manuscript, we will describe how WGCNA can be integrated with Modularity Maximization to construct co-expression correlation networks of differentially expressed genes and detect modules using data obtained from RNA-Seq.

5.3 Methods

In this section, we describe the WGCNA combined with Modularity Maximization for community detection pipeline used in the RNA-Seq dataset. Our evaluation strategy was targeted to analyze data from an RNA-Seq experiment of ⁵⁶Fe irradiated and nonirradiated control mice liver lobes, designed to characterize the microenvironmental changes induced by HZE irradiation (similar to HZE ions encountered in deep space travel,) and that lead to induction of HCC. Our aim is to detect modules (clusters of genes) that are related by correlation across samples, and differ between experimental conditions. The resulting co-expression networks were analyzed using functional enrichment analysis and experimentally validated.

5.3.1 ANIMAL EXPERIMENTS AND SAMPLE PREPARATION

C57BL/6NCrl mice purchased from Charles River (Wilmington, MA) were used in this experiment. Tumor induction studies and studies of molecular changes in the irradiated tissues can only be conducted in whole animals. Further, based on an extensive literature search and examination of studies previously approved by the institutional animal care and use committees (IACUCs), computer models or cell culture studies are not possible. The numbers of animals used were based on the expected numbers of irradiation-related tumors that would develop if animals were allowed to live out their lifespans. Power calculations for numbers in this study are based on the chi-square test for comparing two proportions, with a two-sided significance level set at 0.05 at 80% power.

The serial sacrifice study included 15 male mice with 3 mice per time point at five time-points (30, 60, 120, 270, and 360 days) post-exposure to HZE, specifically ⁵⁶Fe irradiation. Additionally, 15 mice were used as controls, at the same time points, resulting in a total of 30 mice for this study. The two groups were: 600 Me V/n ⁵⁶Fe (0.2 Gy) and non-irradiated/sham-irradiated control. The mice were shipped from the vendor to

Brookhaven National Laboratories (BNL) and housed at the BNL animal facility until the time of irradiation at the NASA Space Radiation Laboratory (NSRL). Following irradiation, the animals were shipped to the UTMB Animal Resources Center (ARC), quarantined for one month, and maintained in the ARC for the duration of the experiment. Animals were housed in sterile cages with free access to food and water. Facilities at both BNL and UTMB are fully AAALAC accredited, ensuring adequacy of animal care at both animal facilities.

At each of the five time-points, 3 animals from each group were randomly selected and euthanized using CO_2 asphyxiation, as per current AVMA guidelines for euthanasia. Prior to euthanasia, animals were weighed and weights recorded. Post euthanasia, tissues of the left lobe of livers were collected, snap-frozen on either dry ice or liquid nitrogen, and stored at -80°C until tissues could be extracted for RNA analysis. Livers were sampled by taking two 40-µm thick slices using a cryotome at -20°C.

5.3.2 ACQUISITION OF RNA-SEQ DATA

Total RNA was isolated from the liver slices using RNAqueousTM Total RNA Isolation Kit (ThermoFisher Scientific, Waltham, MA), and rRNA was removed using the Ribo-ZeroTM rRNA Removal Kit (Illumina, San Diego, CA), prior to library preparation with the Illumina TruSeq RNA Library kit. Samples were sequenced in a paired-end 50 base format on an Illumina HiSeq 1500. FastQC was utilized for the quality evaluation of FASTQ files. [61] All FastQC reports were examined prior to the analysis of RNA-Seq samples. The total number of reads used in analysis varied between 23-35 million. A complete list of samples, and related reads information is available in Table 1. Reads were aligned to the mouse GRCm38 reference genome using the STAR alignment program, version 2.5.3a, with the recommended ENCODE options. [62] The -quantMode GeneCounts option was used to obtain read counts per gene based on the Gencode release M14 annotation file. [63]

Sample Information

Number	Sample	Treatment Type	Time	Biological	Total
	110		1 .1	Replicate	Sequences
1.	H2	Non-Irradiated Control	I month		32,905,344
2.	H3	Non-Irradiated Control	1 month	2	28,318,081
3.	H4	Non-Irradiated Control	1 month	3	27,220,319
4.	H7	Non-Irradiated Control	2 months	1	31,264,466
5.	H8	Non-Irradiated Control	2 months	2	31,375,164
6.	H9	Non-Irradiated Control	2 months	3	34,782,071
7.	H11	Non-Irradiated Control	4 months	1	24,449,063
8.	H12	Non-Irradiated Control	4 months	2	27,944,559
9.	H13	Non-Irradiated Control	4 months	3	23,137,137
10.	H16	Non-Irradiated Control	9 months	1	34,216,914
11.	H17	Non-Irradiated Control	9 months	2	30,149,494
12.	H18	Non-Irradiated Control	9 months	3	29,855,702
13.	H21	Non-Irradiated Control	12 months	1	26,910,777
14.	H22	Non-Irradiated Control	12 months	2	31,877,754
15.	H23	Non-Irradiated Control	12 months	3	33,432,277
16.	K2	⁵⁶ Fe Irradiated	1 month	1	31,868,688
17.	K3	⁵⁶ Fe Irradiated	1 month	2	37,890,611

18.	K4	⁵⁶ Fe Irradiated	1 month	3	25,953,453
19.	K6	⁵⁶ Fe Irradiated	2 months	1	47,994,834
20.	K7	⁵⁶ Fe Irradiated	2 months	2	34,603,257
21.	K8	⁵⁶ Fe Irradiated	2 months	3	32,128,695
22.	K12	⁵⁶ Fe Irradiated	4 months	1	27,386,313
23.	K13	⁵⁶ Fe Irradiated	4 months	2	29,914,981
24.	K14	⁵⁶ Fe Irradiated	4 months	3	28,626,258
25.	K16	⁵⁶ Fe Irradiated	9 months	1	24,669,187
26.	K17	⁵⁶ Fe Irradiated	9 months	2	24,014,552
27.	K18	⁵⁶ Fe Irradiated	9 months	3	28,179,114
28.	K23	⁵⁶ Fe Irradiated	12 months	1	28,350,658
29.	K24	⁵⁶ Fe Irradiated	12 months	2	31,439,904
30.	K25	⁵⁶ Fe Irradiated	12 months	3	25,132,399

 Table 1. Sample List and Total Reads.

5.3.3 DIFFERENTIAL GENE EXPRESSION ANALYSIS

Raw RNA-Seq data of 51,826 mRNAs from 15 non-irradiated control and 15 ⁵⁶Fe irradiated C57 mice liver tissue samples were subjected to differential gene expression analysis. All calculations and statistics were performed using statistical software R (R Foundation for Statistical Computing, Vienna, Austria) (version 3.5.1). [64] Differential gene expression analysis was conducted using R software package edgeR. [65, 66] First, normalization factors were calculated to scale the raw library sizes. In addition, dispersion parameters based on generalized linear models (GLM) were estimated; in particular, the common dispersion for negative binomial GLMs, trended dispersion for negative binomial GLMs. [66, 67] Statistical tests were then conducted for every time point, to compare between ⁵⁶Fe irradiated and non-irradiated control samples, using a quasi-likelihood negative binomial generalized log-linear model for count data. [68-70] The

Benjamini-Hochberg correction was applied, and genes with FDR ≤ 0.05 & fold change ≥ 1.5 ($|(\log_2(\text{Fold Change})| \geq 0.59$ —up/down regulated) were extracted.

5.3.4 FEATURE SELECTION (FS)

Final differential gene expression analyses for all time points were combined. For genes differentially expressed at multiple time points, the lowest FDR was kept. The list was further filtered to keep only genes with $FDR \le 10^{-5}$. For the final selected gene list, raw variance stabilized normalized count data were retrieved from every RNA-Seq sample (n=30) using the R package DESeq2. [71] This variance stabilized normalization method was specifically selected because it has proven useful for network construction using WGCNA methodology (The WGCNA FAQ).

5.3.5 WGCNA

The gene expression profiles were comprised of 51,826 genes from 30 samples. Constructing a co-expression network on this original list without filtering could not meet a power threshold that corresponded to (R²=0.9) as recommended by WGCNA, and did not yield any biologically interpretable network. As a result, we first performed the feature selection based on differential gene expression analysis and FDR rank list (step 1-2 in Figure 4, and described above) and then constructed the WGCNA network on genes given by this feature selection (step 3 in Figure 4). WGCNA was performed on differentially expressed genes with FDR $\leq 10^{-5}$ & fold change ≥ 1.5 (up/down-regulated). WGCNA analysis was performed per the methodology publication (step 4-7 in Figure 4). [41]

5.3.6 WGCNA wITH MODULARITY MAXIMIZATION
To evaluate the effect of feature selection on the median cluster size, we performed Modularity Maximization analysis on co-expression data derived by WGCNA applied to gene lists filtered over a range of FDR values. As shown in Figure 5, the FDR value of 10^{-5} led to the largest median cluster size, in this particular dataset. The features' significance threshold can be optimized by plotting median cluster sizes at different FDR values. To derive clusters, the following steps were used. An adjacency matrix based on the Pearson correlation with the soft threshold was calculated by WGCNA. [41] The power threshold parameter was set to 16, corresponding to an R² value of 0.9, which reflects a scale-free topology in which adjacency between all differential genes was calculated by a power function (step 3 in Figure 4). The adjacency matrix was then filtered to only keep pairs of genes with a Pearson correlation of ≥ 0.7 (step 4 in Figure 4). Then, module identification was performed using the Modularity Maximization clustering method (step 5 in Figure 4). [54, 72] Final modules were visualized using the ExplodeLayout algorithm (step 6 in Figure 4). [73]

Figure 4. An overview of the WGCNA and WGCNA with Modularity Maximization (WGCNA-M) workflows.

Figure 5. Plot to visualize different FDR thresholds using the Modularity Maximization Algorithm.

The plot shows the change in the median number of clusters detected using Modularity, as the FDR cutoff is varied. The numbers next to each point designate the number of

genes and the number of modules in the corresponding network. The module with the largest median size was chosen for further analysis, since small clusters are difficult to interpret.

5.3.7 MODULE STATISTICAL ANALYSIS

To determine whether the modules were observed by chance, the significance of the results was evaluated by comparing them to the average modularity of 1000 permutations of the weighted and thresholded co-expression network adjacency matrix. Each permutation of the network would preserve the number and weight of all the links but randomly shuffle them; thus it should still meet the scale-free network distribution criteria. Based on the 1000 permutations, we obtained a z-score of 86.8 for our modularity, indicating a strongly significant modular structure in the co-expression network as compared to random.

5.3.8 MITOCHONDRIAL COMPLEX I ENZYME ACTIVITY ASSAY

The mitochondria isolation kit for tissue (Abcam, ab110168) was used to isolate mitochondria from mice liver lobes. Complex 1 enzyme activity was monitored with a colorimetric microplate assay (Abcam, ab110168) using the isolated mitochondria from the liver.

5.3.9 FUNCTIONAL ENRICHMENT ANALYSIS

To determine whether the co-expression modules were biologically meaningful, functional enrichment analysis was performed separately on every module. Significant functional pathways ($-\log_{10}(p\text{-value}) \ge 1.3$) for each module were evaluated using Ingenuity Pathway Analysis (IPA) (QIAGEN Inc., Hilden, Germany). [74]

5.4 Results

5.4.1 DIFFERENTIAL GENE EXPRESSION ANALYSIS

Results of differential gene expression analysis are shown in Table 2, which includes the total number of differentially expressed genes at each time point, as well as whether genes are up/down-regulated.

Comparison	Time	Total # of Differentially	Up Populated	Down Dogulated
		Expressed Transcripts	Regulateu	Regulateu
⁵⁶ Fe Irradiated/Non- Irradiated Control	1 month	645	322	323
⁵⁶ Fe Irradiated/Non- Irradiated Control	2 months	914	637	277
⁵⁶ Fe Irradiated/Non- Irradiated Control	4 months	497	259	238
⁵⁶ Fe Irradiated/Non- Irradiated Control	9 months	704	498	206
⁵⁶ Fe Irradiated/Non- Irradiated Control	12 months	285	75	210
⁵⁶ Fe Irradiated/Non- Irradiated Control	Sum	3045	1791	1254

Differentially Expressed Genes

Table 2. Results of differential gene expression analysis of RNA-Seq data from ⁵⁶Fe Irradiated and non-Irradiated control mice livers at various time points analyzed using edgeR package.

5.4.2 FEATURE SELECTION

A total of unique 2,273 differentially expressed genes were identified in comparison between ⁵⁶Fe irradiated and non-irradiated controls. Genes that were statistically significant with FDR $\leq 10^{-5}$ were used for downstream network analysis; 487 unique genes met the filtration criteria. The significance cut off can be adjusted to a higher value if a researcher decides to investigate more genes, depending on the study goals, experimental conditions, and data variability.

5.4.3 WGCNA

We initially used the WGCNA Dynamic Tree Cut algorithm [41] to identify modules within the selected differentially expressed genes. Module identification with this algorithm requires two parameters to be determined prior to network construction: deepSplit, and minClusterSize. deepSplit can be either logical or an integer in the range 0 to 4. It controls the sensitivity to cluster splitting. Higher values result in smaller clusters. minClusterSize represents the minimum number of genes needed in a module to be considered a separate module. Table 3 shows the results of WGCNA module identification using different minClusterSize values, with a default deepSplit value of 2. As minClusterSize increases, the total number of modules decreases. These values produce different types of networks with differing numbers of unassigned genes. If a gene does not belong to a specific module, it is assigned to the Grey/Unassigned Module. The number of unassigned genes varied between 36-73 (shown in the last column of Table 3). At the same time, the total number of modules needs to be within a reasonable range, in order to be able to meaningfully investigate the relationship between genes; 70 different modules each containing a few genes may not provide meaningful information about these co-expression patterns. In our dataset, networks with a total of 11-18 modules provided interpretable co-expression patterns for further investigation, using pathway analysis tools as well as experimental validation. However, these clustering parameters resulted in 61-69 unassigned genes, representing ~12-14 percent of the 487 selected highly significant features.

minClusterSize	deepSplit	Total Number of	Number of Transcripts in
		Modules	Unassigned Module
			(Grey)
2	2	70	36
3	2	49	37
4	2	37	46
5	2	31	49
6	2	25	57
7	2	20	60
8	2	18	61
9	2	17	65
10	2	15	67
11	2	15	67
12	2	11	69
13	2	11	69
14	2	9	73

WGCNA Results

Table 3. WGCNA Results with Dynamic Tree Cut Algorithm: deepSplit provides a rough control over the sensitivity to cluster splitting. The higher the value (or if TRUE), the more and smaller clusters will be produced. The Dynamic Tree Cut may identify modules whose expression profiles are very similar. The parameter minClusterSize allows one to control the minimum number of genes in a module, helping to avoid having similar clusters of few genes. As shown in the table, the lower values of minClusterSize increase the 'Total Number of Modules'. Moreover, as this number increases, the 'Number of Genes in Unassigned Module (Grey)' increases as well.

5.4.4 WGCNA with MODULARITY MAXIMIZATION

To optimize the number and size of identified modules as well as reduce the number of unassigned genes ($\sim 12-14\%$), we exploited the concept of Modularity Maximization, to assist in finding community structures, as an alternative to utilizing the Dynamic Tree Cut algorithm employed in the standard WGCNA pipeline. Dynamic Tree Cut relies on hierarchical clustering, which is based on the relative distance between genes and samples. Modules are detected by "cutting" these trees, which can lead to many different small modules or a few large modules, depending on the selection of the minClusterSize and deepSplit parameters. Using Modularity Maximization, we were able to identify modules without the need to set these parameters empirically. In particular, the adjacency matrix with a soft threshold beta of 16 (corresponding to $R^2=0.9$) was first computed using WGCNA, then a clustering algorithm based on Modularity Maximization was used to automatically find community structures in our dataset. We chose the Modularity Maximization method, since the metric of Modularity has been widely used to detect and assess community structures in social and biological networks since its inception. [54, 74-77]

Utilizing the modularity-based clustering algorithm to identify modules, 14 modules were discovered, and only 14 individual genes were unassigned. The final modularity score was Q=0.696, which is indicative of a strong modular structure in the network. Figure 6 depicts the 14 modules in the network, and Table 4 shows the number of genes included in each module along with the enriched molecular pathways, as discussed below.

Figure 6. Modularity Maximization Network.

Modules identified by performing Modularity Maximization on the network obtained from WGCNA. The module numbers on the network correspond to the modules shown in Table 4. A total of 14 genes were unassigned.

Module #	Genes #	Molecular Pathways Identified as Enriched $(p-value \le 0.05)$ in Each Module
1	28	Sirtuin Signaling Pathway, Mitochondrial Dysfunction, Oxidative Phosphorylation, LXR/RXR Activation, FXR/RXR Activation, NAD Biosynthesis III, Oleate Biosynthesis II, Histamine Degradation

	Р	athy	wav	Ana	lvsis
--	---	------	-----	-----	-------

2	11	IL-9 Signaling, Transcriptional Network in Embryonic Stem Cells, Mitotic Roles of Polo-Like Kinase, GM-CSF Signaling, Growth Hormone Signaling, JAK/STAT Signaling, STAT3 Pathway
3	5	No Pathway. 3 transcripts in this module are not Identified. Specifically, Gm28437, Gm28661, Gm29216. The other two are mir-122 (microRNA 122) and Gm10925 (ATP Synthase F0 subunit 6)
4	65	Acyl-CoA Hydrolysis, Stearate Biosynthesis I, Pregnenolone Biosynthesis, Histidine Degradation VI, Ubiquinol-10-Biosynthesis, Asparagine Biosynthesis I, a-tocopherol Degradation, LSP/IL-1 Mediated Inhibition of RXR Function, FXR/RXR Activation
5	16	Toll-like Receptor Signaling, Heme Degradation, IL- 12 Signaling and Production in Macrophages, Acute Phase Response Signaling, Granulocyte Adhesion and Diapedesis, NF-kB Signaling, Agranulocyte Adhesion and Diapedesis, Production of Nitric oxide and ROS in Macrophages
6	80	Nicotine Degradation II, Glutathione-mediated Detoxification, Circadian Rhythm Signaling, LPS/IL-1 Mediated Inhibition of RXR Function, Nicotine Degradation III, Adipogenesis Pathway, PXR/RXR Activation, Melatonin Degradation I
7	2	No Pathway. Two transcripts (CYP26A1 and CYP26B1) are both part of cytochrome P450 family 26 subfamily A member 1 and subfamily B member 1. They are involved in Pregnenolone Biosynthesis, Histidine Degradation VI, Ubiquinol-10 Biosynthesis and RAR Activation
8	2	No Pathway. Two transcripts (ANGPTL8 and HES1). HES1 is involved in Notch Signaling, VDR/RXR Activation.
9	21	Unfolded protein response, Protein Ubiquitination Pathway, eNOS Signaling, Glucocorticoid Receptor Signaling, Endoplasmic Reticulum Stress Pathway (6 Transcripts are heat shock proteins)

10	89	Acute Phase Response Signaling, IL-10 Signaling, IL-6 Signaling, Role of Macrophage, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis, LXR/RXR Activation, B Cell Receptor Signaling, Altered T Cell and B Cell Signaling in Rheumatoid Arthritis, Hepatic Cholestatis
11	8	No Pathway. 4 unidentified transcripts (Cm23935, Gm24187, Rn 18s-rs5, Gm155644) and other 4 (Leucyl-tRNA synthetase 2, microRNA 6236, s- rRNA, 1-rRNA)
12	14	No Pathway, basic helix-loop-helix family involved in Circadian Rhythm Signaling, Mir17hg, Small nuclear RNA (Snora57, Snora78) and 10 unidentified transcripts,
13	69	Estrogen-mediated S-phase Entry, Cell Cycle Regulation, Chronic Myeloid Leukemia Signaling, a- tocopherol Degradation
14	63	NRF2-mediated Oxidative Stress Pathway, Endoplasmic Reticulum Stress Pathway, Unfolded Protein Response, Death Receptor Signaling, RhoA Signaling, FXR/RXR Activation.

Table 4. Ingenuity Pathway Analysis on individual modules.

5.4.5 MODULE VALIDATION AND PROPERTIES

To explore the biological relevance of the modules, each module was investigated by Ingenuity Pathway Analysis (IPA). Specifically, module 1 was shown to be significant $(-\log_{10}(p-value) \ge 1.3)$ in mitochondrial pathways, such as the Sirtuin Signaling Pathway, Mitochondrial Dysfunction, and Oxidative Phosphorylation. [74] All the genes involved in mitochondrial dysfunction in our dataset were contained in module 1. In particular, Figure 7 shows that 5 of these genes express different subunits of mitochondrial complex I and III. To validate these results, we performed an additional experimental technique to determine whether complex I activity is reduced in response to ⁵⁶Fe irradiation. Complex I activity was observed to be decreased in response to exposure to ⁵⁶Fe HZE ion across all time points as measured by mitochondrial complex I enzyme activity (Figure 8). The downstream effects of irradiation on mitochondrial functions have been emphasized [78], as mitochondria have been shown to occupy a substantial fraction of the cell volume. [60] Therefore, they may be fairly easily targeted by irradiation as the ⁵⁶Fe nuclei traverse the cell. The electron transport chain in the mitochondrion is composed of five protein complexes (I-V) that perform a series of oxidation-reduction reactions, in which O₂ is the final electron acceptor and is reduced to a water molecule. One of the consequences of this process is the formation of reactive oxygen species (ROS), which is thought to arise from the leakage of electrons, specifically from complex I and III, and to a minor extent complex II. [79-81] Using oxygen as the final electron acceptor causes mitochondria to consume about 90% of the body's oxygen but also become the richest source of ROS. [81-84] The upregulation of mitochondrial genes shown in Figure 7, specifically in complex I and complex III, suggests that leakage of electrons from these two complexes results in increased Complex I and III enzyme activity. This leads to further the overexpression of these genes in response to ⁵⁶Fe irradiation. Other modules could potentially be validated in future experimental designs, involving live animals and more fresh tissues. For example, module 2 can be tested for JAK/STAT signaling. STATs are ubiquitously expressed and mainly activated after stimulation of cytokine receptors. STATs function in the nucleus, but they are first activated in the cytoplasm and have then to be transported into the nuclear

compartment. [85] This translocation can be assessed by indirect immunofluorescence. Additionally, STAT signaling can be experimentally validated by pharmacologically inhibiting STAT pathways with specific STAT inhibitors. Similarly, module 9 could be tested for Endoplasmic Reticulum (ER) stress pathways. Several molecular indicators of ER stress could be examined by Western Blots and/or proteomic analysis, which could demonstrate increased or decreased phosphorylation of ER stress proteins.

Figure 7. Mitochondrial Dysfunction Pathway Genes.

Five of the genes from module 1 are involved in the mitochondrial dysfunction pathway. Specifically, 4 of them, MT-ND2, MT-ND4, MT-ND5, and MT-ND6 are different subunits of Complex I. MT-CYB, or cytochrome b is part of Complex III/bc which also regulates Complex I. Figure was made using Ingenuity Pathway Analysis (IPA), (QIAGEN Inc., Hilden, Germany).

Figure 8. Results of Mitochondrial Complex I Functional Assay performed for each time point.

Complex 1 activity was decreased after exposure to 56Fe irradiation as compared to nonirradiated control at each time point.

5.5 Discussion

One of the current statistical challenges in identifying co-expression patterns in RNA-Seq data is a robust determination of the number and size of modules appropriate, across a variety of datasets. The choice of an appropriate clustering algorithm that yields the most biologically interpretable networks has been studied using different datasets and methods. For example, a study has investigated Recursive Indirect-Paths Modularity (RIP-M) for module detection in an RNA-Seq co-expression network. Using an influenza vaccine response study, the authors showed that RIP-M had higher cluster assignment accuracy as compared to Newman Modularity, and similar results to WGCNA. [86] We

compared WGCNA, RIP-M, and the combined WGCNA-M method based on the Rand Index (RI). [75] In calculating the RIs, we considered every unassigned gene, as a cluster by itself, since such genes are viewed as not being similar to each other. The RIs for WGCNA-M versus WGCNA, WGCNA-M versus RIP-M, and WGCNA versus RIP-M were 0.909, 0.892, 0.936, respectively. The numbers of genes unassigned to a cluster for WGCNA-M, WGCNA, and RIP-M were 14, 108, and 0, respectively. All of the 14 genes which were unassigned in WGCNA-M were also unassigned in WGCNA. Based on our observed RIs, RIP-M and WGCNA were the most similar when applied to our dataset. Like WGCNA, RIP-M also requires the parameter minModuleSize (minClusterSize) as well as an additional parameter, maxModuleSize, which specifies a target range of module sizes. All genes assigned to a module below minModuleSize are then grouped together and merged into a further module. Modules above maxModuleSize are split in subsequent iterations to arrive at the target range. RIP-M forces all genes to be assigned to a cluster; the 14 genes unassigned by WGCNA and the WGCNA-M approach for our dataset were placed into cluster 1 by RIP-M. Community detection method selection is an important issue in cluster analysis and may greatly influence the results of a study and their biological interpretability. Therefore, it is imperative to select the most suitable method for each specific experimental design, and for the nature of the data being investigated. A complete list of gene cluster-assignments for each method is provided in Table 5.

Utilizing Modularity Maximization to detect community structures provides an additional way to construct a network and explore various RNA-Seq datasets; however, WGCNA-M is not limited to this application domain, and can be applied to detect coexpression patterns amongst other omics studies. Protein or lipids can be linked together in networks via a defined functional relationship in a similar fashion. Methodologically, MS-based proteomics and lipidomics tend to have consistency, and coverage issues [87-92] as compared to RNA-based high throughput methods. As a result, some network analysis methods as applied to proteomic data may not capture the complexity and nuances underlying biological processes, and alternative approaches may be needed to complement the existing analytical tools. Similar to any other analytical method, the network-based WGCNA-M analysis method must be applied appropriately based on the inherent quality and nature of each dataset. This will allow us to gain robust biological insight and decipher the unique patterns in our data from which we can further understand the complexity and coordinated function of the system being investigated. In the current study, utilization of WGCNA with Modularity Maximization resulted in the identification of biologically interpretable and relevant modules, without the need for parameter optimization.

Gene ID ENSMUSG0000000204 ENSMUSG0000000303 ENSMUSG000000385 ENSMUSG0000000567 ENSMUSG0000001473 ENSMUSG0000001995 ENSMUSG0000002992 ENSMUSG0000003477 ENSMUSG0000004359 ENSMUSG0000004460 ENSMUSG0000004951 ENSMUSG0000005232 ENSMUSG0000005413 ENSMUSG0000005483 ENSMUSG0000005514 ENSMUSG0000005547 ENSMUSG0000005968 ENSMUSG0000006522

	8	D I D
		RIP-
WGCNA	WGCNA-M	М
13	10	7
9	4	15
13	10	7
Unassigned	6	8
8	14	11
Unassigned	6	4
4	1	2
10	6	8
3	10	9
7	9	4
7	14	4
1	1	2
3	5	10
7	14	4
11	6	14
10	6	8
9	4	15
12	10	6

Cluster Assignment

ENSMUSG0000006641 ENSMUSG0000007872 ENSMUSG0000008384 ENSMUSG0000008496 ENSMUSG0000009092 ENSMUSG0000009633 ENSMUSG0000012428 ENSMUSG0000014905 ENSMUSG0000015357 ENSMUSG0000015451 ENSMUSG0000015656 ENSMUSG0000016024 ENSMUSG0000016028 ENSMUSG0000018171 ENSMUSG0000018427 ENSMUSG0000019139 ENSMUSG0000019850 ENSMUSG0000020000 ENSMUSG0000020027 ENSMUSG0000020048 ENSMUSG0000020102 ENSMUSG0000020108 ENSMUSG0000020255 ENSMUSG0000020423 ENSMUSG0000020429 ENSMUSG0000020431 ENSMUSG0000020484 ENSMUSG0000020572 ENSMUSG0000020580 ENSMUSG0000020593 ENSMUSG0000020656 ENSMUSG0000020715 ENSMUSG0000020776 ENSMUSG0000020893 ENSMUSG0000020901 ENSMUSG0000020941 ENSMUSG0000021091 ENSMUSG0000021226 ENSMUSG0000021228 ENSMUSG0000021250 ENSMUSG0000021268 ENSMUSG0000021270 ENSMUSG0000021365

11	6	14
Unassigned	Unassigned	1
Unassigned	6	14
3	10	9
Unassigned	4	13
10	10	8
3	5	10
7	9	4
1	6	4
13	10	8
7	9	4
12	10	6
Unassigned	6	14
8	14	11
11	6	14
12	10	6
3	5	10
10	4	8
Unassigned	4	15
7	9	4
9	4	17
6	10	8
3	5	10
3	5	10
13	10	/
13	10	/
8	14	10
4	14	18
8	14	11
/ Lineasismed	9	4 0
	4	0
0 Unassigned	Unassigned	4
Unassigned		13
	10	0
13	10	7
13	10	6
12	10	8
0	4	15
Unassigned	10	7
Q	10	15
7	9	4
8	.14	. 11

ENSMUSG0000021453 ENSMUSG0000021670 ENSMUSG0000021701 ENSMUSG0000021750 ENSMUSG0000021765 ENSMUSG0000022000 ENSMUSG0000022010 ENSMUSG0000022032 ENSMUSG0000022126 ENSMUSG0000022218 ENSMUSG0000022346 ENSMUSG0000022389 ENSMUSG0000022528 ENSMUSG0000022615 ENSMUSG0000022651 ENSMUSG0000022769 ENSMUSG0000022863 ENSMUSG0000022899 ENSMUSG0000022951 ENSMUSG0000023043 ENSMUSG0000023067 ENSMUSG0000023073 ENSMUSG0000023078 ENSMUSG0000023087 ENSMUSG0000023243 ENSMUSG0000023272 ENSMUSG0000023905 ENSMUSG0000024029 ENSMUSG0000024036 ENSMUSG0000024222 ENSMUSG0000024365 ENSMUSG0000024427 ENSMUSG0000024526 ENSMUSG0000024561 ENSMUSG0000024589 ENSMUSG0000024807 ENSMUSG0000024843 ENSMUSG0000024986 ENSMUSG0000024987 ENSMUSG0000025004 ENSMUSG0000025185 ENSMUSG0000025229 ENSMUSG0000025586

13	10	8
8	14	11
Unassigned	10	8
Unassigned	10	7
Unassigned	14	11
13	10	9
13	10	8
13	10	7
3	10	9
Unassigned	14	10
5	13	3
11	6	14
Unassigned	8	13
Unassigned	6	14
13	10	7
7	9	4
Unassigned	4	8
Unassigned	Unassigned	1
7	14	4
8	14	11
Unassigned	6	14
2	14	4
3	10	9
Unassigned	14	11
Unassigned	14	11
7	9	4
8	14	11
13	10	7
13	10	7
3	5	7
13	10	9
Unassigned	4	11
9	4	15
7	9	4
11	6	8
Unassigned	4	4
11	6	19
6	2	12
Unassigned	7	13
Unassigned	5	10
10	6	18
11	6	17
Unassigned	6	14

ENSMUSG0000025612 ENSMUSG0000025823 ENSMUSG0000025981 ENSMUSG0000026072 ENSMUSG0000026077 ENSMUSG0000026107 ENSMUSG0000026249 ENSMUSG0000026390 ENSMUSG0000026435 ENSMUSG0000026475 ENSMUSG0000026542 ENSMUSG0000026614 ENSMUSG0000026773 ENSMUSG0000026822 ENSMUSG0000026839 ENSMUSG0000026864 ENSMUSG0000026981 ENSMUSG0000026986 ENSMUSG0000027035 ENSMUSG0000027068 ENSMUSG0000027346 ENSMUSG0000027351 ENSMUSG0000027381 ENSMUSG0000027397 ENSMUSG0000027690 ENSMUSG0000027995 ENSMUSG0000028051 ENSMUSG0000028240 ENSMUSG0000028359 ENSMUSG0000028410 ENSMUSG0000028655 ENSMUSG0000028671 ENSMUSG0000028680 ENSMUSG0000028715 ENSMUSG0000028862 ENSMUSG0000028957 ENSMUSG0000029009 ENSMUSG0000029188 ENSMUSG0000029304 ENSMUSG0000029352 ENSMUSG0000029380 ENSMUSG0000029482 ENSMUSG0000029552

Q	1/	11
7	0	11
11	5	18
11	10	7
11	6	18
7	14	10
7	6	
2	10	4
Unassigned	10	4
A	1	т 2
12	10	6
7	10	4
Unassigned	10	4
	10	6
12	10	14
7	0	14
2	10	10
3	10	10
4	10	10
	10	10
8 11	14	4
Unassigned	0	12
8	14	4
8	14	17
10	6	1/
10	6	8
3	5	10
	6	8
Unassigned	6	5
13	10	6
7	14	4
4	l	15
Unassigned	6	4
Unassigned	2	12
10	4	8
13	10	7
11	6	14
11	6	14
Unassigned	6	14
Unassigned	10	8
12	10	6
13	10	7
10	6	5
8	14	11

ENSMUSG0000029657 ENSMUSG0000029700 ENSMUSG0000029752 ENSMUSG0000030103 ENSMUSG0000030244 ENSMUSG0000030256 ENSMUSG0000030364 ENSMUSG0000030474 ENSMUSG0000030650 ENSMUSG0000030659 ENSMUSG0000030847 ENSMUSG0000030852 ENSMUSG0000031016 ENSMUSG0000031024 ENSMUSG0000031271 ENSMUSG0000031278 ENSMUSG0000031381 ENSMUSG0000031441 ENSMUSG0000031594 ENSMUSG0000031722 ENSMUSG0000031762 ENSMUSG0000031765 ENSMUSG0000031770 ENSMUSG0000031824 ENSMUSG0000031906 ENSMUSG0000032010 ENSMUSG0000032012 ENSMUSG0000032068 ENSMUSG0000032220 ENSMUSG0000032271 ENSMUSG0000032285 ENSMUSG0000032300 ENSMUSG0000032311 ENSMUSG0000032348 ENSMUSG0000032353 ENSMUSG0000032369 ENSMUSG0000032511 ENSMUSG0000032575 ENSMUSG0000032578 ENSMUSG0000032624 ENSMUSG0000032715 ENSMUSG0000032724 ENSMUSG0000032786

7	9	4
Unassigned	6	4
10	4	15
14	12	17
11	6	14
11	6	14
Unassigned	5	13
3	10	9
13	10	10
Unassigned	4	8
7	9	4
13	10	8
11	6	14
11	6	14
4	1	2
8	14	4
7	9	4
12	10	6
12	10	6
12	10	6
13	10	7
13	10	7
7	9	4
/ 	9	4
Unassigned	Unassigned	1
		1 /
II	6	14
Unassigned	6	14 14
Unassigned	6 6 14	14 14 11
Unassigned 8 8	6 6 14 14	14 14 11 11
Unassigned 8 3	6 6 14 14 13	14 14 11 11 1 1
Unassigned 8 8 3 8 8 8	6 6 14 14 13 14	14 14 11 11 11 11
Unassigned 8 8 3 8 8 8 8	6 6 14 14 13 14 14 14	14 14 11 11 11 11 11 7
11 Unassigned 8 8 3 8 8 8 13 10	6 6 14 14 13 14 14 14 10 6	14 14 11 11 11 11 11 7 8
11 Unassigned 8 8 3 8 8 8 13 10 7	6 6 14 14 13 14 14 10 6 9	14 14 11 11 11 11 11 7 8 4
11 Unassigned 8 8 3 8 8 8 13 10 7 8	6 6 14 14 13 14 14 10 6 9 14	14 14 11 11 11 11 11 7 8 8 4
11 Unassigned 8 8 3 8 8 8 13 10 7 8 12	6 6 14 14 13 14 14 10 6 9 14	14 14 11 11 11 11 11 7 8 4 4 10 6
11 Unassigned 8 8 3 8 8 8 13 10 7 8 12 7	6 6 14 14 13 14 14 10 6 9 14 10 9	14 14 11 11 11 11 11 7 8 4 4 10 6 4
11 Unassigned 8 8 3 8 8 8 13 10 7 8 12 7 6	6 6 14 14 13 14 14 10 6 9 14 10 9 2	14 14 11 11 11 11 11 7 8 4 10 6 4 12
11 Unassigned 8 8 3 8 8 13 10 7 8 12 7 6 8 8 8 12	6 6 14 14 13 14 14 10 6 9 14 10 9 2 2	14 14 11 11 11 11 11 7 8 4 10 6 4 12 4
11 Unassigned 8 8 3 3 8 8 3 8 13 10 7 7 8 12 7 6 8 12 7 6 8 8 12 7 8 8 12 7 8 8 12 7 8 8 12 7 8 8 12 7 8 8 13 10 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6 6 14 14 13 14 14 14 10 6 9 14 10 9 2 2 14 14	14 14 11 11 11 11 11 11 7 8 4 10 6 4 12 4 11
11 Unassigned 8 8 3 3 8 8 3 3 8 13 10 7 7 8 12 7 6 8 12 7 6 8 12 7 6 8 12 7 8 12 7 8 12 7 8 12 7 8 12 7 8 12 7 8 8 12 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6 6 6 14 14 13 14 14 10 6 9 14 10 9 2 14 10 9 2 14 10 9 2 14 14 10 10 9 14 10 10 10 14 10 10 14 14 14 14 14 14 14 14 14 14 14 14 14	14 14 11 11 11 11 11 7 8 4 10 6 4 10 6 4 12 4 11

ENSMUSG0000032802 ENSMUSG0000033318 ENSMUSG0000034610 ENSMUSG0000034640 ENSMUSG0000034645 ENSMUSG0000034765 ENSMUSG0000034936 ENSMUSG0000035184 ENSMUSG0000035202 ENSMUSG0000035385 ENSMUSG0000035686 ENSMUSG0000036885 ENSMUSG0000036957 ENSMUSG0000037071 ENSMUSG0000037405 ENSMUSG0000037411 ENSMUSG0000037440 ENSMUSG0000037447 ENSMUSG0000037583 ENSMUSG0000037621 ENSMUSG0000037847 ENSMUSG0000038037 ENSMUSG0000038155 ENSMUSG0000038415 ENSMUSG0000038418 ENSMUSG0000038508 ENSMUSG0000038550 ENSMUSG0000038599 ENSMUSG0000038754 ENSMUSG0000039457 ENSMUSG0000039519 ENSMUSG0000039633 ENSMUSG0000039835 ENSMUSG0000039956 ENSMUSG0000039958 ENSMUSG0000040017 ENSMUSG0000040026 ENSMUSG0000040599 ENSMUSG0000040613 ENSMUSG0000040660 ENSMUSG0000040891 ENSMUSG0000041229 ENSMUSG0000041293

8	14	4
11	6	5
Unassigned	4	11
3	5	10
5	13	3
8	14	11
Unassigned	Unassigned	1
8	14	11
Unassigned	11	16
3	5	10
4	1	2
13	10	8
11	6	14
4	1	2
13	10	7
Unassigned	5	10
9	4	19
13	10	9
Unassigned	14	11
Unassigned	14	11
Unassigned	6	14
Unassigned	14	10
8	14	11
Unassigned	2	8
Unassigned	10	7
Unassigned	4	15
11	6	14
10	4	8
Unassigned	6	14
8	14	11
9	4	15
Unassigned	6	4
9	4	15
8	14	4
Unassigned	14	15
12	10	6
12	10	6
7	9	4
Unassigned	4	8
9	4	15
8	14	4
9	4	15
9	4	15

ENSMUSG0000041324 ENSMUSG0000041481 ENSMUSG0000041567 ENSMUSG0000041596 ENSMUSG0000041920 ENSMUSG0000042041 ENSMUSG0000042834 ENSMUSG0000043013 ENSMUSG0000044197 ENSMUSG0000045775 ENSMUSG0000046179 ENSMUSG0000046223 ENSMUSG0000046688 ENSMUSG0000046794 ENSMUSG0000047109 ENSMUSG0000047492 ENSMUSG0000047822 ENSMUSG0000047881 ENSMUSG0000049303 ENSMUSG0000049791 ENSMUSG0000049922 ENSMUSG0000050069 ENSMUSG0000050423 ENSMUSG0000050440 ENSMUSG0000051361 ENSMUSG0000051495 ENSMUSG0000052271 ENSMUSG0000052305 ENSMUSG0000052392 ENSMUSG0000052512 ENSMUSG0000052560 ENSMUSG0000052632 ENSMUSG0000052837 ENSMUSG0000052957 ENSMUSG0000053113 ENSMUSG0000053175 ENSMUSG0000053553 ENSMUSG0000053846 ENSMUSG0000055116 ENSMUSG0000055370 ENSMUSG0000055491 ENSMUSG0000055782 ENSMUSG0000055866

5	13	3
3	5	10
7	14	4
2	13	1
11	6	8
8	14	4
10	6	8
6	2	12
Unassigned	14	11
9	4	17
1	13	3
8	14	11
3	10	7
Unassigned	6	4
3	5	10
10	10	8
Unassigned	8	13
8	14	11
13	10	9
11	6	14
8	14	11
Unassigned	4	15
Unassigned Unassigned	4 Unassigned	15 1
Unassigned Unassigned Unassigned	4 Unassigned	15 1 2
Unassigned Unassigned Unassigned Unassigned	4 Unassigned 1 14	15 1 2 4
Unassigned Unassigned Unassigned Unassigned Unassigned	4 Unassigned 1 14 6	15 1 2 4 14
Unassigned Unassigned Unassigned Unassigned Unassigned	4 Unassigned 1 14 6 4	15 1 2 4 14 13
Unassigned Unassigned Unassigned Unassigned Unassigned	4 Unassigned 1 14 6 4 13	15 1 2 4 14 13 2
Unassigned Unassigned Unassigned Unassigned Unassigned 1 2 3	4 Unassigned 1 14 6 4 13 4	15 1 2 4 14 13 2 15
Unassigned Unassigned Unassigned Unassigned Unassigned 1 9 4	4 Unassigned 1 14 6 4 13 4 14	15 1 2 4 14 13 2 2 15 2
Unassigned Unassigned Unassigned Unassigned Unassigned 1 9 4 13	4 Unassigned 1 14 6 4 13 4 14 14	15 1 2 4 14 13 2 15 2 7
Unassigned Unassigned Unassigned Unassigned Unassigned 1 9 4 9 4 13 11	4 Unassigned 1 14 6 4 13 4 13 4 14 10 6	15 1 2 4 14 13 2 15 2 2 7 7 14
Unassigned Unassigned Unassigned Unassigned Unassigned Unassigned 1 9 4 13 11 11	4 Unassigned 1 14 6 4 13 4 13 4 14 10 6 10	15 1 2 4 14 13 2 15 2 7 7 14 7
Unassigned Unassigned Unassigned Unassigned Unassigned Unassigned 1 1 9 4 1 3 1 1 1 3 1 3 1 3	4 Unassigned 1 14 6 4 13 4 13 4 14 10 6 10 10 10	15 1 2 4 14 13 2 5 2 5 2 7 7 14 7 8
Unassigned Unassigned Unassigned Unassigned Unassigned Unassigned 1 1 9 4 1 3 1 1 1 1 3 1 3 1 3 1 3 1 3	4 Unassigned 1 14 6 4 4 13 4 13 4 13 10 10 10 10 10	15 1 2 4 14 13 2 15 2 7 7 14 7 8 7
Unassigned Unassigned Unassigned Unassigned Unassigned Unassigned 1 1 9 4 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	4 Unassigned 1 14 6 4 13 4 13 4 14 10 6 10 10 10 10 10 10	15 1 2 4 14 13 2 5 2 7 7 15 2 7 7 14 7 8 7 7 7
Unassigned Unassigned Unassigned Unassigned Unassigned Unassigned 1 1 9 4 1 3 1 1 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3	4 Unassigned 1 14 6 4 13 4 13 4 14 10 6 10 10 10 10 10 10 10 10	15 1 2 4 14 13 2 15 2 7 7 15 2 7 7 14 7 8 7 7 7 11
Unassigned Unassigned Unassigned Unassigned Unassigned Unassigned 1 1 9 4 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	4 Unassigned 1 14 6 4 13 4 13 4 13 10 10 10 10 10 10 10 10 10 10 10 10 10	15 1 2 4 14 13 2 5 2 7 7 15 2 7 7 14 7 8 7 7 7 11 8 7 7
Unassigned Unassigned Unassigned Unassigned Unassigned Unassigned 1 9 4 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	4 Unassigned 1 14 6 4 13 4 13 4 14 10 10 10 10 10 10 10 10 10 10 10 10 10	15 1 2 4 14 13 2 15 2 7 7 15 2 7 7 14 7 8 7 7 11 8 7 7 11 8 8 14
Unassigned Unassigned Unassigned Unassigned Unassigned Unassigned 1 9 4 13 13 13 13 13 13 13 13 13 13 13 13 13	4 Unassigned 1 14 6 4 13 4 14 10 10 10 10 10 10 10 10 10 10 10 10 10	15 1 2 4 14 13 2 5 2 7 7 15 2 7 7 14 7 8 7 7 11 8 7 7 11 8 14 3
Unassigned Unassigned Unassigned Unassigned Unassigned Unassigned 1 9 4 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	4 Unassigned 1 14 6 4 13 4 13 4 14 10 10 10 10 10 10 10 10 10 10 10 10 10	15 1 2 4 14 13 2 5 2 7 7 15 2 7 7 14 7 7 8 7 7 11 8 7 7 7 11 8 14 3 8
Unassigned Unassigned Unassigned Unassigned Unassigned Unassigned 1 9 4 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1	4 Unassigned 1 14 6 4 13 4 14 10 10 10 10 10 10 10 10 10 10 10 10 10	15 1 2 4 14 13 2 5 2 7 7 15 2 7 7 14 7 7 14 7 7 11 8 7 7 11 8 14 3 8 14

ENSMUSG0000056054 ENSMUSG0000056071 ENSMUSG0000056313 ENSMUSG0000056749 ENSMUSG0000056973 ENSMUSG0000057425 ENSMUSG0000057465 ENSMUSG0000057729 ENSMUSG0000057933 ENSMUSG0000058260 ENSMUSG0000058672 ENSMUSG0000058934 ENSMUSG0000059743 ENSMUSG0000059824 ENSMUSG0000060317 ENSMUSG0000060803 ENSMUSG0000061175 ENSMUSG0000061540 ENSMUSG0000061906 ENSMUSG0000062432 ENSMUSG0000062825 ENSMUSG0000063388 ENSMUSG0000063415 ENSMUSG0000063838 ENSMUSG0000063919 ENSMUSG0000063929 ENSMUSG0000064337 ENSMUSG0000064339 ENSMUSG0000064345 ENSMUSG0000064363 ENSMUSG0000064367 ENSMUSG0000064368 ENSMUSG0000064370 ENSMUSG0000064655 ENSMUSG0000064853 ENSMUSG0000065304 ENSMUSG0000065402 ENSMUSG0000065637 ENSMUSG0000065778 ENSMUSG0000065822 ENSMUSG0000066072 ENSMUSG0000066170 ENSMUSG0000066363

13	10	7
13	10	7
2	14	4
11	6	5
10	6	8
8	14	11
12	10	6
12	10	6
10	6	8
9	4	15
7	6	4
)	13	3
Unassigned	Unassigned	14
11	0	14
2	14	15
9	4	13
11	10	14
0	10	15
9	13	15
8	1/	1
Unassigned	Unassigned	1
Unassigned	7	13
Unassigned 8	7 14	13 11
Unassigned 8	7 14	13 11 8
Unassigned 8 13 7	7 14 10	13 11 8 4
Unassigned 8 13 7 Unassigned	7 14 10 13 11	13 11 8 4 16
Unassigned 8 13 7 Unassigned Unassigned	7 14 10 13 11 11	13 11 8 4 16 16
Unassigned 8 13 7 Unassigned Unassigned 4	7 14 10 13 11 11	13 11 8 4 16 16 16
Unassigned 8 13 7 Unassigned Unassigned 4 4	7 14 10 13 11 11 11	13 11 8 4 16 16 18 18
Unassigned 8 13 7 Unassigned Unassigned 4 4 4	7 14 10 13 11 11 1 1 1 1	13 11 8 4 16 16 16 18 18 18
Unassigned Unassigned Unassigned Unassigned 4 4 4 4	7 14 10 13 11 11 11 1 1 1 1 1	13 11 8 4 16 16 16 18 18 18 18 18
Unassigned Unassigned Unassigned Unassigned 4 4 4 4 4 4	7 14 10 13 11 11 1 1 1 1 1 1 1	13 11 8 4 16 16 16 18 18 18 18 18 18
Unassigned Unassigned Unassigned Unassigned 4 4 4 4 4 4 4 4 4 1 4	7 14 10 13 11 11 11 11 11 11 11 11 11 12	13 11 8 4 16 16 16 18 18 18 18 18 18 18 18
Unassigned Unassigned Unassigned Unassigned 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 14 10 13 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1	13 11 8 4 16 16 16 18 18 18 18 18 18 18 17 17
Unassigned Unassigned Unassigned Unassigned 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 14 10 13 11 11 11 11 11 11 11 11 11 11 11 12 12	13 11 8 4 16 16 16 18 18 18 18 18 18 18 17 17
Unassigned Unassigned Unassigned Unassigned 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 14 10 13 11 11 11 1 1 1 1 1 1 1 1 1 1 1 1	13 11 8 4 16 16 16 18 18 18 18 18 18 17 17 17 17
Unassigned Unassigned Unassigned Unassigned Unassigned 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 14 10 13 11 11 11 11 11 11 11 11 11 11 12 12 12	13 11 8 4 16 16 18 18 18 18 18 18 18 17 17 17 17 17 18 17
Unassigned Unassigned Unassigned Unassigned Unassigned 4 4 4 4 4 4 4 4 4 4 4 4 4	7 14 10 13 11 11 11 11 11 11 11 11 12 12 12 12 3 12 12	13 11 8 4 16 16 18 18 18 18 18 18 18 17 17 17 17 17
Unassigned Unassigned Unassigned Unassigned Unassigned 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7 14 10 13 11 11 11 11 11 11 11 11 11 12 12 12 12	13 11 8 4 16 16 16 18 18 18 18 18 18 18 18 17 17 17 17 17
Unassigned Unassigned Unassigned Unassigned Unassigned 4 4 4 4 4 4 4 4 4 4 4 4 4	7 14 10 13 11 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 11 8 4 16 16 16 18 18 18 18 18 18 17 17 17 17 17 17 17 17 8
Unassigned Unassigned Unassigned Unassigned Unassigned 4 4 4 4 4 4 4 4 4 14 14 14	7 14 10 13 11 11 11 11 11 11 11 11 11 12 12 12 12	13 11 8 4 16 16 16 18 18 18 18 18 18 18 18 17 17 17 17 17 17 17 17 8 7

ENSMUSG0000066477 ENSMUSG0000066687 ENSMUSG0000067144 ENSMUSG0000067219 ENSMUSG0000068877 ENSMUSG0000069516 ENSMUSG0000070167 ENSMUSG0000070284 ENSMUSG0000070348 ENSMUSG0000070576 ENSMUSG0000071369 ENSMUSG0000071551 ENSMUSG0000072623 ENSMUSG0000072849 ENSMUSG0000073830 ENSMUSG0000073834 ENSMUSG0000073842 ENSMUSG0000074115 ENSMUSG0000074469 ENSMUSG0000074472 ENSMUSG0000074794 ENSMUSG0000075015 ENSMUSG0000075511 ENSMUSG0000076258 ENSMUSG0000076569 ENSMUSG0000076612 ENSMUSG0000076613 ENSMUSG0000076614 ENSMUSG0000077505 ENSMUSG0000078612 ENSMUSG0000078672 ENSMUSG0000078674 ENSMUSG0000078675 ENSMUSG0000078686 ENSMUSG0000078687 ENSMUSG0000078866 ENSMUSG0000079550 ENSMUSG0000081208 ENSMUSG0000081257 ENSMUSG0000081988 ENSMUSG0000082361 ENSMUSG0000082570 ENSMUSG0000083168

9	4	15
Unassigned	6	14
9	4	15
Unassigned	14	11
9	4	15
3	5	10
14	12	17
7	9	4
Unassigned	Unassigned	1
8	14	4
8	14	7
10	6	8
Unassigned	4	13
9	4	15
9	4	15
9	4	15
9	4	15
12	10	6
12	10	6
2	10	1
13	10	0
Unassigned	Unassigned	1
Unassigned	6 Indissigned	14
Unassigned	11	16
Unassigned	Unassigned	10
13	10	10
13	10	10
13	10	6
12	10	17
8	12 4	17
Q	4	15
Unassigned	4	13
	4	15
7	4	4
9	4	15
Unassigned	6	14
1	13	3
5	13	3
1	13	3
1	13	1
8	14	4
0	11	
5	13	3

ENSMUSG0000083478 ENSMUSG0000083592 ENSMUSG0000083992 ENSMUSG0000084309 ENSMUSG0000084415 ENSMUSG0000084543 ENSMUSG0000084744 ENSMUSG0000084981 ENSMUSG0000085006 ENSMUSG0000085091 ENSMUSG0000085439 ENSMUSG0000085445 ENSMUSG0000085499 ENSMUSG0000085834 ENSMUSG0000085977 ENSMUSG0000086141 ENSMUSG0000086165 ENSMUSG0000086324 ENSMUSG0000086391 ENSMUSG0000086447 ENSMUSG0000086819 ENSMUSG0000086868 ENSMUSG0000087695 ENSMUSG0000087819 ENSMUSG0000087950 ENSMUSG0000088609 ENSMUSG0000089255 ENSMUSG0000089542 ENSMUSG0000089635 ENSMUSG0000089675 ENSMUSG0000089726 ENSMUSG0000089774 ENSMUSG0000089827 ENSMUSG0000089873 ENSMUSG0000090124 ENSMUSG0000090306 ENSMUSG0000090386 ENSMUSG0000090555 ENSMUSG0000090877 ENSMUSG0000090925 ENSMUSG0000092021 ENSMUSG0000092075 ENSMUSG0000094156

Unassigned	6	14
1	13	2
Unassigned	4	8
9	4	15
2	13	1
1	13	3
14	12	17
5	13	3
9	4	15
5	13	3
1	13	3
Unassigned	10	8
5	13	3
Unassigned	1	13
1	13	3
	13	l
Unassigned	10	8
4	11	18
	13	1
Unassigned	Unassigned	
4	1	2
1	12	1
1	13	1
1 2 14	13 13 12	1 1 17
1 2 14	13 13 12	1 1 17
1 2 14 1 Unassigned	13 13 12 13	1 17 17 16
1 2 14 Unassigned	13 13 12 13 11 12	1 17 1 16 17
1 2 14 1 Unassigned 14 14	13 13 12 13 11 12 12 12	1 17 1 16 17 17
1 2 14 1 Unassigned 14 14 2	13 13 12 13 11 12 12 12 13	1 17 1 16 17 17 17
1 2 14 1 Unassigned 14 14 2 7	13 13 12 13 11 12 12 12 12 13	1 17 1 16 17 17 17 1 4
1 2 14 1 Unassigned 14 14 2 7 Unassigned	13 13 12 13 11 12 12 12 13 6 12	1 17 16 17 17 17 1 4 17
1 2 14 1 1 Unassigned 1 4 1 4 2 7 1 Unassigned	13 13 12 13 11 12 12 12 13 6 12 14	1 17 16 17 17 17 1 4 17 4
1 2 14 1 1 Unassigned 14 14 2 7 Unassigned 7 3	13 13 12 13 11 12 12 12 13 6 12 14 10	1 17 1 16 17 17 17 1 4 17 4 10
1 2 14 1 1 1 1 1 1 1 1 1 1 2 7 1 1 1 1 3 1 3 9	13 13 12 13 11 12 12 12 13 6 12 14 10 4	1 17 16 17 17 17 17 1 4 17 4 10 4
1 2 14 1 1 0 14 14 14 2 7 0 0 14 14 14 14 14 2 7 0 7 0 10 10 3 9 7	13 13 12 13 11 12 12 12 13 6 12 14 10 4 6	1 17 16 17 17 17 17 17 4 10 4 10 4 4
1 2 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 13 12 13 11 12 12 12 13 6 12 13 6 12 14 10 4 6 14	1 17 16 17 16 17 17 17 4 10 4 10 4 4 10 4 11
1 2 14 1 2 10 14 14 14 14 2 2 7 14 14 14 14 14 14 14 14 14 14 14 14 14	13 13 12 13 11 12 12 12 13 6 12 14 10 4 6 12 14 10 4 6 14 13	1 17 1 6 17 17 17 17 17 4 10 4 10 4 4 10 4 11 1
1 2 14 1 1 1 1 1 4 14 1 4 2 7 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1	13 13 12 13 11 12 12 12 13 6 12 14 10 4 6 14 10 4 6 14 13 4	1 17 17 16 17 17 17 17 17 17 17 10 4 10 4 10 4 10
1 2 14 1 2 10 14 14 14 14 2 2 7 14 14 14 14 14 14 14 14 14 14 14 14 14	13 13 12 13 11 12 12 12 13 6 12 13 6 12 14 10 4 6 14 10 4 6 14 13 4 9	1 17 17 16 17 17 17 17 17 4 10 4 10 4 4 10 4 11 11 15 4
1 2 14 1 2 10 1 1 4 14 14 14 14 14 2 2 7 7 14 14 14 14 14 14 14 14 14 14 14 14 14	13 13 12 13 11 12 12 12 13 6 12 14 10 4 6 12 14 10 4 6 14 13 4 9 13	1 17 17 16 17 17 1 4 17 4 10 4 10 4 10 4 11 15 4 3
1 2 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 13 12 13 11 12 12 12 13 6 12 13 6 12 14 10 4 6 12 14 10 4 6 14 13 4 9 13 2	1 17 16 17 17 17 17 17 17 4 10 4 10 4 10 4 11 11 15 4 3 12
1 2 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	13 13 12 13 11 12 12 12 13 6 12 14 10 4 6 12 14 10 4 6 14 13 4 9 13 2 4	1 17 17 16 17 17 17 1 4 10 4 10 4 10 4 10 4 11 15 4 3 12 15

ENSMUSG0000094786 ENSMUSG0000096160 ENSMUSG0000096391 ENSMUSG0000096688 ENSMUSG0000096954 ENSMUSG0000097039 ENSMUSG0000097073 ENSMUSG0000097451 ENSMUSG0000097762 ENSMUSG0000098290 ENSMUSG0000098330 ENSMUSG0000098741 ENSMUSG0000098864 ENSMUSG0000098973 ENSMUSG0000098980 ENSMUSG0000099242 ENSMUSG0000099343 ENSMUSG00000100862 ENSMUSG00000101111 ENSMUSG00000101122 ENSMUSG00000101249 ENSMUSG00000101397 ENSMUSG00000101596 ENSMUSG00000102070 ENSMUSG00000102319 ENSMUSG00000102750 ENSMUSG00000102758 ENSMUSG00000102854 ENSMUSG00000102967 ENSMUSG00000103233 ENSMUSG00000103560 ENSMUSG00000103642 ENSMUSG00000104030 ENSMUSG00000104253 ENSMUSG00000104664 ENSMUSG00000104798 ENSMUSG00000104802 ENSMUSG00000105192 ENSMUSG00000105374 ENSMUSG00000105703 ENSMUSG00000105909 ENSMUSG00000106106 ENSMUSG00000106185

Unassigned	6	14
1	13	2
5	13	3
Unassigned	4	15
1	6	3
10	4	8
5	4	11
9	4	15
11	4	5
2	13	1
Unassigned	Unassigned	1
2	13	1
2	13	2
Unassigned	11	16
5	13	3
2	13	1
2	6	4
Unassigned	3	18
Unassigned	3	13
1	6	4
Unassigned	3	13
1	13	2
5	13	3
Unassigned	3	13
Unassigned	4	11
4	1	2
11	6	14
2	13	1
5	13	3
Unassigned	10	8
13	10	8
2	13	1
1	13	3
4	1	18
6	2	12
5	13	3
6	13	3
6	2	12
4	1	3
13	10	7
2	13	1
Unassigned	11	16
5	13	3

ENSMUSG00000106303 ENSMUSG00000106397 ENSMUSG00000106538 ENSMUSG00000106619 ENSMUSG00000106815 ENSMUSG00000107304 ENSMUSG00000107390 ENSMUSG00000108709 ENSMUSG00000109612 ENSMUSG00000109679 ENSMUSG00000109708 ENSMUSG00000109709 ENSMUSG00000109807 ENSMUSG00000109904 ENSMUSG00000110088 ENSMUSG00000110151 ENSMUSG00000110384 ENSMUSG00000110386 ENSMUSG00000110439 ENSMUSG00000110488 ENSMUSG00000110494 ENSMUSG00000110496 ENSMUSG00000110520 ENSMUSG00000110537 ENSMUSG00000110588 ENSMUSG00000110757 ENSMUSG00000111250 ENSMUSG00000111424 ENSMUSG00000111631 ENSMUSG00000112090 ENSMUSG00000112744 ENSMUSG00000112774 ENSMUSG00000112873 ENSMUSG00000113387 ENSMUSG00000113399 ENSMUSG00000113544 ENSMUSG00000113986 ENSMUSG00000113987 ENSMUSG00000114131

6	2	12
6	2	12
4	1	18
1	13	2
4	1	2
1	13	1
1	13	3
4	1	3
6	10	7
1	13	3
1	13	1
1	13	3
6	2	12
11	6	14
1	13	3
Unagional	13	10
	0	18
15	10	2
2	13	1
1	13	3
11	6	14
1	13	1
Unassigned	14	11
13	10	7
1	13	1
Unassigned	4	15
1	13	3
1	13	2
1	13	3
1	13	3
Unassigned	6	14
Unassigned	6	14
4	1	18
13	10	8
4	1	2
4	1	2
1	13	3
1	13	3

 Table 5. Gene cluster-assignment comparison. Complete list of gene cluster-assignments

 using Recursive Indirect-Paths Modularity (RIP-M), Weighted Gene Co-Expression

 Network Analysis (WGCNA), and Weighted Gene Co-Expression Network Analysis with

 Modularity Maximization (WGCNA-M).

5.6 Conclusions

In this study, we proposed a new pipeline that combines the adjacency matrix notion of WGCNA with Modularity Maximization to find modules that are involved in specific biological pathways. To show the validity of the identified modules, we conducted gene enrichment analysis and experimental validation. Our results showed that mitochondrial pathways that were changed in response to irradiation were contained in the same module. Further, our data indicates that even after performing stringent feature selection focusing on significant genes (FDR $\leq 10^{-5}$), WGCNA-M was still able to identify biologically relevant modules. The use of the WGCNA Dynamic Tree Cut clustering algorithm in our dataset resulted in a high number of unassigned genes (61-69). On the other hand, WGCNA-M reduced the number of unassigned genes to 14 while maintaining an optimal number of modules/specific pathways. The proposed pipeline enables the identification of network and community structures without requiring optimization of the minClusterSize and deepSplit parameters. The increasing number of high throughput genomic datasets, together with the use of appropriate network pipelines, will enable researchers to efficiently investigate molecular mechanisms and pathways involved in different disease processes.

5.7 Availability of Data and Materials

The data discussed in this chapter have been deposited in NCBI's Gene Expression Omnibus (Nia et al., 2020) and are accessible through GEO Series accession number GSE136165 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE136165). The R and C scripts written for this dissertation are accessible through https://github.com/annamnia/Efficient-Identification-of-Multiple-Pathways-RNA-Seq-Analysis-of-Livers-from-56Fe-Ion-Irradiated-M

5.8 Tutorial for WGCNA-M

5.8.1 ADJACENCY MATRIX TUTORIAL

This script takes the user through a practical example of generating an adjacency matrix from expression data using WCGNA, which can then be used for further calculations using the modularity algorithm.

Dependencies:

- gdata
- dplyr
- Biobase
- convert
- IRanges
- edgeR
- GenomicRanges
- DESeq2

- limma
- rJava
- xlsx
- biomaRt
- enrichR
- devtools
- WGCNA

Input file requirements:

1. Expression data

 a. table of integer read counts, with rows corresponding to genes and columns to independent libraries. The counts represent the total number of reads aligning to each gene (or other genomic locus).

2. Phenotype data

a. Phenotypic data summarizes information about the samples (e.g., sex, age, and treatment status; referred to as 'covariates'). The information describing the samples can be represented as a table with S rows and V columns, where V is the number of covariates, and S the number of samples.

In this example we will analyze the gene expression of ⁵⁶Fe irradiated C57 mice liver tissue samples. Reads were aligned to the mouse GRCm38 reference genome using the STAR alignment program, version 2.5.3a, with the recommended ENCODE options. The - quantMode GeneCounts option was used to obtain read counts per gene, based on the Gencode release M14 annotation file.

The following files will be used as inputs

Expression Data File	Phenotype Data File	Description
raw_exprsData_Control_C57_1mo.tx	pData_Fe_Control_C57_1mo.tx	Month 1
t	t	
raw_exprsData_Control_C57_2mo.tx	pData_Fe_Control_C57_2mo.tx	Month 2
t	t	
raw_exprsData_Control_C57_4mo.tx	pData_Fe_Control_C57_4mo.tx	Month 4
t	t	
raw_exprsData_Control_C57_9mo.tx	pData_Fe_Control_C57_9mo.tx	Month 9
t	t	
raw_exprsData_Control_C57_12mo.t	pData_Fe_Control_C57_12mo.t	Month 12
xt	xt	
raw_exprsData_Control_C57.txt	pData_Fe_Control_C57.txt	Combined
		Months 1-12
	pData3.txt	Experimenta
		1 conditions

- 1. On line 22, change the working directory path to the location where all of the example files are located.
- For every time point differential gene expression analysis is conducted using R software package edgeR. First, normalization factors are calculated to scale the raw library sizes. In addition, dispersion parameters based on generalized linear models (GLM) are estimated; in particular, common dispersion for negative binomial

GLMs, trended dispersion for negative binomial GLMs using the power method, and empirical bayes tagwise dispersions for negative binomial GLMs. Pairwise statistical tests are then conducted between ⁵⁶Fe irradiated and non-irradiated control samples (at every time point) using a quasi-likelihood negative binomial generalized log-linear model applied to count data. Benjamini-Hochberg correction is applied and genes with FDR ≤ 0.05 & fold change ≥ 1.5 are extracted.

- 3. The expression values of genes identified as differentially expressed by edgeR are extracted from the "Combined Months 1-12" files. List of differentially expressed genes are merged across time points and deduplicated, leaving the lowest FDR value for each trascript. The final list of differentially expressed genes can be refiltered to a lower FDR, as desired. The raw counts for the selected genes are renormalized using DESeq. (see edgeR, DESeq)
- 4. DESeq normalized expression values of differentially expressed genes are loaded into WGCNA for adjacency matrix calculation.
- 5. By inspection, remove any obvious outliers using a semi-automatic code that only requires a choice of a height cut. (see Tutorial for the WGCNA package for R)

6. We now read in the trait data or experimental conditions and match the samples for which they were measured to the samples in the expression data. We choose the power 16, which is the lowest power for which the scale-free topology fit index curve flattens out upon reaching a high value (in this case, roughly 0.90).

Choosing the soft-thresholding power: analysis of network topology

 Adjacency matrix at the selected soft-thresholding power threshold is written out as "adjancency matrix.txt"

5.8.2 MANUAL: WGCNA-M

This code performs unipartite network community detection, using modularity.

Dependencies:

• svDialogs

Input file requirements:

3. Adjacency Matrix from WGCNA

Running:

- 1. Run WGCNA-M.R script
- 2. Select the directory where the R script is located with the necessary library files as

shown below

R_uni.c	8/22/2019 10:53 PM	C File	1 KB
🔊 R_uni.dll	8/22/2019 10:53 PM	Application exten	49 KB
🖉 R_uni.h	8/22/2019 10:53 PM	H File	1 KB
🖉 R_uni.so	8/22/2019 10:53 PM	SO File	35 KB
🚽 uni_ft2.c	8/22/2019 10:53 PM	C File	16 KB
🛃 uni2.h	8/22/2019 10:53 PM	H File	2 KB

- 3. Select the Adjacency Matrix File:
 - a. In the example dataset it is "adjacency_1e5.txt"

Select #	Adjancect Matrix								×
$\leftarrow \ \ \rightarrow$	The second seco	s_Methodology > Scripts	› Modularity Example	2	~ Ō	Search Modularit	y Exam	ple	٩
Organize	 New folder 					-	•		?
^	Name	Date modified	Туре	Size					^
×	🙊 .RData	1/21/2020 1:52 AM	R Workspace	83,640 KB					
	🚽 .Rhistory	1/21/2020 1:52 AM	RHISTORY File	25 KB					
-	🥃 adjacency_1e5	8/22/2019 10:54 PM	Text Document	4,823 KB					
4	😥 adjacency_1e5_modularity	1/20/2020 7:23 PM	Microsoft Excel C	672 KB					
	😥 deseq_normalized	1/20/2020 1:34 PM	Microsoft Excel C	9,559 KB					
2	😥 edgeR_Filtered	1/20/2020 1:34 PM	Microsoft Excel C	2,259 KB					
	👼 exprsData	1/13/2020 9:57 PM	Text Document	4,830 KB					
Ĭ	GSE136165_Expression_Data	8/19/2019 5:43 PM	Microsoft Excel C	4,830 KB					
S	🗊 Manual	1/21/2020 8:13 PM	Microsoft Word D	76 KB					
2	J pData	1/13/2020 10:26 PM	Text Document	1 KB					
3	pData3	1/14/2020 12:42 AM	Text Document	1 KB					
	R_uni.c	8/22/2019 10:53 PM	C File	1 KB					
-	🔊 R_uni.dll	8/22/2019 10:53 PM	Application exten	49 KB					
	an R_uni.h	8/22/2019 10:53 PM	H File	1 KB					
	🔊 R_uni.so	8/22/2019 10:53 PM	SO File	35 KB					
~	📄 tect	1/20/2020 3-35 PM	Text Document	672 KR					~
	File name: adjacency_1e5				~	All Files			\sim
						Open		Cancel	

4. Select a File Name to Save the Modularity Network Algorithm Output in a

comma separated values file format.

	roppox > 1_bivic_bibilitormatics_wethodol	ogy / scripts / woodalarity b	ampie *	0 Search	woodanty example	
anize 🔻 🛛 New fold	ler					(
A	Name	Date modified	Туре	Size		
Quick access	👧 .RData	1/21/2020 1:52 AM	R Workspace	83,640 KB		
Desktop 📌	🚽 .Rhistory	1/21/2020 1:52 AM	RHISTORY File	25 KB		
Downloads 🖈	adjacency_1e5	8/22/2019 10:54 PM	Text Document	4,823 KB		
Documents 🖈	🔊 adjacency_1e5_modularity	1/20/2020 7:23 PM	Microsoft Excel C	672 KB		
📰 Pictures 🛛 🖈	🔊 deseq_normalized	1/20/2020 1:34 PM	Microsoft Excel C	9,559 KB		
1_BMC_Bioinfor	😥 edgeR_Filtered	1/20/2020 1:34 PM	Microsoft Excel C	2,259 KB		
Comparison Toc	👼 exprsData	1/13/2020 9:57 PM	Text Document	4,830 KB		
DE testing	GSE136165_Expression_Data	8/19/2019 5:43 PM	Microsoft Excel C	4,830 KB		
Medularity Evan	🗊 Manual	1/21/2020 8:13 PM	Microsoft Word D	76 KB		
Modularity Exam	pData	1/13/2020 10:26 PM	Text Document	1 KB		
Dropbox	pData3	1/14/2020 12:42 AM	Text Document	1 KB		
O- Dive	R_uni.c	8/22/2019 10:53 PM	C File	1 KB		
UneDrive	🔊 R_uni.dll	8/22/2019 10:53 PM	Application exten	49 KB		
BGL V	R uni.h	8/22/2019 10:53 PM	H File	1 KR		
File name: Mod	lularity Output.csv					
Save as type: All Fi	les					

5. Pick the Soft Power Number based on how the adjacency matrix was generated

by WCGNA

a. A soft power threshold of 16 was chosen as optimal for the example

dataset

R prompt		?	\times
Enter Power Number from WCGNA			
16			
	OK	Cano	:el

6. Pick the Pearson Correlation Threshold

a. A Pearson correlation threshold of 0.7 was chosen as optimal for the

example dataset

7.

R prompt		?	×
Pearson Correlation Threshold			
0.7			
	OK	Cance	el

8. Pick the number of times to run the modularity algorithm

9. When the algorithm finishes running it will print a summary

```
> #print network size
> print(n)
[1] 634
> #print modularity score
> print(modRes[[4]])
[1] 0.4829613
> #print number of clusters
> print(max(modRes[[5]]))
[1] 5
> #print median of cluster size
> print(median(table(modRes[[5]])))
[1] 128
> #print average cluster size
> print(mean(table(modRes[[5]])))
[1] 126.8
```
6 CHAPTER 3: COMPARATIVE RNA-SEQ TRANSCRIPTOME ANALYSES REVEAL DYNAMIC TIME-DEPENDENT EFFECTS OF ⁵⁶Fe, ¹⁶O, and ²⁸Si Irradiation on the Induction of Murine Hepatocellular CARCINOMA

6.1 Abstract

Background: One of the health risks posed to astronauts during deep space flights is exposure to high charge, high-energy (HZE) ions (Z>13), which can lead to induction of hepatocellular carcinoma (HCC). However, little is known on the molecular mechanisms of HZE irradiation induced HCC.

Results: We performed comparative RNA-Seq transcriptomic analyses to assess the carcinogenic effects of 600 MeV/n ⁵⁶Fe (0.2 Gy), 1 GeV/n ¹⁶O (0.2 Gy), and 350 MeV/n ²⁸Si (0.2 Gy) ions in a mouse model for irradiation-induced HCC. C3H/HeNCrl mice were subjected to total body irradiation to simulate space environment HZE-irradiation, and liver tissues were extracted at five different time points post-irradiation to investigate the time-dependent carcinogenic response at the transcriptomic level. Our data demonstrated a clear difference in the biological effects of these HZE ions, particularly immunological, such as Acute Phase Response Signaling, B Cell Receptor Signaling, IL-8 Signaling, and ROS Production in Macrophages. Also seen in this study were novel unannotated transcripts that were significantly affected by HZE. To investigate the biological functions of these novel transcripts, we used a machine learning technique known as self-organizing maps (SOMs) to characterize the transcriptome expression profiles of 60 samples (45 HZE-irradiated, 15 non-irradiated control) from liver tissues. A handful of localized modules in the maps

emerged as groups of co-regulated and co-expressed transcripts. The functional context of these modules was discovered using overrepresentation analysis. We found that these spots typically contained enriched populations of transcripts related to specific immunological molecular processes (e.g., Acute Phase Response Signaling, B Cell Receptor Signaling, IL-3 Signaling), and RNA Transcription/Expression.

Conclusions: A large number of transcripts were found differentially expressed post-HZE irradiation. These results provide valuable information for uncovering the differences in molecular mechanisms underlying HZE specific induced HCC carcinogenesis. Additionally, a handful of novel differentially expressed unannotated transcripts were discovered for each HZE ion. Taken together, these findings may provide a better understanding of biological mechanisms underlying risks for HCC after HZE irradiation, and may also have important implications for discovery of potential countermeasures against and identification of biomarkers for HZE-induced HCC.

Keywords: RNA-Seq, Self-Organizing Maps, Novel Transcripts, Carcinogenesis, Tumor Microenvironment

6.2 Introduction

An important goal for the National Aeronautics and Space Administration (NASA) is to identify the effects of spaceflight-like conditions on irradiation-induced cancer. However, understanding the mechanisms of irradiation-induced cancer is impeded by the fact that there are no quantitative data from human populations exposed to the specific types of irradiation encountered during missions beyond low-earth orbit (LEO) or in deep space. During these missions, astronauts will be continuously exposed to low dose ionizing

irradiation (LDR). In particular, HZE ions such as ⁵⁶Fe, ¹⁶O, and ²⁸Si are the major high linear energy transfer (LET) sources in deep space. [55, 93, 94] Previous studies have shown that irradiation of mice with low dose HZE, specifically ⁵⁶Fe ions, significantly increases the incidences of HCC, but there is a limited understanding of potential mechanisms. [7] Previous studies by multiple investigators have shown that irradiation of mice with HZE particles induces oxidative damage, and micro-environmental changes that are thought to play a role in the carcinogenic processes, yet a detailed analysis of these processes has not been undertaken. [6-8, 19, 21, 93, 95-97] The main goal of these studies was to establish an association between HZE irradiation and a specific response such as oxidative stress, microenvironmental changes, and/or apoptosis.

The pathogenic process involved in the development of HCC and other cancers following irradiation exposure likely begins with the induction of mutagenic, and/or epigenetic changes and production of oncometabolites that further results in transcriptional alterations leading to a premalignant state. Irradiation can activate and/or inhibit a myriad of transcriptional pathways that are mainly involved in inflammation and oxidative changes that may play a role in the subsequent development of irradiation-related cancers, which involves chronic oxidative stress leading to irradiation-induced tissue injury, and the subsequent development of HCC. [19-21] Use of RNA-Seq, an approach to transcriptome profiling, which utilizes the deep-sequencing technologies, has become an increasingly common technique to study biological phenomena at the molecular level. This approach generates quantitative data of thousands of different messenger RNAs (mRNAs) with each experiment. To better understand the molecular mechanisms of HZE induced hepatic carcinogenesis, we performed RNA isolation and sequencing of the livers of male C3H/HeNCrl mice. This strain has been shown to be susceptible to induction of low-dose HZE-induced spontaneous HCC. [7] Low dose irradiation induces micro-environmental changes that lead to carcinogenesis and potentially tumor development. We conducted transcriptomic analyses to identify altered transcript expression in response to different types of HZE irradiation. The results of the present study confirm previous observations of significant differences between ⁵⁶Fe irradiation and non-irradiated control with respect to the induction of HCC. [7, 8]

Additionally, the alignment of RNA-Seq reads to the reference set of transcripts usually highlights a small but significant fraction of novel transcripts. Such transcripts are usually unexplored due to their unmappability to the genome sequence and/or the fact that they are missing functional gene annotations. In recent years, there has been an increased attention paid to the unannotated transcript expression data as a potentially valuable resource to identify novel transcripts missing from the existing transcriptome annotations. [98-103] The functionally unannotated transcripts from RNA-Seq in our experiments offered us an opportunity to find novel transcripts that are significantly affected by HZE and potentially associated with irradiation induced HCC.

To gain biological knowledge about the scope of the cellular processes involved in the irradiation induced HCC, we analyzed quantitative transcriptional changes in the livers of C3H/HeNCrl mice after irradiation with ⁵⁶Fe, ¹⁶O, and ²⁸Si compared with those from non-irradiated control. These analyses helped us define key molecular components that are driving the HZE induced transcriptional changes leading to HCC as well as functional roles of unannotated transcripts.

6.3 Methods

6.3.1 ANIMAL EXPERIMENTS AND SAMPLE PREPARATION

C3H/HeNCrl mice purchased from Charles River (Wilmington, MA) were used in this experiment since they have been shown to be a suiTable experimental model for liver carcinogenesis. The C3H/HeNCrl strain was used based on previous studies demonstrating that these mice are sensitive to induction of HCC after exposure to a dose of 0.2 Gy of 600 MeV/n ⁵⁶Fe. [7] Tumor induction studies and characterization of molecular changes in the irradiated tissues need to be conducted in whole animals to study the microenvironmental effects of HZE exposure because computer models or cell culture are inadequate based on extensive literature searches. Conducted studies were approved by the institutional animal care and use committees (IACUCs). The numbers of animals used were based on the expected numbers of irradiation-related tumors that would develop if animals were allowed to live out their lifespans. Power calculations for numbers in this study are based on chisquare test for comparing two proportions, with a two-sided significance level set at 0.05, and at 80% power.

The serial sacrifice study included 15 male mice with 3 mice per time point at five time-points consisting of 30, 60, 120, 270, and 360 days post-exposure to HZE: ⁵⁶Fe, ¹⁶O, and ²⁸Si irradiation. Additionally, 15 mice were used as controls, at the same time points, resulting in a total of 60 eight to ten-week-old male mice for this study. The 4 groups included 3 treatments (600 MeV/n ⁵⁶Fe (0.2 Gy), 1 GeV/n ¹⁶O (0.2 Gy), and 350 MeV/n ²⁸Si (0.2 Gy)) and control (non-irradiated/sham irradiated). The mice were shipped from the vendor to Brookhaven National Laboratories (BNL) and housed at the BNL animal

facility until the time of irradiation at the NASA Space Radiation Laboratory (NSRL). Following irradiation, the animals were shipped to the UTMB Animal Resources Center (ARC), quarantined for one month, and maintained in the ARC for the duration of the experiment. Animals were housed in sterile cages with free access to food and water. Facilities at both BNL and UTMB are fully AAALAC accredited, ensuring adequacy of animal care at both animal facilities.

At each of the five time-points, 3 animals from each treatment group were randomly selected and euthanized using CO₂ asphyxiation, as per current AVMA guidelines for euthanasia. Prior to euthanasia, animals were weighed and weights recorded. Post euthanasia tissues of the left lobe of livers were collected, snap-frozen on either dry ice or liquid nitrogen, and stored at -80°C until tissues could be extracted for RNA analyses. Livers were sampled by taking two 40 µm thick slices using a cryotome at -20°C.

6.3.2 ACQUISITION OF RNA-SEQ DATA

Total RNA was isolated from the liver slices using RNAqueous[™] Total RNA Isolation Kit (ThermoFisher Scientific, Waltham, MA) and rRNA was removed using the Ribo-Zero[™] rRNA Removal Kit (Illumina, San Diego, CA), prior to library preparation with the Illumina TruSeq RNA Library kit. Samples were sequenced in a paired-end 50 base format on an Illumina HiSeq 1500. CLC Genomics Workbench v12.0.3 was used for bioinformatical quality control and mapping of the RNA-Seq data. Sequencing data was initially trimmed using the CLC's "Trim Reads" module. Reads containing nucleotides below the quality threshold of 0.05 (using the modified Richard Mott algorithm), those with two or more unknown nucleotides or sequencing adapters were trimmed out. Additionally, all reads have been trimmed by 14 bases from the 5' end of each read. The total number of reads used in analysis varied between 33 and 114 million. A complete list of samples, and related reads information is available in Table 6. Filtered sequencing reads were then processed using the "RNA-Seq Analysis" module. Reads were mapped using a global alignment strategy against the mouse GRCm38 reference genome with 95% length fraction and similarity fraction scores with annotation version GRCm38.97.

Sample Name	Mouse Strain	Treatment	Time Point (month)	Number of Reads Before Trimming	Number of Reads After Trimming
B1	C3H/HeNCrl	Control	1	27.803,741	27,593,600
B2	C3H/HeNCrl	Control	1	38.763.374	38,434,949
B3	C3H/HeNCrl	Control	1	28.647.253	28,446,327
B6	C3H/HeNCrl	Control	2	33.847.556	33,597,495
B7	C3H/HeNCrl	Control	2	29,461,708	29,284,111
B8	C3H/HeNCrl	Control	2	26,203,039	26,043,238
B11	C3H/HeNCrl	Control	4	25,414,881	25,244,281
B12	C3H/HeNCrl	Control	4	27.215.741	27,074,514
B13	C3H/HeNCrl	Control	4	16,715,026	16,620,010
B16	C3H/HeNCrl	Control	9	28,872,035	28,674,962
B17	C3H/HeNCrl	Control	9	18,012,784	17,922,314
B18	C3H/HeNCrl	Control	9	25,465,333	25,310,404
B21	C3H/HeNCrl	Control	12	21,304,222	21,204,760
B22	C3H/HeNCrl	Control	12	21.714.727	21.593.313

Sample Information

B25	C3H/HeNCrl	Control	12		
		50		18,375,391	18,252,464
E1	C3H/HeNCrl	⁵⁶ Fe	1	34,592,008	34,438,044
E2	C3H/HeNCrl	⁵⁶ Fe	1	34,515,771	34,332,528
E3	C3H/HeNCrl	⁵⁶ Fe	1	29.559.903	29.429.351
E6	C3H/HeNCrl	⁵⁶ Fe	2	35,947,917	35,794,507
E7	C3H/HeNCrl	⁵⁶ Fe	2	31,131,612	30.924.067
E8	C3H/HeNCrl	⁵⁶ Fe	2	30.078.715	29.907.978
E11	C3H/HeNCrl	⁵⁶ Fe	4	27 971 374	27 880 383
E12	C3H/HeNCrl	⁵⁶ Fe	4	28 131 345	28 050 475
E13	C3H/HeNCrl	⁵⁶ Fe	4	27 783 844	27 693 338
E17	C3H/HeNCrl	⁵⁶ Fe	9	29 265 273	29 165 791
E18	C3H/HeNCrl	⁵⁶ Fe	9	28 164 125	28 072 094
E19	C3H/HeNCrl	⁵⁶ Fe	9	24 831 462	24 609 209
E21	C3H/HeNCrl	⁵⁶ Fe	12	31 / 86 613	31 311 847
E22	C3H/HeNCrl	⁵⁶ Fe	12	20 517 771	20 428 583
E23	C3H/HeNCrl	⁵⁶ Fe	12	24 249 471	24,096,544
F3	C3H/HeNCrl	¹⁶ O	1	24,249,471	23,040,004
F4	C3H/HeNCrl	¹⁶ O	1	27.051.979	26 006 215
F5	C3H/HeNCrl	¹⁶ O	1	20.026.140	28 877 220
F6	C3H/HeNCrl	¹⁶ O	2	20,006,250	28,001,005
F7	C3H/HeNCrl	¹⁶ O	2	29,096,330	28,991,895
F8	C3H/HeNCrl	¹⁶ O	2	32,159,425	32,069,211
F11	C3H/HeNCrl	¹⁶ O	4	30,669,033	30,547,830
				57,549,867	57,397,802

F10		160	4		
F12	C3H/HeNCrl	100	4	40,188,169	40,073,955
F13	C3H/HeNCrl	¹⁶ O	4	24.642.593	24,562,846
F18	C3H/HeNCrl	¹⁶ O	9	23 183 122	23 115 690
F19	C3H/HeNCrl	¹⁶ O	9	22,168,806	22,404,440
F20	C3H/HeNCrl	¹⁶ O	9	24,020,706	22,404,440
F23	C3H/HeNCrl	¹⁶ O	12	24,030,790	25,932,028
F24	C3H/HeNCrl	¹⁶ O	12	20,014,330	20,470,972
F25	C3H/HeNCrl	¹⁶ O	12	28,651,764	28,448,632
A1	C3H/HeNCrl	²⁸ Si	1	22,993,406	22,857,177
A2	C3H/HeNCrl	²⁸ Si	1	29,448,912	29,337,599
A3	C3H/HeNCrl	²⁸ Si	1	35,982,178	35,803,291
A6	C3H/HeNCrl	²⁸ Si	2	34,578,327	34,357,243
10		280:	2	23,769,566	23,636,132
A'/	C3H/HeNCrl	²⁰ S1	2	39,750,054	39,502,602
A8	C3H/HeNCrl	²⁸ Si	2	38,280,772	37,980,706
A11	C3H/HeNCrl	²⁸ Si	4	35,824,821	35,612,832
A12	C3H/HeNCrl	²⁸ Si	4	28.437.483	28,194,876
A13	C3H/HeNCrl	²⁸ Si	4	32 749 059	32 566 960
A16	C3H/HeNCrl	²⁸ Si	9	26 257 484	26.082.882
A17	C3H/HeNCrl	²⁸ Si	9	19 512 426	19 420 411
A20	C3H/HeNCrl	²⁸ Si	9	18,515,450	18,429,411
A21	C3H/HeNCrl	²⁸ Si	12	34,911,295	34,691,357
A23	C3H/HeNCrl	²⁸ Si	12	33,510,740	33,239,692
A25	C3H/HeNCrl	²⁸ Si	12	27,988,794	27,809,886
1120			12	32,278,179	32,036,538

Table 6. Sample List and Total Reads.

6.3.3 DIFFERENTIAL TRANSCRIPT EXPRESSION ANALYSIS

Raw abundance counts of 107,319 mRNAs from 15 non-irradiated control, 15 ⁵⁶Fe irradiated, 15 ¹⁶O irradiated, and 15 ²⁸Si irradiated C3H/HeNCrl male mice liver tissue samples were subjected to differential transcript expression analysis. All calculations and statistics were performed using statistical software R (R Foundation for Statistical Computing, Vienna, Austria) (version 3.5.1). [64] Differential gene expression analysis was conducted using R software package edgeR. [65, 66] First, normalization factors were calculated to scale the raw library sizes. In addition, dispersion parameters based on generalized linear models (GLM) were estimated; in particular, the common dispersion for negative binomial GLMs, trended dispersion for negative binomial GLMs using the power method, and empirical Bayes tagwise dispersions for negative binomial GLMs. [66, 67] Statistical tests were then conducted at every time point, to compare between ⁵⁶Fe irradiated and non-irradiated control, ¹⁶O irradiated and non-irradiated control, and ²⁸Si irradiated and non-irradiated control samples using a quasi-likelihood negative binomial generalized log-linear model for count data. [68-70] The Benjamini-Hochberg correction was applied, and transcripts with FDR ≤ 0.05 & fold change ≥ 2 (both up and down regulated) were extracted and utilized in further analyses.

6.3.4 FUNCTIONAL ENRICHMENT ANALYSIS

To determine the biological functions of significantly differentially expressed (DE) transcripts, functional enrichment analysis was performed separately for the DE transcripts at each time point using Ingenuity Pathway Analysis (IPA), (QIAGEN Inc., Hilden, Germany). [74] The most significant functional pathways ($-log10(p-value) \ge 1.3$) at each time point were then evaluated and reported. A complete list of all identified statistically significant pathways is provided in Tables 8-12, 15-19, and 21-25.

6.3.5 SOM ANALYSIS

Self-Organizing Map (SOM) analysis was performed to identify clusters of transcripts with similar expression patterns, and was conducted for every time point analyzing pairwise comparisons of ⁵⁶Fe irradiated and non-irradiated control, ¹⁶O irradiated and non-irradiated control, and ²⁸Si irradiated and non-irradiated control samples. SOMs were created using the algorithm implemented in the MATLAB software Neural Networking Toolbox [www.mathworks.com] version R2018b based on inputs of Log₂(Fold Change) from the differential transcript expression analyses data. In order to scale network inputs and outputs, we normalized our input matrix so that they had zero mean and unity standard deviation. We then processed the input matrix using principal component analysis (PCA) to reduce dimensionality. The SOM algorithm was then used to cluster the data based on similarity and topology using 100,000 training epochs. The SOM translates the differentially expressed transcriptome profile into a two-dimensional quadratic 7x7 pixel map and a color code for similarity values.

Next, we performed functional pathway analysis using IPA (QIAGEN Inc., Hilden, Germany) [74], on selected adjacent modules (clusters selected for IPA analysis are

numbered and shown in circles on SOM maps) that contained the reported functionally unannotated transcripts by IPA to explore their functionality based on the annotated transcripts contained within those modules (available activation z-scores, shared enriched functions of interest, and similar transcript expression patterns). Activation z-score is statistically computed by IPA for each functional pathway and is used to infer biological functions and predict implicated functional pathways. The activation z-score is predicted by assessing the consistency of the pattern between the observed gene-regulation pattern and the activation/inhibition pattern given by the network relative to a random pattern. Activation z-score calculations are accomplished independently from associated p-values and is based upon the match results from up/down regulation. Given the observed differential regulation of a transcript in the dataset, the activation state is determined for each specific functional pathway, and the directionality effect is then assigned. If an activation z-score can't be predicted for a significant pathway based on the available data and after bias correction, NA (white color) is assigned for that specific pathway. [74]

6.4 Results

6.4.1 DIFFERENTIAL EXPRESSION ANALYSIS OF ⁵⁶FE REVEALS DYNAMIC TIME-DEPENDENT CHANGES IN INFLAMMATORY RESPONSE AT THE WHOLE TRANSCRIPTOME LEVEL

Transcriptional changes and altered pathways associated with ⁵⁶Fe induced hepatic carcinogenesis were evaluated using differential expression analysis of RNA-Seq data in ⁵⁶Fe irradiated compared to non-irradiated control mice at 5 different time points (1mo, 2mo, 4mo, 9mo, and 12mo). Table 7 shows the total number of differentially expressed transcripts at each time point. IPA was used to functionally annotate and map the biological processes involving these differentially expressed transcripts (Figure 9). Inflammatory pathways and their temporal importance in irradiation induced tissue injury are poorly understood. In this regard, the analyses revealed a significant activation of acute phase response signaling at 1 month, followed by significant inhibition of this pathway at 2, 4, 9, and 12 months. The microenvironment present early after ⁵⁶Fe irradiation is proinflammatory and results in activation of inflammatory pathways, such as acute phase response signaling. This is a rapid inflammatory response that provides protection against noxious stimuli using non-specific defense mechanisms. [104-106] Tissue inflammation can naturally subside overtime, but a significant suppression of inflammatory genes, which we see in our data, is characteristic of induced capillary remodeling and angiogenesis. [107] The prominent inhibition of acute phase response signaling at later time points compared to non-irradiated animals suggests that impaired immune response and regulation are involved in accelerated hepatic carcinogenesis in these mice. Similarly, the peroxisome proliferator activated receptor α (PPAR α), a ligand activated transcription factor that belongs to the family of nuclear receptors, is significantly affected at 1 month (activated), 2 months (inhibited), 4 months (inhibited), 9 months (inhibited), and 12 months (activated). PPAR α has a prominent role in fatty acid oxidation, where it can exert an anti-inflammatory and anti-oxidative effect. Its activation at 1 month and 12 months suggests that there is an early inflammatory response, that recurs later due to the progression of carcinogenic processes. [108-110]

B cell receptor signaling (BCR) is significantly affected at months 2 (directionality unknown), 4 (inhibited), 9 (inhibited), and 12 (activated). Activation of BCR signaling inhibits apoptosis in B cells. [111] This observation is supported in a previous study, which demonstrated that ⁵⁶Fe irradiation increased the incidence of murine acute myeloid leukemia (AML) and HCC. [7] Furthermore, PI3K/AKT signaling is significantly affected at 2 months (inhibited), 4 months (directionality unknown), 9 months (activated) and 12 months (inhibited). AKT has two distinct mechanisms of action. First, it can have an inhibitory role, such as inhibiting apoptosis, and allowing for cell survival. Second, it can have an activating role, by activating IKK which in turn leads to NF-kB activation and cell survival. [112-114] The analysis also revealed a significant activation of the Liver X receptor (LXR)/Retinoid X Receptor (RXR) pathway at 1 and 9 months accompanied by an inhibition at 2- and 4-months post ⁵⁶Fe irradiation. Previous studies have shown LXRs to be key modulators of both lipid metabolism and inflammatory signaling [115], as well as inducers of genes involved in the inhibition of inflammatory pathways. [116] The presence of this complex and coordinated time-dependent interplay between pro- and antiinflammatory signaling pathways post ⁵⁶Fe irradiation could play a significant role in ⁵⁶Fe

irradiated induced hepatic carcinogenesis. A complete list of significant pathways (- $log_{10}(p-value) \ge 1.3$) is provided in Tables 8, 9, 10, 11, and 12.

Ion	Time	Total DE	Upregulated	Downregulated
⁵⁶ Fe	1 mo	695	304	391
⁵⁶ Fe	2 mo	662	300	362
⁵⁶ Fe	4 mo	679	325	354
⁵⁶ Fe	9 mo	718	374	344
⁵⁶ Fe	12 mo	564	304	260
¹⁶ O	1 mo	710	384	326
¹⁶ O	2 mo	615	298	317
¹⁶ O	4 mo	588	328	260
¹⁶ O	9 mo	602	332	270
¹⁶ O	12 mo	796	504	292
²⁸ Si	1 mo	849	407	442
²⁸ Si	2 mo	699	319	380
²⁸ Si	4 mo	902	400	502
²⁸ Si	9 mo	679	381	298
²⁸ Si	12 mo	628	328	300

Table 7. Differentially Expressed Transcripts. Total DE shows the total number of differentially expressed transcripts (FDR ≤ 0.05 & fold change ≥ 2) for each HZE ion at 5 different time points.

Figure 9. IPA of differentially expressed transcripts in ⁵⁶Fe.

(a) Top pathways enrichment analysis at 1 month. (b) Top pathways enrichment analysis at 2 months. (c) Top pathways enrichment analysis at 4 months. (d) Top pathways enrichment analysis at 9 months. (e) Top pathways enrichment analysis at 12 months. (f) The Venn Diagram shows shared and unique differentially expressed transcripts for all time points, in ⁵⁶Fe irradiation compared to control.

Ingenuity Canonical	-log10(p-value)	z-score	Molecules
Pathways			
FXR/RXR Activation	7.27	NA	ABCB11,APOA2,BAAT,C4A/ C4B,C9,CLU,FASN,FETUB,K NG1,NR0B2,NR1H3,NR1H4,P LTP,SAA1,SDC1,SERPINF1,V TN
LXR/RXR Activation	6.92	1.732	APOA2,C4A/C4B,C9,CLU,FA SN,FDFT1,HMGCR,KNG1,NC

			OR2,NR1H3,NR1H4,PLTP,SA
			A1,SERPINF1,TLR3,VTN
Acute Phase Response Signaling	4.32	0.333	APOA2,C1R,C4A/C4B,C9,CP,
			ECSIT,FNI,HNRNPK,HP,IL6S
			T,MAPK14,MAPK3,SAA1,SE
	2.20	2	RPINFI, ICF3
Sirtuin Signaling Pathway	3.28	-2	AIGI3,GLUDI,MAPILC3A,
			MAPK 3, MAPK /, MI-
			ATPO,MT-CYB,MT-ND2,MT-
			ND5,MT-ND4,MT-ND4L,MT-
			ND3,WIT-
			D A D D SIDT5 TUD A / A
LDS/IL 1 Madiated Inhibition of DVD	2.2	0.622	ADCD11 ALAS1 ALDU2 CVD
EFS/IL-1 Mediated Inhibition of KAK	5.2	0.032	2B6 CVP2C8 CVP3 A5 CVP4 A
runction			11 ECSIT FMO1 FMO2 HMG
			CS1 NR0B2 NR1H3 NR1H4 P
			I TP
Sumovlation Pathway	2.8	-0.816	RCC1 REC1 RHOBTB1 SENP
Sunoyation Funnay	2.0	0.010	5 SENP7 SERBP1 SP3 XIAP Z
			NF217
Superpathway of	2.79	-2.236	FDPS,HADHB,HMGCR,HMG
Geranylgeranyldiphosphate Biosynthesis I			CS1,MVD
(via Mevalonate)			,
Role of JAK family kinases in IL-6-type	2.51	NA	IL6ST,MAPK14,MAPK3,TYK
Cytokine Signaling			2
Mevalonate Pathway I	2.38	-2	HADHB,HMGCR,HMGCS1,M
-			VD
PXR/RXR Activation	2.11	NA	ABCB11,ALAS1,CYP2B6,CY
			P2C8,CYP3A5,NR0B2
PPARα/RXRα Activation	2.02	0.333	ADCY9,APOA2,CYP2C8,FAS
			N,GPD2,MAPK14,MAPK3,M
			ED12,NCOR2,NOTUM,NR0B
		214	2
Clathrin-mediated Endocytosis Signaling	2	NA	APIBI, APIG2, APOA2, ARRB
			I,CD2AP,CLU,MYOIE,NUM
Enhrin D. Signaling	2	0	B,PICALWI,SH3GLB2,IFKC
Epirin B Signaling	2	0	HNDNDK MADK3
Acetone Degradation I (to Methylglyoval)	1.80	_2	CVP2R6 CVP2C8 CVP3A5 C
Actione Degradation I (to Methylgryoxar)	1.07	-2	VP4A11
Mouse Embryonic Stem Cell Pluripotency	1.85	1 1 3 4	CTNNB1 IL6ST MAPK 14 MA
hisuse Emoryonic Stein Con Franpotoney	1.00	1.1.5 1	PK3.TCF3.TYK2.XIAP
Complement System	1.85	NA	C1R,C4A/C4B,C8A,C9
Superpathway of Cholesterol Biosynthesis	1.72	-2.449	FDFT1.FDPS.HADHB.HMGC
1 1 5 5		-	R,HMGCS1,MVD
α-tocopherol Degradation	1.71	NA	CYP4A11,CYP4F3
HIPPO signaling	1.7	1	AMOT,DLG1,DLG5,MOB1A,
			PARD3,TEAD1
IL-22 Signaling	1.68	NA	MAPK14,MAPK3,TYK2
Endocannabinoid Developing Neuron	1.59	0.378	ADCY9,CDKN1B,CREB1,CT
Pathway			NNB1,MAPK14,MAPK3,MAP
			K7
Lipid Antigen Presentation by CD1	1.59	NA	AP1B1,AP1G2,PSAP
Bupropion Degradation	1.55	NA	CYP2B6,CYP2C8,CYP3A5
RAR Activation	1.54	NA	ADCY9,CYP26A1,DHRS4,M
			APK14,NCOR2,PRKD3,RARB
			,SDR9C7,TNIP1,ZBTB16
Oxidative Phosphorylation	1.54	2.646	MT-ATP6,MT-CYB,MT-
			ND2,MT-ND3,MT-ND4,MT-
			ND4L,MT-ND5

Phenylalanine Degradation I (Aerobic)	1.54	NA	PCBD2,QDPR
Xenobiotic Metabolism Signaling	1.53	NA	ALDH2,CAMK2D,CYP2B6,C
			YP2C8,CYP3A5,FMO1,FMO2,
			HDAC4,MAPK14,MAPK3,MA
			PK7,NCOR2,PRKD3
Systemic Lupus Erythematosus Signaling	1.49	NA	C8A,C9,CREM,EFTUD2,HNR
			NPA2B1,HNRNPC,KNG1,MA
			PK3,NFAT5,PRPF40B,PRPF8
Endocannabinoid Cancer Inhibition	1.47	-2.828	ADCY9,CDKN1B,CREB1,CT
Pathway			NNB1,MAPK14,MAPK3,SMP
	1.10		D4,1CF3
UVC-Induced MAPK Signaling	1.43	-2	MAPK14,MAPK3,PRKD3,SM
	1.42	NIA	PD4
Gap Junction Signaling	1.42	NA	ADCY9,CINNBI,GJBI,MAP
			K3,MAPK/,NOTUM,PKKD3,
	1 41	1.242	SP3, IUBA4A, IUBB2A
Nicotine Degradation II	1.41	-1.342	MOLEMO2
Emithelial Adhereng Junction Signaling	1.4	NIA	CTNND1 EDN2 MVII10 DAD
Epithenal Adherens Junction Signaling	1.4	INA	CINNDI, EPN2, MIIII0, PAK D2 DADGEE1 TCE2 TUDA $4A$
			TUBB2A
Tetranyrrole Biosynthesis II	14	NA	ALASI UROS
Glycerol Degradation I	14	NA	Gk GPD2
14-3-3-mediated Signaling	1 38	-1 342	CDKN1B MAPK3 NOTUM P
1155 mediated Signamig	1.50	1.5 12	RKD3 TSC1 TUBA4A TUBB2
			A
Triacylglycerol Biosynthesis	1.38	-2	AGPAT3,LPIN1,LPIN3,PLPP5
Apelin Cardiomyocyte Signaling Pathway	1.35	-1.633	MAPK14,MAPK3,MAPK7,NO
			TUM,PRKD3,SLC9A8
Mitochondrial Dysfunction	1.34	NA	GPD2,MT-ATP6,MT-
-			CYB,MT-ND2,MT-ND3,MT-
			ND4,MT-ND4L,MT-ND5,MT-
			ND6

 Table 8. Significant Pathways for differentially expressed transcripts in ⁵⁶Fe vs. nonirradiated control at 1 month.

Ingenuity Canonical Pathways	-log ₁₀ (p-value)	z-score	Molecules
April Mediated Signaling	4.51	-0.378	CHUK,IKBKB,IKBKG,M APK14,MAPK9,NFAT5,
B Cell Activating Factor Signaling	4.36	-0.378	NFATC1 CHUK,IKBKB,IKBKG,M APK14,MAPK9,NFAT5, NFATC1
4-1BB Signaling in T Lymphocytes	4.05	0	ATF2,CHUK,IKBKB,IK BKG,MAPK14,MAPK9
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages	3.66	-1.387	APOB,APOE,CAT,CHU K,CLU,IKBKB,IKBKG, Map3k7,MAPK14,MAPK 9,PIK3CD,PTPA,RHOBT B1,SIRPA
LXR/RXR Activation	3.64	-0.707	APOB,APOE,C4A/C4B,C LU,ECHS1,NCOR1,NCO

			R2,NR1H2,SAA1,TLR3,
			VTN
PTEN Signaling	3.64	1.508	CDKN1B,CHUK,FGFR2,
			FGFR3,GSK3A,IKBKB,I
			KBKG,MAGI1,MAST2,P
			IK3CD,SYNJ1
RANK Signaling in Osteoclasts	3.6	-1	CHUK,IKBKB,IKBKG,M
			ap3k7,MAPK14,MAPK9,
			NFATC1,PIK3CD,XIAP
Role of PKR in Interferon Induction and	3.43	NA	ATF2,CHUK,IKBKB,IK
Antiviral Response		0.050	BKG,MAPK14,1LR3
IL-1 Signaling	3.42	-0.378	ADCY9,CHUK,GNB2,IK
			BKB,IKBKG,IRAKI,MA
EVD/DVD Activation	2.20	NA	ADOD ADOE DAAT CAA
FAR/RAR Activation	3.38	INA	APOB, APOE, BAAT, C4A
			MADK0 SAA1 SDC1 VT
			N
PI3K/AKT Signaling	3 38	-0.302	CDKN1B CHUK CTNNB
1 ISIX/AIX I Signamig	5.50	-0.502	1 GSK 3A HSP90AB1 IK
			BKB.IKBKG.PIK3CD.PT
			PA.SYNJ1.TSC1
Phosphatidylcholine Biosynthesis I	3.24	1	CHKA,CHPT1,PCYT1A,
1 5 5			PHKA1
B Cell Receptor Signaling	3.22	0	ATF2,CHUK,GSK3A,IK
			BKB,IKBKG,Map3k7,M
			APK14,MAPK9,NFAT5,
			NFATC1,PIK3CD,SYNJ1
			,TCF3
TNFR2 Signaling	3.2	-0.447	CHUK,IKBKB,IKBKG,T
			BK1,XIAP
Activation of IRF by Cytosolic Pattern	3.16	0.378	ADAR,ATF2,CHUK,IKB
Recognition Receptors			KB,IKBKG,MAPK9,TBK
	2.15	0	
Huntington's Disease Signaling	3.15	0	AIF2, AIP5FIB, AIP5FI
			UDAC5 MARKO NCOR1
			NCOP2 DIV3CD DI CB4
			PSMF1 RASA1 SGK1
Protein Kinase A Signaling	3.08	_1 941	
rotein Kinuse A Signamig	5.00	1.911	AKAP8 ANAPC5 ATF2.
			CHUK.CTNNB1.EYA3.F
			LNA,GNB2,GSK3A,NFA
			T5,NFATC1,PHKA2,PLC
			B4,PTPN21,PTPRJ,SIRP
			A,TCF3,TTN
Epithelial Adherens Junction Signaling	2.94	NA	ACTR3,BAIAP2,CLIP1,C
			TNNB1,KEAP1,MAGI1,
			MET,MYH14,PARD3,RA
			PGEF1,TCF3
Adipogenesis pathway	2.86	NA	CTNNB1,FGFR2,FGFR3,
			HDAC5,KA12A,KA16A,
			RPS6KA1,SAP130,SENP
Name influence tion C' 1' D (1)	2.95	0.729	
Neuroinflammation Signaling Pathway	2.85	-0./28	AIF2,BIKC6,CHUK,CI
			AVI MADVIA MADVA
			$M\Delta PK 9 \text{ NF} \Delta T5 \text{ NF} \Delta TC1$
			NOX4 PIK 3CD TRK 1 T
			LR3.XIAP
	1		

Antioxidant Action of Vitamin C	2.84	0.378	ABHD3,CHUK,GLRX,IK
			BKB,IKBKG,MAPK14,M
			APK9,PLCB4,TXNRD2
Xenobiotic Metabolism Signaling	2.81	NA	ABCC3,CAT,ESD,FMO2,
			HDAC5,HSP90AB1,KEA
			P1,Map3k7,MAPK14,MA
			PK9,NCOR2,NDST1,NRI
			P1,PIK3CD,PTGES3,PTP
			Α
Endocannabinoid Developing Neuron	2.76	0.333	ADCY9,ATF2,CDKN1B,
Pathway			CTNNB1,MAPK14,MAP
			K6,MAPK9,MGLL,PIK3
			CD
Sirtuin Signaling Pathway	2.71	0.832	ACLY,ATP5F1B,ATP5F1
			C,ATP5PB,GABARAPL1
			,GLUD1,KAT2A,MAPK6
			,MYCN,NDUFA10,NR1
			H2,PFKFB3,PFKM,PGK1
			,POLR3D,SCNN1A,STK
			11
Toll-like Receptor Signaling	2.65	-0.816	CHUK,IKBKB,IKBKG,I
			RAK1,MAPK14,TLR3,T
			OLLIP
Cdc42 Signaling	2.64	0.707	ACTR3,ATF2,BAIAP2,C
			LIP1,DIAPH1,H2-
			T22,MAPK14,MAPK9,P
			ARD3,RASA1,TNK2
PPARα/RXRα Activation	2.62	-1.667	ACOX1,ADCY9,CHUK,
			CKAP5,HSP90AB1,IKB
			KB,IKBKG,MAPK14,ME
			D24,NCOR1,NCOR2,PL
			CB4
Clathrin-mediated Endocytosis Signaling	2.61	NA	ACTR3,AP1B1,AP2A1,A
			POB,APOE,CLU,DNM2,
			MET,MYO6,PIK3CD,SH
			3GLB2,SYNJ1
Assembly of RNA Polymerase III Complex	2.5	NA	GTF3A,GTF3C4,POLR3
			D
LPS-stimulated MAPK Signaling	2.49	-0.378	ATF2,CHUK,IKBKB,IK
			BKG,MAPK14,MAPK9,P
			IK3CD
Apelin Cardiomyocyte Signaling Pathway	2.49	-1.414	ATP2A3,CAT,MAPK14,
			MAPK6,MAPK9,PIK3CD
			,PLCB4,SLC9A8
Glucocorticoid Receptor Signaling	2.48	NA	CHUK,HSP90AB1,IKBK
			B,IKBKG,MAPK14,MAP
			K9,NCOR1,NCOR2,NFA
			T5,NFATC1,NRIP1,PBR
			M1,PIK3CD,PTGES3,SG
			K1,TAF1,TAT
NF-KB Signaling	2.44	-1.508	AZI2,CHUK,FGFR2,FGF
			R3,IKBKB,IKBKG,IRAK
			1,PIK3CD,TBK1,TLR3,T
			NIP1
Role of RIG1-like Receptors in Antiviral	2.44	-1.342	CHUK, IKBKB, IKBKG, T
Innate Immunity			BK1,TRIM25
Acute Phase Response Signaling	2.41	-1.667	C4A/C4B,CHUK,FN1,IK
			BKB,IKBKG,IRAK1,MA
			PK14,MAPK9,PIK3CD,S
			AA1,TCF3

IL-17A Signaling in Airway Cells2.34-1.633CHUK, ILBKE, ILBKG, MARKJ, D APR14, MAPR9, PIR3CDIL-12 Signaling and Production in Macrophages2.3NAAPR0E, CHUK, CL URBKB, ILBKG, MAPR 1, MAPR9, PIR3CDINOS Signaling2.27-1.342CHUK, ILBKG, ILBKG, IL RAKL, MAPK14Remodeling of Epithelial Adherens Innetions2.24-1ACTR3 (CELL)PL (C TNNR1 SignalingTNFR1 Signaling2.20.447CHUK, ILBKB, ILBKG, MAPK APAR2, XIAPPI3K Signaling in B Lymphocytes2.16-0.707ATF2, CHUK, ILBKB, ILBKG, MAPK APAR2, XIAPNGF Signaling2.120.707ATF2, CHUK, ILBKB, ILBKG, MAPK APAR2, XIAPNGF Signaling2.120.707ATF2, CHUK, ILBKB, ILBKG, MAPK APAR2, XIAPRole of Osteoblasts, Ostocelasts and Chondrocytes in Rheumatoid Arthritis2.12NACardiae Hypertrophy Signaling (Enhanced)2.1-0.655ADCCP3, ADP, ATF2, ATF2A3, CL BKG, MAPK1, MAPK9, PITA, SJ, NFA TCL, PIKS CD, SHAP, NFA, TS, NFA TCL, PIKS CD, SHAP, NFA TS, NFA TCL, PIKS CD, NFA TS, NFA TCL, PIKSCD, PIKS, CHUK, TKBHS, IL	CD40 Signaling	2.37	-1.633	CHUK,IKBKB,IKBKG,M
IL-17 Signating in Alway Cells 2.94 -1.003 CROCREMEND, and APRELMANN, APRELMANNN, APRELMANN, APRELMANNN, APRELMANN, APRELMANN, APRELMANN, APRELMANN, A	II 174 Signaling in Airway Calla	2.24	1 622	APK14,MAPK9,PIK3CD
IL-12 Signaling and Production in Macrophages 2.3 NA APOB ANOLE CHURCE URBER NIE BKOCHURCE URBER NIE BKOCHURCE URBER NIE BKOCHURCE URBER NIE BKOCHURCE URBER NIE BKOCHURCE URBER NIE BKOCHURCE (NAPK) 14MARK9 2PIEXOCD INOS Signaling 2.27 -1.342 CHUK IKBER BIS BKOCHURCE URBER NIE SKOCHURCE (NAPK) 14MARK9 2PIEXOCD Particinas 2.24 -1 ACTR3/CBL/LEPIE/ TNFRI Signaling 2.2 PI3K Signaling in B Lymphocytes 2.16 -0.707 ATF2/CDB/CHUK IKB KBIKING (NPATS) NFA TCL/PIK3CD/PLCB4 NGF Signaling 2.12 0.707 ATF2/CDB/CHUK IKB KBIKING (NPATS) NFA TCL/PIK3CD/PLCB4 NGF Signaling 2.12 0.707 ATF2/CHUK IKBK KBIK BKG KBIKING (NPATS) NFA TCL/PIK3CD/PLCB4 Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis 2.12 NA CHUK (CTNNB) IKBKB, IK BKG/MAPK1/MAPK) Cardiac Hypertrophy Signaling (Enhanced) 2.1 -0.655 ADCC9/ATF2,ATP3, NFA TCL, PIK3CD, PKT1, NPATC1 PIK3CD, PKT1, NPATC1, PIK3 CD, SMAD5, TCT3, NPATC1, PIK3 CD, SMAD5, TCT3, NPATC1 PIK3CD, PKT1, PIC34 ATM Signaling in Lymphocytes 2.09 0.447 ATT2, BRAT1, MAPK14, MAPK 9, NCATS, NFATC1, PIK3 CD, SMAD5, TCT3, NPATC1, PIK3CD, PKT1, MAPK14 CD27 Signaling in Lymphocytes 2.09 0.447 ATT2, BRAT1, MAPK14, MAPK 9, NCAT, NCATC1, PIK3CD, PKT1, MAPK3 CD27 Signaling in Lymphocytes 2.09 0.447 CHUK, KERKB, KBKG, MAPK9, PKATS, NFATC1, PIK3CD, PKT1, MAPK3	IL-1/A Signaling in Airway Cens	2.34	-1.055	$\Delta PK 14 M \Delta PK 9 PIK 3CD$
MacrophagesIntIntIntInt MARS ILERKS ILERKSiNOS Signaling2.27-1.342CHUK, IKBKB, IKBKG, IKBKG, I RAK1, MAPK14Remodeling of Epithelial Adherens2.24-1ACTR3, CBL1, CLP1, C	II -12 Signaling and Production in	23	NA	APOB APOE CHUK CL
14 <td>Macrophages</td> <td>2.5</td> <td>1111</td> <td>U.IKBKB.IKBKG.MAPK</td>	Macrophages	2.5	1111	U.IKBKB.IKBKG.MAPK
INOS Signaling 2.27 -1.342 CHUK, IKBKG, IKBKG, I RAK, IMAPK14 Remodeling of Epithelial Adherens 2.24 -1 ACTR3, CBL1, CLIP1, C TNNB1, DNNQMET NRRI Signaling 2.2 0.447 CHUK, IKBKB, IKBKG, M AP4K2, XLRP PI3K Signaling in B Lymphocytes 2.16 -0.707 ATF2, CDR1, CHK, IKB NGF Signaling 2.12 0.707 ATF2, CDR1, CHK, IKBKB, IKBKG, M AP4K2, XLRP NGF Signaling 2.12 0.707 ATF2, CDR1, CHK, IKBKB, IK SG, Maya7, MAPK9, PI K3CD, PP56KA1 Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis 2.12 NA CHUK, CTNNB1, IKBKB, IK MAPK9, PI K3CD, PP56KA1 Cardiae Hypertrophy Signaling (Enhanced) 2.1 -0.655 ADCY9, ATF2, CFR2, GFR3, GS K3A, HDAC5, IKBKB, IK BKG, Maya7, MAPK14, MAPK9, PTA, SNFATC1 ATM Signaling 2.09 0.447 ATF2, BRAT, IMAPK14, MAPK9, PTA, SNFATC1 ATM Signaling in Lymphocytes 2.09 0.447 ATF2, BRAT, IMAPK14, MAPK9, PTA, SNC2, TR RAP CD27 Signaling in Lymphocytes 2.07 0.447 ATF2, BRAT, IMAPK14, MAPK9, PTA, SNC2, TR RAP Pyridoxal S'-phosphate Salvage Pathway 2.07 0 GRCG, ALRAPK6, NAP APK14, MAPK9, PTA, SNC2, TR RAP Pyridoxal S'-phosphate Salvage Pathway 2.05 NA ATF2, CDR1, AMAPK6, NAPK14, MAPK14, MAPK9, NFAT 5, NFATC1, PIK3CD, NA Puesk Signa				14,MAPK9,PIK3CD
Remodeling of Epithelial Adherens2.24-1RAK1,MAPK14Junctions2.20.447CRUR, CIEL1, CLIPLC TNNB1,DNM2,METTNR1 Signaling2.20.447CRUK, IKBKB,RBG,M AP4K2,XIAPPI3K Signaling in B Lymphocytes2.16-0.707ATF2,CDB1,CIUK, IKB KBLRKKG,NPAT5,NFA TC1,PIR3CDPLCB4NGF Signaling2.120.707ATF2,CDB1,CIUK, IKB KBLRKKG,NPAT5,NFA TC1,PIR3CDPLCB4Rolc of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.12NACardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADC79,ATF2,ATP2A3,C THK,CTNNB1,IKBKB,IK BGG,Map3,Y,MAPK14,MAPK Q,NFAT5,NFATC1,PIR3 CD29,MAPS,TS,NFATC1,PIR3 CD29,MAPS,TS,NFATC1,PIR3 CD29,MAPS,TS,NFATC1,PIR3 CD29,MAPS,TS,NFATC1,PIR3 CD29,MAPS,TS,NFATC1,PIR3 CD29,MAPS,TS,NFATC1 PIRSCD/PKN1,PILCB4ATM Signaling2.090.447ATF2,BRAT1,MAPK14, MAPK9,PTA,SNRC2,TR RAPCD27 Signaling in Lymphocytes2.090.447ATF2,BRAT1,MAPK14, MAPK9,PTA,SNRC2,TR RAPCD27 Signaling in Lymphocytes2.070CRUK,KIKBKB,IKBKG,M ap3,7/MAPK14, MAPK9,PTA,SNRC2,TR RAPPyridoxal 5'-phosphate Salvage Pathway2.070CRK6,GRAK1,MAPK6,M APK9,PKN1,SGK1Pyridoxal 5'-phosphate Salvage Pathway2.05NAATF2,CHUK,KIRBK3,IRBKG,M APK9,PKN1,SGK1Rue of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,KIRBK3,IRBKG,M APK9,PKN1,SGK1Rue of Macrophages, Fibroblasts2.05NAATF2,CHUK,KIRBK3,IRBKG,M APK14CD28 Signaling in T	iNOS Signaling	2.27	-1.342	CHUK,IKBKB,IKBKG,I
Remodeling of Epithelial Adherens Junctions2.24-1ACTR3,CBL1,LCLPL,C TNNBL,DNM2,METTNFR1 Signaling2.20.447CIUUK,IKBKB,IKBKG,M AP4K2,XIAPPI3K Signaling in B Lymphocytes2.16-0.707ATF2,CDB1,CIUK,IKB KB,IKBKG,MPATS,NFA TC1,PIK3CD,PIC5ANGF Signaling2.120.707ATF2,CDB1,CIUK,IKBKB,IK KG,Map3K7MAPK9,PI K3CD,PPS6KA1Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.12NACHUK,CTNNB1,IKBKB,IK K3CD,RPS6KA1Cardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9,ATF2,TP2,ATC1,PIK3 CDCP,K1,PICB4Cardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9,ATF2,TP2,ATC2,ATC LGF,SIKAP,LGF,SIKAP,LGF,SIKAP,LGFATM Signaling2.090.447ATF2,BRAT1,MAPK14, MAPK9,PT5,NFATC1,PIK3CD27 Signaling in Lymphocytes2.090.447CHUK,KTBR,SIKC3,R APK2D,FKN,PICB4ATM Signaling in Lymphocytes2.070GRCG,ACOX1,ACSL4, ALS1,APOC2,NRP1 PBRM1,PIK3,CD,SRAD5Pyridoxal 5'-phosphate Salvage Pathway2.070GRCG,ACOX1,ACSL4, ALS1,APOC2,ALBKB,RKG,M APK9,PKN1,SGK1Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHK,CTNB1,P PBRM1,PKSAC,TRTWEAK Signaling in Fibroblasts2.05NAATF2,CHK,CTNB1,F ARK4,LIPC,MAPK9,N AFK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,KBKB,KBG,M ARK4,LIPC,MAPK9,N ARK14CD28 Signaling in T Helper Cells2.020.447CHUK,KBKB,IKBKG,M ARK4,LMAPK9,				RAK1,MAPK14
JunctionsTNSR1 Signaling2.20.447TNSR1 SignalingPI3K Signaling in B Lymphocytes2.16-0.707ATE2.CD81.CHUK.IKB KKG, MAYK3, CD8NGF Signaling2.120.707ATE2.CHUK.IKBR, KKBC, MAYK3, CD8NGF Signaling2.120.707ATE2.CHUK,IKBR, KKBC, MAYK3, CD8NGF Signaling2.120.707ATE2.CHUK,IKBR, KKBC, MAYK3, CD8Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.12NACHUK.CTNNB1,IKBKA, MAPK9, PI K3CD,RPS6KA1Cardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9,ATE2,ATE2A3, CD1,SMAPK14, MAPK9, PI LG1,FGFR2,FGFR3,GS-0.655ADCY9,ATE2,ATE2A3, CD1,SMAPK14, MAPK9, PIATS,NFATC1,PIK3CD27 Signaling in Lymphocytes2.090.447CHUK,KBKB,KKBKG,MAPK14, MAPK9, PIATS,NFATC1,PIK3-0.657ADCY9,MAPK14, MAPK9, PIATS,NFATC1,PIK3CD27 Signaling in Lymphocytes2.090.447CHUK,KBKB,KKBKG,MAPK14, MAPK9, PIRAM,PIK4, MAPK9, PIRAM,PIK4, MAPK9, PIRAM,PIK4, MAPK9, PIRAM,PIK4, MAPK9, PIRAM,PIK4, PIRAM,PIRA	Remodeling of Epithelial Adherens	2.24	-1	ACTR3,CBLL1,CLIP1,C
INFRI Signaling2.20.447CHUK, KBKB, KBKB, KBKG, KBKG, PAK2, XIAPPI3K Signaling in B Lymphocytes2.16-0.707ATF2, CDRI CHUK, IKB KBIKBKG, NFATS, NFA TC1, PIK3CD, PLCB4NGF Signaling2.120.707ATF2, CHUK, IKBKB, IK KG, Map3K, MARPS, PI K3CD, RPS6KA1Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.12NACHUK, CTNNB1, IKBKB, K3CD, RPS6KA1Cardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9, ATF2, ATF2, ATF2, AJR CD, SMADS, TC7, SIAPCardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9, ATF2, ATF2, AJR CD, SMADS, TC7, SIAPCardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9, ATF2, ATF2, AJR CD, SMADS, TC7, SIAPCardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9, ATF2, ATF2, ATF2, AJR CD, SMADS, TC7, SIAPCD27 Signaling in Lymphocytes2.090.447ATF2, BRAT1, MAPK14, MAPK9, PTA, SNAC2, TR RAPCD27 Signaling in Lymphocytes2.090.447CHUK, IKBKB, IKBKG, M ag3K7, MAPK4, MAPKLPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3, ACOX1, ACSL4, ALAS1, ADPC, CA, TRNB, PSRM1, LPGE, CH, MAPK9, NFA S, NFATC1, MAPK9,	Junctions			TNNB1,DNM2,MET
PI3K Signaling in B Lymphocytes 2.16 -0.707 ATT2.CDB1.CHU.K.IKB KB.IKBKG,NFAT5.NFA TCI,PIK3CD,PIC184 NGF Signaling 2.12 0.707 ATT2.CDB1.CHU.K.IKBKB, KB.G.Map387,MARPK9,PI K3CD,RPS6KA1 Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis 2.12 NA CHUK,CTNNB1,IKBKB, IKBKG,MAPK14,MAPK,9P K3CD,RPS6KA1 Cardiac Hypertrophy Signaling (Enhanced) 2.1 -0.655 ADCY9,ATF2,ATP2A3,C HUK,CTNNB1,IDLAPH1, DLG1,FGFR2,FGFR3,GS K3A,HDAC5,IKBKB,IK BKG,Map387,MAPK14, MAPK9,PTA,ATS,NFATC1,PIK3 ATM Signaling 2.09 0.447 CHUK,KBKB,IKBKG,MAPK14, MAPK9,PTA,SNC2,TR RAP CD27 Signaling in Lymphocytes 2.09 0.447 CHUK,KBKB,IKBKG,MAPK14, MAPK9,PTA,SNC2,TR RAP CD27 Signaling in Lymphocytes 2.09 0.447 CHUK,KBKB,IKBKG,MAPK14, MAPK9,PTA,SNC2,TR RAP CD27 Signaling in Lymphocytes 2.09 0.447 CHUK,KBKB,IKBKG,MAPK14, MAPK9,PTA,SNC2,TR RAP PS/IL-1 Mediated Inhibition of RXR Function 2.07 0 GRK6,IRAK1,MAPK6,MAPK9, NFA ACOS1,APC,CAT,FMO 2,IRAK1,LPC,MAPK9, NFA TS,NFATC1,PIK3CD,PL Pyridoxal 5'-phosphate Salvage Pathway 2.05 NA ATF2,CHUK,CTNNB1,F Pyridoxal 5'-phosphate Salvage Pathway 2.05 NA CHUK,IKBKB,IKBKG,RAK 1,MAPK14,MAPK9,NFAT 5,NFATC1,PIK3CD,PL CD28 S	TNFR1 Signaling	2.2	0.447	CHUK,IKBKB,IKBKG,M AP4K2,XIAP
ConstructKBR (K)NGF Signaling2.120.707ATT2.CHUK, IK BKB, IK BKG, Mag3X7, MAPK9, PI KGD, PIS6K A1Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.12NACHUK, CTNNBI, JKBKB, IKBKG, MAPK14, MAPK 9, NFAT5, NFATC1, PIK3 CD, SMAD5, TCF3, XIAPCardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9, ATF2, ATP2, A3, C CP, SMAD5, TCF3, XIAPCardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9, ATF2, ATP2, A3, C CP, SMAD5, TCF3, XIAPCardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9, ATF2, GFR3, GS CP, SMAD5, TCF3, XIAPATM Signaling2.090.447ATF2, BRAT1, MAPK14, MAPK9, NFA, SNFATC1, PIK3CD27 Signaling in Lymphocytes2.090.447ATM2, BKB, IK BKG, MAPK9, MAPK9	PI3K Signaling in B Lymphocytes	2.16	-0.707	ATF2,CD81,CHUK,IKB
NGF Signaling2.120.707ATTP2.CHUK3CD.PLCB4NGF Signaling2.120.707ATTP2.CHUK3CD.PLCB4Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.12NACHUK.CTNNB1,KBKB,IKB KSCMAPK14,MAPK 9,NFAT5,NFATC1,PIK3 CD.SMAD5,TCF3,XIAPCardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCV9,ATF2.ATP2.A3,C HUK_CTNNB1,DIAPH1, DLG1,FGFR2.FGFR3,GS K3A,HDAC5,IKBKB,IK BKG,MapK1,MAPK14, MAPK9,NPATS,NFATC1, PIK3CD,PKN1,PLCB4ATM Signaling2.090.447ATF2.BRAT1,MAPK14, MAPK9,PTPA,SMC2,TR RAPCD27 Signaling in Lymphocytes2.090.447CHUK,IRBKB,IKBKG,M ap3K7MAPK4RAR Activation2.07NAADCY9,MAPK14,MAPK 9,NCCR1,NCCR2,NRIP1 PBRM1,PIKSD,SMAD4Pyridoxal 5'-phosphate Salvage Pathway2.070GRK6,IRAK1,MAPK6,M ATF2,CHIK,ICTS,TLR3Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,ICTNB1,F N1,KKBKB,IKBKG,IRAK1,MAPK6,M APK9,NRAT2,SUCS,IAADTWEAK Signaling in Fibroblasts2.05NAATF2,CHUK,ICTNB1,F N1,KKBKB,IKBKG,IRAK1,MAPK6,M APK9,NK1,SGK1TWEAK Signaling in Fibroblasts2.05NACHUK,IKBKB,IKBKG,IRAK1, MAPK14,MAPK9,NFA,TS,NFATC1,PIK3CD,PIK CB4,FIC4,TIKBKB,IKBKG,RAK1, MAPK14,MAPK9,NFAT5, NFATC1,PIK3CD,PIC CB4,FIC4,TIKBKB,IKBKG,RAK1, MAPK14,MAPK9,NFAT5, NFATC1,PIK3CD,PIC CB4,FIC4,TIKBKB,IKBKG,RAK1, MAPK14,MAPK9,NFAT5, NFATC1,PIK3CD,PIKASD,PICAT3,PICA NARole of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NACHUK,IKBKB,IKBKG,RAK1 				KB,IKBKG,NFAT5,NFA
NGF Signaling2.120.707ATF2_CHUK,IKBKB,IK BIG/Majk7,MAPK9,PI K3CD,RPS6KA1Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.12NACHUK,CTNNB1,IKBKB,IK IKBKG,MAPK9,PI K3 CD,SMAD5,TCF3,XIAPCardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9,ATF2,ATP2A3,C CD,SMAD5,TCF3,XIAPCardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9,ATF2,ATP2A3,C CD,SMAD5,TCF3,XIAPATM Signaling2.090.447ATF2,BRAT1,MAPK14, MAPK9,NFATS,NFATC1ATM Signaling2.090.447ATF2,BRAT1,MAPK14, MAPK9,NFATS,NFATC1ATM Signaling in Lymphocytes2.090.447ATF2,SRAT2,MAPK9, RARCD27 Signaling in Lymphocytes2.07NAADCC9,MAPK14,MAPK 9,NCOR1,NCOR2,NRIP1PS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3,ACOX1,ACSL4, ALACS1,APCC,CAT,FMO 2,IP1,TRIN24LPS/IL-1 Mediated Inhibition of RXR Function2.070GRK6,IRAK1,MAPK6,M APK9,PKN1,SGK1Pyridoxal 5'-phosphate Salvage Pathway Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F NI,HES,IKBKG,IRAK 1,MAPK14,MAPK9,NF TS,NFATC1,PIK3CD,PL CB4,TCF3,TLR3TWEAK Signaling in Fibroblasts2.05-1CHUK,IKBKB,IKBKG,M APK9,PKN1,SGK1Role of IL-17A in Arthritis1.99NAATF2,CHUK,IKBKB,IKBKG,PI K3CD,RSKA1,TMP1Role of IL-17A in Arthritis1.99NAATF2,CHUK,IKBKB,IKBKG,PI K3CD,RSKA1,TMP1Role of IL-17A in Arthritis1.99NAATF2,CHUK,IKBKB,IKBKG,PI K3CD,RSKA1,				TC1,PIK3CD,PLCB4
Bit Sci DAPSBit Sci DAPSRole of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.12NACHUK, CTNNBI, IKBKB, IKBKO, MAPK14, MAPK 9,NFATS, NFATCL, PIKS CDSMADS, TCF3, XIAPCardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCCY9, ATF2, ATF23, 32, CDS HUK, CTNNB1, DIAPH1, DLG1, FGFR2, FGFR3, GS K3A, HDACS, IKBKB, IK BKG, MapSA, TMAPK14, MAPK9, PFA, SNFATC1ATM Signaling2.090.447ATF2, SRAT, MAPK9, PK3CD, PKN, IPL, CB4ATM Signaling in Lymphocytes2.090.447ATF2, SRAT, MAPK9, PK3CD, PKN, IPL, CB4CD27 Signaling in Lymphocytes2.090.447CHUK, IKBKB, IKKGK, MapSA, TMAPK9RAR Activation2.07NAADCC3, ACOR2, NRP1 , PBRM1, PIK3CD, SMAD , STIPH1, TRIM24LPS/IL-1 Mediated Inhibition of RXR Function2.070GRK6, IRAK1, MAPK9, NOCR2, NCP2, NRP1 , PBRM1, PIK3CD, SMAD , STIPH1, TRIM24Pyridoxal 5'-phosphate Salvage Pathway Endothelial Cells in Rheumatoid Arthritis2.05NAATF2, CHUK, CTNNB1, FN , NAPK9, FATC, IPKSCD, PL , CHA, KISKB, IKBKG, IRAK1, MAPK9, NA , TS, NFATC1, PIK3CD, PL , CB4, TCF3, TLR3TWEAK Signaling in Fibroblasts2.05NAATF2, CHUK, KISKB, IKBKG, RAK1 , MAPK14, MAPK9, NF , TS, NFATC1, PIK3CD, PL , CHUK, IKBKB, IKBKG, MAPK9, NF , NAPK14, MAPK9, NF , NAPK14, MAPK9, NF , NAPK14, MAPK9, NF , NAKBB, IKBKG, MAPK9, NF , NAKBB, IKBKB, IKBKG, MAPK9, NF , NAKBB, IKBKB, IKBKB, IKBKG, MAPK9, NF , NAKBB, IKBKB, IKBK	NGF Signaling	2.12	0.707	ATF2,CHUK,IKBKB,IK
Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.12NACHUK,CTNNBI,IKBKB, IKBKG,MAPK14,MAPK 9,NFAT5,NFATC1,PIK3 CD,SMAD5,TCP3,XIAPCardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9,ATF2,ATP2A3,C HUK,CTNNB1,DLAPH1, DLGI,FGFR2,FGFR3,GS KSG,MaPK14,MBK,DK,CTNRB1,DLAPH1, DLGI,FGFR2,FGFR3,GS KSG,MaPK14,MAPK9,NFAT5,NFATC1 PIK3CD,PKN1,PLCB4ATM Signaling2.090.447ATF2,BRATI,MAPK14, MAPK9,PTPA,SMC2,TR RAPCD27 Signaling in Lymphocytes2.090.447CHUK,IKBKB,IKBG,M ap3K7,MAPK14, MAPK9,PTPA,SMC2,TR RAPCD27 Signaling in Lymphocytes2.07NAADCY9,MAPK14,MAPK 9,NCOR1,NCOR2,NRIP1 PBRM1,PIK3CD,SMAD 5,TNP1,TIRIM24LPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3,ACOX1,ACSL4, ALS1,APCC,AT,FMO DST,NR1,TIRIM24Pyridoxal 5'-phosphate Salvage Pathway2.070GRK,RAR,LI,LIPC,MAPK9,NFA ASK,LIPC,MAPK9,NFA DST,NR1,TIRIM24Pyridoxal 5'-phosphate Salvage Pathway2.05-1CHUK,IKBKB,IKBKG,RI APK9,PKN1,SGK1TWEAK Signaling in Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAAPK2,PKN1,SGK1 APK14,MAPK9,NFA TS,NFATC1,PIK3CDTWEAK Signaling in Fibroblasts2.05NACHUK,IKBKB,IKBKG,RI APK9,PKN1,SGK1CD28 Signaling in THelper Cells2.02-0.707ACTR3,CHUK,IKBKB,IKBKG,M APK14,MAPK9,NFAT5, NFATC1,PIK3CD,PRSKA,1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9 APK3,PRSKA,1				BKG,Map3k7,MAPK9,PI
Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.12NACHUK, CINNBI, I,RKB, B IKBB,GMAPK14, MAPK 9,NFATS,NFATC1,PIK3 CDSMAD5,TCF3,XIAPCardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9,ATF2,ATP2A3,C HUK,CTNNB1,DIAPH1, DLG1,FGF2,FGFR3,GS KSA,HDAC5,IKBKB,IK BKG,MapX7,MAPK14, MAPK9,PTPA,SMC2,TR RAPATM Signaling2.090.447ATF2,BRAT1,MAPK14, MAPK9,PTPA,SMC2,TR RAPCD27 Signaling in Lymphocytes2.090.447CHUK,IKBKB,IKBKG,M ap3k7,MAPK9, PTPA,SMC2,TR RAPRAR Activation2.07NAADCY9,MAPK14,MAPK ap3k7,MAPK9, PTPA,SMC2,TR RAPLPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3,ACOX1,ACSL4, ADCY9,MAPK14,MAPK,9N DST1,NR1H2Pyridoxal 5'-phosphate Salvage Pathway Endothelial Cells in Rheumatoid Arthritis2.05NAATE2,CHUK,CTNNB1,F ATS,NFATC1,PIK3CD,SMAD ST1,NR1H2TWEAK Signaling in Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAAPK9,PKN1,SGK1 APK9,PKN1,SGK1TWEAK Signaling in T Helper Cells2.05NACHUK,IKBKB,IKBKG,M APK14, APK14, MAPK9,NFA TS,NFATC1,PIK3CDCD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,IKBKG,M APK14, APK14, MAPK9,NFATS, NFATC1,PIK3CDRole of IL-17A in Arthritis1.99NAATE2,MAPK14,MAPK9, APK14,MAPK9, NARole of IL-17A in Arthritis1.99NAATE2,MAPK14,MAPK9, APK14,MAPK9, APK14,MAPK9, APK14,MAPK9, APK14,MAPK9, APK14,MAPK9, APK14,MAPK9, APK14,MAPK9, APK14,MAPK9, APK14,MAPK9, 		0.10		K3CD,RPS6KA1
Chondrocytes in Kitediniador ArdinitusIncreaseIncreaseCardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9,ATF2,ATP2A3,CCardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9,ATF2,ATP2A3,CHUK,CTNNBI,DIAPH1, DLGI,FGFR2,FGFR3,GSK3A,HDAC5,IKBKB,GKATM Signaling2.090.447ATF2,BRAT1,MAPK14, MAPK9,PKN1,PLCB4ATM Signaling in Lymphocytes2.090.447ATF2,BRAT1,MAPK14, MAPK9,PTA,SMC2,TR RAPCD27 Signaling in Lymphocytes2.090.447CHUK,IKBKB,IKBKG,M ag3k7,MAPK9RAR Activation2.07NAADCY9,MAPK14,MAPK 9,NCOR1,NCOR2,NRP1 PFRM1,PICB4LPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3,ACOX1,ACSL4, ALAS1,APOE,CAT,FMO 2,IRAK1,LIPC,MAPK9,N DST1,NR1H2Pyridoxal 5'-phosphate Salvage Pathway Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,RAK 1,MAPK14,MAPK9,NRA TS,NFATC1,PIK3CD,PRA 1,F3,RAT1,RASTWEAK Signaling in Fibroblasts2.05-1CHUK,IKBKB,IKBKG,RAK 1,MAPK14,MAPK9,NRA TS,NFATC1,PIK3CD,PRA 1,F3,CHUK,IKBKB,IKBKG,T1 KBKG,MAPK9,NFAT5, NFATC1,PIK3CD-0.707ACTR3,CHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,IKB	Role of Osteoblasts, Osteoclasts and Chandroastea in Phaymotoid Arthuitig	2.12	NA	CHUK, CINNBI, IKBKB,
Cardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9,ATF2,ATP2A3,CCardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9,ATF2,ATP2A3,CATM Signaling2.0-0.655HUK,CTNNB1,DIAPH1, DLG1,FGFR2,FGFR3,GS K3A,HDAC5,IKBKB,IK BKG,Map3K7,MAPK14, 	Chondrocytes in Kneumatoid Artinitus			9 NEAT5 NEATC1 PIK3
Cardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9,ATF2,ATP2A3,CLCardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9,ATF2,ATP2A3,CLCardiac Hypertrophy Signaling (Enhanced)2.1-0.655ADCY9,ATF2,ATP2A3,CLCardiac Hypertrophy Signaling2.090.447ATF2,BRAT1,MAPK14, MAPK9,PTPA,SMC2,TR RAPATM Signaling in Lymphocytes2.090.447ATF2,BRAT1,MAPK14, MAPK9,PTPA,SMC2,TR RAPCD27 Signaling in Lymphocytes2.090.447CHUK,JKBKB,JKBKG,M ap3k7,MAPK9RAR Activation2.07NAADCY9,MAPK14,MAPK 9,NCOR1,NCOR2,NRIP1 ,PBRM1,PIK3CD,SMAD 5,TNRP1,TRIM24LPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3,ACOX1,ACSL4, ALAS1,APOE,CAT,FMO 0,2IRAK1,LIPC,MAPK9,N DST1,NR1H2Pyridoxal 5'-phosphate Salvage Pathway Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,IRAK NA AFF2,CHUK,KCBKB,IKBKG,IRAK NATWEAK Signaling IL-17A Signaling in Fibroblasts2.05NACHUK,IKBKB,IKBKG,RAK AKS1,APK4,MAPK4				CD SMAD5 TCF3 XIAP
Huk CTNNB1, DLAPH1, DLG1, FGFR2, FGFR3, GS K3A, HDAC5, IKBKB, IK BKG, Map3k7, MAPK14, MAPK9, NFAT5, NFATC1 . PIKSCD, PKN1, PLCB4ATM Signaling2.090.447ATF2, BRAT1, MAPK14, MAPK9, NFAT5, NFATC1 . PIKSCD, PKN1, PLCB4ATM Signaling2.090.447ATF2, BRAT1, MAPK14, MAPK9, PTPA, SMC2, TR RAPCD27 Signaling in Lymphocytes2.090.447CHUK, IKBKB, IKBKG, M ap3k7, MAPK9RAR Activation2.07NAADCY9, MAPK14, MAPK 9, NCOR1, NCOR2, NRIP1 , PIRM1, PIK3CD, SMAD 5, TNIP1, TRIM24LPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3, ACOX1, ACSL4, ALAS1, APOE, CAT, FMO 2, IRAK1, LIPC, MAPK9, N DST1, NR1H2Pyridoxal 5'-phosphate Salvage Pathway Endothelial Cells in Rheumatoid Arthritis2.05NAATF2, CHUK, CTNNB1, F N1, IKBKB, IKBKG, IKAK 1, MAPK14, MAPK9, NFA T5, NFATC1, PIK3CD, PL CB4, TCF3, TLR3TWEAK Signaling2.05-1CHUK, IKBKB, IKBKG, RAK1 1, MAPK14, MAPK9, NFA T5, NFATC1, PIK3CD, PL CB4, TCF3, TLR3TWEAK Signaling in T Helper Cells2.02-0.707ACTR3, CHUK, IKBKB, IKBKG, M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3, CHUK, IKBKB, IKBKG, PIK SCD, RYS6KA1Role of IL-17A in Arthritis1.99NAATF2, MAPK14, MAPK9, PIK3CD, PIK3CD, P	Cardiac Hypertrophy Signaling (Enhanced)	2.1	-0.655	ADCY9.ATF2.ATP2A3.C
DLGI,FGFR2,FGFR3,GS K3A,HDAC5,IKBKB,IK BKG,Ma3k7,MAPK14, MAPK9,NFAT5,NFATC1 ,PIK3CD,PKN1,PLCB4ATM Signaling2.090.447ATF2,BRAT1,MAPK14, MAPK9,NFAT5,NFATC1 ,PIK3CD,PKN1,PLCB4ATM Signaling in Lymphocytes2.090.447ATF2,BRAT1,MAPK14, MAPK9,PTPA,SMC2,TR RAPCD27 Signaling in Lymphocytes2.090.447CHUK,IKBKB,IKBKG,M ap3k7,MAPK9RAR Activation2.07NAADCY9,MAPK14,MAPK 9,NCOR1,NCOR2,NRIP1 ,PBRM1,PIK3CD,SMAD 5,TNIP1,TRIM24LPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3,ACOX1,ACSL4, ALAS1,APOE,CAT,FMO 2,IRAK1,LIPC,MAPK9,N DST1,NR1H2Pyridoxal 5'-phosphate Salvage Pathway Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,IRAK 1,MAPK14,MAPK9,NFA T5,NFATC1,PIK3CD,PL CB4,TCF3,TLR3TWEAK Signaling IL-17A Signaling in Fibroblasts2.05-1CHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,IKBKG,M APK14,MAPK9,NFAT5, NFATC1,PIK3CDRole of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9,PKPA				HUK,CTNNB1,DIAPH1,
K3A,HDACS,IKBKB,IK BKG,Mag3k7,MAPK14, MAPK9,NFAT5,NFATC1 ,PIK3CD,PKN1,PLCB4ATM Signaling2.090.447ATF2,BRAT1,MAPK14, MAPK9,PIFA,SMC2,TR RAPCD27 Signaling in Lymphocytes2.090.447CHUK,IKBKB,IKBKG,M ap387,MAPK9RAR Activation2.07NAADCY9,MAPK14,MAPK 9,NCOR1,NCOR2,NRIP1 PBRM1,PIK3CD,SMAD 5,TNIP1,TRIM24LPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3,ACOX1,ACSL4, ALS1,APOE,CAT,FMO 2,IRAK1,LIPC,MAPK9,NPyridoxal 5'-phosphate Salvage Pathway Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F NATWEAK Signaling IL-17A Signaling in Fibroblasts2.05NACHUK,IKBKB,IKBKG,IKAK 1,MAPK14,MAPK9,NFAT5, NFATC1,PIK3CD,PL CB4,TC1,RIK3,CDTWEAK Signaling IL-17A in Arthritis2.02-0.707ACT3,CHUK,IKBKB,IKBKG,IRAK1, MAPK14,MAPK9,NFAT5, NFATC1,PIK3CDPL CB4,TC1,PIK3CDPL CB4,TC1,PIK3CDRole of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPKAK1,MAPK9, PIK3CD,RPK6KA1				DLG1,FGFR2,FGFR3,GS
BKG,Map3k7,MAPK14, MAPK9,NFAT5,NFATC1 .PIK3CD,PKN1,PLCB4ATM Signaling2.090.447ATF2,BRAT1,MAPK14, MAPK9,PTPA,SMC2,TR RAPCD27 Signaling in Lymphocytes2.090.447CHUK,IKBKB,IKBKG,M ap3k7,MAPK9RAR Activation2.07NAADCY9,MAPK14,MAPK 9,NCOR1,NCOR2,NRIP1 .PBRM1,PIK3CD,SMAD 5,TNIP1,TRIM24LPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3,ACOX1,ACSL4, ALAS1,APOE,CAT,FMO 2,IRAK1,LIPC,MAPK9,N DST1,NR1H2Pyridoxal 5'-phosphate Salvage Pathway Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,RAK 1,MAPK14,MAPK9,NFA T5,NFATC1,PIK3CD,PL CB4,TCF3,TLR3TWEAK Signaling in Fibroblasts2.05-1CHUK,IKBKB,IKBKG,RAK APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,DRYS6KA1				K3A,HDAC5,IKBKB,IK
ATM Signaling2.090.447ATF2,BRATI,MAPK14, MAPK9,PTPA,SMC2,TR RAPCD27 Signaling in Lymphocytes2.090.447CHUK,IKBKB,IKBKG,M ap3k7,MAPK9RAR Activation2.07NAADCY9,MAPK14,MAPK ap3k7,MAPK9RAR Activation2.07NAADCY9,MAPK14,MAPK 9,NCOR1,NCOR2,NRIP1 ,PBRM1,PIK3CD,SMAD 5,TNIP1,TRIM24LPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3,ACOX1,ACSL4, ALAS1,APOE,CAT,FMO 2,IRAK1,LIPC,MAPK9,N DST1,NR1H2Pyridoxal 5'-phosphate Salvage Pathway Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,IRAK 1,MAPK14,MAPK6,MR APK9,PKN1,SGK1TWEAK Signaling IL-17A Signaling in Fibroblasts2.05-1CHUK,IKBKB,IKBKG,X IAPIL-17A Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,IK KBKG,MAPK14,MPK4, APK14CD28 Signaling in T Helper Cells2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1				BKG,Map3k7,MAPK14,
ATM Signaling2.090.447ATF2,BRAT1,MAPK 14, MAPK9,PTPA,SMC2,TR RAPCD27 Signaling in Lymphocytes2.090.447CHUK,IKBKB,IKBKG,M ap38,7,MAPK9RAR Activation2.07NAADCY9,MAPK14,MAPK 9,NCOR1,NCOR2,NRIP1 ,PBRM1,PIK3CD,SMAD 5,TNIP1,TRIM24LPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3,ACOX1,ACSL4, ALAS1,APOE,CAT,FMO 2,IRAK1,LIPC,MAPK9,N DST1,NR1H2Pyridoxal 5'-phosphate Salvage Pathway Endothelial Cells in Rheumatoid Arthritis2.070GRK6,IRAK1,MAPK6,M APK9,PKN1,SGK1TWEAK Signaling IL-17A Signaling in Fibroblasts2.05-1CHUK,IKBKB,IKBKG,RAK IAPIL-17A Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,IKBKG,RAT KBKG,MAPK9,NFAT5, NFATC1,PIK3CD,PL CD28 Signaling in T Helper CellsRole of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,PSKA1				MAPK9,NFAT5,NFATC1
A I M Signaling2.090.447A TP2,BKA IT,MAPK14, MAPK9,SMC2,TR RAPCD27 Signaling in Lymphocytes2.090.447CHUK,IKBKB,IKBKG,M ap3k7,MAPK9RAR Activation2.07NAADCY9,MAPK14,MAPK 9,NCOR1,NCOR2,NRIP1 ,PBRM1,PIK3CD,SMAD 5,TNIP1,TRIM24LPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3,ACOX1,ACSL4, ALAS1,APOE,CAT,FMO 2,IRAK1,LIPC,MAPK9,N DST1,NR1H2Pyridoxal 5'-phosphate Salvage Pathway2.070GRK6,IRAK1,MAPK6,M APK9,PKN1,SGK1Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,IRAK 1,MAPK5,NFA T5,NFATC1,PIK3CD,PL CB4,TCF3,TLR3TWEAK Signaling2.05-1CHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,IKBKG,PI KBKG,MAPK9,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1	ATM Simulian	2.00	0.447	,PIK3CD,PKN1,PLCB4
CD27 Signaling in Lymphocytes2.090.447RAPCD27 Signaling in Lymphocytes2.090.447CHUK,IKBKB,IKBKG,M ap3k7,MAPK9RAR Activation2.07NAADCY9,MAPK14,MAPK 9,NCOR1,NCOR2,NRIP1 ,PBRM1,PIK3CD,SMAD 5,TNIP1,TRIM24LPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3,ACOX1,ACSL4, ALAS1,APOE,CAT,FMO 2,IRAK1,LIPC,MAPK9,N DST1,NR1H2Pyridoxal 5'-phosphate Salvage Pathway Endothelial Cells in Rheumatoid Arthritis2.070GRK6,IRAK1,MAPK6,M APK9,PKN1,SGK1Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,IRAK 1,MAPK14,MAPK9,NFA T5,NFATC1,PIK3CD,PL CB4,TCF3,TLR3TWEAK Signaling in Fibroblasts2.05-1CHUK,IKBKB,IKBKG,KA IAPIL-17A Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,IKBKG,PI KBG,MAPK9,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,ORASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,ORASA1,TNIP1	ATM Signaling	2.09	0.447	MAPK9 PTPA SMC2 TR
CD27 Signaling in Lymphocytes2.090.447CHUK,IKBKB,IKBKG,M ap3k7,MAPK9RAR Activation2.07NAADCY9,MAPK14,MAPK 9,NCOR1,NCOR2,NRIPI ,PBRM1,PIK3CD,SMAD 5,TNIP1,TRIM24LPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3,ACOX1,ACSL4, ALAS1,APOE,CAT,FMO 2,IRAK1,LIPC,MAPK9,N DST1,NR1H2Pyridoxal 5'-phosphate Salvage Pathway Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F NI,IKBKB,IKBKG,RAK 1,MAPK14,MAPK9,NFA T5,NFATC1,PIK3CD,PL CB4,TCF3,TLR3TWEAK Signaling IL-17A Signaling in Fibroblasts2.05-1CHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.020.447CHUK,IKBKB,IKBKG,PI K3CD,ARSA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,PS6KA1				RAP
RAR Activation2.07NAADCY9,MAPK14,MAPK 9,NCOR1,NCOR2,NRIP1 ,PBRM1,PIK3CD,SRAD 5,TNIP1,TRIM24LPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3,ACOX1,ACSL4, ALAS1,APOE,CAT,FMO 2,IRAK1,LIPC,MAPK9,N DST1,NR1H2Pyridoxal 5'-phosphate Salvage Pathway2.070GRK6,IRAK1,MAPK6,M APK9,PKN1,SGK1Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,IRAK 1,MAPK14,MAPK9,NFA T5,NFATC1,PIK3CD,PL CB4,TCF3,TLR3TWEAK Signaling2.05-1CHUK,IKBKB,IKBKG,M APK14CD28 Signaling in Fibroblasts2.02-0.707ACTR3,CHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,IKBKG,PI K3CG,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RSA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,PE CB786KA1	CD27 Signaling in Lymphocytes	2.09	0.447	CHUK,IKBKB,IKBKG,M
RAR Activation2.07NAADCY9,MAPK14,MAPK 9,NCOR1,NCOR2,NRIP1 ,PBRM1,PIK3CD,SMAD 5,TNIP1,TRIM24LPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3,ACOX1,ACSL4, ALAS1,APOE,CAT,FMO 2,IRAK1,LIPC,MAPK9,N DST1,NR1H2Pyridoxal 5'-phosphate Salvage Pathway2.070GRK6,IRAK1,MAPK6,M APK9,PKN1,SGK1Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,IRAK 1,MAPK14,MAPK9,NFAT CB4,TCF3,TLR3TWEAK Signaling2.05-1CHUK,IKBKB,IKBKG,X IAPIL-17A Signaling in Fibroblasts2.05NACHUK,IKBKB,IKBKG,X IAPCD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,I KBKG,MAPK9,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1				ap3k7,MAPK9
Jest State9,NCOR1,NCOR2,NRIP1 ,PBRM1,PIK3CD,SMAD 5,TNIP1,TRIM24LPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3,ACOX1,ACSL4, ALAS1,APOE,CAT,FMO 2,IRAK1,LIPC,MAPK9,N DST1,NR1H2Pyridoxal 5'-phosphate Salvage Pathway Endothelial Cells in Rheumatoid Arthritis2.070GRK6,IRAK1,MAPK6,M APK9,PKN1,SGK1Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,IRAK 1,MAPK14,MAPK9,NFA T5,NFATC1,PIK3CD,PL CB4,TCF3,TLR3TWEAK Signaling2.05-1CHUK,IKBKB,IKBKG,X IAPIL-17A Signaling in Fibroblasts2.05NACHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,PIS6KA1	RAR Activation	2.07	NA	ADCY9,MAPK14,MAPK
LPS/IL-1 Mediated Inhibition of RXR2.070.378ABCC3,ACOX1,ACSL4, ALAS1,APOE,CAT,FMO 2,IRAK1,LIPC,MAPK9,N DST1,NR1H2Pyridoxal 5'-phosphate Salvage Pathway2.070GRK6,IRAK1,MAPK6,M APK9,PKN1,SGK1Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,IRAK 1,MAPK14,MAPK9,NFA T5,NFATC1,PIK3CD,PL CB4,TCF3,TLR3TWEAK Signaling2.05-1CHUK,IKBKB,IKBKG,X IAPIL-17A Signaling in Fibroblasts2.05NACHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,I KBKG,MAPK9,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1				9,NCOR1,NCOR2,NRIP1
LPS/IL-1 Mediated Inhibition of RXR Function2.070.378ABCC3,ACOX1,ACSL4, ALAS1,APOE,CAT,FMO 2,IRAK1,LIPC,MAPK9,N DST1,NR1H2Pyridoxal 5'-phosphate Salvage Pathway Pyridoxal 5'-phosphate Salvage Pathway2.070GRK6,IRAK1,MAPK6,M APK9,PKN1,SGK1Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,IRAK 1,MAPK14,MAPK9,NFA T5,NFATC1,PIK3CD,PL CB4,TCF3,TLR3TWEAK Signaling2.05-1CHUK,IKBKB,IKBKG,X IAPIL-17A Signaling in Fibroblasts2.02-0.707ACTR3,CHUK,IKBKB,I KBKG,MAPK9,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1				,PBRM1,PIK3CD,SMAD
LF3/L-1 Mediated infibition of KAK2.070.378ABCC3/ACOA1,AC3L4, ALAS1,APOE,CAT,FMO 2,IRAK1,LIPC,MAPK9,N DST1,NR1H2Pyridoxal 5'-phosphate Salvage Pathway2.070GRK6,IRAK1,MAPK6,M APK9,PKN1,SGK1Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,IRAK 1,MAPK14,MAPK9,NFA T5,NFATC1,PIK3CD,PL CB4,TCF3,TLR3TWEAK Signaling2.05-1CHUK,IKBKB,IKBKG,X IAPIL-17A Signaling in Fibroblasts2.02-0.707ACTR3,CHUK,IKBKB,IK KBKG,MAPK9,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1	LDS/II 1 Madiated Inhibition of DVD	2.07	0.278	3,1NIP1,1KIM24
AndriceAndrew StratePyridoxal 5'-phosphate Salvage Pathway2.070GRK6,IRAK1,LIPC,MAPK9,N DST1,NR1H2Pyridoxal 5'-phosphate Salvage Pathway2.070GRK6,IRAK1,MAPK6,M APK9,PKN1,SGK1Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,IRAK 1,MAPK14,MAPK9,NFA T5,NFATC1,PIK3CD,PL CB4,TCF3,TLR3TWEAK Signaling2.05-1CHUK,IKBKB,IKBKG,X IAPIL-17A Signaling in Fibroblasts2.05NACHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,I KBKG,MAPK9,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1	Function	2.07	0.578	ALASI APOF CAT FMO
Pyridoxal 5'-phosphate Salvage Pathway2.070GRK 6,IRAK 1,MAPK 6,M APK 9,PKN1,SGK 1Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,IRAK 1,MAPK 14,MAPK 9,NFA T5,NFATC1,PIK 3CD,PL CB4,TCF3,TLR3TWEAK Signaling2.05-1CHUK,IKBKB,IKBKG,X IAPIL-17A Signaling in Fibroblasts2.05NACHUK,IKBKB,IKBKG,M APK 14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,I KBKG,MAPK 9,NFAT5, NFATC1,PIK 3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK 14,MAPK 9, PIK 3CD,RPS6K A1				2.IRAK1.LIPC.MAPK9.N
Pyridoxal 5'-phosphate Salvage Pathway2.070GRK6,IRAK1,MAPK6,M APK9,PKN1,SGK1Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,IRAK 1,MAPK14,MAPK9,NFA T5,NFATC1,PIK3CD,PL CB4,TCF3,TLR3TWEAK Signaling2.05-1CHUK,IKBKB,IKBKG,X IAPIL-17A Signaling in Fibroblasts2.05NACHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,I KBKG,MAPK9,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1				DST1,NR1H2
Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,IRAK 1,MAPK14,MAPK9,NFA T5,NFATC1,PIK3CD,PL CB4,TCF3,TLR3TWEAK Signaling2.05-1CHUK,IKBKB,IKBKG,X IAPIL-17A Signaling in Fibroblasts2.05NACHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,I KBKG,MAPK9,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1	Pyridoxal 5'-phosphate Salvage Pathway	2.07	0	GRK6,IRAK1,MAPK6,M
Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis2.05NAATF2,CHUK,CTNNB1,F N1,IKBKB,IKBKG,IRAK 1,MAPK14,MAPK9,NFA T5,NFATC1,PIK3CD,PL CB4,TCF3,TLR3TWEAK Signaling2.05-1CHUK,IKBKB,IKBKG,X IAPIL-17A Signaling in Fibroblasts2.05NACHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,I KBKG,MAPK9,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1				APK9,PKN1,SGK1
Endothelial Cells in Rheumatoid ArthritisN1, IKBKB, IKBKG, IRAK 1, MAPK14, MAPK9, NFA T5, NFATC1, PIK3CD, PL CB4, TCF3, TLR3TWEAK Signaling2.05-1CHUK, IKBKB, IKBKG, X IAPIL-17A Signaling in Fibroblasts2.05NACHUK, IKBKB, IKBKG, M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3, CHUK, IKBKB, IKBKG, PI KBKG, MAPK9, NFAT5, NFATC1, PIK3CDAngiopoietin Signaling2.020.447CHUK, IKBKB, IKBKG, PI K3CD, RASA1, TNIP1Role of IL-17A in Arthritis1.99NAATF2, MAPK14, MAPK9, PIK3CD, RPS6KA1	Role of Macrophages, Fibroblasts and	2.05	NA	ATF2,CHUK,CTNNB1,F
Image:	Endothelial Cells in Rheumatoid Arthritis			N1,IKBKB,IKBKG,IRAK
TWEAK Signaling2.05-1CHUK,IKBKB,IKBKG,X IAPIL-17A Signaling in Fibroblasts2.05NACHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,I KBKG,MAPK9,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1				1,MAPK14,MAPK9,NFA
TWEAK Signaling2.05-1CHUK,IKBKB,IKBKG,X IAPIL-17A Signaling in Fibroblasts2.05NACHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,I KBKG,MAPK9,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1				CB4 TCF3 TI R3
Interstating2.05InterstationIL-17A Signaling in Fibroblasts2.05NACHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,I KBKG,MAPK9,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1	TWEAK Signaling	2.05	-1	CHUK IKBKB IKBKG X
IL-17A Signaling in Fibroblasts2.05NACHUK,IKBKB,IKBKG,M APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,I KBKG,MAPK9,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1		2.00	1	IAP
APK14CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,I KBKG,MAPK9,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1	IL-17A Signaling in Fibroblasts	2.05	NA	CHUK,IKBKB,IKBKG,M
CD28 Signaling in T Helper Cells2.02-0.707ACTR3,CHUK,IKBKB,I KBKG,MAPK9,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1				APK14
KBKG,MAPK9,NFAT5, NFATC1,PIK3CDAngiopoietin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1	CD28 Signaling in T Helper Cells	2.02	-0.707	ACTR3,CHUK,IKBKB,I
Angiopoietin Signaling2.020.447NFATC1,PIK3CDRole of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1				KBKG,MAPK9,NFAT5,
Angiopoletin Signaling2.020.447CHUK,IKBKB,IKBKG,PI K3CD,RASA1,TNIP1Role of IL-17A in Arthritis1.99NAATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1		2.02	0.447	NFATCI,PIK3CD
Role of IL-17A in Arthritis 1.99 NA ATF2,MAPK14,MAPK9, PIK3CD,RPS6KA1	Angiopoietin Signaling	2.02	0.447/	CHUK,IKBKB,IKBKG,PI K3CD R 4 S 4 1 TNIP1
PIK3CD,RPS6KA1	Role of IL-17A in Arthritis	1.99	NA	ATF2.MAPK14 MAPK9
				PIK3CD,RPS6KA1

Chronic Myeloid Leukemia Signaling	1.95	NA	CDKN1B,CHUK,HDAC5
			,IKBKB,IKBKG,PIK3CD,
			RBL2
14-3-3-mediated Signaling	1.94	-0.707	CDKN1B,GSK3A,MAPK
			9.PIK3CD.PLCB4.RPS6K
			A1.STK11.TSC1
PPAR Signaling	1 94	-0.378	CHUK HSP90AB1 IKBK
	1.91	0.570	B IKBKG NCOR1 NCOR
			2 NRIP1
II -7 Signaling Pathway	1 94	-2 449	CDKN1B GSK3A MAPK
12 / Signaning Fathway	1.71	2.119	14 MET NEATC1 PIK 3C
			D
Apelin Adipocyte Signaling Pathway	1.01	0.816	
Apenn Adipoeyte Signaning Fathway	1.91	0.010	MAPK6 MAPK9 NOX4
Inhibition of Angiogenesis by TSP1	1.88	NΔ	
minoriton of Angiogenesis by 1511	1.00		SDC1
Pole of NEAT in Pegulation of the Immune	1.87	1	ATE2 CHUK GNB2 GSK
Role of NFAT III Regulation of the limitude Response	1.07	-1	3A IKBKB IKBKG NEA
Response			T5 NEATC1 DIK 3CD DI
			CB4
Signaling by Rho Family GTPases	1.86	-0.707	ACTR3 ARHGEF12 BAL
Signaling by Kilo Falling OTT ases	1.00	-0.707	AD2 CLID1 GNB2 MADK
			9 NOX4 PARD3 PIK3CD
			PKN1 PDY PHORTR1
Mitashandrial Dysfunction	1.85	NIA	ATDSEID ATDSEIC ATD
Wittochondrial Dysfunction	1.65	NA	5MC2 ATD5DD CAT CV
			5MC2,AIP5PB,CAI,CY
			LIEA 10 TYNDD2
	1.04	0.447	OFAI0, TANKD2
Induction of Apoptosis by HIVI	1.84	-0.44 /	ADVO VIAD
	1.02	0.222	APK9, AIAP
3-phosphoinositide Degradation	1.83	-0.333	MIMI,PPPIKI6B,PPP4K
			I,PIPA,PIPKJ,KASAI,S
NDE2 modiated Ovidative Stress Base ange	1.02	0.279	CAT CDC24 DNA IA2 D
NRF2-mediated Oxidative Stress Response	1.82	0.378	CAT, CDC34, DNAJA3, D
			NAJBII, GCLM, KEAPI,
			MAPK14,MAPK9,PIK5C
	1.01	1	D,SQSIMI
D-myo-mositoi-5-phosphate Metabolism	1.81	-1	PLCB4, PPP1K10B, PPP4
			KI,PIPA,PIPKJ,KASAI,
	1.01	NT A	SEI,SIKPA,SYNJI
I Cell Receptor Signaling	1.81	NA	CHUK, IKBKB, IKBKG, N
			FAI5,NFAICI,PIK3CD,
	1.70	0.707	KASAI
ILK Signaling	1./8	0.707	AIF2,CINNBI,FLNA,F
			NI, GSK3A, MAPK9, MY
			H14,PIK3CD,P1PA,KHO
	1.77	1	BIBI
	1.//	1	ENU3, GPI, PFKM, PGK1
Superpathway of Inositol Phosphate	1.76	-1.508	PIK3CD,PLCB4,PPPIRI
Compounds			6B,PPP4R1,P1PA,P1PRJ,
			RASAI,SECI6A,SET,SI
	1.77	1.622	RPA,SYNJI
FGF Signaling	1.75	-1.633	ATF2,FGFR2,FGFR3,MA
	1.54		PK14,ME1,PIK3CD
Choline Biosynthesis III	1.74	NA	СНРТІ,РСҮТІА,РНКАІ
Salvage Pathways of Pyrimidine	1.73	-0.378	AK4,GRK6,IRAK1,MAP
Ribonucleotides			K6,MAPK9,PKN1,SGK1
Regulation of IL-2 Expression in Activated	1.68	NA	CHUK,IKBKB,IKBKG,M
and Anergic T Lymphocytes			APK9,NFAT5,NFATC1
Fatty Acid β-oxidation I	1.67	0	ACSL4,ECHS1,HADHB,
			SCP2

Insulin Receptor Signaling	1.66	-0.378	ACLY,GSK3A,PIK3CD,
			RAPGEF1,SCNN1A,SGK
			1,SYNJ1,TSC1
IL-8 Signaling	1.64	-1.414	CHUK,GNB2,IKBKB,IK
			BKG,IRAK1,ITGAV,MA
			PK9,NOX4,PIK3CD,RH
			OBTB1
Antiproliferative Role of TOB in T Cell	1.64	NA	CDC34,CDKN1B,RPS6K
Signaling	1.64		Al
Factors Promoting Cardiogenesis in	1.64	NA	ATF2,CTNNB1,MAPK14
Vertebrates	1.64		,NOX4,SMAD5,TCF3
FATTO Cancer Signaling Pathway	1.64	0	CHUK,CINNBI,IKBKB,
	1 (1	0.707	IKBKG
D-myo-mositol (1,4,5,6)-1 etrakispnosphate	1.01	-0.707	PPPIKIOB, PPP4KI, PIPA
Biosynthesis			,PIPKJ,KASAI,SEI,SIK
D mue inegital (2,4,5,6) tatrakignhagnhata	1.61	0.707	DDD1D16D DDD4D1 DTD4
D-myo-mositor (3,4,5,0)-tetrakisphosphate Biosynthesis	1.01	-0.707	PTPRI RASA1 SET SIR
Diosynthesis			PA SVNI1
Prostate Cancer Signaling	16	NΔ	ATE2 CDKN1B CHUK C
Trostate Cancer Signating	1.0	1 1 1	TNNB1 HSP90AB1 PIK3
			CD
Aryl Hydrocarbon Receptor Signaling	1.6	0.707	CDKN1B.HSP90AB1.NC
			OR2.NFIA.NFIX.NRIP1.
			PTGES3,RBL2
3-phosphoinositide Biosynthesis	1.59	-1	PIK3CD,PPP1R16B,PPP4
			R1,PTPA,PTPRJ,RASA1,
			SET,SIRPA,SYNJ1
Phenylalanine Degradation I (Aerobic)	1.58	NA	PAH,QDPR
fMLP Signaling in Neutrophils	1.57	-1.633	ACTR3,GNB2,NFAT5,N
			FATC1,NOX4,PIK3CD,P
			LCB4
RhoA Signaling	1.54	-0.378	ACTR3,ARHGAP1,ARH
			GEF12,BAIAP2,PKN1,R
			DX,TTN
Molecular Mechanisms of Cancer	1.54	NA	ADCY9,ARHGEF12,CD
			K13,CDKN1B,CTNNB1,
			GSK3A,MAPK14,MAPK
			9,PIK3CD,PLCB4,RAPG
			EFI, KASAI, KHOBIBI, S
Anontogia Signaling	1.52	0.916	MADJ, ICF J, AIAP
Apoptosis Signaling	1.55	0.810	BIRCO, CHUK, IKBKB, IK
Polo of n14/n10APE in Tumor Suppression	1.52	NA	DIV 2 CD DOL D 2D LIDTE
Kole of p14/p19AKF in Tulliof Supplession	1.52	NA	FIK5CD,FOLK5D,OBIT
Small Cell Lung Cancer Signaling	1.52	-1 342	CDKN1B CHUK IKBKB
Shian con Lung Canoor Signaming	1.52	1.5 12	IKBKG PIK3CD
Hypoxia Signaling in the Cardiovascular	1.52	NA	ATF2 BIRC6 CDC34 CO
System	1.52	1111	PS5.HSP90AB1
Dendritic Cell Maturation	1.51	-0.333	ATF2.CHUK.IKBKB.IK
	-		BKG.MAPK14.MAPK9.P
			IK3CD,PLCB4,TLR3
Mouse Embryonic Stem Cell Pluripotency	1.45	-0.816	CTNNB1,MAPK14,PIK3
			CD,SMAD5,TCF3,XIAP
SAPK/JNK Signaling	1.45	0.447	ATF2,MAP4K2,MAPK8I
			P3,MAPK9,NFATC1,PIK
			3CD
Ga12/13 Signaling	1.44	0.378	CHUK, CTNNB1, IKBKB,
			IKBKG,MAPK9,PIK3CD
			,RASA1
BER pathway	1.44	NA	LIG3,PNKP

Reelin Signaling in Neurons	1.43	NA	APOE,ARHGEF12,MAP K8IP3,MAPK9,PIK3CD
Transcriptional Regulatory Network in Embryonic Stem Cells	1.42	NA	CDYL,KAT6A,SET,TRI M24
Actin Cytoskeleton Signaling	1.4	-0.707	ACTR3,ARHGEF12,BAI AP2,DIAPH1,FLNA,FN1, MYH14,PIK3CD,RDX,T TN
Lymphotoxin β Receptor Signaling	1.39	-1	CHUK,IKBKB,IKBKG,PI K3CD
Sertoli Cell-Sertoli Cell Junction Signaling	1.39	NA	ATF2,CTNNB1,DLG1,EP B41,GSK3A,KEAP1,Map 3k7,MAPK14,MAPK9
Gαq Signaling	1.37	-1.633	CHUK,GNB2,IKBKB,IK BKG,NFATC1,PIK3CD,P LCB4,RHOBTB1
Estrogen Receptor Signaling	1.36	NA	MED15,MED24,NCOR1, NCOR2,NRIP1,TAF1,TR RAP
PEDF Signaling	1.35	-1.342	CHUK,IKBKB,IKBKG,M APK14,PIK3CD
DNA Methylation and Transcriptional Repression Signaling	1.34	NA	ARID4B,MTA1,SAP130
AMPK Signaling	1.34	0	AK4,ATF2,MAPK14,PB RM1,PFKFB3,PFKM,PIK 3CD,PTPA,STK11,TSC1
NF-κB Activation by Viruses	1.33	-1.342	CHUK,IKBKB,IKBKG,I TGAV,PIK3CD
Human Embryonic Stem Cell Pluripotency	1.32	NA	CTNNB1,FGFR2,FGFR3, GSK3A,PIK3CD,SMAD5 ,TCF3
HER-2 Signaling in Breast Cancer	1.31	NA	CDKN1B,GSK3A,PARD 3,PIK3CD,TSC1
Valine Degradation I	1.31	NA	BCKDHB,ECHS1,HADH B
Type I Diabetes Mellitus Signaling	1.31	-0.816	CHUK,IKBKB,IKBKG,I RAK1,MAPK14,MAPK9

Table 9. Significant Pathways for differentially expressed transcripts in ⁵⁶Fe vs. non-irradiated control at 2 months.

Ingenuity Canonical Pathways	-log ₁₀ (p-value)	z-score	Molecules
B Cell Receptor Signaling	6.04	-1.213	AKT3,ATF2,BCL6,Calm1
			(includes
			others),CREB1,EGR1,FCGR2
			A,IKBKG,INPP5B,MAP3K13,
			MAPK14,MAPK3,NFAT5,PIK
			3C2G,PIK3CA,SYK,SYNJ1,S
			YNJ2
Small Cell Lung Cancer Signaling	5.8	-0.816	AKT3,BIRC2,IKBKG,PA2G4,
			PIAS3,PIK3C2G,PIK3CA,RX
			RA,RXRB,SIN3A,TRAF3
Role of Tissue Factor in Cancer	5.08	NA	AKT3,ARRB1,EGFR,EGR1,IT
			GA3,ITGAV,JAK2,MAPK14,

			MAPK3,PIK3C2G,PIK3CA,S
LXR/RXR Activation	4.85	-1.508	APOE C4A/C4B CYP7A1.HM
		1.500	GCR,NR1H2,NR1H3,NR1H4,
			RXRA,RXRB,SAA1,SCD,SER
			PINF1,TLR3
PTEN Signaling	4.85	0.277	AKT3,EGFR,FGFR3,IKBKG,I
			NPP5B,ITGA3,MAGI1,MAPK
			3,MAST2,PIK3CA,SYNJ1,SY
			NJ2,TGFBR1
Chronic Myeloid Leukemia Signaling	4.4	NA	AKT3,IKBKG,MAPK3,MDM
			2,PA2G4,PIK3C2G,PIK3CA,S
			IN3A,STAT5A,STAT5B,TGF
H 15 0' 1'	4.04	NIA	BRI AKT2 IAK2 MADK14 MADK
IL-15 Signaling	4.24	NA	AK 13, JAK 2, MAPK 14, MAPK
			STAT5B SVV
TR/RXR Activation	4.16	NΔ	AKT3 CVP7A1 G6PC HP MD
	4.10	1121	M2 PIK 3C2G PIK 3CA RXRA
			RXRB.THRA
Regulation of the Epithelial-Mesenchymal	4.12	NA	ADAM17.AKT3.APC.DVL2.E
Transition Pathway			GFR,EGR1,FGF21,FGFR3,FZ
			D6,JAK2,MAPK3,PIK3C2G,P
			IK3CA,TGFBR1,ZEB2
Pancreatic Adenocarcinoma Signaling	4.1	-0.707	AKT3,EGFR,JAK2,MAPK3,M
			DM2,PA2G4,PIK3C2G,PIK3C
			A,RALBP1,SIN3A,TGFBR1
Role of Macrophages, Fibroblasts and	3.98	NA	AKT3,APC,ATF2,C5AR1,Cal
Endothelial Cells in Rheumatoid Arthritis			ml (includes
			1 A 1 DA AM1 EN1 EZD6 IKB
			KG IAK2 MAPK14 MAPK3 N
			FAT5 PIK 3C2G PIK 3CA TLR
			3.TRAF3
Estrogen-Dependent Breast Cancer	3.96	-1	AKT3,ATF2,CREB1,EGFR,M
Signaling			APK3,PIK3C2G,PIK3CA,STA
			T5A,STAT5B
Non-Small Cell Lung Cancer Signaling	3.92	-1.342	AKT3,EGFR,MAPK3,PA2G4,
			PIK3C2G,PIK3CA,RXRA,RX
			RB,SIN3A
FAK Signaling	3.88	NA	AKT3,ASAP1,CAPNS1,EGFR
			,IIGA3,MAPK3,PIK3C2G,PI
CD40 Signaling	2 70	2 121	K3CA,PAN,1N51
CD40 Signaling	5.78	-2.121	K3C2G PIK3CA TANK TNEA
			IP3 TRAF3
FLT3 Signaling in Hematopoietic	3.75	-1	AKT3.ATF2.CREB1.MAPK14
Progenitor Cells		-	,MAPK3,PIK3C2G,PIK3CA,S
e			TAT5A,STAT5B
Colorectal Cancer Metastasis Signaling	3.71	0.277	ADCY6,AKT3,APC,ARRB1,E
			GFR,FZD6,GNB1,GNB2,GRK
			2,JAK2,MAPK3,PIK3C2G,PI
			K3CA,RHOBTB1,RHOT1,TG
H 22 C' 1	2.62	0.447	FBR1,TLR3
IL-22 Signaling	3.63	-0.447	AK13,MAPK14,MAPK3,STA
SPINK1 General Cancer Pathway	3.6	0	AKT3 EGER LAK2 MADK2 M
Si n'aci General Cancel i atliway	5.0	0	t1.Mt2.PIK3C2G.PIK3CA
FGF Signaling	3.56	-1.667	AKT3.ATF2.CREB1.FGF21.F
00			GFR3,MAPK14,MAPK3,PIK3
			C2G,PIK3CA

Role of JAK family kinases in IL-6-type Cytokine Signaling	3.54	NA	JAK2,MAPK14,MAPK3,STA T5A,STAT5B
RANK Signaling in Osteoclasts	3.52	-1	AKT3,BIRC2,Calm1 (includes others),IKBKG,MAP3K13,MA PK14,MAPK3,PIK3C2G,PIK3 CA
Lymphotoxin β Receptor Signaling	3.46	-0.816	AKT3,BIRC2,IKBKG,MAPK3 ,PIK3C2G,PIK3CA,TRAF3
Growth Hormone Signaling	3.35	1.134	CEBPA,JAK2,MAPK3,ONEC UT1,PIK3C2G,PIK3CA,STAT 5A,STAT5B
Prostate Cancer Signaling	3.31	NA	AKT3,ATF2,CREB1,MAPK3, MDM2,PA2G4,PIK3C2G,PIK 3CA,SIN3A
FXR/RXR Activation	3.29	NA	AKT3,APOE,C4A/C4B,CYP7 A1,FETUB,G6PC,NR1H3,NR 1H4,RXRA,SAA1,SERPINF1
p53 Signaling	3.21	0.816	AKT3,ATR,COQ8A,GADD45 G,MAPK14,MDM2,PIK3C2G, PIK3CA,PML
Role of NFAT in Regulation of the Immune Response	3.19	-0.905	AKT3,ATF2,Calm1 (includes others),CSNK1A1,FCGR2A,G NB1,GNB2,IKBKG,MAPK3,N FAT5,PIK3C2G,PIK3CA,SYK
JAK/Stat Signaling	3.16	0	AKT3,JAK2,MAPK3,PIAS3,P IK3C2G,PIK3CA,STAT5A,ST AT5B
IL-7 Signaling Pathway	3.16	-0.378	AKT3,BCL6,MAPK14,MAPK 3,PIK3C2G,PIK3CA,STAT5A, STAT5B
TNFR2 Signaling	3.16	1	BIRC2,IKBKG,TANK,TBK1, TNFAIP3
Neuroinflammation Signaling Pathway	3.15	-1.414	ACVR2B,AKT3,APP,ATF2,BI RC2,CREB1,IKBKG,JAK2,M APK14,MAPK3,NFAT5,PIK3 C2G,PIK3CA,SYK,TBK1,TGF BR1,TLR3,TRAF3
Neuregulin Signaling	3.12	0	ADAM17,AKT3,EGFR,ERBB 4,ERRFI1,ITGA3,MAPK3,ST AT5A,STAT5B
IL-2 Signaling	3.1	-0.378	AKT3,MAPK3,PIK3C2G,PIK 3CA,STAT5A,STAT5B,SYK
PEDF Signaling	3.09	-0.707	AKT3,IKBKG,MAPK14,MAP K3,PIK3C2G,PIK3CA,SERPI NF1,TCF12
Mouse Embryonic Stem Cell Pluripotency	3.05	-1.667	AKT3,APC,DVL2,FZD6,JAK2 ,MAPK14,MAPK3,PIK3C2G, PIK3CA
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages	3.04	0	AKT3,APOE,IKBKG,JAK2,M AP3K13,MAPK14,MAPK3,PI K3C2G,PIK3CA,PPP1R3C,RH OBTB1,RHOT1,SIRPA
Phagosome Formation	3.03	NA	C5AR1,FCGR2A,FN1,ITGA3, PIK3C2G,PIK3CA,RHOBTB1 ,RHOT1,SYK,TLR3
IL-17A Signaling in Airway Cells	2.98	-1.134	AKT3,IKBKG,JAK2,MAPK14 ,MAPK3,PIK3C2G,PIK3CA
Cardiac Hypertrophy Signaling (Enhanced)	2.94	0	ACVR2B,ADCY6,AKT3,ATF 2,Calm1 (includes others),DVL2,FGF21,FGFR3,F ZD6,GNB1,IKBKG,IL17RB,I

Germ Cell-Sertoli Cell Junction Signaling2.93NAEPN2.TRGA SIGAPILANESCO, PIKS CC, TGFBR1Germ Cell-Sertoli Cell Junction Signaling2.93NAEPN2.TRGA SIGAPILANESCO, CA, TGFBR1IL-4 Signaling2.92NAACT SIMPSB1 AK 2NR ATS PIK3 CC, PIKS CA, SNN RHOBTB1, R HOTT, TGFBR1IL-4 Signaling2.92NAANACTS, PIPSB1 AK 2NR ATS PIK3 CC, PIKS CA, SNN JI, SY PIK3 CC, PIKS CA, SNN JI, SY PIK3 CA, SNN JI, SY PIK3 CC, PIKS CA, SNN JI, SY PIK3 CA, SNN JI, SNN				TGA3,JAK2,MAP3K13,MAP
Pields, PDK 1, PIK3C2, PIK3 CA, TGFB1Germ Cell-Sertoli Cell Junction Signaling2.93NAEPN2, TIGA3, KTAPI, MAPRA 13, MAPK 14, MAPRA, SJ, PIK3C, G, PIK3CA, PNN, RHOBELA, HOTT, TGFBR1IL-4 Signaling2.92NAAKT3, NPP5B, JAK2, SPK 75, PIK3CA, PNN, RHOBELA HOTT, TGFBR1IL-4 Signaling2.91NAAKT3, NPP5B, JAK2, SPK 75, PIK3CA, PSN 11, SPK 74, ND2Protein Ubiquitination Pathway2.91NAAKT3, NPP5B, JAK2, SPK 74, PIK3CA, PSN 11, SPK 74, SISP8Role of JAK2 in Hormone-like Cytokine Signaling2.9NAJAK2, SH2B1, SIRPA, STAT5A STAT5BRole of JAK2 in Hormone-like Cytokine Signaling2.9NAADAM17, AKT3, APC, BIRC2, Calif (includes others), CSN 14, JE2D6, IKBK G, ITGA3, MAPK 14, MARSA, STAT5BRole of JAK1 and JAK3 in 7c Cytokine Signaling2.86NAJAK2, MAPK3, PIK3C2, OP, KS CA, STAT5B, SYK Epithelial Adherens Junction SignalingNF-kB Signaling2.85-0.905AKT3, APC, SIRRG2, CA, STAT5B, SYK Epithelial Adherens Junction Signaling2.85PXR/RXR Activation2.81-1AKT3, CPC, CABAP2 CGFR, PZA, KERP, CABAP3, CGPK3CAPXR/RXR Activation2.81-1AKT3, CFR, CGPS, JKRBR, PK3C, CG, MK3, CGPK3CA, CGPK3CAAnyloid Processing2.81-1AKT3, CFR, CAPS, JKRBR, PK3C, AMS, AMS, AMS, AMS, AMS, AMS, AMS, AMS				K14,MAPK3,NFAT5,PDE1A,
Germ Cell-Sertoli Cell Junction Signaling2.93NAFPNZTRGAS KFAP1 MAPSK 15 MAPSK 14 MAPK 25 MSAC2 G.PK 3CA APNN.RHOBTB1, R HOT1.TGF BR1IL-4 Signaling2.92NAAKT3.NPPSB.JAK2.NFAT5, PK3.C2.GJR 3CA.SFN11.SY NZProtein Ubiquitination Pathway2.91NAAKT3.NPPSB.JAK2.NFAT5, PK3.C2.GJR 3CA.SFN11.SY NZProtein Ubiquitination Pathway2.91NAAKT3.NPPSB.JAK2.NFAT5, PK3.C2.DJK 3CA.SFN11.SY NZRole of JAK2 in Hormone-like Cytokine Signaling2.9NAJAK2.SH2B1.SIRP.ASTAT5A STAT5BRole of JAK2 in Hormone-like Cytokine Signaling2.9NAADAM17.AKT3.APC.BIRC2, Calin1 (includes others).CSNK1A1.PZD.KIBK GAT6AJAKK14.MAPK3.NF CALSTAT5A.STAT5BRole of JAK2 in Hormone-like Cytokine Signaling2.86NAADAM17.AKT3.APC.BIRC2, Calin1 (includes) others).CSNK1A1.PZD.KIBK GAT6AJAKK14.MAPK3.NF CALSTAT5A.STAT5B.STAT5BRole of JAK1 and JAK3 in ye Cytokine Signaling2.86NAACV12B.AKT3.APC.JAR22 GAT6AJKK14.MAPK3.NF CALSTAT5A.STAT5B.STAT5B.STXK CALSTAT5A.STAT5B.STXK3.PXK/RXR Activation2.83NAAKT3.CACAB.FYN.HPJ.KR KG2.GJK3.CALSTA.STAT5A.STAT5B.STAT5B.STAT5B.S				PDE4B,PDK1,PIK3C2G,PIK3
Germ Cell-Sertoli Cell Junction Signaling 2.93 NA EPN2,TTGA3 (EEPI, MAPRS, JPRSC2 G, PIK3CA, PXN, RHOBTBL, R HOTI,TGFBRI IL-4 Signaling 2.92 NA AKT3,INPP5B,JAK2,NFA75, PIK3CA, PXN, RHOBTBL, R HOTI,TGFBRI Protein Ubiquitination Pathway 2.91 NA AKT3,INPP5B,JAK2,NFA75, PIK3CCA,PIK3CA,SYN11,SY NJ2 Protein Ubiquitination Pathway 2.91 NA ANAPC5,BIRC2,DNAB2,DN AUC2,LSP1,USP4,USP36,USP4 ,USP31,USP44,USP46,USP4 ,USP31,USP44,USP46,USP4 ,USP31,USP44,USP46,USP4 ,USP31,USP44,USP46,USP4 ,USP31,USP44,USP46,USP4 ,USP31,USP44,USP46,USP4 ,USP31,USP44,USP47,USP46,USP4 ,USP31,USP44,USP477,USP477,USP477,USP477,USP477,USP477,USP477,USP477,USP477,U				CA,TGFBR1
Series Construction Construction Cogniting10.511.	Germ Cell-Sertoli Cell Junction Signaling	2.93	NA	EPN2 ITGA3 KEAP1 MAP3K
G.PIK SCA, PXNR108TB1, R HOT1, TGFBR1IL-4 Signaling2.92NAAKT3, INPPSB, JAK2, NFAT5, PKSC2G, PIKSCA, SYN1, SY N2Protein Ubiquitination Pathway2.91NAAKT3, INPPSB, JAK2, NFAT5, PKSC2G, PIKSCA, SYN1, SY N2Protein Ubiquitination Pathway2.91NAANAPCS, BIRC2, DNAB2, DN AC12, LSPF1, MDM2, NEDD 4, LPAN2, UBF4, ALSPF1, MDM2, NEDD 4, LPAN2, UBF4, ALSPF1, SIRPA, STAT5A SignalingRole of JAK2 in Hormone-like Cytokine Signaling2.9NAJAK2, SH2B1, SIRPA, STAT5A STAT5BRole of Oraceblasts, Ostocelasts and Chondrocytes in Rheumatoid Arthritis2.9NAADAM17, AKT3, APC, BIRC2, Calm1 (includes, others), CSNK1A1, ZPO, LIKBK SignalingRole of JAK1 and JAK3 in γ C Cytokine Signaling2.86NAJAK2, MAPK3, PIKSC2, PIKSCA CA, STAT5A, STAT5B, SYK Epithelial Adherens Junction Signaling 2.85-0.905AKT3, ACE, BIAZ, PKR2, CZ, PIKSCA, TANK, TB K1, TGFBR1, ILPARD3, TGFBR1 NF-skB SignalingNF-skB Signaling2.81-1AKT3, ALPC, BAIAP2, PKR2, CZ, PIKSCA, TANK, TB K1, TGFBR1, TLR3, TNFAIP3, TRAF3PXR/RXR Activation2.81-1AKT3, ALPC, CAPNS1, CSNK1A1, MAPK1, MAPK1, MAPK1, MAPK1, MAPK1, MAPK2, PNP, APR2, PIK3C2, CAPINS1, CSNK1A1, MAPK1, MAPK1, MAPK2, PNP, APR2, PIK3C2, CAPNS1, CSNK1A1, MAPK1, MAPK1, MAPK2, PNP, APR2, PIK3C2, CAPNS1, CSNK1A1, MAPK1, MAPK1, MAPK2, PNP, APR2, PIK3C2, CAPNS1, CSNK1A1, MAPK3, PNP, CAPNS1, CSNK1A1, MAPK1, MAPK1, MAPK2, PNP, APR2, PIK3C2, CAPNS1, CSNK1A1, MAPK1, MAPK1, MAPK2, PNP, APR2, PIK3C2, CAPNS1, CSNK1A1, MAPK3, PNP, CAPNS1, CSNK1A1, MAPK3, PNP, CAPNS1, CSNK1A1, MAPK3, PNP, CAPNS1, CAPNS1, CSNK1A1, MAPK3, PNP, CAPNS1, CSNK1A1				13 MAPK 14 MAPK 3 PIK 3C2
IL-4 Signaling2.92NAAKT3.INPF5B.JAK2.NFAT5, PKS2CG.PKS2CA.SYNJ.SY NI2Protein Ubiquitination Pathway2.91NAAKT3.INPF5B.JAK2.NFAT5, PKS2CG.PKS2CA.SYNJ.SY NI2Protein Ubiquitination Pathway2.91NAANAPC5.BIRC2.DNAJB2.DN AUC12.HSPHI.MUR2.NEDA JUSP3LUSP3LUSP3LUSP3LUSP3LUSP3LUSP3LUSP3L				G PIK 3CA PXN RHOBTB1 R
IL-4 Signaling 2.92 NA ART31NPP3B_JAK2,NPAT5, PRSC20,PIK3C2A,SYNJ1,SY NZ Protein Ubiquitination Pathway 2.91 NA ART31NPP3B_JAK2,NPAT5, PRSC20,PIK3C2A,SYNJ1,SY NZ Role of JAK2 in Ilormone-like Cytokine 2.9 NA JAK2,SI12B1,SIRPA,STAT5A Signaling Role of JAK2 in Ilormone-like Cytokine 2.9 NA JAK2,SI12B1,SIRPA,STAT5A Signaling Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis 2.9 NA JAK2,SI12B1,SIRPA,STAT5A Signaling Role of JAK2 in Ilormone-like Cytokine 2.86 NA JAK2,SI12B1,SIRPA,STAT5A Signaling Role of JAK1 and JAK3 in yo Cytokine 2.86 NA JAK2,APIK3,CG,PIK3 CA,STAT5A,STAT5B,SYK Fpithelial Adherens Junction Signaling 2.85 NA ACVR2B,AKT3,APC,BIAR2, KGFR,FGR3,IKBKG, PIK3C2G,PIK3CA,TANK,TB NF-xB Signaling 2.81 -1 AKT3,ACFRF,GFR3,IKBKG, PIK3C2G,PIK3CA,TANK,TB PXR/RXR Activation 2.81 -1 AKT3,ACASC,CPTA1, G6PC,RXRA,SCD Acute Phase Response Signaling 2.81 -1 AKT3,ACASC,CPTA1, G6PC,RXRA,SCD PIshrin Receptor Signaling 2.77 -0.302 AKT3,ACASC,APK1,HPI,KB KG,GAKT3,ATP2,CREB1,EP HB4,GNH,GNEJ,GPK3,CA,PNA Relaxin Signaling 2.76 0 ACCY2,GAKT3,ATP2,CREB1,EP HB4,GNH,GNE3,CP,NN, AXT3,KCEQ,PIK3C2,APNA PISK/AKT Signaling 2.76 </td <td></td> <td></td> <td></td> <td>UOT1 TCEDD1</td>				UOT1 TCEDD1
IL-4 Signaling 2.92 NA AK15.INPP36J.AAZ,NPA15, PR52202,PIK3CA,SYN11,SY N2 Protein Ubiquitination Pathway 2.91 NA ANAPC5,BIRC2,DNAB2,DN AUC12,HSPH1,MDR2,NEDD 4L,PAN2,UBEA,USP19,USP 2,USP21,USP34,USP36,USP4 5,USP8 Role of JAK2 in Hormone-like Cytokine Signaling 2.9 NA JAK2,SH2B1,SIRPA,STAT5A 5,USP8 Role of JAK2 in Hormone-like Cytokine Signaling 2.9 NA JAK2,SH2B1,SIRPA,STAT5A 5,USP8 Role of JAK1 and JAK3 in yc Cytokine Signaling 2.9 NA JAK2,SH2B1,SIRPA,STAT5A 5,USP8 Role of JAK1 and JAK3 in yc Cytokine Signaling 2.86 NA JAK2,MPK3,PIK3C2,PIK3CA FAT5,PIK32C2,PIK3CA,PIKACA FAT5,PIK32C6,PIK3CA FAT5,PIK32C6,PIK3CA FAT5,PIK32C6,PIK3CA FAT5,PIK32C6,PIK3CA FAT5,PIK32C6,PIK3CA FAT5,PIK32C6,PIK3CA FAT5,PIK32C6,PIK3CA FAT5,PIK32C6,PIK3CA FAT5,PIK32C6,PIK3CA,FAT5,ASTAT5A,STAT5A,STAT6,STAT8,SYK FAT5,PIK32C6,PIK3CA,FAT5,ASTAT8,SYK FAT5,PIK32C6,PIK3CA,FAT5,ASTAT8,SYK FAT5,PIK32C6,PIK3CA,FAT5,ASTAT5A,STAT6,FR,PIK3,FAT6,PIK32K6,FA,TANK,TB FIK3C26,PIK3CA,TANK,TB FIK3C26,PIK3CA,TANK,TB FIK3C26,PIK3CA,TANK,TB FIK3C26,PIK3CA,TANK,TB FIK3C26,PIK3CA,ASA,MAK3,JRP2,CPNS1,CSNK1A I,MAPK14,MAPK3, KAT3,ALAS1,CES3,CYP7A1, GPC,RXRA,SC1 FAT3,KERK,ACH3,ATF2,CREB1,FP HB4,GNB1,GMB2,TICA3,AA AK13,ALAS1,CES3,CYP7A1, GPC,GAKT3,ACEA,PIK3,CG2,PIK3CA ACUTE Phase Response Signaling 2.76 0 AKT3,ALAS1,CES3,CYP7A1, GPC,GAKT3,ACEB1,CPN1,HP,IKB KC3,AR2,AMAPK3,PIK3,CG2,PIK3CA ACUTE,AKT3,MF2,CH2B1,CPN1,HP,IKB KC3,AR2,AMAPK3,PIK3,CG2,PIK3CA ACUTE,AKT3,MF2,CREB1,GPB1,CN3, JAK2,MAPK3,PIK3,CG2,PIK3CA ACUTE,AKT3,KIEKG,INPP5B,ITCA3 JAK2,MAPK3,PIK3,CG2,PIK3CA ACUTE,AKT3,AFC,CH2B1,CPN1,AKT3,AFC,CH2B1,CPN1, KC3,ACA,AMAFK3,PIK3,CG2,PIK3CA ACUTE,AKT3	H 4 C 1	2.02	NTA	
Protein Ubiquitination Pathway2.91NAANAPC5.BIR2CA.SYNJJ.SY NJ2Protein Ubiquitination Pathway2.91NAANAPC5.BIR2.DNAB2.DN ALC2.HISPH1.MDM2.NEDD 4L_PAN2.UBF4A_USP19.USP 5.USP8Role of JAK2 in Hormone-like Cytokine signaling2.9NAJAK2.SIEDBI,SIRPA,STAT5A SUSP8Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.9NAADAMI7,AKT3,APC,BIRC2, Calm1 (includes others),CSNK1A1,FZD6,IKBR CA,STAT5A,STAT5B,SYKRole of JAK1 and JAK3 in yc Cytokine2.86NAJAK2.SIEDBI,SICA.CSCPHS3 CA,STAT5A,STAT5B,SYKEpithelial Adherens Junction Signaling PF-kB Signaling2.85NAACVR2B_AKT3,APC,BIRC2, CASTAT5A,STAT5B,SYKFyrkSC2GPHS3CA2.85-0.905AKT3,EGFR,FGFR2,INKG, PHS3C2G,PHS3 CA,STATSA,STATSB,SYK, KAT_JEGFR,FGFR2,ISKG, PHS3C2G,PHS3 CA,STATSA,STATSB,SYK, RAT2,SGFR,FGFR2,SIKKG, PHS3C2G,PHS3 CA,STATSA,STATSB,SYK, SIGNALAPXR/RXR Activation2.83NAAKT3,APC,GAPNS1,CSNK1A AAKT3,APC,GAPNS1,CSNK1A CARA,SADAcute Phase Response Signaling Phrin Receptor Signaling Phrin Receptor Signaling2.81-1.414 CART3,APC,APNS1,CSNK1A CARA,SAB,SBRPINF1Ephrin Receptor Signaling Phrin Receptor Signaling Phrin Receptor Signaling2.76-0.707 CART3,CKEB1,GNR3,NR2,PDE1A, PARA,MAPK3,PIK3CCA CARA,SAB,SBRPINF1Ephrin Receptor Signaling PARA/KAKT Signaling2.76-0.707 CART3,CKEB1,GNR3,NR2,PDE1A, CARA,PK3,MDM2,PK3CCA, CARA,SAB,SBRPINF1Ephrin Receptor Signaling PARA/KAKT Signaling2.76-0.707 CART3,KKRG,INPP5B,ITCA3,JA CARA,ARA,S	IL-4 Signaling	2.92	NA	AK13,INPP5B,JAK2,NFA15,
Protein Ubiquitination Pathway2.91NAANAPC5.BIRC2.DNAJB2.DN AJC12,HSPH1,MDM2,NEDD UBEA,USP10,USP34,USP36,USP4 5,USP8Role of JAK2 in Hormone-like Cytokine Signaling2.9NAJAK2,SH2B1,SIRPA,STAT5A SUSP8Role of Oktoblast, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.9NAJAK2,SH2B1,SIRPA,STAT5A SUSP8Role of JAK1 and JAK3 in yc Cytokine Signaling2.86NAJAK2,MAPK3,PIK3C2G,PIK3C CASTAT5B,SYKRole of JAK1 and JAK3 in yc Cytokine Signaling2.86NAJAK2,MAPK3,PIK3C2G,PIK3C CASTAT5A,STAT5B,SYKRole of JAK1 and JAK3 in yc Cytokine Signaling2.85NAGAK2,MAPK3,PIK3C2G,PIK3C CASTAT5A,STAT5B,SYKRole of JAK1 and JAK3 in yc Cytokine Signaling2.85-0.905AKT3,HC7,RBAPL3,MAG11, MYH1,PARD3,TGFBR1NF-kB Signaling2.81-1AKT3,ACP,GPR,GPR3,IKBKG, PIK3C2G,PIK3CA,TANK,TB K1,TGFBR1,TLR3,TNFAIP3, TRAF3PXR/RXR Activation2.83NAAKT3,ACP,GPR,S1,CSNK1A LMAPK1,AMPK3,ICSN,IA IMAPK1,AMAPK3,CAZ,TANK,TB K1,TGFBR1,TLR3,TNFAIP3, TRAF3PXR/RXR Activation2.81-1AKT3,ACP,CAPNS1,CSNK1A LMAPK1,AMPK3,GR2,PIK3CA,GPNAcute Phase Response Signaling2.77-0.302ABI1,AKT3,AT2,CEB1,FP HB4,GNB1,GNB2,TGA3,JAS ARPAS3,PIK3CG,PIK3CA,PIL,STAS,ST ATSBPI3K/AKT Signaling2.760GDCY6,AKT3,CREB1,ONB1, ALMAPK3,PIK3C ACUte Myeloid Leukemia Signaling2.76-0.707 AKT3,ICFRK,GNP75,JITGA3,JA AKZ,MAPK3,PIK3CA, ACUte Myeloid Leukemia Signaling2.76-0.707 AKT3,ICFRK,GNP75,JITGA3,JA AKZ,MAPK3,PIK3CA, ACUte				PIK3C2G,PIK3CA,SYNJ1,SY
Protein Ubiquitination Pathway2.91NAAAPC5.BIRC2, DNAJB2, DN ALPAN2, UBER4, USP19, USP 4, LVSP4, USP34, USP36, USP3 5, USP3Role of JAK2 in Hormone-like Cytokine Signaling2.9NAJAK2, SH2J1, SIRPA, STAT5A STAT5BRole of Oxteoblasts, Oxteoclasts and Chondrocytes in Rheumatoid Arthritis2.9NAJAK2, SH2J1, SIRPA, STAT5A STAT5BRole of JAK1 and JAK3 in yc Cytokine Signaling2.86NAJAK2, MAR14, MAPK3, OK CAIM1 (Includes others), CSNK1A1, FZD6, IKBK G, ITOA3, MAR14, MAPK3, PIKSC2G, PIKSCA FEithelial Adherens Junction Signaling2.85NAACVR2B, AK73, APC, BARC, CAIM1, MAGII, MYH11, PARD3, TGFBR1NF-kB Signaling PXR/RXR Activation2.81-0.905AKT3, LCFGR1, IKBKG, PIK3C2G, PIKSA, TANK, TB K1, TGFBR1, TLR3, TNFAIP3, TRAT3PXR/RXR Activation Physic Response Signaling Physic Response Signaling2.81-1AKT3, APC, GR7, IKBKG, PIK3C2G, PIKSA, TANK, TB K1, TGFBR1, TLR3, TNFAIP3, TRAT3PXR/RXR Activation Physic Response Signaling Physic Response Signaling Physic Response Signaling2.77-0.302AB11, AKT3, ATF2, CREB1, EP HB4, GNB1, ONB2, TIGA3, JAK2, MAPK3, JPR3C2G, PIK3CA, TANK, TB KG, JAK2, MAPK3, PIK3, CGG, PIX CA, SAA1, Saa3, SERINFTIEphrin Receptor Signaling PISK/AKT Signaling PISK/AKT Signaling2.760ADCY6, AKT3, CREB1, GNB1, AK2, MAPK3, MDK2, PIESA, PIESA, MAPK3, MDK2, PIESA, PIESA, MAPK3, MDK2, PIESA, PIESA, PIESA, PIESA, PIESA, PIESA, PIESA, PIESA, PIESA, PIESA, PIASA, PIESA, CG2, PIKSCA, PISK/AKT Signaling2.760ADCY6, AKT3, CREB1, GNB1, AK2, MAPK3, MDK2, PIESA, PIESA, PIESA, PIESA, 				NJ2
Alc12,LISPH1,IMDM2,NEDDRole of JAK2 in Hormone-like Cytokine Signaling2.9NAJAK2,SH2B1,SIRPA,STAT5A STAT5BRole of Otcoblasts, Ostcoclasts and Chondrocytes in Rheumatoid Arthritis2.9NAJAK2,SH2B1,SIRPA,STAT5A STAT5BRole of Ostcoblast, Ostcoclasts and Chondrocytes in Rheumatoid Arthritis2.9NAJAK2,SH2B1,SIRPA,STAT5A STAT5BRole of JAK1 and JAK3 in ye Cytokine Signaling2.86NAJAK2,MAPK3,PIK3C2,PIK3CA CA,STAT5B,SYKEpithelial Adherens Junction Signaling2.85NAACVR2B,AKT3,APC,BIA2D JEGREPN2,KEAP1,MAG11, MYH11,PARD3,TGFRR1NF-kB Signaling2.85-0.905AKT3,FGFR,FGFR3,ISK6, PIK3C2G,PIK3CA,TANK,TBPXR/RXR Activation2.83NAAKT3,LFGFR,FGFR3,ISK7, GFR,CFR3,RXR,CP,ANK,TBAcute Phase Response Signaling2.81-1AKT3,APC,APNS1,CSNR1A ARK14,MAPK3,1 GFCFR,XRA,SCDAcute Phase Response Signaling2.76-0.302HB1,AKT3,CFR2,PIN3,CSNR1A ARK14,MAPK3,1 CA,SAA1,Saa,SERINFTEphrin Receptor Signaling2.760ADCY6,AKT3,CREB1,GNB1, GN2,APK14,MAPK3,PIN3,C2G,PIN3,CZG,PIN	Protein Ubiquitination Pathway	2.91	NA	ANAPC5,BIRC2,DNAJB2,DN
Role of JAK2 in Hormone-like Cytokine Signaling2.9NAJAK2,SH2BJ,SIRPA,STAT5A SUSP8Role of Oxteoblasts, Oxteoclasts and Chondrocytes in Rheumatoid Arthritis2.9NAJAK2,SH2BJ,SIRPA,STAT5A STAT5BRole of Oxteoblasts, Oxteoclasts and Chondrocytes in Rheumatoid Arthritis2.9NAADAM17,AKT3,APC,BIRC2, Claiml (includes others)(CSNK1A1,FZD6,IKBK, G,ITGA,MARK14,MAPK3,OK FAT5,PIK3C2G,PIK3CARole of JAK1 and JAK3 in 7c Cytokine Signaling2.86NAJAK2,MAPK3,PIK3C2G,PIK3CA CARTAT5A,STAT5B,SYKEpithelial Adherens Junction Signaling2.85NAACVR2B,AKA7,JRAC2B,RK3CA RGC2G,PIK3CA,TANK,TB K1,TGFBR1,TLR3,TNFAP3, TRAF3NF-kB Signaling2.85-0.905AKT3,LGCR,FGRT,IKBKG, PIK3C2G,PIK3CA,TANK,TB K1,TGFBR1,TLR3,TNFAP3, TRAF3PXR/RXR Activation2.81-1AKT3,APC,GPRS,IKBKA, RGJAK2,MAPK14,MAPK3, PIK3CCA,SAALSBRP,TF1Acute Phase Response Signaling2.77-0.302AB11,AKT3,ATF2,CREB1,EPA HIB4,ONB1,008,21GA3,AJ RK2,MAPK3,APC,2APNS1,CSNK1A LMAPK14,MAPK3, PISZ/AKZ4P,INB,ZIGA3,AJ RC2,APK3,DT2,CSNK1A RC2,APK3,DT2,C				AJC12.HSPH1.MDM2.NEDD
Role of JAK2 in Hormone-like Cytokine Signaling2.9NAJAK2_SII2B1_SIRPA_STAT5A SUPARole of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.9NAJAK2_SII2B1_SIRPA_STAT5A STAT5BRole of JAK1 and JAK3 in ye Cytokine Signaling2.86NAJAK2_MAPK3_PK14MAPK3, A FAT5_PIK3C2G_PIK3CARole of JAK1 and JAK3 in ye Cytokine Signaling2.86NAJAK2_MAPK3_PK14MAPK3, A FAT5_PIK3C2G_PIK3CAPithelial Adherens Junction Signaling NF-kB Signaling2.85NAACVR2B_AKT3_ASTAT5B_SYK CASTAT5A_STAT5B_SYKPXR/RXR Activation2.83NAAKT3_ARAD, CPR3_IKBKG, PIK3C2G,PIK3CA_TANK, TB K1_TGFBR1_TLR3, TGFBR1_TLR3, TGFBR1_TLR3, TGFBR1_TLR3, TRAP3 TRAF3PXR/RXR Activation2.81-1AKT3_APC_APNS1_CSNK1A1 (GPC, RXRA_SCD)Acute Phase Response Signaling2.81-1.414AKT3_CA/C4B_FN1_HP_IKB KG_AK_SAPIK3C2G,PIK3CA (RSG, AARAS, PIK3C2G,PIK3CA (RSG, AARAS, PIK3C2G,PIK3CA, ANRAS, PIK3C2G,PIK3CA (RSG, AARAS, PIK3C2G,PIK3CA, ANRAS, PIK3C2G,PIK3CA (RSG, AARAS, PIK3C2G,PIK3CA, ANRAS, PIK3C2G,PIK3CA (RSG, AARAS, PIK3C2G,PIK3CA, ART3, AFT2, CREB1, EP HTARAS, PIK3C2G,PIK3CA, ART3, APC3, APR3, PICA, ART3, APC3, APR3, PICA, ART3, APC3, APR3, PICA, ART3, APC3, APR4S, PIK3C2G, PIK3CA (RSG, AARAS, PIK3C2G, PIK3CA, APR4S, PIK3C2G, PIK3CA, APIK3, PICA, ART3, CREB1, GNB1, APIK3, APR4S, PIK3C2G, PIK3CA, APIK3, PICA, APIK3, PICA, APIK3, PICA, ART3, CREB1, GNB1, APIK3, APIK3, APICA, APIK3, PICA, A				4L.PAN2.UBE4A.USP19.USP
Role of JAK2 in Hormone-like Cytokine Signaling2.9NAJAK2,SH2B1,SIRPA,STAT5A STAT5BRole of Octooblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.9NAADAM17,AKT3,APC,BIRC2, Calm1 (includes others),CSNK 1A,1FZD6,IKBK G,TIGA3,MAPK 14,MAPK3,NR FAT5,PIK3C2G,PIK3CARole of JAK1 and JAK3 in ye Cytokine Signaling2.86NAJAK2,MAPK3,PIK3C2G,PIK3 CA,STAT5A,STAT5B,SYKEpithelial Adherens Junction Signaling Epithelial Adherens Junction Signaling2.85NAACVR2B,AKT3,APC,BAIAP2 EGRE,PEP2,KEAP1,MAG11, MYH11,PARD3,TGFBR1NF-kB Signaling2.85-0.905AKT3,GER,FGFR3,IKBKG, PIK3C2G,PIK3CA,TANK,TBNF-kB Signaling2.81-1AKT3,ALAS1,CES3,CYP7A1, G6PC,RXRA,SCDAmyloid Processing2.81-1AKT3,AAC/4B,FN1,HP1,KB KG2/AC/4B,FN1,HP1,KB KG2/AC/4B,FN1,HP1,KB KG2/AC/4B,FN1,HP1,KB KG2/AAA,SAA,SAA,SAA,SAA,SAAS,SERPINF1Ephrin Receptor Signaling Ephrin Signaling2.76-0.302ABI1,AKT3,ATF2,CREB1,CPN1, FRAF3PI3K/AKT Signaling2.76-0.707AKT3,CEBP,IMAPK3,PIK3C2,CPN1, GN2,ACA,PIK,SC2G,PIK3,CAPI3K/AKT Signaling2.76-0.707AKT3,KERG,INPP5B,ITGA3 JAK2,AMAPK3,PIK3C2,CPN1, GN2,AMAPK3,NPR2,PDE1A, PDE4B,PIK3C2A,PIK3				2 USP21 USP34 USP36 USP4
Role of JAK2 in Hormone-like Cytokine Signaling2.9NAJAK2,SH2B1,SIRPA,STAT5A ,STAT5BRole of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.9NAADAMI 7,AKT3,APC,BIRC2, Calm1 (includes others),CSNK1A1,FZD6,IKBK G,ITGA3,MAPK14,MAPK3,N FAT5,PIK3C2G,PIK3CARole of JAK1 and JAK3 in yc Cytokine Signaling2.86NAJAK2,MAPK3,PIK3C2G,PIK3CA (CA,STAT5A,STAT5B,SYK Epithelial Adherens Junction SignalingNF-kB Signaling2.85NAACVR2B,AKT3,APC,BAIA22 (EGFR,EPR2,KEA,T3APC,BAIA22 (EGFR,EPR2,KEA,T3APC,BAIA22 (EGFR,EFR3,I,KBKG, PIK3C2G,PIK3CA,TANK,TB K1,TGFBR1,TLR3,TNFAIP3, TRAF3PXR/RXR Activation2.83NAAKT3,ALAS1,CES3,CYP7A1, (G6PC,RXRA,SCDAmyloid Processing2.81-1AKT3,APP,CAPNS1,CSNK1A (K3CA,SAA1,Saa3,SERPINF1Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,AT2,CREB1,GNB1, (R3CA,SAA1,Saa3,SERPINF1Ephrin Receptor Signaling2.760ADCY6,AKT3,CREB1,GNB1, (RM2,AMPK3,PIK3CC2,PIK3CA (CA,RT3,CREB1,GNB1, (SR2,AAA1,Saa3,SERPINF1PI3K/AKT Signaling2.76-0.707AKT3,CREB1,GNB1, (GNB2,MAPK3,PIK3CC2,PIK3CA (CA,RT3,CREB1,GNB1, (SR3CA,AMEX3,PIK3CC2,PIK3CA (CA,RT3,CREB1,GNB1, (SR3CA,AMEX3,PIK3CC2,PIK3CA (ARM2,AMEX3,PIC,CREB1,GNB1, (SR3CA,AMEX3,PIC,CREB1,GNB1, (SR3CA,AMEX3,PIC,CREB1,GNB1, (SR3CA,AMEX3,PIC,CREB1,GNB1, (SR3CA,AMEX3,PIC,CREB1,GNB1, (SR3CA,AMEX3,PIC,CREB1,GNB1, (SR3CA,AMEX3,PIC,CREB1,GNB1, (SR3CA,AMEX3,PIC,CREB1,GNB1, (SR3CA,AMEX3,PIC,CREB1,GNB1, (SR3CA,AMEX3,PIC,CREB1,GNB1, (SR3CA,AMEX3,PIC,CREB1,GNB1, (SR3CA,AMEX3,PIC,CREB1,GNB1, (SR3CA,AMEX3,PIC,CCA,SIRX3, (CC2,GPIK3CA,SIRX3				5 USD8
Role of JARC in homone-like Cytokine2.9NAJARC, STLD, SIRPA, STLDARole of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.9NAADAMIT, AKT3, APC, BIRC2, Calm1 (includes others), CSNK 1A1, FZD6, IKBK, G, TIGA3, MAPK 14, MAPK3, NR CA, STAT5, BYRK3C2G, PIK3 CA, STAT5, BYRK3C2G, PIK3 CA, STAT5, BYRK3C2G, PIK3 CA, STAT5, SYRK3C2G, PIK3 CG, STAT5, SYRK3C2G, PIK3 CG, STAT5, SYRK3C2G, PIK3 CG, STAT5, SYRK3C3G, PIK3 CG, STAT5, STAT5, SYRK3C3G, PIK3 CG, STAT5,	Data of LAK2 in Hamman 111- Catabing	2.0	NIA	JAKA CHADI CIDDA CTATEA
Signaling1.5113BRole of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.9NAADAMI7,AKT3,APC,BIRC2, Calmi (includes other)CSNK1A1,1FZD6,IKBK G,ITGA3,MAPK14,MAPK3,N FAT5,PIK3C2G,PIK3CACRole of JAK1 and JAK3 in yc Cytokine Signaling2.86NAJAK2,MAPK3,PIK3C2G,PIK3CAC CASTAT5A,STAT5A,STAT5B,SYKEpithelial Adherens Junction Signaling2.85NAACVR2B,AKT3,APC,BAIAP2 ,EGFR,EPN2,KEAP1,MAGII, MYH11,PARD3,TGFBR1NF-kB Signaling2.85-0.905AKT3,BGTK,FOFR3,IKBKG, PIK3C2G,PIK3CA,TANK,TB K1,TGFBR1,TLR3,TNFAIP3, TRAF3PXR/RXR Activation2.83NAAKT3,ALASI,CES3,CYP7A1, GGPC,RXRA,SCDAnyloid Processing2.81-1AKT3,ALASI,CES3,CYP7A1, GGPC,RXRA,SCDAcute Phase Response Signaling2.81-1AKT3,CAAC4B,FN1,HP,IKB KG,JAK2,MAPK14,MAPK3Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,AT2,CREB1,EP HB4,GNB1,GNB2,ITGA3,JA K2,GAPK3,NPR2,DE1A, PDE4B,PIK3C2G,PIX3Relaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,NPR2,C2PSNPI3K/AKT Signaling2.76-0.707AKT3,CBP,MAPK3,PIK3C 2G,PIK3CA, ASYN1,SYN12PI3K/AKT Signaling2.69-1.667ADCY6,AKT3,CTEB1,GNB1, GNB1,MAPK1,MAPK3,PIK3C 2G,PIK3CA, ASYN1,SYN12Endocannabinoid Developing Neuron Pathway2.64-1.633AKT3,ACRAPK3,MD2, PA2A,PIK3CA,PIK3CA,SI AACA,PIK3CA,PIK3CA,SI AACA,PIK3CA,PIK3CA,SI AACA,PIK3CA,PIK3CA,SI AACA,PIK3CA,PIK3CA,SI AACA,PIK3CA,PIK3CA,PIK3CA,SI AACAA,PIK3A,PIK3CA,PIK3CA,SI AACAA,PIK3A,PIK3CA,SI AACAA,PIK3A,PIK3CA,SI 	C' 1	2.9	INA	JAK2, SH2D1, SIKPA, STATJA
Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis2.9NAADAM17,AKT3,APC,BIRC2, Calm1 (includes others),CSNK1A1,FZD6,IKBK, G,ITGA3,MAPK14,MAPK3,N FAT5,PIK3C2G,PIK3CARole of JAK1 and JAK3 in ye Cytokine Signaling2.86NAJAK2,MAPK3,PIK3C2G,PIK3CA CA,STAT5A,STAT5B,SYK CA,STAT5A,STAT5B,SYK CA,STAT5A,STAT5B,SYK CA,STAT5A,STAT5B,SYKEpithelial Adherens Junction Signaling2.85NAACVR2B,AKT3,APC,BAIAP2 ,EGFR,FDR3,IKBKG, PIK3C2G,PIK3CA,TANK,TB K1,TGFBR1,TRA,TNPAIP3,TGFBR1 NYH11,PARD3,TGFBR1 NYH11,PARD3,TGFBR1 NYH11,PARD3,TGFBR1 RT,RAF3NF-kB Signaling2.85-0.905AKT3,EGFR,FGFR3,IKBKG, PIK3C2G,PIK3CA,TANK,TB K1,TGFBR1,TRA,TNPAIP3, TRAF3PXR/RXR Activation2.83NAAKT3,ALAS1,CES3,CYP7A1, G6PC,RXRA,SCDAcute Phase Response Signaling2.81-1AKT3,C4A/C4B,FN1,HP,IKB KG,JAX2,MAPK14,MAPK3, Acute Phase Response SignalingEphrin Receptor Signaling2.77-0.302ABI1,AKT3,ATP2,CREB1,EP HB4,GNB,GNB2,TIGA3,JA K2,MAPK3,PIK3C2G,PIK3CA ACUte Myeloid Leukemia Signaling2.760ADCY6,AKT3,CREB1,GPB1, GNB2,MAPK3,PIK3C2G,PIK3CA ACUte Myeloid Leukemia SignalingPI3K/AKT Signaling2.760AKT3,CBPA,MAPK3,PIK3C2G,PIK3CA ACUTEB1,GNB1,MAPK14,MAPK3,PIK3C2G,PIK3CA ACUTEB1,GNB1,MAPK14,MAPK3,PIK3C2G,PIK3CA ACUTEB1,GNB1,MAPK14,MAPK3,PIK3C2G,PIK3CA ACUTEB1,GNB1,MAPK14,MAPK3,PIK3C2G,PIK3CA,SI ACUTEB1,GNB1,MAPK14,MAPK3,PIK3C2G,PIK3CA,SI ACUTEB1,GNB1,MAPK14,MAPK3,PIK3C2G,PIK3CA,SI ACUTEB1,GNB1,MAPK14,MAPK3,PIK3C2G,PIK3CA,SI ACUTEB1,GNB1,MAPK14,MAPK3,PIK3CCA,PIK3C2G,PIK3CA,SI ACUTEB1,GNB1,MAPK14,MAPK3,PIK3CCA,PIK3C2G,PIK3CA,SI ACUTEB1,G	Signaling			,SIAI5B
Chondrocytes in Rheumatoid ArthritisCalm lineludes others)CSNK1A1,FZD6,KIBK G,TTGA3,MAPK14,MAPK3,N FATS,PIK3C2G,PIK3CARole of JAK1 and JAK3 in γc Cytokine Signaling2.86NAJAK2,MAPK3,PIK3C2G,PIK3CA CA,STAT5A,STAT5B,SYKEpithelial Adherens Junction Signaling2.85NAACVERB,AKT3,APC,BAIAP2 .GGFR,EPN2,KEAP1,MAGI1, .MYH11,PARD3,TGFBR1NF-κB Signaling2.85-0.905AKT3,GFR,FGR3,IKBKG, .PIK3C2G,PIK3CA,TANK,TB K1,TGFBR1,TLR3,TNFAIP3, .TRAFBR1,TLR3,TNFAIP3,TGFRB1,TRAS,TNFAIP3, .TRAFBR1,TLR3,TNFAIP3,TGA3,AK2,MAPK3,PIK3C2G,PIX .CAUEPAMAPK3,PIK3C2G,PIX .CAUEPAMAPK3,PIK3C2G,PIX3CA .CAUEPAMAPK3,PIK3C2G,PIX3CA .CAUEPAMAPK3,PIK3C2G,PIX3CA .CAUEPAMAPK3,PIK3C2G,PIX3CA .CAUEPAMAPK3,PIK3C2G,PIX3CA .CAUEPAMAPK3,PIK3C2G,PIX3CA .CAUEPAMAPK3,PIK3C2G,PIX3CA .CAUEPAMAPK3,PIK3C2G,PIX3CA .CAUEPAMAPK3,PIK3C2G,PIX3CA .CAUEPAMAPK3,PIK3C2G,PIX3CA .CAUEPAMAPK3,PIK3C2G,PIX3CA .CAUEPAMAPK3,PIK3C2G,PIX3CA .CAUEPAMAPK3,PIK3C2G,PIX3CA .CAUEPAMAPK3,PIK3C2G,PIX3CA .CAUEPAMAPK3,PIK3C2G,PIX3CA,PIX3,PIX3C .CAUEPAMAPK3,PIX3C2G,PIX3CA,PIX3,PIX3C .CAUEPAMAPK3,PIX3C2G,PIX3CA,PIX3,PIX3CAUEPAMAPK3,PIX3C2G,PIX3CA,PIX3,PIX3CAUEPAMAPK3,PIX3C2G,PIX3CA,PIX3,PIX3CAUEPAMAPK3,PIX3CAUEPAMAPK3,PIX3	Role of Osteoblasts, Osteoclasts and	2.9	NA	ADAM17,AKT3,APC,BIRC2,
Role of JAK1 and JAK3 in yc Cytokine Signaling2.86NAJAK2 JAK2C3,PIK3C2G,PIK3CARole of JAK1 and JAK3 in yc Cytokine Signaling2.86NAJAK2,MAPK3,PIK3C2G,PIK3CAEpithelial Adherens Junction Signaling2.85NAACVR2B,AKT3,APC,BAIAP2 JGFREPN2,KEAP1,MAGII, MYH11,PARD3,TGFBRINF-kB Signaling2.85-0.905AKT3,GCP,FGFR3,IKBKG, PIK3C2G,PIK3CA,TANK,TB K1,TGFBR1,TLR3,TNFAIP3, TRAF3PXR/RXR Activation2.83NAAKT3,ALASI,CES3,CYP7A1, G6PC,RXRA,SCDAmyloid Processing2.81-1AKT3,APC,CAPINS1,CSNK1A HMAPK14,MAPK3Acute Phase Response Signaling2.81-1.414AKT3,C4A/C4B,FN1,HP,IKB KGJ,AMAPK3,ALS2,MCRA,ISA3,SEPINF1Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,ATP2,CREB1,FP HB4,GNB1,GNB2,HT6A3,JA R2,MAPK3,PIK3C2G,PIK3CARelaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, R2,MAPK3,PIK3C2G,PIK3CAP13K/AKT Signaling2.76-0.707AKT3,KIBKG,INPP5B,ITGA3 JAK2,MAPK3,PIK3C2G,PIK3CAP13K/AKT Signaling2.760ACCY6,AKT3,CREB1,GNB1, R2,MAPK3,PIK3C2G,PIK3CAP13K/AKT Signaling2.76-0.707AKT3,KIBKG,INPP5B,ITGA3 JAK2,MAPK3,MDM2,PIK3C A,ST1,SNN2P13K/AKT Signaling2.69-1.667ADCY6,AKT3,CT2,CREB1,GNB1, C2G,PIK3CA, APIK3,CZG,PIK3CA, A,ST3,CIBH,GNB1,MAPK1,MAPK3,PIK3C2G,PIK3CA, C2G,PIK3CA, APIK3,MDM2,PIK3C2G,PIK3CA, C3G,PIK3CA,SNJAOvarian Cancer Signaling2.64-0.816AKT3,AC,ARB1,EGFR,FZ D6,MAPK3,PIK3C2G,PIK3CA,SI N3A	Chondrocytes in Rheumatoid Arthritis			Calm1 (includes
Role of JAK1 and JAK3 in yc Cytokine Signaling2.86NAJAK2_MAPK3,PIK3C2G,PIK3CA FAT5,PIK3C2G,PIK3 CA,STAT5A,STAT5B,SYKEpithelial Adherens Junction Signaling2.85NAACVR2B,AKT3,APC,BAIAP2 FGFR,EPN2,KEAP1,MAGI1, MYH11,PARD3,TGFBR1NF-κB Signaling2.85-0.905AKT3,EGFR,FGFR3,IKBKG, PIK3C2G,PIK3CA,TANK,TB K1,TGFBR1,TLR3,TNFAIP3, TRAF3PXR/RXR Activation2.83NAAKT3,ALCFR,FGFR3,IKBKG, PIK3C2G,PIK3CA,TANK,TB K1,TGFBR1,TLR3,TNFAIP3, TRAF3PXR/RXR Activation2.81-1AKT3,ACP,CAPNS1,CSNK1A 1,MAPK14,MAPK3,PIK3CCDAcute Phase Response Signaling2.81-1.414AKT3,CAVC4B,FN1,HP,IKB KGJAK2,MAPK14,MAPK3,PIK3C2G,PXNEphrin Receptor Signaling2.77-0.302ABILAKT3,ATF2,CREB1,EP1 HB4,GNB1,GNB2,ITGA3,JA K2,MAPK3,PIK3C2G,PXNRelaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,PIK3C2G,PXNPI3K/AKT Signaling2.76-0.707AKT3,CREB1,GNB1, GNB2,APK3,NPK2,PDE1A, PDE4B,PIK3C2G,PIK3CAPI3K/AKT Signaling2.76-0.707AKT3,CREB1,GNB1, GNB2,APK3,NPK2,PDE1A, PDE4B,PIK3C2G,PIK3CA, AKT3,CREB1,GNB1, GNB1,MAPK14,MAPK3,PIK3C C2G,PIK3CA,PIK3,CREB1,GNB1, GNB1,MAPK14,MAPK3,PIK3C C2G,PIK3CA,PIK3,CREB1,GNB1, GNB1,MAPK14,MAPK3,PIK3C C2G,PIK3CA,PIK3C2G,PIK3CA, AKT3,APC2,CREB1,GGR,MAPK3,PIK3C C2G,PIK3CA,PIK3C2G,PIK3CA, AKT3,APC2,CREB1,GGRK,PIK3C2G,PIK3CA, AKT3,APC2,ARRB1,EGFR,FZGlioma Signaling2.64-1.633AKT3,APC2,ARRB1,EGFR,FZ CAGPIK3CA,SIN3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ CAGPIK3CA,SIN3A <td></td> <td></td> <td></td> <td>others),CSNK1A1,FZD6,IKBK</td>				others),CSNK1A1,FZD6,IKBK
Image: constraint of the second sec				G,ITGA3,MAPK14,MAPK3,N
Role of JAK1 and JAK3 in γc Cytokine Signaling2.86NAJAK2_MAPK3,PIK3C2G,PIK3 CA_STAT5A_STAT5B,SYK CA_STAT5A_STAT5B,SYK CA_STAT5A_STAT5B,SYK Epithelial Adherens Junction Signaling2.85NAACVR2B_AKT3,APC_BIAP2 -EGFR,EPR2,KEAP1,MAGI1, MYH11,PARD3,TGFBR1NF-κB Signaling2.85-0.905AKT3,CEGR,FGFR3,IKBKG, PIK3C2G,PIK3CA_TANK,TB RAF3-0.905AKT3,CEGR,FGFR3,IKBKG, PIK3C2G,PIK3CA,TANK,TB RAF3PXR/RXR Activation2.83NAAKT3,ALAS1,CES3,CYP7A1, G6PC,RXRA,SCD-0.905-0.905Amyloid Processing2.81-1AKT3,ALAS1,CES3,CYP7A1, G6PC,RXRA,SCD-0.907Acute Phase Response Signaling2.81-1.414AKT3,C4A/C4B,FN1,HP,IKB KG,JAK2,MAPK14,MAPK3,P K3,CA,SAA1,Saa3,SERPINF1Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,ATE2,CREB1,EP HB4,ONB1,ONB2,ITGA3,JA K2,MAPK3,PIK3C2G,PIK3Acute Myeloid Leukemia Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,PIK3C2G,PIK3CA AKT3,CEBPA,MAPK3,PIK3C2G,PIK3CA AKT3,CEBPA,MAPK3,PIK3C2G,PIK3CA AKT3,CEBPA,MAPK3,PIK3C2G,PIK3CA AKT3,CEBPA,MAPK3,PIK3C2G,PIK3CA AKT3,CEBPA,MAPK3,PIK3C2G,PIK3CA AKT3,CEBPA,MAPK3,PIK3C2G,PIK3CA AKT3,CEBPA,MAPK3,PIK3C2G,PIK3CA AKT3,CEBPA,MAPK3,PIK3C2G,PIK3CA Glioma Signaling2.64-1.633AKT3,CAPCL,REB1, GNB1, GNB1,MAPK14,MAPK3,PIK3C2G,PIK3CA,SI ASAOvarian Cancer Signaling2.64-0.816AKT3,CARRB1,EGFR,FZ CAG,PIK3CA,PIK3C2G,PIK3CA,PIK3C2G,PIK3CA,PIK3C2G,PIK3CA,PIK3C2G,PIK3CA,PIK3C2G,PIK3CA,PIK3C2G,PIK3CA,PIK3C2G,PIK3CA,PIK3C2G,PIK3CA,PIK3C2G,PIK3CA,PIK3C2G,PIK3CA,PIK3C2G,PIK3CA,PIK3C2G,PIK3CA,PIK3C2G,PIK3CA,PIK3C2G,PIK3CA,PIK3C2G,PIK3CA,PIK3C2G,PIK3CA,P				FAT5.PIK3C2G.PIK3CA
SignalingDisc<	Role of IAK1 and IAK3 in vc Cytokine	2.86	NA	IAK2 MAPK3 PIK3C2G PIK3
Departing Epithelial Adherens Junction Signaling2.85NAACVR2B,AKT3,APC,BAIAP2 ,EGFR,EPN2,KEAP1,MAG(I), MYH11,PARD3,TGFBR1NF-κB Signaling2.85-0.905AKT3,EGFR,FGR3,IKBKG, PIK3C2G,PIK3CA,TANK,TB K1,TGFBR1,TLR3,TNFAIP3, TRAF3PXR/RXR Activation2.83NAAKT3,ALAS1,CES3,CYP7A1, GPC,RXRA,SCDAmyloid Processing2.81-1AKT3,APC,PAPNS1,CSNK1A 1,MAPK14,MAPK3Acute Phase Response Signaling2.81-1.414AKT3,C4A/C4B,FN1,HP,IKB KGJAAK2,MAPK14,MAPK3, PIK3CC4,SAA1,Saa3,SERPINF1Ephrin Receptor Signaling2.77-0.302AB11,AKT3,ATF2,CREB1,EP HB4,GNB1,GNB2,ITGA3,JA K2,MAPK3,NPR2,PDE1A, PDE4B,PIK3C2G,PIK3CAAcute Myeloid Leukemia Signaling2.760ADCY6,AKT3,CEB1,GNB1, GNB2,MAPK3,NPR2,PDE1A, PDE4B,PIK3C2G,PIK3CAP13K/AKT Signaling2.76-0.707AKT3,CEB1,GNB1, GNB2,MAPK3,NPR2,PDE1A, PDE4B,PIK3C2G,PIK3CAP13K/AKT Signaling2.69-1.667ADCY6,AKT3,ATF2,CREB1,GRB1,GNB2, GNB1,MAPK14,MAPK3,PIK3C C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),ECFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PIK3C2G,PIK3CA, SI SI	Signaling	2.00	1.1.1	CA STAT5A STAT5B SYK
Indexterior Signaling2.83IAAACVALB,ART,BAPC,BART2 ,EGFR,EPN2,KEAPL,MAGH, MYH11,PARD3,TGFBR1NF-kB Signaling2.85-0.905AKT3,EGFR,FGFR3,IKBKG, PIK3C2G,PIK3CA,TANK,TB K1,TGFBR1,TLR3,TNFAIP3, TRAF3PXR/RXR Activation2.83NAAKT3,ALASI,CES3,CYP7A1, G6PC,RXRA,SCDAmyloid Processing2.81-1AKT3,APP,CAPNS1,CSNK1A I,MAPK14,MAPK3,PIK3Acute Phase Response Signaling2.81-1.414AKT3,CFA/C4B,FN1,HP,IKB KG,JAK2,MAPK14,MAPK3,PI IK3CA,SALSA,SALS,SERPINF1Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,ATF2,CREB1,EP HB4,GNB1,GNB2,ITGA3,JA K2MAPK3,PIK3C2G,PXNRelaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,PIK3C2G,PXNP13K/AKT Signaling2.76-0.707AKT3,CEBPA,MAPK3,PIK3C2 G,PIK3CA,APML,SA,ST ATSBP13K/AKT Signaling2.64-1.633AKT3,IKBKG,INPP5B,ITGA3, JAK2,MAPK3,MDM2,PIK3C C2G,PIK3CA, SCA,PILSSCA,SI ACAPK3,ACA,SINJ,SND2Ovarian Cancer Signaling2.64-0.816AKT3,CARB1,EGFR,FZ D6MAPK3,PIK3C2G,PIK3CA, SCA,PIK3CA,PIK	Enithelial Adherens Junction Signaling	2.85	NA	ACVD2D AKT2 ADC DAIAD2
Jork BarlowJork BarlowJork BarlowMythilpARD3 MythilpARD3 TGFBR1NF-kB Signaling2.85-0.905AKT3.EGFR,FGFR3,IKBKG, PIK3C2G,PIK3CA,TANK,TB K1,TGFBR1,TLR3,TNFAIP3, TRAF3PXR/RXR Activation2.83NAAKT3.ALAS1,CES3,CYP7A1, G6PC,RXRA,SCDAmyloid Processing2.81-1AKT3,APC,APNS1,CSNK1A 1,MAPK14,MAPK3Acute Phase Response Signaling2.81-1.414AKT3,C4A/C4B,FN1,HP,IKB KG,JAK2,MAPK3,PIK3C2G,PXNEphrin Receptor Signaling2.77-0.302ABI1,AKT3,ATF2,CREB1,EP HB4,GNB1,GNB2,ITGA3,JA K2,MAPK3,PIK3C2G,PXNRelaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,NPR2,PDE1A, PDE4B,PIK3C2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.730AKT3,RBKG,INPPSB,ITGA3, JAK2,MAPK3,MDM2,PIK3C C2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.69-1.667ADCY6,AKT3,CT8E1,GNB1, GNB1,MAPK14,MAPK3,PIK3C C2G,PIK3CA,PML,STAT5A,ST AT5BOvarian Cancer Signaling2.64-0.816AKT3,APC,ARB1,EGFR,FZ D6,MAPK3,AD24,PIK3C2G,PIK3CA,SIN3A	Epithenal Adherens Junction Signating	2.03	INA	ACVR2D, ARTJ, AFC, DAIAFZ
NF-kB Signaling2.85-0.905AKT3,LGFR,FGFR3,IKBKG, PIK3C2G,PIK3CA,TANK,TB K1,TGFBR1,TLR3,TNFAIP3, TRAF3PXR/RXR Activation2.83NAAKT3,ALAS1,CES3,CYP7A1, G6PC,RXRA,SCDAmyloid Processing2.81-1AKT3,APF,CAPNS1,CSNK1A 1,MAPK14,MAPK3, RAF8Acute Phase Response Signaling2.81-1AKT3,C4A/C4B,FN1,HP,IKB KG,JAK2,MAPK14,MAPK3,P IK3CA,SAA1,Saa3,SERPINF1Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,ATF2,CREB1,EP HB4,GNB1,GNB2,TTGA3,JA K2,MAPK3,PIK3C2G,PIXRelaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,NPR2,PDE1A, PDE4B,PIK3C2G,PIK3CAPI3K/AKT Signaling2.76-0.707AKT3,IKBKG,INPP5B,ITGA3 JAK2,MAPK3,MDM2,PIK3C C2G,PIK3CA,PI3K/AKT Signaling2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK3,MDM2,PIK3C C2G,PIK3CAOvarian Cancer Signaling2.64-1.633AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,MDM2, PA264,PIK3C2G,PIK3CA,SI N3A				,EGFR,EPN2,KEAP1,MAGI1,
NF-κB Signaling2.85-0.905AKT3,EGFR,FGFR3,KBKG, PIK3C2G,PIK3CA,TANK,TB KI,TGFBRI,TLR3,TNFAIP3, TRAF3PXR/RXR Activation2.83NAAKT3,ALAS1,CES3,CYP7A1, GGPC,RXRA,SCDAmyloid Processing2.81-1AKT3,APC,CAPNS1,CSNK1A 1,MAPK14,MAPK3Acute Phase Response Signaling2.81-1.414AKT3,C4A/C4B,FN1,HP,IKB KG,JAK2,MAPK14,MAPK3,P IK3CA,SAA1,Saa3,SERPINF1Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,ATF2,CREB1,EP HB4,GNB1,GNB2,ITGA3,JA KZ,MAPK3,PPE1A, OB2,MAPK3,NPR2,PDE1A, OB2,MAPK3,NPR2,PDE1A, ACute Myeloid Leukemia Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,NPR2,PDE1A, AKT3,CEBPA,MAPK3,PIK3C2G,PIK3CA, PDE4B,PIK3C2G,PIK3CA, PDE4B,PIK3C2G,PIK3CA, ACute Myeloid Leukemia Signaling2.76-0.707AKT3,LEBKG,INPP5B,ITGA3 JAK2,MAPK3,MDM2,PIK3C A,SYNJ1,SYNJ2PI3K/AKT Signaling2.730AKT3,LEBKG,INPP5B,ITGA3 JAK2,MAPK3,MDM2,PIK3C C2G,PIK3CA, ACUTA, ACUTA, A				MYHII,PARD3,TGFBRI
PXR/RXR Activation2.83NAPKR3C2G,PIK3CA,TANK,TB K1,TGFBR1,TLR3,TNFAIP3, TRAF3PXR/RXR Activation2.81-1AKT3,ALAS1,CES3,CYP7A1, G6PC,RXRA,SCDAmyloid Processing2.81-1AKT3,APP,CAPNS1,CSNK1A 1,MAPK14,MAPK3Acute Phase Response Signaling2.81-1.414AKT3,C4A/C4B,FN1,HP,IKB KG,JAK2,MAPK14,MAPK3,P IK3CA,SAA1,Saa3,SERPINF1Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,ATF2,CREB1,EP HB4,GNB1,GNB2,ITGA3,JA K2,MAPK3,PIK3C2G,PXNRelaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,PIRX3C 2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.76-0.707AKT3,CREB1,GNB1, GNB2,MAPK3,PIRX3C 2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3 JAK2,MAPK3,MDM2,PIK3C C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ OKAYA,SIN3A	NF-KB Signaling	2.85	-0.905	AKT3,EGFR,FGFR3,IKBKG,
PXR/RXR Activation2.83NAK1,TGFBR1,TLR3,TNFAIP3, TRAF3PXR/RXR Activation2.83NAAKT3,ALAS1,CES3,CYP7A1, G6PC,RXRA,SCDAmyloid Processing2.81-1AKT3,APP,CAPNS1,CSNK1A 1,MAPK14,MAPK3Acute Phase Response Signaling2.81-1.414AKT3,CAV/C4B,FN1,HP,IKB KG,JAK2,MAPK14,MAPK3,P IK3CA,SAA1,Saa3,SERPINF1Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,ATF2,CREB1,EP PIB4,GNB1,GNB2,ITGA3,JA K2,MAPK3,PIK3C2G,PXNRelaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,NPR2,PDE1A, PDE4B,PIK3C2G,PIK3CAAcute Myeloid Leukemia Signaling2.76-0.707AKT3,CEBPA,MAPK3,PIK3C 2G,PIK3CA,APML,STATSA,ST AT5BPI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3 JAK2,MAPK3,MDM2,PIK3C C2G,PIK3CAGlioma Signaling2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,IRK3 C2G,PIK3CA, ARPS,AMD2,PIK3C ACA,APK3,MDM2,PIK3C C2G,PIK3CA,APK3,MDM2,PIK3C C2G,PIK3CA,ASINJAOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ OMAPK3,PIK3C2G,PIK3CA,SIN3A				PIK3C2G,PIK3CA,TANK,TB
PXR/RXR Activation2.83NAAKT3,ALAS1,CES3,CYP7A1, G6PC,RXRA,SCDAmyloid Processing2.81-1AKT3,APP,CAPNS1,CSNK1A 1,MAPK14,MAPK3Acute Phase Response Signaling2.81-1.414AKT3,C4A/C4B,FN1,HP,IKB KG,JAK2,MAPK14,MAPK3,PI IK3CA,SAA1,Saa3,SERPINF1Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,ATF2,CREB1,EP HB4,GNB1,GNB2,ITGA3,JA K2,MAPK3,PIK3C2G,PNNRelaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,NPR2,PDE1A, PDE4B,PIK3C2G,PIK3CAAcute Myeloid Leukemia Signaling2.76-0.707AKT3,CEBPA,MAPK3,PIK3C 2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3 ,JAK2,MAPK3,MDM2,PIK3C 2G,PIK3CAPI3K/AKT Signaling2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3C C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others), EGFR,MAPK3,MDM2, PIK3CA,SINAOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PIK3C2A,PIK3C2A,PIK3C2A,PIK3C2A,PIK3CA,SINAA				K1,TGFBR1,TLR3,TNFAIP3,
PXR/RXR Activation2.83NAAKT3,ALAS1,CES3,CYP7A1, G6PC,RXRA,SCDAmyloid Processing2.81-1AKT3,APP,CAPNS1,CSNK1A 1,MAPK14,MAPK3Acute Phase Response Signaling2.81-1.414AKT3,C4A/C4B,FN1,HP,IKB KG,JAK2,MAPK14,MAPK3,P IK3CA,SAA1,Saa3,SERPINF1Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,ATF2,CREB1,EP HB4,GNB1,GNB2,ITGA3,JA K2,MAPK3,PIK3C2G,PXNRelaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,PIK3C2G,PIXAcute Myeloid Leukemia Signaling2.76-0.707AKT3,CEBPA,MAPK3,PIK3C 2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3 JAK2,MAPK3,MDM2,PIK3C A,SYNJ1,SYNJ2Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,CREB1,GRB1, GNB1,MAPK14,MAPK3,PIK3C C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others), EGFR,MAPK3,MDM2, PIK3CA,SIN3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PIK3C2G,PIK3CA,SIN3A				TRAF3
Amyloid Processing2.81-1G6PC,RXRA,SCDAmyloid Processing2.81-1AKT3,APP,CAPNS1,CSNK1A 1,MAPK14,MAPK3Acute Phase Response Signaling2.81-1.414AKT3,CAV/C4B,FN1,HP,IKB KG,JAK2,MAPK14,MAPK3,P IK3CA,SAA1,Saa3,SERPINF1Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,ATF2,CREB1,EP HB4,GNB1,GNB2,ITGA3,JA K2,MAPK3,PIK3C2G,PINNRelaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,PIK3C2G,PIXAcute Myeloid Leukemia Signaling2.76-0.707AKT3,CEBPA,MAPK3,PIK3C 2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3 J,AK2,MAPK3,MDM2,PIK3C 2G,PIK3CA,AFT2,CREB1, GNB1,MAPK14,MAPK3,PIK3C C2G,PIK3CAPi3k/AKT Signaling2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3C C2G,PIK3CAGlioma Signaling2.64-1.663AKT3,CAlm1 (includes others),EGFR,MAPK3,PIK3C C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PIK3C2G,PIK3CA,SI N3A	PXR/RXR Activation	2.83	NA	AKT3.ALAS1.CES3.CYP7A1.
Amyloid Processing2.81-1AKT3,APP,CAPNS1,CSNK1A 1,MAPK14,MAPK3Acute Phase Response Signaling2.81-1.414AKT3,C4A/C4B,FN1,HP,IKB KG,JAK2,MAPK14,MAPK3,Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,ATF2,CREB1,EP HB4,GNB1,GNB2,ITGA3,JA K2,MAPK3,PIK3C2G,PINRelaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,PIK3C2G,PINAcute Myeloid Leukemia Signaling2.76-0.707AKT3,CEBPA,MAPK3,PIK3C 2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.730AKT3,IKBKG,INP5B,ITGA3 JAK2,MAPK3,MDM2,PIK3C 2G,PIK3CA,AMDM2,PIK3C 2G,PIK3CA,AMDM2,PIK3C 2CG,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, NA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PIC3CG,PIK3CA,SI N3A		2.00		G6PC RXRA SCD
Anityond Frocessing2.61-1Ant T3, AT T3, CAT N3T, CSN NATA T, MAPK13, MPK13, MPK3Acute Phase Response Signaling2.81-1.414AKT3, C4A/C4B, FN1, HP, IKB KG, JAK2, MAPK14, MAPK3, P IK3CA, SAA1, Saa3, SERPINF1Ephrin Receptor Signaling2.77-0.302ABI1, AKT3, ATF2, CREB1, EP HB4, GNB1, GNB2, ITGA3, JA K2, MAPK3, PIK3C2G, PXNRelaxin Signaling2.760ADCY6, AKT3, CEB1, GNB1, GNB2, MAPK3, NPR2, PDE1A, PDE4B, PIK3C2G, PIK3CAAcute Myeloid Leukemia Signaling2.76-0.707AKT3, CEBPA, MAPK3, PIK3C 2G, PIK3CA, PML, STAT5A, ST AT5BPI3K/AKT Signaling2.730AKT3, IKBKG, INPP5B, ITGA3 JAK2, MAPK3, MDM2, PIK3C CA, SYNJ1, SYNJ2Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6, AKT3, ATF2, CREB1, GNB1, MAPK14, MAPK3, PIK3C C2G, PIK3CA, AGlioma Signaling2.64-1.633AKT3, Calm1 (includes others), EGFR, MAPK3, MDM2, PA2G4, PIK3C2G, PIK3CA, SI N3AOvarian Cancer Signaling2.64-0.816AKT3, APC, ARRB1, EGFR, FZ D6, MAPK3, PA2G4, PIK3C2G, PIK3CA, SI N3A	Amulaid Processing	2.81	1	AKT3 ADD CADNS1 CSNK1A
Acute Phase Response Signaling2.81-1.414AKTS,CAA/C4B,FN1,HP,IKB KG,JAK2,MAPK14,MAPK3,P IK3CA,SAA1,Saa3,SERPINF1Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,ATF2,CREB1,EP HB4,GNB1,GNB2,ITGA3,JA K2,MAPK3,PIK3C2G,PIXRelaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,NPR2,PDE1A, PDE4B,PIK3C2G,PIK3CAAcute Myeloid Leukemia Signaling2.76-0.707AKT3,CEBPA,MAPK3,PIK3C 2G,PIK3CA,PML,STAT5A,ST AT5BP13K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3 ,JAK2,MAPK3,MDM2,PIK3C A,SYN1,SYNJ2Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK1,MAPK3,PIK3C C2G,PIK3CA, ASYN1,SYNJ2Glioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A	Anyloid Trocessing	2.01	-1	1 MADK 1/ MADK 3
Acute Phase Response Signaling2.81-1.414AK 15,04/C46,INT,IF,IK,BS KG JAK2,MAPK14,MAPK3,P IK3CA,SAA1,Saa3,SERPINF1Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,ATF2,CREB1,EP HB4,GNB1,GNB2,ITGA3,JA K2,MAPK3,PIK3C2G,PXNRelaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,PIK3C2G,PIK3CAAcute Myeloid Leukemia Signaling2.76-0.707AKT3,CEBPA,MAPK3,PIK3C 2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.76-0.707AKT3,IKBKG,INPP5B,ITGA3 JAK2,MAPK3,MDM2,PIK3C C2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3C C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,CEBR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PIK3C2G,PIK3CA,SI N3A	A auto Dhago Dognongo Signaling	2.91	1 414	AVT2 CAA/CAD ENILID IVD
Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,ATF2,CREB1,EP HB4,GNB1,GNB2,ITGA3,JA K2,MAPK3,PIK3C2G,PXNRelaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,NPR2,PDE1A, PDE4B,PIK3C2G,PIK3CAAcute Myeloid Leukemia Signaling2.76-0.707AKT3,CEBPA,MAPK3,PIK3C 2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3, ,JAK2,MAPK3,MDM2,PIK3C A,SYNJ1,SYNJ2Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3C C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PIK3C2G,PIK3CA,SI N3A	Acute Phase Response Signaling	2.01	-1.414	AK15,C4A/C4D,FN1, IP, IKD
Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,AT2,CREB1,EP HB4,GNB1,GNB2,ITGA3,JA K2,MAPK3,PIK3C2G,PXNRelaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,NPR2,PDE1A, PDE4B,PIK3C2G,PIK3CAAcute Myeloid Leukemia Signaling2.76-0.707AKT3,CEBPA,MAPK3,PIK3C 2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3 ,JAK2,MAPK3,MDM2,PIK3C 4,SYN11,SYNJ2Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3 C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PIK3C2G,PIK3CA,SI N3A				KG,JAK2,MAPK14,MAPK3,P
Ephrin Receptor Signaling2.77-0.302ABI1,AKT3,ATF2,CREB1,EP HB4,GNB1,GNB2,ITGA3,JA K2,MAPK3,PIK3C2G,PXNRelaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,NPR2,PDE1A, PDE4B,PIK3C2G,PIK3CAAcute Myeloid Leukemia Signaling2.76-0.707AKT3,CEBPA,MAPK3,PIK3C 2G,PIK3CA, AT5BPI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3 JAK2,MAPK3,MDM2,PIK3C A,SYNJ1,SYNJ2Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3 C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A				IK3CA,SAA1,Saa3,SERPINF1
Relaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,NPR2,PDE1A, PDE4B,PIK3C2G,PIK3CAAcute Myeloid Leukemia Signaling2.76-0.707AKT3,CEBPA,MAPK3,PIK3C 2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3, ,JAK2,MAPK3,MDM2,PIK3C A,SYNJ1,SYNJ2Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3 C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,CeBFR,MAPK3,MDM2, PA2G4,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A	Ephrin Receptor Signaling	2.77	-0.302	ABI1,AKT3,ATF2,CREB1,EP
Relaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,NPR2,PDE1A, PDE4B,PIK3C2G,PIK3CAAcute Myeloid Leukemia Signaling2.76-0.707AKT3,CEBPA,MAPK3,PIK3C 2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3, JAK2,MAPK3,MDM2,PIK3C ASYNJ1,SYNJ2Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3 C2G,PIK3CA,Glioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A				HB4,GNB1,GNB2,ITGA3,JA
Relaxin Signaling2.760ADCY6,AKT3,CREB1,GNB1, GNB2,MAPK3,NPR2,PDE1A, PDE4B,PIK3C2G,PIK3CAAcute Myeloid Leukemia Signaling2.76-0.707AKT3,CEBPA,MAPK3,PIK3C 2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3 ,JAK2,MAPK3,MDM2,PIK3C A,SYNJ1,SYNJ2Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,CTE2,CREB1, GNB1,MAPK14,MAPK3,PIK3 C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A				K2,MAPK3,PIK3C2G,PXN
ConstraintGNB2,MAPK3,NPR2,PDE1A, PDE4B,PIK3C2G,PIK3CAAcute Myeloid Leukemia Signaling2.76-0.707AKT3,CEBPA,MAPK3,PIK3C 2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3 ,JAK2,MAPK3,MDM2,PIK3C A,SYNJ1,SYNJ2Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3 C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A	Relaxin Signaling	2.76	0	ADCY6,AKT3,CREB1,GNB1,
Acute Myeloid Leukemia Signaling2.76-0.707AKT3,CEBPA,MAPK3,PIK3C 2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3 ,JAK2,MAPK3,MDM2,PIK3C A,SYNJ1,SYNJ2Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3 C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PIC3C2G, PIK3C2G, PIK3CA,SIN3A	6 6			GNB2.MAPK3.NPR2.PDE1A.
Acute Myeloid Leukemia Signaling2.76-0.707AKT3,CEBPA,MAPK3,PIK3C 2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3 ,JAK2,MAPK3,MDM2,PIK3C A,SYNJ1,SYNJ2Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3 C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A				PDF4B PIK 3C2G PIK 3CA
Acute Myeloid Leakenna Signaling2.70-0.707AK R5,CEBF A,MARKS,FIRSC 2G,PIK3CA,PML,STAT5A,ST AT5BPI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3 ,JAK2,MAPK3,MDM2,PIK3C A,SYNJ1,SYNJ2Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3 C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PIK3C2G, PIK3CA,SIN3A	A auto Mueloid Laukomia Signaling	2.76	0.707	AKT2 CEDDA MADK2 DK2C
PI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3 ,JAK2,MAPK3,MDM2,PIK3C A,SYNJ1,SYNJ2Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3 C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A	Acute Myciola Leakenna Signanng	2.70	-0.707	AKIS, CEDFA, MAFKS, FIKSC
PI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3 ,JAK2,MAPK3,MDM2,PIK3C A,SYNJ1,SYNJ2Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3 C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A				20,PIK5CA,PIML,STAT5A,ST
PI3K/AKT Signaling2.730AKT3,IKBKG,INPP5B,ITGA3 ,JAK2,MAPK3,MDM2,PIK3C A,SYNJ1,SYNJ2Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3 C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A		0.50	<u>^</u>	AISB
Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3 C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PIK3C2G, PIK3CA,SIN3A	PI3K/AKT Signaling	2.73	0	AKT3,IKBKG,INPP5B,ITGA3
Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3 C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PIK3C2G, PIK3CA,SIN3A				,JAK2,MAPK3,MDM2,PIK3C
Endocannabinoid Developing Neuron Pathway2.69-1.667ADCY6,AKT3,ATF2,CREB1, GNB1,MAPK14,MAPK3,PIK3 C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PIK3C2G, PIK3CA,SIN3A				A,SYNJ1,SYNJ2
PathwayGNB1,MAPK14,MAPK3,PIK3 C2G,PIK3CAGlioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A	Endocannabinoid Developing Neuron	2.69	-1.667	ADCY6,AKT3,ATF2,CREB1,
Glioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A	Pathway			GNB1.MAPK14.MAPK3.PIK3
Glioma Signaling2.64-1.633AKT3,Calm1 (includes others),EGFR,MAPK3,MDM2, PA2G4,PIK3C2G,PIK3CA,SI N3AOvarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A	5			C2G.PIK3CA
Ovarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A	Glioma Signaling	2.64	-1 633	AKT3 Calm1 (includes
Ovarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZD6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A	Ghoma Signaning	2.01	1.055	others) EGEP MAPK 3 MDM2
Ovarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZD6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A				DA 2CA DIV 2C2C DIV 2CA SI
Ovarian Cancer Signaling 2.64 -0.816 AKT3,APC,ARRB1,EGFR,FZ D6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A				1 A204, FIK3C20, FIK3CA, SI
Ovarian Cancer Signaling2.64-0.816AKT3,APC,ARRB1,EGFR,FZD6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A		2.64	0.017	
D6,MAPK3,PA2G4,PIK3C2G, PIK3CA,SIN3A	Ovarian Cancer Signaling	2.64	-0.816	AK13,APC,ARRB1,EGFR,FZ
PIK3CA,SIN3A				D6,MAPK3,PA2G4,PIK3C2G,
				PIK3CA,SIN3A

Gaq Signaling	2.64	-0.333	AKT3,Calm1 (includes
			others),GNB1,GNB2,GRK2,IK
			BKG,MAPK3,PIK3C2G,PIK3
			CA,RHOBTB1,RHOT1
Integrin Signaling	2.64	0.302	AKT3,ASAP1,CAPNS1,GIT1,
			ITGA3,ITGAV,MAPK3,PIK3
			C2G,PIK3CA,PXN,RHOBTB1
			,RHOT1,TNK2
Huntington's Disease Signaling	2.6	0	AKT3,ATF2,ATP5F1C,CAPN
			S1,CREB1,EGFR,GNB1,GNB
			2,MAPK3,NAPA,PIK3C2G,PI
			K3CA,SIN3A,ZDHHC17
EGF Signaling	2.53	-1.633	AKT3,EGFR,MAPK14,MAPK
			3,PIK3C2G,PIK3CA
Role of PKR in Interferon Induction and	2.53	NA	ATF2,IKBKG,MAPK14,TLR3
Antiviral Response			,TRAF3
Erythropoietin Signaling	2.52	NA	AKT3,JAK2,MAPK3,PIK3C2
			G,PIK3CA,STAT5A,STAT5B
IL-3 Signaling	2.52	0.378	AKT3,JAK2,MAPK3,PIK3C2
0 0			G,PIK3CA,STAT5A,STAT5B
Fc Epsilon RI Signaling	2.52	-1.667	AKT3,INPP5B,MAPK14,MAP
			K3,PIK3C2G,PIK3CA,SYK,S
			YNJ1,SYNJ2
Cardiac Hypertrophy Signaling	2.51	0	ADCY6.ATF2.Calm1
51 1 5 6 6		-	(includes
			others).CREB1.GNB1.GNB2.
			MAP3K13.MAPK14.MAPK3.
			PIK3C2G.PIK3CA.RHOBTB1
			,RHOT1.TGFBR1
Natural Killer Cell Signaling	2.49	NA	AKT3.FCGR2A.INPP5B.MAP
			K3.PIK3C2G.PIK3CA.SYK.S
			YNJ1.SYNJ2
IL-17 Signaling	2.49	NA	AKT3.ATF2.JAK2.MAPK14.
			MAPK3,PIK3C2G,PIK3CA
Systemic Lupus Erythematosus In B Cell	2.45	-1.291	AKT3,Calm1 (includes
Signaling Pathway			others),FCGR2A,INPP5B,JAK
			2,MAPK3,NFAT5,PIK3C2G,P
			IK3CA,SYK,SYNJ1,SYNJ2,T
			BK1,TLR3,TRAF3
CXCR4 Signaling	2.44	0.333	ADCY6,AKT3,EGR1,GNB1,G
			NB2,MAPK3,PIK3C2G,PIK3
			CA,PXN,RHOBTB1,RHOT1
LPS-stimulated MAPK Signaling	2.43	-1.134	ATF2,CREB1,IKBKG,MAPK
			14,MAPK3,PIK3C2G,PIK3CA
NF-KB Activation by Viruses	2.4	-0.378	AKT3,IKBKG,ITGA3,ITGAV,
,			MAPK3.PIK3C2G.PIK3CA
Docosahexaenoic Acid (DHA) Signaling	2.39	NA	AKT3.APP.PIK3C2G.PIK3CA
		1.1.1	.SERPINF1
Molecular Mechanisms of Cancer	2.37	NA	ADCY6.AKT3.APC.ATR.BIR
			C2.FZD6.ITGA3.JAK2.MAPK
			14.MAPK3.MDM2.PA2G4.PI
			K3C2G.PIK3CA.RALBP1.RH
			OBTB1.RHOT1.SIN3A.TGFB
			R1
GNRH Signaling	2.37	0	ADCY6,ATF2,Calm1
6 6			(includes
			others),CREB1,EGFR,EGR1.G
			NB1,MAP3K13,MAPK14,MA
			PK3,PXN
Cancer Drug Resistance By Drug Efflux	2.32	NA	ABCC10,AKT3,MAPK3.MD
			M2,PDK1,PIK3CA

Dendritic Cell Maturation	2.28	-0.905	AKT3,ATF2,CREB1,FCGR2A
			,IKBKG,JAK2,MAPK14,MAP
			K3,PIK3C2G,PIK3CA,TLR3
Thrombopoietin Signaling	2.25	0.816	JAK2,MAPK3,PIK3C2G,PIK3
			CA,STAT5A,STAT5B
Thrombin Signaling	2.22	-1.667	ADCY6,AKT3,CREB1,EGFR,
			GNB1,GNB2,MAPK14,MAPK
			3.PIK3C2G.PIK3CA.RHOBT
			B1,RHOT1
P2Y Purigenic Receptor Signaling Pathway	2.21	-0.707	ADCY6.AKT3.ATF2.CREB1.
			GNB1.GNB2.MAPK3.PIK3C2
			G PIK 3CA
HGF Signaling	2 19	0	AKT3 ATF2 ITGA3 MAP3K1
iioi signamig	2.19	Ũ	3 MAPK 3 PIK 3C2G PIK 3CA
			PXN
FrbB4 Signaling	2.16	-0.447	ADAM17 FRBB4 MAPK 3 PI
LIOD I Signamig	2.10	0.117	K3C2G PIK3CA VAP1
PDGE Signaling	2.16	0.378	INPP5B LAK2 MAPK3 PIK3C
i Dor Signaning	2.10	0.578	2G DIK2CA SVNI1 SVNI2
TNEP1 Signaling	2.15	0	BIDC2 IK BKG MADD TANK
	2.13	0	TNEAD2
4 1DD Signaling in T Lymphosytos	2.15	1	ATE2 IV DV C MADV 14 MAD
4-1BB Signaling in 1 Lymphocytes	2.15	-1	K_{1}
CM CSE Signation	2.12	0	KJ
GM-CSF Signaling	2.15	0	AKIS,JAK2,MAPKS,PIKSC2
	0.10		GPIK3CA,STAT5B
Phosphatidylcholine Biosynthesis I	2.13	NA	
ILK Signaling	2.13	-0.632	AK13,A1F2,CREB1,FN1,MA
			PK3,MYH11,PIK3C2G,PIK3C
			A,PXN,RHOBTBI,RHOTT
Tec Kinase Signaling	2.12	1.89	GNB1,GNB2,ITGA3,JAK2,PI
			K3C2G,PIK3CA,RHOBTB1,R
		-	HOT1,STAT5A,STAT5B
IL-9 Signaling	2.1	1	PIK3C2G,PIK3CA,STAT5A,S
			ТАТ5В
PI3K Signaling in B Lymphocytes	2.09	-2.333	AKT3,ATF2,Calm1 (includes
			others),CREB1,IKBKG,MAPK
			3,NFAT5,PIK3CA,SYK
White Adipose Tissue Browning Pathway	2.09	-1	ADCY6,ATF2,CREB1,FGF21,
			FGFR3,MAPK14,RXRA,RXR
			B,THRA
Melanoma Signaling	2.08	-0.447	AKT3,MAPK3,MDM2,PIK3C
			2G,PIK3CA
UVB-Induced MAPK Signaling	2.08	-1.342	EGFR,MAPK14,MAPK3,PIK3
			C2G,PIK3CA
Actin Cytoskeleton Signaling	2.08	0	APC,BAIAP2,CYFIP1,FGF21,
			FN1,GIT1,ITGA3,MAPK3,M
			YH11,PIK3C2G,PIK3CA,PXN
Glioblastoma Multiforme Signaling	2.07	-0.333	AKT3,APC,EGFR,FZD6,MAP
			K3,MDM2,PIK3C2G,PIK3CA,
			RHOBTB1,RHOT1
NGF Signaling	2.06	-0.707	AKT3,ATF2,CREB1,IKBKG,
			MAP3K13,MAPK3,PIK3C2G,
			PIK3CA
Insulin Receptor Signaling	2.06	-0.333	AKT3,INPP5B,JAK2,MAPK3,
· · · ·			PIK3C2G,PIK3CA,PPP1R3C,
			SYNJ1,SYNJ2
Ephrin B Signaling	2.05	-1	ABI1,EPHB4,GNB1,GNB2,M
			APK3,PXN
ATM Signaling	2.04	-0.447	ATF2,ATR,CREB1,GADD45
			G,MAPK14,MDM2,TRRAP

Bladder Cancer Signaling	2.04	NA	EGFR,FGF21,FGFR3,MAPK3, MDM2,PA2G4,SIN3A
Glioma Invasiveness Signaling	2.02	-0.447	ITGAV,MAPK3,PIK3C2G,PI K3CA,RHOBTB1,RHOT1
Circadian Rhythm Signaling	2.01	NA	ATF2,CREB1,NR1D1,PER3
IL-17A Signaling in Fibroblasts	2.01	NA	IKBKG,LCN2,MAPK14,MAP K3
RAR Activation	2	NA	ADCY6,AKT3,JAK2,MAPK1 4,PIK3CA,PML,PRMT1,RXR A.RXRB,STAT5A,STAT5B
TREM1 Signaling	1.99	0	AKT3,JAK2,MAPK3,STAT5A ,STAT5B,TLR3
IL-8 Signaling	1.97	-0.333	AKT3,EGFR,GNB1,GNB2,IK BKG,ITGAV,MAPK3,PIK3C2 G,PIK3CA,RHOBTB1,RHOT1
Angiopoietin Signaling	1.97	0	AKT3,IKBKG,PIK3C2G,PIK3 CA,STAT5A,STAT5B
Opioid Signaling Pathway	1.96	-1.941	ADCY6,AKT3,ARRB1,ATF2, Calm1 (includes others),CREB1,GNB1,GRK2, GRK6,MAPK3,PDE1A,PDK1, PIK3C2G
Role of IL-17A in Arthritis	1.95	NA	ATF2,MAPK14,MAPK3,PIK3 C2G,PIK3CA
Leptin Signaling in Obesity	1.94	-0.447	ADCY6,AKT3,JAK2,MAPK3, PIK3C2G,PIK3CA
Protein Kinase A Signaling	1.93	-0.5	ADCY6,ANAPC5,ATF2,Calm 1 (includes others),CREB1,GNB1,GNB2, MAPK3,MTMR3,NFAT5,PDE 1A,PDE4B,PPP1R3C,PTPN21, PTPRG,PXN,SIRPA,TGFBR1
T Cell Exhaustion Signaling Pathway	1.92	0.333	ACVR2B,AKT3,BCL6,JAK2, MAPK3,NFAT5,PDK1,PIK3C 2G,PIK3CA,TGFBR1
Phospholipase C Signaling	1.89	-0.632	ADCY6,ATF2,Calm1 (includes others),CREB1,FCGR2A,GNB 1,GNB2,ITGA3,MAPK3,NFA T5,RHOBTB1,RHOT1,SYK
Antiproliferative Role of Somatostatin Receptor 2	1.86	0	GNB1,GNB2,MAPK3,NPR2,P IK3C2G,PIK3CA
April Mediated Signaling	1.85	-1	IKBKG,MAPK14,NFAT5,TR AF3
PD-1, PD-L1 cancer immunotherapy pathway	1.82	-0.378	AKT3,JAK2,PIK3C2G,PIK3C A,STAT5A,STAT5B,YAP1
D-myo-inositol (1,4,5)-trisphosphate Degradation	1.81	NA	INPP5B,SYNJ1,SYNJ2
PCP pathway	1.8	-2.236	ATF2,DAAM1,DVL2,FZD6,L GR4
Prolactin Signaling	1.79	0.816	JAK2,MAPK3,PIK3C2G,PIK3 CA,STAT5A,STAT5B
HER-2 Signaling in Breast Cancer	1.79	NA	AKT3,EGFR,MDM2,PARD3, PIK3C2G,PIK3CA
Regulation of eIF4 and p70S6K Signaling	1.78	-0.447	AKT3,EIF4G1,EIF4G3,ITGA3 ,MAPK14,MAPK3,PIK3C2G, PIK3CA,RPS19
B Cell Activating Factor Signaling	1.77	-1	IKBKG,MAPK14,NFAT5,TR AF3

IL-12 Signaling and Production in	1.75	NA	AKT3,APOE,IKBKG,MAPK1
Macrophages			4,MAPK3,PIK3C2G,PIK3CA, RXRA
STAT3 Pathway	1.75	-0.707	EGFR,FGFR3,IL17RB,JAK2, MAPK14,MAPK3,PIAS3,TGF BR1
Activation of IRF by Cytosolic Pattern	1.74	0.447	ATF2,IKBKG,TANK,TBK1,T RAF3
Gas Signaling	1.74	-0.816	ADCY6,ATF2,CREB1,GNB1, GNB2 MAPK3 RAPGEE4
Th2 Pathway	1.74	1.414	ACVR2B,IL17RB,JAK2,PIK3 C2G,PIK3CA,STAT5A,STAT 5B,TGFBR1
Role of NFAT in Cardiac Hypertrophy	1.72	-0.333	ADCY6,AKT3,Calm1 (includes others),CSNK1A1,GNB1,GNB 2,MAPK14,MAPK3,PIK3C2G, PIK3CA,TGFBR1
D-myo-inositol (1,3,4)-trisphosphate Biosynthesis	1.71	NA	INPP5B,SYNJ1,SYNJ2
Oncostatin M Signaling	1.7	1	JAK2,MAPK3,STAT5A,STAT 5B
ErbB2-ErbB3 Signaling	1.69	0.447	MAPK3,PIK3C2G,PIK3CA,S TAT5A,STAT5B
Wnt/Ca+ pathway	1.69	-2.236	ATF2,CREB1,DVL2,FZD6,NF AT5
Autophagy	1.69	NA	ATG13,BECN1,CTSH,NBR1, SQSTM1
PPARα/RXRα Activation	1.69	-0.333	ACVR2B,ADCY6,CKAP5,IK BKG,JAK2,MAPK14,MAPK3, RXRA,STAT5B,TGFBR1
Rac Signaling	1.68	0	BAIAP2,CYFIP1,ITGA3,MAP K3,PARD3,PIK3C2G,PIK3CA
Role of RIG1-like Receptors in Antiviral Innate Immunity	1.67	1	IKBKG,TANK,TBK1,TRAF3
IL-23 Signaling Pathway	1.67	0	AKT3,JAK2,PIK3C2G,PIK3C A
IL-17A Signaling in Gastric Cells	1.66	NA	EGFR,MAPK14,MAPK3
Regulation of Cellular Mechanics by Calpain Protease	1.64	0	CAPNS1,EGFR,ITGA3,MAP K3,PXN
LPS/IL-1 Mediated Inhibition of RXR Function	1.62	0	ACSL1,ACSL4,ALAS1,APOE ,CYP7A1,FMO1,FMO2,NR1H 2,NR1H3,NR1H4,RXRA
1D-myo-inositol Hexakisphosphate Biosynthesis II (Mammalian)	1.62	NA	INPP5B,SYNJ1,SYNJ2
FAT10 Cancer Signaling Pathway	1.61	0	ACVR2B,AKT3,IKBKG,TGF BR1
Factors Promoting Cardiogenesis in Vertebrates	1.6	NA	ACVR2B,APC,ATF2,FZD6,M APK14,TGFBR1
Role of NANOG in Mammalian Embryonic Stem Cell Pluripotency	1.59	-0.447	AKT3,APC,FZD6,JAK2,MAP K3,PIK3C2G,PIK3CA
Wnt/β-catenin Signaling	1.59	0	ACVR2B,AKT3,APC,CSNK1 A1,DVL2,FZD6,MDM2,SOX6 ,TGFBR1
ErbB Signaling	1.58	-0.816	EGFR,ERBB4,MAPK14,MAP K3,PIK3C2G,PIK3CA
IL-15 Production	1.56	NA	EGFR,EPHB4,ERBB4,FGFR3, JAK2,SYK,TNK2
Sphingosine-1-phosphate Signaling	1.56	-0.816	ADCY6,AKT3,MAPK3,PIK3 C2G,PIK3CA,RHOBTB1,RH OT1

Adrenomedullin signaling pathway	1.55	-0.632	ADCY6,AKT3,Calm1 (includes others),MAPK14,MAPK3,NPR 2,PIK3C2G,PIK3CA,RXRA,R XRB
iNOS Signaling	1.55	NA	Calm1 (includes others),IKBKG,JAK2,MAPK1 4
Melanocyte Development and Pigmentation Signaling	1.54	-0.816	ADCY6,ATF2,CREB1,MAPK 3,PIK3C2G,PIK3CA
Endocannabinoid Cancer Inhibition Pathway	1.53	0	ADCY6,AKT3,ATF2,CREB1, MAPK14,MAPK3,PIK3C2G,P IK3CA
fMLP Signaling in Neutrophils	1.52	-0.816	Calm1 (includes others),GNB1,GNB2,MAPK3, NFAT5,PIK3C2G,PIK3CA
Cholecystokinin/Gastrin-mediated Signaling	1.51	-0.816	ATF2,EGFR,MAPK14,MAPK 3,PXN,RHOBTB1,RHOT1
Role of p14/p19ARF in Tumor Suppression	1.49	NA	MDM2,PIK3C2G,PIK3CA
CD28 Signaling in T Helper Cells	1.49	-1.134	AKT3,Calm1 (includes others),IKBKG,NFAT5,PIK3C 2G,PIK3CA,SYK
IL-6 Signaling	1.49	-0.378	AKT3,IKBKG,JAK2,MAPK14 ,MAPK3,PIK3C2G,PIK3CA
Cleavage and Polyadenylation of Pre- mRNA	1.48	NA	CPSF1,PAPOLA
PAK Signaling	1.48	0.816	GIT1,ITGA3,MAPK3,PIK3C2 G,PIK3CA,PXN
UVA-Induced MAPK Signaling	1.48	-1	EGFR,MAPK14,MAPK3,PAR P16,PIK3C2G,PIK3CA
Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes	1.46	0	AKT3,FCGR2A,MAPK3,PIK3 C2G,PXN,SYK
UVC-Induced MAPK Signaling	1.46	NA	ATR,EGFR,MAPK14,MAPK3
Renin-Angiotensin Signaling	1.46	-0.816	ADCY6,ATF2,JAK2,MAPK14 ,MAPK3,PIK3C2G,PIK3CA
Signaling by Rho Family GTPases	1.44	0.378	BAIAP2,CYFIP1,GNB1,GNB 2,ITGA3,MAPK3,PARD3,PIK 3C2G,PIK3CA,RHOBTB1,RH OT1
CREB Signaling in Neurons	1.43	-1.414	ADCY6,AKT3,ATF2,Calm1 (includes others),CREB1,GNB1,GNB2, MAPK3,PIK3C2G,PIK3CA
CCR3 Signaling in Eosinophils	1.43	-1	Calm1 (includes others),GNB1,GNB2,MAPK14 ,MAPK3,PIK3C2G,PIK3CA
mTOR Signaling	1.42	0	AKT3,ATG13,EIF4G1,EIF4G 3,MAPK3,PIK3C2G,PIK3CA, RHOBTB1,RHOT1,RPS19
BER pathway	1.42	NA	LIG1,LIG3
SAPK/JNK Signaling	1.41	0	ATF2,GNB1,MAP3K13,MAP 4K5,PIK3C2G,PIK3CA
Glucocorticoid Receptor Signaling	1.4	NA	AKT3,CEBPA,CREB1,IKBK G,JAK2,MAPK14,MAPK3,NF AT5,PIK3C2G,PIK3CA,STAT 5A,STAT5B,TAT,TGFBR1
G-Protein Coupled Receptor Signaling	1.4	NA	ADCY6,AKT3,ATF2,CREB1, GRK2,IKBKG,MAPK3,PDE1 A,PDE4B,PIK3C2G,PIK3CA, RAPGEF4

Reelin Signaling in Neurons	1.39	NA	APOE,APP,ITGA3,PIK3C2G, PIK3CA
PPAR Signaling	1.39	0	IKBKG,MAPK3,NR1H3,RXR A,STAT5A,STAT5B
Superpathway of D-myo-inositol (1,4,5)- trisphosphate Metabolism	1.38	NA	INPP5B,SYNJ1,SYNJ2
NRF2-mediated Oxidative Stress Response	1.38	-0.816	DNAJB2,FM01,KEAP1,MAP K14,MAPK3,PIK3C2G,PIK3C A,PRDX1,SQSTM1
Agrin Interactions at Neuromuscular Junction	1.37	0.447	EGFR,ERBB4,ITGA3,MAPK3 ,PXN
GDNF Family Ligand-Receptor Interactions	1.37	-1.342	CREB1,GFRA1,MAPK3,PIK3 C2G,PIK3CA
Amyotrophic Lateral Sclerosis Signaling	1.36	1.342	AKT3,BIRC2,CAPNS1,GPX1, PIK3C2G,PIK3CA
IGF-1 Signaling	1.36	0	AKT3,JAK2,MAPK3,PIK3C2 G,PIK3CA,PXN
Adipogenesis pathway	1.34	NA	CEBPA,FGFR3,FZD6,LPIN1, NOCT,SIN3A,STAT5B
Neurotrophin/TRK Signaling	1.33	-1.342	ATF2,CREB1,MAPK3,PIK3C 2G,PIK3CA
G Protein Signaling Mediated by Tubby	1.32	NA	GNB1,GNB2,JAK2
Paxillin Signaling	1.31	0.447	ITGA3,ITGAV,MAPK14,PIK3 C2G,PIK3CA,PXN
Sumoylation Pathway	1.31	NA	CEBPA,MDM2,PML,RANGA P1,RHOBTB1,RHOT1
Clathrin-mediated Endocytosis Signaling	1.31	NA	APOE,ARRB1,CD2AP,FGF21 ,MDM2,MYO6,PIK3C2G,PIK 3CA,SYNJ1
EIF2 Signaling	1.3	-1.633	AKT3,EIF4G1,EIF4G3,MAPK 3,PIK3C2G,PIK3CA,PTBP1,R PL37,RPL38,RPS19
Xenobiotic Metabolism Signaling	1.3	NA	CES3,ESD,FM01,FM02,KEA P1,MAP3K13,MAPK14,MAP K3,PIK3C2G,PIK3CA,RXRA, UGT2B28
ERK/MAPK Signaling	1.3	-1	ATF2,CREB1,ITGA3,MAPK3, PIK3C2G,PIK3CA,PPP1R3C, PXN,RAPGEF4

Table 10. Significant Pathways for differentially expressed transcripts in ⁵⁶Fe vs. non-

irradiated control at 4 months.

Ingenuity Canonical Pathways	-log10(p-value)	z-score	Molecules
Acute Phase Response Signaling	7.89	-1.069	C1R,C4A/C4B,GRB2,HMOX
			2,HP,HRAS,IL1R1,IL33,MA
			PK14,MAPK9,NR3C1,PIK3C
			D,SAA1,SERPINA1,SERPIN
			F1,SOCS1,SOCS2,SOCS3,ST
			AT3,TCF3,TF
Prolactin Signaling	7.45	-1.387	FYN,GRB2,HRAS,NR3C1,PI
			K3C2G,PIK3C3,PIK3CD,PR
			KCB,PRLR,SOCS1,SOCS2,S
			OCS3,STAT3,STAT5A
PPARα/RXRα Activation	6.65	-0.688	ADCY3,ADCY7,AIP,CD36,
			CYP2C18,CYP2C8,FASN,G
			HR,GRB2,HELZ2,HRAS,HS

			P90AB1,IL1R1,LPL,MAPK1 4,MEF2C,PRKAA1,PRKAC A,PRKCB,RXRA
LXR/RXR Activation	6.61	1.155	ACACA,APOA4,C4A/C4B,C D36,FASN,IL1R1,IL33,LPL, PON3,RXRA,RXRB,SAA1,S CD,SERPINA1,SERPINF1,T F
Role of JAK2 in Hormone-like Cytokine Signaling	5.68	NA	GHR,PRLR,SIRPA,SOCS1,S OCS2,SOCS3,STAT3,STAT5 A
TR/RXR Activation	5.35	NA	ACACA,COL6A3,FASN,HP, ME1,PIK3C2G,PIK3C3,PIK3 CD,RXRA,RXRB,TBL1XR1, THRSP
IL-9 Signaling	4.72	0	PIK3C2G,PIK3C3,PIK3CD,S OCS2,SOCS3,STAT3,STAT5 A
IGF-1 Signaling	4.67	-0.905	GRB2,HRAS,IGFBP2,PIK3C 2G,PIK3C3,PIK3CD,PRKAC A,PXN,SOCS1,SOCS2,SOCS 3,STAT3
RAR Activation	4.63	NA	ADCY3,ADCY7,GTF2H1,M APK14,MAPK9,PBRM1,PIK 3CD,PML,PRKACA,PRKCB, RDH16,RXRA,RXRB,SMAR CA2,SMARCA4,STAT5A,T NIP1
IL-6 Signaling	4.6	-0.832	GRB2,HRAS,IL1R1,IL33,M APK14,MAPK9,MCL1,PIK3 C2G,PIK3C3,PIK3CD,SOCS 1,SOCS3,STAT3
Growth Hormone Signaling	4.6	-1.265	GHR,PIK3C2G,PIK3C3,PIK3 CD,PRKCB,SOCS1,SOCS2,S OCS3,STAT3,STAT5A
Paxillin Signaling	4.54	-0.632	ACTN4,DOCK1,GRB2,HRA S,ITGAV,ITGB2,MAPK14,M APK9,PIK3C2G,PIK3C3,PIK 3CD,PXN
Role of JAK family kinases in IL-6-type Cytokine Signaling	4.44	NA	MAPK14,MAPK9,SOCS1,S OCS3.STAT3.STAT5A
JAK/Stat Signaling	4.35	-0.632	GRB2,HRAS,PIK3C2G,PIK3 C3,PIK3CD,SOCS1,SOCS2,S OCS3,STAT3,STAT5A
IL-7 Signaling Pathway	4.35	-0.632	FYN,GRB2,GSK3A,MAPK1 4,MCL1,PIK3C2G,PIK3C3,P IK3CD,SOCS1,STAT5A
HGF Signaling	4.35	-0.302	DOCK1,ELF4,GRB2,HRAS, Map3k7,MAPK9,PIK3C2G,P IK3C3,PIK3CD,PRKCB,PXN ,STAT3
FXR/RXR Activation	4.19	NA	APOA4,C4A/C4B,FASN,IL3 3,LPL,MAPK9,PKLR,PON3, RXRA,SAA1,SERPINA1,SE RPINF1,TF
HER-2 Signaling in Breast Cancer	4.17	NA	GRB2,GSK3A,HRAS,ITGB2, PARD3,PIK3C2G,PIK3C3,PI K3CD,PRKCB,TSC1
Role of JAK1 and JAK3 in γc Cytokine Signaling	4.12	NA	GRB2,HRAS,PIK3C2G,PIK3 C3,PIK3CD,SOCS1,SOCS3,S TAT3,STAT5A

PXR/RXR Activation	4.07	NA	ALAS1,ALDH3A2,CES3,CY
			P2A6 (includes
			others), CYP2C8, NK3C1, PKK
Xenobiotic Metabolism Signaling	4.06	NA	AIP AL DH3A2 CAMK2G C
Achobiotic Metabolishi Signahing	ч.00	INA	ES3 CYP2C8 ESD FMO1 GS
			TM5.HDAC5.HRAS.HSP90
			AB1.Map3k7.MAPK14.MAP
			K9.MGST1.PIK3C2G.PIK3C
			3,PIK3CD,PRKCB,RXRA
Apelin Endothelial Signaling Pathway	4.02	-0.577	ADCY3,ADCY7,GNAI2,HD
			AC5,HRAS,MAPK9,MEF2C,
			PIK3C2G,PIK3C3,PIK3CD,P
			RKAA1,PRKCB
Adrenomedullin signaling pathway	3.97	0	ADCY3,ADCY7,CFH,GRB2,
			GSK3A,GUCY2C,HRAS,IL3
			3,MAPK14,MAPK9,PIK3C2
			G,PIK3C3,PIK3CD,PRKAC
	2.02	0.111	A,RXRA,RXRB
Insulin Receptor Signaling	3.93	-2.111	ACLY, FYN, GRB2, GSK3A, H
			$CD \ DDV \ ACA \ SOCS2 \ SVNI1$
			TRIP10 TSC1
Renin-Angiotensin Signaling	3.89	-1	ADCY3.ADCY7.GRB2.HRA
reenin / ingrotonom orginaring	5.09	1	S.MAPK14.MAPK9.PIK3C2
			G.PIK3C3.PIK3CD.PRKAC
			A,PRKCB,STAT3
Acute Myeloid Leukemia Signaling	3.83	0	GRB2,HRAS,KIT,PIK3C2G,
		-	PIK3C3,PIK3CD,PML,STAT
			3,STAT5A,TCF3
B Cell Receptor Signaling	3.82	-1.387	CAMK2G,GRB2,GSK3A,HR
			AS,Map3k7,MAPK14,MAPK
			9,MEF2C,PIK3C2G,PIK3C3,
			PIK3CD,PRKCB,PTPRC,SY
			NJ1,TCF3
Leptin Signaling in Obesity	3.7	0	ADCY3,ADCY7,GRB2,PIK3
			C2G,PIK3C3,PIK3CD,PRKA
En thron sistin Signaling	2.66	NIA	CRD2 LIDAS DIV2C2C DIV2
Erythropoleun Signanng	5.00	INA	C3 DIK3CD DPKCB SOCS1
			SOCS3 STAT5A
Endocannabinoid Developing Neuron	3 63	-0.632	ADCY3 ADCY7 GNAI2 HR
Pathway	5.05	0.052	AS.MAPK14.MAPK9.PIK3C
			2G,PIK3C3,PIK3CD,PRKAC
			A,STAT3
Role of NFAT in Cardiac Hypertrophy	3.6	-0.775	ADCY3,ADCY7,CACNA1A,
			CAMK2G,GNAI2,GRB2,HD
			AC5,HRAS,MAPK14,MAPK
			9,MEF2C,PIK3C2G,PIK3C3,
			PIK3CD,PRKACA,PRKCB
Apelin Adipocyte Signaling Pathway	3.58	-0.333	ADCY3,ADCY7,GNAI2,GP
			X1,MAPK14,MAPK9,MGST
		<u>_</u>	I,PRKAAI,PRKACA
ErbB2-ErbB3 Signaling	3.55	0	GRB2,GSK3A,HRAS,PIK3C
			2G,PIK3C3,PIK3CD,STAT3,
II 22 Signaling	3 47	0.447	SIAIJA MADV 14 MADVO SOCS2 ST
1L-22 Signaning	5.47	-0.44 /	AT3 STAT54
Thrombonoietin Signaling	3.45	0	GRB2 HRAS PIK 3C2G PIK 3
Internooporeun orginaling	5.15		C3.PIK3CD.PRKCB.STAT3
			STAT5A
	1		1

APROPIESC2CPURSC3.PE 3CD_PELLSPKA.A1PRKC BCSCS1.SOCS2.SOCS3LPS/IL-1 Mediated Inhibition of RXR Function3.430.447ACSL1.ALS1.ALDH3A2C y2e12/Cyp2a22(Cyp2a2)CVP2A6 (includes others)CVP2C8.CVP2A11.JF ABP2_PMO1.GSTM5.L1L H.B.3.MAPK9.MGST1.RXRA XPO1IL-4 Signuling3.34NAGRD2.IIL.A AHR2.SMO1.GSTM5.L1L H.SC3.PIK3CD.SOCS1.SYN JIIL-4 Signuling3.31-1FGR2.FGR3.GR2.IILA- AHR2.SMO2.CSC1.SYN JIFGF Signaling3.28-0.707CAMR20.GRB2.IIRAS. MAPK1.SC3.2PIK3CD.SOCS1.SYN JIFGF Signaling3.28-0.707CAMR20.GRB2.IIRAS. MAPK1.SC3.2PIK3CD.SPIK3C3. PIK3CD.STAT3GM-CSF Signaling3.23-1.265GRB2.GGR3.A,IIRAS.MAPK 9.PIK3C2.GPIK3C3.P	Type II Diabetes Mellitus Signaling	3.43	-2.121	ACSL1,CACNA1A,CD36,M
StartStartStartStartLPS/IL-1 Mediated Inhibition of RXR Function3.430.447ACSLLALASI, ALDRAG, CVP3A (SCLLASI, ALDRAG, CVP3A,				APK9,PIK3C2G,PIK3C3,PIK
Level 1EditedBSOCSI.SOCS2.COS3.CFunction3.430.447ACKI.LASI.AUDI33CS2.CVP2A6 (includes others).CVP2C8CVP1A1.IF APP2PK01 (GTTM;LI,RI, LI3).MAPK9,MGST1,RXRA XPO1IL-4 Signaling3.34NAGRB2,III.A APR2PK01 (GTTM;LI,RI, LI3).MAPK9,MGST1,RXRA XPO1IL-4 Signaling3.31-1GRB2,III.A APR2PK01 (GTTM;LI,RI, LI3).MAPK9,MGST1,RXRA XPO1FGF Signaling3.31-1FGFR2,FGFR3,GRB2,IIRAS, MAPK14,PIK3C2,GPIK3C3,PIK3CD,SOCSI,STN JIGM-CSF Signaling3.28-0.707CAMR2G,GRB2,IIRAS, MAPK14,PIK3C2,GPIK3C3,PIK3CD,SOCSI,STN JI14-3-3-mediated Signaling3.23-1.265GRB2,GK3A,HRAS,MRA SCG,PIK3C3,PIK3CD,PIK3CD,SOCSI,STN JI14-3-3-mediated Signaling3.22NAABLIM1,ADAM17,ADAM2 3,ADAMA,ARC1,LADCK1, EPHB4,FVN,GT1,GNA2,GP RB2,HERC2,HRAS,NRPZ,PIK SCG,PIK3C3,PIK3CD,PIK3				3CD,PKLR,PRKAA1,PRKC
LPS/IL-1 Mediated Inhibition of RXR Function3.430.447ACSL1,ALASL1,ALDB32,C (P2aU2Cyp2a2,CYP2A6 (includes others)CYP2CS,CYP4A11,F ABP2,FM01,GSTM5,IL1R1, IL33,MAPR9,MGST1,RXRA APR01,GSTM5,IL1R1, IL33,MAPR9,MGST1,RXRA APR01,GSTM5,IL1R1, IL33,MAPR9,MGST1,RXRA APR01,GSTM5,IL1R1, IL33,MAPR9,MGST1,RXRA APR01,GSTM5,IL1R1, IL33,MAPR9,MGST1,RXRA APR01,GSTM5,IL1R1, IL33,MAPR9,MGST1,RXRA APR01,GSTM5,IL1R1, IL33,MAPR9,MGST1,RXRA APR3,CPFR3,CDST1,RXRA CRR2,FRRA,SNR2C1,PIR3,C2G,PI RXG2,PIR3,CDSTN3,J J JFGF Signaling3.31-1FGFR2,FGFR3,GRB2,IRAS,SPR GCR2,FRRA,SPRK,GCB,PIRAS,GRB2,IRAS,PIRAS,CO,PIRAG3,PIRASCO,PIRAG3,PIRASCO,PIRAG3,PIRASCO,PIRAG3,PIRASCO,PIRAG3,PIRASCO,PIRAG3,PIRASCO,PIRAG3,PIRASCO,PIRAG3,PIRASCO,PIRAG3,PIRASCO,PIRAG3,PIRASCO,PIRAG3,PIRASCO,PIRASCA,PIRASCA,PIRASCO,PIRASCA,PIR				B,SOCS1,SOCS2,SOCS3
Functionyp2a12/Cyp2a2(Cyp2A6 (nobes) (nobudes) others)(CYP2CXCYP4A11, F ABP2-FMO1(GSTM5L1R1, L133,MAPK9,MGST1,RXRA XP01IL-4 Signaling3.34NAGRB2,HLA- AJRAS,NR3C1,RSC2G,PIK3C2,OPK3 IK3C2,GPIK3C3,DIK3CD,SIXT3FGF Signaling3.31-1FGFR2,FGFR3,GRB2,HRAS, MAPK14,PIK3C2,OPIK3C3,PIK3CD,SOCS1,SYN J1FGF Signaling3.28-0.707CAMK3G,GRB2,HRAS, MAPK14,PIK3CD,PRK CSR,PIK3C3,DIK3CD,PRK CSR,PIK3C3,DIK3CD,PRK CSR,STAT3GM-CSF Signaling3.28-0.707CAMK3G,GRB2,HRAS,N NC26,PIK3C3,DIK3CD,PRK CSR,STAT314-3-3-mediated Signaling3.23-1.265GRB2,CSK3A,HRAS,NK CSR,CSK3A,HRAS,NK CSR,DIK3C3,DIKSCD,PRK CSR,STK11,TADAD2 A,ADAM9,ARPC1A,DOCK1, EPHH4,FYN,GT1,GNAL2GAxonal Guidance Signaling3.22NAABLIM1,ADAM17,ADAM2 A,ADAM9,ARPC1A,DOCK1, EPHH4,FYN,GT1,GNAL2G SCR,GA,HSCR,DN,NK,NS,ENAM6,DTUBB2AClathrin-mediated Endocytosis Signaling3.17NAAPOA4,ARPC1A,DOCK1, EPHH4,FYN,GT1,BR2ACA,PRKCB,PX N,RTNA,SEMAM6,DTUBB2AMacropinocytosis Signaling3.14NAACTN4,CDH1HRAS,MB3KAAC, SCR,DAG,DIKSCD,PXN,RH OBTB1,SORB3,INSCD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,RH OBTB1,SORB3,INT,BB2,SDAAC, CCG,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PIK3CD,PXR,C2G,PIK3C3,PI	LPS/IL-1 Mediated Inhibition of RXR	3.43	0.447	ACSL1,ALAS1,ALDH3A2,C
Image: Constraint of the second sec	Function			vp2a12/Cvp2a22,CYP2A6
it4 Signaling3.34NAGRE2,HLA- AJRAS,NR2C,PIK3CC,DPK3CL,RXRA JROI,GSTM5,LLRI, IL33,MAPK9,MGSTL,RXRA JROI,GSTM5,LLRI, IL33,MAPK9,MGSTL,RXRA JROI,GSTM5,LLRI, IL33,MAPK9,MGSTL,RXRA JROI,GSTM5,LLRI, IL33,MAPK9,MGSTL,RXRA JROI,GSTM5,LLRI, IL33,MAPK9,MGSTL,RXRA, JROI,GSTM5,LLRI, IL33,MAPK9,MGSTL,RXRA, JROI,GSTM5,LLRI, IL33,MAPK9,MGSTL,RXRA, JROI,GSTM5,LLRI, IL33,MAPK9,MGSTL,RXRA, JROI,GSTM5,LLRI, IL33,MAPK9,MGSTL,RXRA, JROI,GSTM5,LLRI, IL33,MAPK9,MGSTL,RXRA, JROI,GSTM5,LLRI, IL33,MAPK9,MGSTL,RXRA, JROI,GSTM5,LLRI, IL33,MAPK9,MGSTL,RXRA, JROI,GSTM5,LLRI, IL33,MAPK9,MGSTL,RXRA, JROI,GSTM5,LLRI,RXRA, JROI,GSTM5,LLR				(includes
AB22_FMOI_GSTM5,IL_IR1 IL33_MAPE9_MOI_GSTM5,IL_IR1 IL33_MAPE9_MOI_GSTM5,IL_IR1 IL33_MAPE9_MOI_GSTM5,IL_IR1 IL33_MAPE9_MOI_GSTM5,IL_IR1 IL33_MAPE9_MOI_GSTM5,IL_IR1 IL33_MAPE9_MOI_GSTM5,IL_IR1 IL33_MAPE9_MOI_GSTM5,IL_IR1 IL33_MAPE9_MOI_GSTM5,IL_IR1 IL33_PIK3CD,SOCS1,SYN JFGF Signaling3.31-1FGFR2_CFGFR3,GRB2,IRAS,N MAPK14,PIK3CCG,PIK3C3,PIK3CD,PIK3C3,PIK3C2,PIK3C3,PIK3CD,PIK3C3,PIK3CD,PIK3C3,PIK3CD,PIK3C3,PIK3C2,PI				others) CYP2C8 CYP4A11 F
IL-4 Signaling3.34NAGR2,HLA- A,HRAS,NR3CL,PIK3C2,GPIL-4 Signaling3.34NAGR2,HLA- A,HRAS,NR3CL,PIK3C2,GPFGF Signaling3.31-1FGFR2,FGFR3,GRB2,HRAS, MAPK14,PIK3C2,DFIK3C3, PIK3CD,SITAT3GM-CSF Signaling3.28-0.707CAMK2G,GRB2,HRAS,PIK S2C2,FIK3C3,PIK3C2,DFIK3C3, PIK3C2G,FIK3C3,PIK3C2,DFIK3C3, PIK3C3,PIK3C2,PIK3C3,PIK3C0,PIK CB,STAT314-3-3-mediated Signaling3.23-1.265GRB2,GRSA,JIRAS,MAPK CB,STAT314-3-3-mediated Signaling3.22NAABLIMLADAMT,ADAMZ ADAM9,ARPC1A,DOCK1, EPHB4,PYN,GIT1,GNAL2,G R22,LIERA,ZIRAS,PIK3C3,PIK3C0,PI K3C2G,PIK3C3,PIK3C0,PI SAMapK14,PIK3C2G,PIK3C3,PIK3C0,PI SAMapK14,PIK3C2G,PIK3C3,PIK3C0,PIKACA,P				ABP2 FMO1 GSTM5 II 1P1
IL-4 Signaling3.34NAGR82,HLA- (RR3,RLA,C),RK3C2G,P (RS3C3,RK3CD,SOCSL,SYN) J]FGF Signaling3.31-1FGFR2,FGF3,GRB2,IIRAS, (RC3C3,RK3CD,SOCSL,SYN) J]GM-CSF Signaling3.28-0.707CAMK2G,GRB2,IIRAS,PIK (CB,STAT3)GM-CSF Signaling3.28-0.707CAMK2G,GRB2,IIRAS,PIK (CB,STAT3)14-3-3-mediated Signaling3.23-1.265GRB2,GRSA,JIRAS,MAPK (P,RKCB,STK11,TSC1,TUBB 2AAxonal Guidance Signaling3.22NAABLIM1,ADAM2 (ADAM9,ARPC1A,ADCK1, EPHB4,FYNGT1,GNAI2,G (RS3,2),IIRAS,MAPK,P,RKCB,PK (RS3,2),IIRAS,MAPK,P,RKCB,PK (RS3,2),IIRAS,MAPK,P,RKCB,PK (RS3,2),IIRAS,MAPK,P,RKCB,PK (RS3,2),IIRAS,MAPK,P,RKCB,PK (RS3,2),IIRAS,MAPK,P,RKCB,PK (RS3,2),IIRAS,CA,PRKCB,PK (RS3,2),IIRAS,CA,PRKCB,PK (RS3,2),IIRAS,CA,PRKCB,PK (RS3,2),IIRAS,CA,PRKCB,PK (RS3,2),IIRAS,CA,PRKCB,PK (RS3,2),IIRAS,CA,PRKCB,PK (RS3,2),IIRAS,CA,PRKCB,PK (RS3,2),IIRAS,CA,PRKCB,PK (RS3,2),IIRAS,CA,PRKCB,PK (RS3,2),IIRAS,CA,PRKCB,PK (RS3,2),IIRAS,CA,PRKCB,PK (RS3,2),IIRAS,CA,PRKCB,PK (RS3,2),IIRAS,CA,PRKCB,PK (RK3,2),IIRAS,CA,PRKCB,PK (RK3,2),IIRAS,CA,PRKCB,PK (RK3,2),IIRAS,CA,PRKCB,PK (RK3,2),IIRAS,CA,PRKCB,PK (RK3,2),IIRAS,CA,PRKCB,PK (RK3,2),IIRAS,CA,PRKCB,PK (RK4,2),PRK3,2),IIRAS,CA,PRKCB,PK (RK4,2),PRK3,2),IIRAS,CA,PRKCB,PK (RK4,2),PRK,AC,PRKCB,PK (RK4,2),PRK,AC,PRKCB,PK (RK4,2),PRK,AC,PRKCB,PK (RK4,2),PRK,AC,PRKCB,PK (RK4,2),PRK,AC,PRKCB,PK (RK4,2),PRK,AC,PRKCB,PK (RK4,2),PRK,AC,PRKCB,PK (RK4,2),PRK,AC,PRKCB,PK (RK4,2),PRK,AC,PRKCB,PK (RK4,2),PRK,AC,PRKCB,PK (RK4,2),PRK,AC,PRKCB,PK (RK4,2),PRK,AC,PRKCB,PK (RK4,2),PRK,AC,PRKCB,PK (RK4,2),PRK,AC,PRKCB,PK (RK4,2),PRK,AC,PRKCB,PK (RK4,2),PRK,AC,PRKCB,PK (RK4,2),P				II 33 MAPK9 MGST1 PXPA
IL-4 Signaling 3.34 NA GRB2,HLA- A,HRAS,NRSCL,PIK3C2G,PIK SIG3,PIK3CD,SOCSL,SYN J1 FGF Signaling 3.31 -1 FGFR2,FGFR3,GRB2,HRAS, MAPK14,PIK3C2G,PIK3C3, PIK3CD,STAT3 GM-CSF Signaling 3.28 -0.707 CAMK2G,GRB2,HRAS, MAPK14,PIK3C2G,PIK3C3, PIK3CD,STAT3 14-3-3-mediated Signaling 3.23 -1.265 GRB2,GRSA,HRAS,MIRAS,MARK CB,STAT3 14-3-3-mediated Signaling 3.22 NA ABLIM1,ADAM17,ADAM2 3,ADAM9,ARPC1A,DOCK1, FPHPH4,FYN,GT1,GNA2,G RB2,HEK3C1,RAS,DR2,HRAS,MIRAS,MREX,DOCK1, SEMA6D,TUBB2A Axonal Guidance Signaling 3.22 NA ABLIM1,ADAM17,ADAM2 3,ADAM9,ARPC1A,DOCK1, FPHP4,FYN,GT1,GNA2,G RB2,HEK3C1,HRAS,MREX,PIK 3,CGC,PIK3C3,PIK3CD,PIK SCGC,PIK3C3,PIK3CD,PIK SCGC,PIK3C3,PIK3CD,PIK SCGC,PIK3C3,PIK3CD,PIK SCGC,PIK3C3,PIK3CD,PIK SCGC,PIK3C3,PIK3CD,PIK SCGC,PIK3C3,PIK3CD,PIK SCGC,PIK3C3,PIK3CD,PIK SCGC,PIK3C3,PIK3CD,PIK SCGC,PIK3C3,PIK3CD,PIK SCGC,PIK3C3,PIK3CD,PIK SCGC,PIK3C3,PIK3CD,PIK SCGC,PIK3C3,PIK3CD,PIK SCGC,PIK3C3,PIK3CD,PIK3CD,PIK3CD,PIK3CD,PIK3CD,PIK3CD,PIK3C3,PIK3CD,PIK3CD,PIK3CD,PIK3C3,PIK3CD,PIK3CD,PIK3C3,PIK3CD,PIK3CD,PIK3C3,PIK3CD,PIK3CD,PIK3C3,PIK3CD,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3C3,PIK3CD,PIK3CC,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3CA,PIKCB,PIK3C2,PIK3C3,PIK3CD,PIK3C2,PIK3CA,PIK2,FGR3,GTF				VDO1
IL-+ Signaling 3.34 INA ORD2_ILLA- SIG2_ILLA- ALLAS_INSCID_SOCSLSYN FGF Signaling 3.31 -1 FGFR2_GFR3_GRB2_IRAS_N FIK3CD_STATS GM-CSF Signaling 3.28 -0.707 CAMK26(GRB2,IRAS,PIK CDSTATS) I4-3-3-mediated Signaling 3.23 -1.265 GRB2_GSR3_ALRAS_NK CBSTAT3 14-3-3-mediated Signaling 3.22 NA ABLINI_ADMI7_ADM2 ADAM9_ARPC1_ADOCKI, FPHB4_FV2,IRTS_CO,PIK3C3,PIK3CD,PK CBSTAT3 Axonal Guidance Signaling 3.22 NA ABLINI_ADAM17_ADAM2 ADAM9_ARPC1_ADOCKI, FPHB4_FV2,IRTS_CO,PIK3C3,PIK3CD,PL XNB1_PRKACA_PRKCB,PX NRTN4_SEMA4B_SEMA4C, SEMA6D_TUBB2A Clathrin-mediated Endocytosis Signaling 3.17 NA ABLINI_ACA_PRKCB,PX NRTN4_SEMA4B_SEMA4C, SEMA6D_TUBB2A Germ Cell-Sertoli Cell Junction Signaling 3.14 NA ACTN4_CDH_RAS_Mp3A PCIA_EPSI5_GR B2_HERC3,PIK3C3,PIK3CD,PL XNB1_PRKAC4,PRKCB,PX NRTN4_SEMA4B_SEMA4C, SEMA6D_TUBB2A Macropinocytosis Signaling 3.08 -1.633 ABIL_ACTN4_HRAS_Mp3BA PIK3C2G,PIK3C3,PIK3CD,PL XNB1_PRKAC4,PRK1G3,PIK3C2 GPIK3C3,PIK3CD,PXN,RH Macropinocytosis Signaling 3.06 NA ECIL2_FGR2,GFR3,GTF2 H1_LIDACS,Kat66,KAT7,KM T2B_LP_S,ETDB1_TBL3KR Marcopinocytosis Signaling 3.06 NA ECIL2_FGR2,GFR3,GTF2 FIK3C2,PIK3C3,PIK3CD,PXN,RH Marcopinocytosis Signaling </td <td>II 4 Simulian</td> <td>2.24</td> <td>NIA</td> <td></td>	II 4 Simulian	2.24	NIA	
FGF Signaling3.31-1FGF SignalingGM-CSF Signaling3.28-0.707CAMK2G,GRB2,HRAS, MAPK14,HK3C2G,PIK3C3, PIK3CD,STAT3GM-CSF Signaling3.28-0.707CAMK2G,GRB2,HRAS, MAPK14,HK3C2G,PIK3C3,PIK3CD,PIK CB,STAT314-3-3-mediated Signaling3.23-1.265GRB2,GKSA,HRAS,MAPK GB,STAT314-3-3-mediated Signaling3.22NAABLIM1,ADAM17,ADAM2 3,ADAM9,APRC1A,DOCK1, FPHB4,FYN,GT1,GNA12,G RB2,HERC2,HRAS,NRP2,PI K3C2G,PIK3C3,PIK3CD,PIK SCG,PIK3C3,PIK3CD,PIK SCG,PIK3C3,PIK3CD,PIK	IL-4 Signaling	3.34	NA	A LIDAG NID2CI DIV2COC D
FGF Signaling3.31-1FGFR2GR3CRB2,HRAS, MAPK14,PR3CC2,GPIK3C3,PIK SC2G,PIK3C3,PIK SC2G,PIK3C3,PIK3C3,PIK SC2G,PIK3C3,PIK3C3,PIK SC2G,PIK3C3,PIK3C3,PIK SC2G,PIK3C3,PIK3C3,PIK SC2G,PIK3C3,PIK3C3,PIK3C3,PIK SC2G,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C2,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C2,PIK3C3,				A,HKAS,NK3CI,PIK3C2G,P
FGF Signaling3.31-1FGFR2_FGFR3_GRB2_HRAS_ MAPK14_PIK3C2G_PIK3C3, PIK3CD_STAT3GM-CSF Signaling3.28-0.707CAMK2G_GRB2_HRAS_PIK 3C2G_PIK3C3_PIK3C3, PIK3CD_STAT314-3-3-mediated Signaling3.23-1.265GRB2_GRS3_AHRAS_MAPK 9_PIK3C2G_PIK3C3_PIK3C3, PIK3C2G_PIK3C3_PIK3C3, PIK3C3C3_PIK3C3, PIK3C3C3_PIK3C3, PIK3C3_PIK3C3, PIK3C3C3_PIK3C3, PIK3C3C3_PIK3C3, PIK3C3C3_PIK3C3, PIK3C3, PIK3C3C3_PIK3C3, 				IK3C3,PIK3CD,SOCS1,SYN
FGF Signaling3.31-1FGFR2.176R3.0RB2.HRAS, MAPK14.PIK32.0GPIK3C3.PIK3C3 PIK3CD.STAT3GM-CSF Signaling3.28-0.707CAMK2G,GRB2.HRAS,PIK 3.23,CGPIK3C3.PIK3CD,PIK CB,STAT314-3-3-mediated Signaling3.23-1.265GRB2.0SK3A,HIRAS,MAPK OPIK3C3.CG,PIK3C3.PIK3CD, PIK3C3.CG,PIK3C3.PIK3CD, PIK3C3.CG,PIK3C3.PIK3CD, PIK3C3.PIK3CD,PIK SCR1, JDAM9,ARPC1A,DOCK1, DEMBA,PYN,GIT1,GNA12,G RB2.HERC2,HRAS,NRP2,PI K3C3CG,PIK3C3,PIK3CD,PI K3C3CG,PIK3C3,PIK3CD,PI K3C3CG,PIK3C3,PIK3CD,PI K3C3CG,PIK3C3,PIK3CD,PIClathrin-mediated Endocytosis Signaling3.17NAAPO44,ARC1A,EPS15,GR B2,ITGB2,MYO6,PICALMP HX3C2G,PIK3C3,PIK3CD,PIGerm Cell-Sertoli Cell Junction Signaling3.14NAAPO44,ARC1A,EPS15,GR B2,ITGB2,MYO6,PICALMP B2,ITGB2,PICACA,PIKCB,PICALPARA,PICA,PIKACA,PIKCB, THAJB3,TINB1GMCH Signaling3.06NA			-	
MAPK14,PIK3C2G,PIK3C3,PIK PIK3CD,STAT3GM-CSF Signaling3.28-0.707CAMC2G,GRB2,HRAS,PIK 3CG,GRB2,HRAS,PIK CB,STAT314-3-3-mediated Signaling3.23-1.265GRB2,GKSA,HRAS,MAPK 9,PIK3C2G,PIK3C3,PIK3CD,PRK CB,STAT314-3-3-mediated Signaling3.22NAABLIM1,ADAM17,ADAM2 3,ADAM9A,ARPC1A,DOCK1, PFB4,FYN,GRSA,HRAS,MAPK 9,PIK3C2G,PIK3C3,PIK3CD,PL X,DB1,PIKACA,PIKCB,PTK 1,GKA12,GRB2,MSCA,PL X,DB1,PIKACA,PIKCB,PTKAxonal Guidance Signaling3.22NAABLIM1,ADAM17,ADAM2 3,ADAM9A,ARPC1A,DOCK1, EPHB4,FYN,GRSA,PIKACA,	FGF Signaling	3.31	-1	FGFR2,FGFR3,GRB2,HRAS,
GM-CSF Signaling3.28-0.707CAMK2G (GRB2,HRAS,PIK 3C2G,PIK3C3,PIK3CD,PRK CB,STA1314-3-3-mediated Signaling3.23-1.265GRB2,GSSA,HRAS,MAPK 9,PIK3C2G,PIK3C3,PIK3CD,PRK CB,STK11,TSC1,TUBB 2AAxonal Guidance Signaling3.22NAABLM1,ADAMI7,ADAM2 3,ADAM9,ARPC1A,DOCK1, EPHB4,FYN,GIT1,GNA12,G RS2,GFIK3C3,PIK3CD,PL XNRTM,SEMA4D,SEMA4C, SEMA6D,TUBB2AClathrin-mediated Endocytosis Signaling3.17NAAPDA(A,ARPC1A,EPS15,GR B2,TIG82,MY06,PICALM,P K3C2G,PIK3C3,PIK3CD,PL XNRTM,SEMA4B,SEMA4C, SEMA6D,TUBB2AClathrin-mediated Endocytosis Signaling3.14NAACTN4,CDH1,HRAS,Map3k 7,MAPK14,MAPK9,PIK3C2 G,FIK3C3,PIK3CD,PL, XNRTM,SEXCMP,RISC2G,PIK3C3,PIK3CD,PL XNRTM,SEXCMAP,RISC1,SER RPINA1,ISH3GL,ISYN1,TFGerm Cell-Sertoli Cell Junction Signaling3.08-1.633ABIT,ACTN4,HRAS,ITGB2, PIK3C2G,PIK3C3,PIK3CD,PL RK2G2,PIK3C3,PIK3CD,PL,RI OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.06NAEZH2,FGFR3,GTF2 H1,HDAC5,Kat6D,KAT,TKM TB2,LPL,SETDB1,TBL1XR1GNRH Signaling3.06NAEZH2,FGFR3,GTF2 H1,HDAC5,Kat6D,KAT,TKM PIK3C2,PIK3C3,PIK3CD,PLK3C3,PIK3CD,PLK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIKAS,PIK3C3,PIKAS,PIK3C3,PIKAS,PIK3C3,PIKAS,PIK3C3,PIKAS,PIK3C3,PIKAS,PIKAS,PIK3C3,PIKAS,PIKA				MAPK14,PIK3C2G,PIK3C3,
GM-CSF Signaling3.28-0.707CAMR2G,GRB2,HRAS,PIK CGZ,FIK3C2,PIK3C2,PIK3C2,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C4,PIKCB,STK11,TSC1,TUBB 2AAxonal Guidance Signaling3.22NAABLIM1,ADAM17,ADAM2 3,ADAM9,ARPC1A,ADOCK1, EPHB4,FYN,GT1,GNAL2,G RB2,HERC2,HRAS,NR2,PI K3C2,PIK3C2,PIK3C3,PIK3C0,PIK SC2,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C3,PIK3C4,PIKCB,PX N,RTN4,SEMA4B,SEMA4C, SEMA6D,TUBB2AClathrin-mediated Endocytosis Signaling3.17NAAPO44,ARPC1A,EPS15,GR B2,1TGB2,MYO6,PICALM,PI K3C2G,PIK3C3,PIK3C1,SEN,SC3,PIK3C1,SEN,SC3,PIK3C1,SEN,SC3,PIK3C1,SEN,SC3,PIK3C3,PIK3C2,SEN,SC3,SEN				PIK3CD,STAT3
14-3-3-mediated Signaling3.23-1.2653C2G,PIK3C3,PIK3CD,PRK CB,STAT314-3-3-mediated Signaling3.23-1.265GRb2,GSK3A,IRAS,MAPK 9,PIKCB,STK11,TSC1,TUBB 2AAxonal Guidance Signaling3.22NAABUI,ADAMI7,ADAM2 3,ADAM9,ARPC1A,DOCK1, EPHB4,FYN,GIT1,GNA12,G RB2,HERC2,HRAS,NRP2,PI XSC2G,PIK3C3,PIK3CD,PL XNR1N,PRKACA,PRKCB,PX NRTN,SRA4B,SEMA4C, SEMA4D,TUBB2AClathrin-mediated Endocytosis Signaling3.17NAAPOA4,ARPC1A,EPS15,GR B2,TTGB2,MY06,PICALM,PI IK3C2G,PIK3C3,PIK3CD,PL XNR1N,SRA4B,SEMA4C, SEMA4B,SEMA4B,SEMA4C, SEMA4B,SEMA4C, SEMA4B,	GM-CSF Signaling	3.28	-0.707	CAMK2G,GRB2,HRAS,PIK
14-3-3-mediated Signaling3.23-1.265GRB2,GSK3A,HRAS,MAPK 9,PIK3C2G,PIK3C3,PIK3CD, PRKCB,STK11,TSC1,TUBB 2AAxonal Guidance Signaling3.22NAABLIM1,ADAM17,ADAM2 3,ADAM9,ARPC1A,DOCK1, EPHB4,FYN,GT1,GNA12,G RB2,HERC2,HRAS,NRP2,PI K3C3G,PIK3C3,PIK3CD,PL XNB1,PRKACA,PRKCB,PX NRTN4,SEMA4B,SEMA4C, SEMA6D,TUBB2AClathrin-mediated Endocytosis Signaling3.17NAAPOA4,ARPC1A,EPS15,GR B2,LTGB2,MY06,PICALM,P K3C2G,PIK3C3,PIK3CD,PL K3C2G,PIK3C3,PIK3CD,PL K3C2G,PIK3C3,PIK3CD,PL K3C2G,PIK3C3,PIK3CD,SE RPINA1,SH3GL1,SYN11,TFGerm Cell-Sertoli Cell Junction Signaling3.14NAACTN4,CDH1,HRAS,Map3k ACTN4,CDH1,HRAS,Map3k ACTN4,CDH1,HRAS,Map3kMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,ITGB2, PIK3C2G,PIK3C3,PIK3CD,PSL GRB1,SORB51,TUBB2AMacropinocytosis Signaling3.06NAEZH2,FGFR2,GFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM ADF1,ESTB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAG,PIK3C2,PIK3C2,PIK3C2,PIK3C2,PIK3C3,PIK3C2,GPIK3C3,PIK3C2,GPIK3C3,PIK3C2,GPIK3C3,PIK3C2,GPIK3C3,PIK3C2,GPIK3C3,PIK3C3,PIK3C2,GPIK3C3,PIK3C2,GPIK3C3,PIK3C2,GPIK3C3,PIK3C2,GPIK3C3,PIK3C3,PIK3C2,GPIK3C3,PIK3C				3C2G,PIK3C3,PIK3CD,PRK
14-3-3-mediated Signaling3.23-1.265GRB2,GSK3A,IRAS,MAPK 9,PIK3C2,PIK3C3,PIK3CD, PRKCB,STK11,TSC1,TUBB 2AAxonal Guidance Signaling3.22NAABLM1,ADAM17,ADAM2 3,ADAM9,ARPC1A,DOCK1, EPHB4,FYN,GT1,GNA12,G RB2,HERC2,HRAS,NRP2,PI K3C2G,PIK3C3,PIK3CD,PL XNB1,PRKACA,PRKCB,PX NRTNA,SEMA4B,SEMA4C, SEMA6D,TUBB2AClathrin-mediated Endocytosis Signaling3.17NAAPOA4,ARPC1A,LPS15,GR B2,TIGB2,MYO6,PICALMP RS2,GPIK3C3,PIK3CD,PL XNB1,PRKACA,PRKCB,PX NRTNA,SEMA4B,SEMA4C, SEMA6D,TUBB2AClathrin-mediated Endocytosis Signaling3.17NAAPOA4,ARPC1A,LPS15,GR B2,TIGB2,MYO6,PICALMP RS2,TGB2,MYO6,PICALMP RS2,TGB2,MYO6,PICALMP RS2,TGB2,MYO6,PICALMP RS2,TGB2,MYO6,PICALMP RS2,TGB2,MYO6,PICALMP RS2,TGB2,MYO6,PICALMP RS2,TGB2,MYO6,PICALMP RS2,TGB2,MYO6,PICALMP RS2,TGB2,MYO6,PICALMP RS2,TGB2,MYO6,PICALMP RS2,TGB2,MYO6,PICALMP RS2,TGB2,MYO6,PICALMP RS2,TGB2,MYO6,PICALMP RS2,TGB2,MYO6,PICALMP RS2,TGB2,MYA1,STGB2,AMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRA5,TIGB2,A PIK3C2,PIK3C3,PIK3CD,PX,RH OBTB1,SORB51,TUBB2AMacropinocytosis Signaling3.07-0.378GRB2,HRA5,MAPK14,PIK3 C2G,PIK3C3,PIK3CD,PX RKCBEGF Signaling3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDACS,Kat06,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA1Z,GRB2,HRA5,MAPK14,MAPK 9,PIRKACA,PRKCB,PXN 9,PIRKACA,PRKCB,PXNNF-κB Signaling3.05-1.387FGFR2,FGFR3,GTF2,HRA5,I LIR,I,IA3,PIK3C2,GPIK3C3, PIK3CD,PRKACA,PRKCB,PXN 9,PIKACA,PRKCB,PXNNF-κB Signaling3.04-2.53FGFR2,F				CB,STAT3
Axonal Guidance Signaling3.22NAABLIM1, ADAM17, ADAM2 3, ADAM9, APRC1A, DOCN1 GRB2, HERC2, HRAS, NRP2, PI K3C3G, PIK3C3, PIK3CD, PL K3C3G, PIK3CD, PL K3C3G, PIK3C3, PIK3CD, PL RKCBMacropinocytosis Signaling3.14NAACTN4, CDH1, HRAS, Map3K 7, MAPK14, MAPK9, PIK3C2 G, PIK3C3, PIK3CD, PN, RH OBTB1, SORB51, TUBB2AMacropinocytosis Signaling3.08-1.633AB1, ACTN4, HRAS, TIGB2, PIK3C3, PIK3CD, PN, RH OBTB1, SORB51, TUBB2AMacropinocytosis Signaling3.06NAEGR2, HRAS, MAPK14, PIK3 C2G, PIK3C3, PIK3CD, PN, RH OBTB1, SORB51, TUBB2AGORRH Signaling3.06-0.378GRB2, HRAS, MAPK14, PIK3 C2G, PIK3C3, PIK3CD, PIK3C3, PIK3C3, PIK3C3, PIK3CD, PIK3C3, P	14-3-3-mediated Signaling	3.23	-1.265	GRB2,GSK3A,HRAS,MAPK
Axonal Guidance Signaling3.22NAPRKCB,STK11,TSC1,TUBB 2AAxonal Guidance Signaling3.22NAABLIM1.ADAMI7,ADAM2 3,ADAM9,ARPC1A,DOCK1, EPH4,FYN,GT1,GNA12,G RB2,HERC2,HRAS,NRP2,PI K3C3C3,PIK3CD,PL XNB1,PRKACA,PRKCB,PX N,RTN4,SEMA4B,SEMA4C, SEMA6D,TUBB2AClathrin-mediated Endocytosis Signaling3.17NAAPOA4,ARPC1A,EPS15,GR B2,TTGB2,MY06,PICALM,P IK32C3,PIK3C2,PIK3C3,PIK3CD,PNR,H OBTB1,SORB1,TUBB2AClathrin-mediated Endocytosis Signaling3.17NAAPOA4,ARPC1A,EPS15,GR B2,TTGB2,MY06,PICALM,P IK32C3,PIK3CD,PNR,H OBTB1,SORB51,TUBB2AGerm Cell-Sertoli Cell Junction Signaling3.14NAACTN4,CDH1,HRAS,Map3k 7,MAPK14,MAPK9,PIK3C2 G,PIK3C3,PIK3CD,PNR,RH OBTB1,SORB51,TUBB2AMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,TIGB2, PIK3C2,GPIK3C3,PIK3CD,PNR,RH OBTB1,SORB51,TUBB2AMacropinocytosis Signaling3.06NAEZP,FGFR2,FGFR3,GFF2 HK3C3,PIK3CD,PKR,CB,PXN,RH OBTB1,SORB51,TUBB2AAdipogenesis pathway3.06NAEZP,FGFR2,FGFR3,GFF2 H1,HDACS,Katob,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,MAPK14,MAPK 9,PIRKAC4,PRKCB,PXNNF-kB Signaling3.05-1.387FGFR2,FGFR3,GHF,HRAS,I LIR1,II,33,PIK3C2G,PIK3C3,PIK3CD,PRKACA,PRKCB,PXNNF-krS Signaling3.04-2.53FGFR2,FGFR3,GHR,HRAS,I LIR1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3	6 6			9.PIK3C2G.PIK3C3.PIK3CD.
Axonal Guidance Signaling3.22NAABLIM1,ADAM17,ADAM2 3,ADAM9,ARPC1A,DOCK1, EPHB4,FYN,GIT1,GNA12,G RB2,HERC2,HRAS,NRP2,PI K3C2G,PIK3C3,PIK3CD,PL NRTN4,SEMA4B,SEMA4C, SEMA6D,TUBB2AClathrin-mediated Endocytosis Signaling3.17NAAPOA4,ARPC1A,EPS15,GR B2,ITGB2,MY06,PICALM,PI IK3C2G,PIK3C3,DRE RPINA1,SH3GL1,SYNJ1,TFGerm Cell-Sertoli Cell Junction Signaling3.14NAAPOA4,ARPC1A,EPS15,GR B2,ITGB2,MY06,PICALM,PI IK3C2G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.14NAACTN4,CDH1,HRAS,Map3k 7,MAPK14,MAPK9,PIK3C2 G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,ITGB2, PIK3C2,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.06NAEZH2,FGFR2,FGFR3,GTF2 C,GPIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.06NAEZH2,FGFR2,FGFR3,GTF2 C,GPIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AAdipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 C,GPIK3C3,PIK3CD,PXA S,AMap3K7,MAPK14,MAPK S,PIK3C2,OPIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C2,PIK3C3,PIK3C3,PIK3C2,PIK3C3,PIK3C3,PIK3C2,PIK3C3,PIK				PRKCB.STK11.TSC1.TUBB
Axonal Guidance Signaling3.22NAABLIM1,ADAM17,ADAM2 3,ADAM9,ARPC1A,DOCK1, EPHB4,FYN,GIT1,GNA12,G RB2,HERC2,HRAS,NRP2,PI K3C2G,PIK3C3,PIK3CD,PL XNB1,PRKACA,PRKCB,PX N,RTN4,SEMA4B,SEMA4C, SEMA6D,TUBB2AClathrin-mediated Endocytosis Signaling3.17NAAPOA4,ARPC1A,EPS15,GR B2,TTGB2,MY06,PICALM,P K3C2G,PIK3C3,PIK3CD,SE RPINA1,SH3GL1,SYNJ1,TFGerm Cell-Sertoli Cell Junction Signaling3.14NAACTN4,CDH1,HRAS,Map3K GRTM4,SH3GL1,SYNJ1,TFMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,ITGB2, PIK3C2G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.06NAEZI2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat05,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GRRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAM2G,GNA12,GRB2,HR AS,Map3K7,MAPK14,MAPK 9,PIK3C2G,PIK3C3,PIK3CD,PXR,GB, NF-kB Signaling3.05-1.387FEAS Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I GSTAT3 Pathway3.04CTAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I GIRH,HAS,ICA,PIKACS, SI,SOCS2,SOCS3,STAT3				2A
International optiming5.22International optiming3,ADAM9,ARPC1A,DOCK1, EPHB4,FYN,GIT1,GNA12,G RB2,HERC2,HERC2,HERC3,NEP2,PI K3C2G,PIK3C3,PIK3CD,PL XNB1,PRKACA,PRKCB,PX N,RTN4,SEMA4B3,SEMA4C, SEMA6D,TUBB2AClathrin-mediated Endocytosis Signaling3.17NAAPOA4,ARPC1A,EPS15,GR B2,ITGB2,MY06,PICALM,P IK3C2G,PIK3C3,PIK3CD,SE RPINA1,SH3GL1,SYN1,TFGerm Cell-Sertoli Cell Junction Signaling3.14NAAPOA4,ARPC14,EPS15,GR B2,ITGB2,MY06,PICALM,P IK3C2G,PIK3C3,PIK3CD,SE RPINA1,SH3GL1,SYN1,TFMacropinocytosis Signaling3.14NAACTN4,CDH1,HRAS,Map3k 7,MAPK14,MAPK9,PIK3C2 G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,ITGB2, PIK3C2G,PIK3C3,PIK3CD,P RKCBEGF Signaling3.07-0.378GRB2,HRAS,MAPK14,HRAS,ITGB2, PIK3C2G,PIK3C3,PIK3CD,P RKCBAdipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XRIGNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3K7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-kB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,IL33,PIK3C2G,PIK3C3 PIKACA,PRKCB,PXNNF-kB Signaling3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3	Axonal Guidance Signaling	3.22	NA	ABLIM1 ADAM17 ADAM2
Sind CharlerSolution and the second se	A Kohar Gurdanee Sighaning	5.22	142 1	3 ADAM9 ARPC1A DOCK1
International ConstructionInternational ConstructionRB2,HERC2,HRAS,NRP2,PIRB2,HERC2,HRAS,NRP2,PIK3C2C0,PIK3C3,PIK3CD,PLXNB1,PRKACA,PRKCB,PXNRMAB,SEMA4C,SEMA6D,TUBB2AClathrin-mediated Endocytosis Signaling3.17RernationNAAPOA4,ARPC1A,EPS15,GRB2,ITGB2,MY06,PICALM,PIK3C2G,PIK3C3,PIK3CD,SERPINA1,SH3GL1,SYNJ1,TFGerm Cell-Sertoli Cell Junction Signaling3.14NAAcTN4,CDH1,HRAS,Map3kMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,ITGB2,PIK3C2C,PIK3C3,PIK3CD,PXN,RHOBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.08-1.633Adipogenesis pathway3.06NF-kB Signaling3.05-0.577Adipoganesis pathway3.05-0.577ADCY3,ADCY7,CACNA1A,CAMK2G,GNA2,GRB2,HRNF-kB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,ILIRI,JAPK14,MAPKSTAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,ILIRI,MAPK14,MAPK9,SOCSTAT3 Pathway3.04				EPHB4 EVN GIT1 GNAI2 G
Clathrin-mediated Endocytosis Signaling3.17NAAPOA4,ARPC1A,EPS15,GR B2,ITGB2,MY06,PICALM,P IK3C2G,PIK3C3,PIK3C0,SE B2,ITGB2,MY06,PICALM,P IK3C2G,PIK3C3,PIK3C0,SE RPINA1,SH3GL1,SYN11,TFGerm Cell-Sertoli Cell Junction Signaling3.14NAAPOA4,ARPC1A,EPS15,GR B2,ITGB2,MY06,PICALM,P IK3C2G,PIK3C3,PIK3C0,SE G,PIK3C3,PIK3C0,SE G,PIK3C3,PIK3C0,SE RPINA1,SH3GL1,SYN1,TFMacropinocytosis Signaling3.14NAACTN4,CDH1,IRAS,Map3k 7,MAPK14,MAPK9,PIK3C2 G,PIK3C3,PIK3C0,PN.RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,IRAS,ITGB2, PIK3C2G,PIK3C3,PIK3C0,PN.RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.07-0.378GRB2,IRAS,MAPK14,PIK3 C2G,PIK3C3,PIK3C0,P RKCBEGF Signaling3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,IHDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,IRA A,MaPK14,MAPK 9,PIKACA,PRKCB,PNNNF-kB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,L133,PIK3C2G,PIK3C3 PIK3C0,PRKACA,PRKCB,PNNNF-kB Signaling3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3				PP2 HEPC2 HPAS NPD2 DI
Clathrin-mediated Endocytosis Signaling3.17NAAPOA4,ARPC1A,EPS15,GR B2,ITGB2,MY06,PICALM,P IK3C2G,PIK3C3,PIK3CD,SFLClathrin-mediated Endocytosis Signaling3.17NAAPOA4,ARPC1A,EPS15,GR B2,ITGB2,MY06,PICALM,P IK3C2G,PIK3C3,PIK3CD,SFLGerm Cell-Sertoli Cell Junction Signaling3.14NAACTN4,CDH1,HRAS,Map3k 7,MAPK14,MAPK9,PIK3C2 G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,ITGB2, PIK3C2G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.07-0.378GRB2,HRAS,MAPK14,PIK3 C2G,PIK3C3,PIK3CD,PXACT NK3C2G,PIK3C3,PIK3CD,STAT 3Adipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3K7,MAPK14,MAPK 9,PIKACA,PRKCB,PXNNF-kB Signaling3.04-2.53FGFR2,FGFR3,GTR4 FGFR2,FGFR3,GTR4,HRASJ, LIR1,IL3,PIK3C2G,PIK3C3 PIK3C2,PIKACA,PRKCB, TNFAIP3,TNIP1				KB2, HERC2, HRAS, NKF2, FI
ANB I, PRAACA, PRACE, PA N, RTN4, SEMA4B, SEMA4C, SEMA6D, TUBB2AClathrin-mediated Endocytosis Signaling3.17NAAPOA4, ARPC1A, EPS15, GR B2, ITGB2, MY06, PICALM, PI IK3C2G, PIK3C3, PIK3CD, PK3C3, PIK3CD, PK3C3, PIK3CD, PK3C3, PIK3CD, PK3C2G, PIK3C3, PIK3C2D, PK3C3, PIK3C2D, PXN, RH OBTB1, SORBS1, TUBB2AGerm Cell-Sertoli Cell Junction Signaling3.14NAACTN4, CDH1, HRAS, Map3k 7, MAPK14, MAPK9, PIK3C2G, G, PIK3C3, PIK3CD, PXN, RH OBTB1, SORBS1, TUBB2AMacropinocytosis Signaling3.08-1.633ABI1, ACTN4, HRAS, ITGB2, PIK3C2G, PIK3C3, PIK3CD, PR RKCBEGF Signaling3.07-0.378GRB2, HRAS, MAPK14, PIK3 C2G, PIK3C3, PIK3CD, PI RKCBEGF Signaling3.06NAEZH2, FGFR2, FGFR3, GTF2 H1, HDAC5, Kat6b, KAT7, KM T2B, LPL, SETDB1, TBL1XR1GNRH Signaling3.05-0.577ADCY3, ADCY7, CACNA1A, CAMK2G, GNA12, GRB2, HRAS, MAPK 14, MAPK 9, PRKACA, PRKCB, PXNNF-kB Signaling3.05-1.387FGFR2, FGFR3, GTF2 H1, HDAC5, Kat6b, KAT7, KM T2B, LPL, SETDB1, TBL1XR1GNRH Signaling3.05-1.387FGFR2, FGFR3, GTR2, H1, HJA3, PIK3, C2G, PIK3C3, PIK3CD, PRKACA, PRKCB, PXNNF-kB Signaling3.04-2.53FGFR2, FGFR3, GHR, HRAS, I L1R1, MAPK 14, MAPK 9, PIKACA, PRKCB, PXNSTAT3 Pathway3.04-2.53FGFR2, FGFR3, GHR, HRAS, I L1R1, MAPK 14, MAPK 9, SOC S1, SOCS2, SOCS3, STAT3				X)D1 DDV ACA DDVCD DV
N,R IN4,SEMAB,SEMABC, SEMA6D,TUBB2AClathrin-mediated Endocytosis Signaling3.17NAAPOA4,ARPC1A,EPS15,GR B2,ITGB2,MY06,PICALM,P IK3C2G,PIK3C3,PIK3CD,SE RPINA1,SH3GL,I,SYNJ1,TFGerm Cell-Sertoli Cell Junction Signaling3.14NAACTN4,CDH1,HRAS,Map3k 7,MAPK14,MAPK9,PIK3C2 G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,ITGB2, PIK3C2G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.07-0.378GRB2,HRAS,MAPK14,PIK3 C2G,PIK3C3,PIK3CD,P RKCBEGF Signaling3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3K7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-kB Signaling3.05-1.387FGFR2,FGFR3,GTR2,HRAS,GI FGFR2,FGFR3,GTR2,HRAS,A S,Map3K7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-kB Signaling3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,IJ,3,PIK3CD,PIKACA,PRKCB, NFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SUCS3,STAT3				ANDI,PKKACA,PKKCB,PA
Clathrin-mediated Endocytosis Signaling3.17NAAPOA4,ARPC1A,EPS15,GR B2,ITGB2,MY06,PICALM,P IK3C2G,PIK3C3,PIK3CD,SE RPINA1,SH3GL1,SYN1,TFGerm Cell-Sertoli Cell Junction Signaling3.14NAACTN4,CDH1,HRAS,Map3k 7,MAPK14,MAPK9,PIK3C2 G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,ITGB2, PIK3C2G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AEGF Signaling3.07-0.378GRB2,HRAS,MAPK14,PIK3 C2G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AAdipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, ADCY3,ADCY7,CACNA1A, PLIXR1NF-kB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I LIR1,L33,PIK3C2,GPK3,CGHR,HRAS,I LIR1,L33,PIK3C2,GPK3,CGHR,HRAS,I LIR1,L33,PIK3C2,GPK3,CGHR,HRAS,I LIR1,L33,PIK3C2,GPK3,CGHR,HRAS,I LIR1,L33,PIK3C2,GPK3,CGHR,HRAS,I LIR1,L33,PIK3C2,GPK3,CGHR,HRAS,I LIR1,MAPK4,MAPK9,SOC SI,SOCS2,SOCS3,STAT3				N,KIN4,SEMA4B,SEMA4C,
Clathrin-mediated Endocytosis Signaling3.17NAAPOA4,ARPC1A,EPS15,GR B2,ITGB2,MY06,PICALM,P IK3C2G,PIK3C3,PIK3CD,SE RPINA1,SH3GL1,SYNJ1,TFGerm Cell-Sertoli Cell Junction Signaling3.14NAACTN4,CDH1,HRAS,Map3k 7,MAPK14,MAPK9,PIK3C2 G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,ITGB2, PIK3C2G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AEGF Signaling3.07-0.378GRB2,HRAS,MAPK14,PIK3 C2G,PIK3C3,PIK3CD,P RKCBEGF Signaling3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3k7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-kB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I LIR1,IL33,PIK3C2G,PIK3C3 PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I LIR1,MAPK14,MAPK9,SOC S1,SOCS2,SOC3,STAT3		2.17	214	SEMA6D, TUBB2A
B2,11GB2,MYO6,PICALM,PGerm Cell-Sertoli Cell Junction Signaling3.14NAACTN4,CDH1,HRAS,Map3k 7,MAPK14,MAPK9,PIK3C2 G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,ITGB2, PIK3C2G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.07-0.378GRB2,HRAS,MAPK14,PIK3 C2G,PIK3C3,PIK3CD,STAT 3Adipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3k7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-кB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,L33,PIK3C2G,PIK3C3,PIK3CD,PIK3C3,PIK3CD,PIKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK4,MAPK9,SOC S1,SOCS2,SOCS3,STAT3	Clathrin-mediated Endocytosis Signaling	3.17	NA	APOA4,ARPCIA,EPSI5,GR
Germ Cell-Sertoli Cell Junction Signaling3.14NAACTN4,CDH1,HRAS,Map3k 7,MAPK14,MAPK9,PIK3C2 G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,TIGB2, PIK3C2G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,TIGB2, PIK3C2G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AEGF Signaling3.07-0.378GRB2,HRAS,MAPK14,PIK3 C2G,PIK3C3,PIK3CD,STAT 3Adipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3k7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-кB Signaling3.05-1.387FGFR2,FGFR3,GHR2,HRAS,I L1R1,IL33,PIK3C2G,PIK3C3, PIK3CD,PRKACA,PRKCB,PXNSTAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3				B2,ITGB2,MYO6,PICALM,P
Germ Cell-Sertoli Cell Junction Signaling3.14NAACTN4,CDH1,HRAS,Mag3k 7,MAPK14,MAPK9,PIK3C2 G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,ITGB2, PIK3C2,PIK3C3,PIK3CD,P RKCBEGF Signaling3.07-0.378GRB2,HRAS,MAPK14,PIK3 C2G,PIK3C3,PIK3CD,P RKCBAdipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAM2G,GNA12,GRB2,HR AS,MapSk7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-kB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,L133,PIK3C2G,PIK3C3, PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK49,SOC S1,SOCS2,SOCS3,STAT3				IK3C2G,PIK3C3,PIK3CD,SE
Germ Cell-Sertoli Cell Junction Signaling3.14NAACTN4,CDH1,HRAS,Map3k 7,MAPK14,MAPK9,PIK3C2 G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,ITGB2, PIK3C2G,PIK3C3,PIK3CD,P RKCBEGF Signaling3.07-0.378GRB2,HRAS,MAPK14,PIK3 C2G,PIK3C3,PIK3CD,P RKCBAdipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3k7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-κB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,L133,PIK3C2G,PIK3C3, PIK3CD,PRKACA,PRKCB,PXNSTAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3				RPINA1,SH3GL1,SYNJ1,TF
Macropinocytosis Signaling3.08-1.6337,МАРК14,МАРК9,РКЗС2 G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,ITGB2, PIK3C2G,PIK3C3,PIK3CD,P RKCBEGF Signaling3.07-0.378GRB2,HRAS,MAPK14,PIK3 C2G,PIK3C3,PIK3CD,STAT 3Adipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3k7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-кB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,L133,PIK3C2G,PIK3C3 ,PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3	Germ Cell-Sertoli Cell Junction Signaling	3.14	NA	ACTN4,CDH1,HRAS,Map3k
Macropinocytosis Signaling3.08-1.633G,PIK3C3,PIK3CD,PXN,RH OBTB1,SORBS1,TUBB2AMacropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,ITGB2, PIK3C2G,PIK3C3,PIK3CD,P RKCBEGF Signaling3.07-0.378GRB2,HRAS,MAPK14,PIK3 C2G,PIK3C3,PIK3CD,STAT 3Adipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3k7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-κB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,IL33,PIK3C2G,PIK3C3 ,PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3				7,MAPK14,MAPK9,PIK3C2
Macropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,ITGB2, PIK3C2G,PIK3C3,PIK3CD,P RKCBEGF Signaling3.07-0.378GRB2,HRAS,MAPK14,PIK3 C2G,PIK3C3,PIK3CD,STAT 3Adipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3k7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-кB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,IL33,PIK3C2G,PIK3C3,PIK3C2,PIK3C3 ,PIK3C2,PIK3C3,PIK3C2G,PIK3C3 ,PIK3C2,PIKAS,T3STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3				G,PIK3C3,PIK3CD,PXN,RH
Macropinocytosis Signaling3.08-1.633ABI1,ACTN4,HRAS,ITGB2, PIK3C2G,PIK3C3,PIK3CD,P RKCBEGF Signaling3.07-0.378GRB2,HRAS,MAPK14,PIK3 C2G,PIK3C3,PIK3CD,STAT 3Adipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3k7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-κB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,IL33,PIK3C2G,PIK3C3 ,PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3				OBTB1,SORBS1,TUBB2A
EGF Signaling3.07-0.378PIK3C2G,PIK3C3,PIK3CD,P RKCBEGF Signaling3.07-0.378GRB2,HRAS,MAPK14,PIK3 C2G,PIK3C3,PIK3CD,STAT 3Adipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3k7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-kB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,L123,PIK3C2G,PIK3C3 ,PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3	Macropinocytosis Signaling	3.08	-1.633	ABI1,ACTN4,HRAS,ITGB2,
EGF Signaling3.07-0.378GRB2,HRAS,MAPK14,PIK3 C2G,PIK3C3,PIK3CD,STAT 3Adipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3k7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-κB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,IL33,PIK3C2G,PIK3C3 ,PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3				PIK3C2G,PIK3C3,PIK3CD,P
EGF Signaling3.07-0.378GRB2,HRAS,MAPK14,PIK3 C2G,PIK3C3,PIK3CD,STAT 3Adipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNAI2,GRB2,HR AS,Map3k7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-κB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,IL33,PIK3C2G,PIK3C3 ,PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3				RKCB
Dot orginalingStorStorStorStorStorStorStorStorStorStorStorC2G,PIK3C3,PIK3C0,STAT 3Adipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3k7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-кB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,IL33,PIK3C2G,PIK3C3 ,PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3	EGF Signaling	3.07	-0.378	GRB2.HRAS.MAPK14.PIK3
Adipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3k7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-κB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,IL33,PIK3C2G,PIK3C3 ,PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3		2.0,	0.070	C2G.PIK3C3.PIK3CD.STAT
Adipogenesis pathway3.06NAEZH2,FGFR2,FGFR3,GTF2 H1,HDAC5,Kat6b,KAT7,KM T2B,LPL,SETDB1,TBL1XR1GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3k7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-κB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,IL33,PIK3C2G,PIK3C3 ,PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3				3
Adipogenesis pathway5.00NAEZI2,1 GFR2,1 GF	Adinogenesis pathway	3.06	NΔ	EZH2 EGER2 EGER3 GTE2
GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3k7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-κB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,IL33,PIK3C2G,PIK3C3 ,PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3	Aupogenesis patiway	5.00	1 1 2 2	H1 HDAC5 Kat6h KAT7 KM
GNRH Signaling3.05-0.577ADCY3,ADCY7,CACNA1A, CAMK2G,GNA12,GRB2,HR AS,Map3k7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-κB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,IL33,PIK3C2G,PIK3C3 ,PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3				T2D I DI SETDDI TDI 1VDI
GNRH Signaling3.05-0.377ADC Y3,ADC Y3,ADC Y3,CACNATA, CAMK2G,GNAI2,GRB2,HR AS,Map3k7,MAPK14,MAPK 9,PRKACA,PRKCB,PXNNF-κB Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,IL33,PIK3C2G,PIK3C3 ,PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3	CNDU Signation	2.05	0.577	ADCV2 ADCV7 CACNA1A
NF-кВ Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,IL33,PIK3C2G,PIK3C3 ,PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3	GINKH Signaling	3.05	-0.377	ADC Y 3, ADC Y /, CACNATA,
AS, Map3k7, MAPK 14, MAPK 9, PRKACA, PRKCB, PXNNF-κB Signaling3.05-1.387FGFR2, FGFR3, GHR, HRAS, I L1R1, IL33, PIK3C2G, PIK3C3 , PIK3CD, PRKACA, PRKCB, TNFAIP3, TNIP1STAT3 Pathway3.04-2.53FGFR2, FGFR3, GHR, HRAS, I L1R1, MAPK 14, MAPK 9, SOC S1, SOCS2, SOCS3, STAT3				CAMK2G,GNAI2,GKB2,HK
NF-κB Signaling 3.05 -1.387 FGFR2,FGFR3,GHR,HRAS,I L1R1,IL33,PIK3C2G,PIK3C3 ,PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1 STAT3 Pathway 3.04 -2.53 FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3				AS,Map3K/,MAPK14,MAPK
NF-кВ Signaling3.05-1.387FGFR2,FGFR3,GHR,HRAS,I L1R1,IL33,PIK3C2G,PIK3C3 ,PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3			1.00-	9,PKKACA,PKKCB,PXN
STAT3 Pathway3.04-2.53L1R1,IL33,PIK3C2G,PIK3C3 ,PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3	NF-KB Signaling	3.05	-1.387	FGFR2,FGFR3,GHR,HRAS,I
PIK3CD,PRKACA,PRKCB, TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3				L1R1,IL33,PIK3C2G,PIK3C3
STAT3 Pathway3.04TNFAIP3,TNIP1STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,IL1R1,MAPK14,MAPK9,SOCS1,SOCS2,SOCS3,STAT3				,PIK3CD,PRKACA,PRKCB,
STAT3 Pathway3.04-2.53FGFR2,FGFR3,GHR,HRAS,I L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3				TNFAIP3,TNIP1
L1R1,MAPK14,MAPK9,SOC S1,SOCS2,SOCS3,STAT3	STAT3 Pathway	3.04	-2.53	FGFR2,FGFR3,GHR,HRAS,I
S1,SOCS2,SOCS3,STAT3				L1R1,MAPK14,MAPK9,SOC
				S1,SOCS2,SOCS3,STAT3
Melanocyte Development and Pigmentation Signaling	3.03	-0.333	ADCY3,ADCY7,GRB2,HRA S,KIT,PIK3C2G,PIK3C3,PIK 3CD,PRKACA	
--	------	--------	--	
Leukocyte Extravasation Signaling	3	-1.941	ACTN4,ARHGAP4,CLDN12 ,GNAI2,ITGB2,MAPK14,M APK9,PIK3C2G,PIK3C3,PIK 3CD,PRKCB,PXN,RAPGEF4 ,RASGRP1	
FcyRIIB Signaling in B Lymphocytes	2.97	-0.378	CACNA1A,DOK1,GRB2,HR AS,MAPK9,PIK3C2G,PIK3C 3,PIK3CD	
IL-3 Signaling	2.97	0	GRB2,HRAS,PIK3C2G,PIK3 C3,PIK3CD,PRKCB,STAT3, STAT5A	
Non-Small Cell Lung Cancer Signaling	2.97	-0.447	CDK4,GRB2,HRAS,PIK3C2 G,PIK3C3,PIK3CD,RXRA,R XRB	
Apelin Pancreas Signaling Pathway	2.97	0	MAPK9,PIK3C2G,PIK3C3,P IK3CD,PRKAA1,PRKACA	
p53 Signaling	2.97	1.342	ATR,CDK4,COQ8A,GADD4 5G,MAPK14,PIK3C2G,PIK3 C3,PIK3CD,PML	
G-Protein Coupled Receptor Signaling	2.94	NA	ADCY3,ADCY7,CAMK2G,F YN,GNAI2,GRB2,GRK2,HR AS,PIK3C2G,PIK3C3,PIK3C D,PRKACA,PRKCB,RAPGE F4,RASGRP1,RGS16,STAT3	
IL-2 Signaling	2.9	-0.378	GRB2,HRAS,PIK3C2G,PIK3 C3,PIK3CD,SOCS1,STAT5A	
Hereditary Breast Cancer Signaling	2.89	NA	ATR,CDK4,GADD45G,HDA C5,HRAS,PBRM1,PIK3C2G, PIK3C3,PIK3CD,SMARCA2, SMARCA4	
Fc Epsilon RI Signaling	2.83	-1.897	FYN,GRB2,HRAS,MAPK14, MAPK9,PIK3C2G,PIK3C3,P IK3CD,PRKCB,SYNJ1	
FLT3 Signaling in Hematopoietic Progenitor Cells	2.83	0	GRB2,HRAS,MAPK14,PIK3 C2G,PIK3C3,PIK3CD,STAT 3,STAT5A	
CD40 Signaling	2.82	-1.134	MAPK14,MAPK9,PIK3C2G, PIK3C3,PIK3CD,STAT3,TN FAIP3	
Chronic Myeloid Leukemia Signaling	2.82	NA	CDK4,GRB2,HDAC5,HRAS, PIK3C2G,PIK3C3,PIK3CD,R BL2,STAT5A	
NRF2-mediated Oxidative Stress Response	2.81	-1.134	DNAJB2,FM01,GSTM5,HE RPUD1,HRAS,MAPK14,MA PK9,MGST1,PIK3C2G,PIK3 C3,PIK3CD,PRKCB,SQSTM 1	
Integrin Signaling	2.78	-1.155	ACTN4,ARPC1A,DOCK1,F YN,GIT1,GRB2,HRAS,ITGA V,ITGB2,PIK3C2G,PIK3C3, PIK3CD,PXN,RHOBTB1	
VEGF Signaling	2.73	0	ACTN4,EIF2S3,GRB2,HRAS ,PIK3C2G,PIK3C3,PIK3CD, PRKCB,PXN	
Aryl Hydrocarbon Receptor Signaling	2.72	-1.414	AIP,ALDH3A2,ATR,CDK4, GSTM5,HSP90AB1,MGST1, RBL2,RXRA,RXRB,SMARC A4	

eNOS Signaling	2.71	-0.707	ADCY3,ADCY7,AQP4,AQP
			8,CHRNA4,HSP90AB1,PIK3
			C2G,PIK3C3,PIK3CD,PRKA
			A1,PRKACA,PRKCB
Telomerase Signaling	2.7	0	ELF4,GRB2,HDAC5,HRAS,
			HSP90AB1,PIK3C2G,PIK3C
			3,PIK3CD,TERT
PTEN Signaling	2.7	1.897	FGFR2.FGFR3.GHR.GRB2.
		1.057	GSK3A.HRAS.MAGI1.MAS
			T2 PIK 3CD SYN11
Endocannabinoid Cancer Inhibition	2.69	0.302	ADCY3 ADCY7 CDH1 GNA
Pathway	2.09	0.502	12 MAPK 14 PIK 3C2G PIK 3C
1 attiway			3 PIK 3 CD PRK A A 1 PRK A C
			A TCF3
Molecular Mechanisms of Concer	2.67	ΝA	ADCV3 ADCV7 ATP CAM
Wibiecular Mechanishis of Cancer	2.07	INA	K2C CDH1 CDK4 EVN GN
			AD CDD2 CSK2A LIDAS M
			AIZ, GKB2, GSK3A, HKAS, M
			APK14,MAPK9,PIK3C2G,PI
			K3C3,PIK3CD,PRKACA,PR
			KCB,RASGRP1,RHOBTB1,
			TCF3
ERK/MAPK Signaling	2.67	-0.277	DOCK1,ELF4,FYN,GRB2,H
			RAS,PIK3C2G,PIK3C3,PIK3
			CD,PRKACA,PRKCB,PXN,
			RAPGEF4,STAT3
CXCR4 Signaling	2.64	-0.905	ADCY3,ADCY7,DOCK1,GN
			AI2,HRAS,MAPK9,PIK3C2
			G,PIK3C3,PIK3CD,PRKCB,
			PXN,RHOBTB1
Melanoma Signaling	2.64	-0.447	CDH1,CDK4,HRAS,PIK3C2
			G,PIK3C3,PIK3CD
UVB-Induced MAPK Signaling	2.64	-1.633	MAPK14,MAPK9,PIK3C2G,
6 6	-		PIK3C3,PIK3CD,PRKCB
ErbB4 Signaling	2.63	-1.134	ADAM17.GRB2.HRAS.PIK3
			C2G.PIK3C3.PIK3CD.PRKC
			В
Cardiac Hypertrophy Signaling	2.61	0	ADCY3.ADCY7.CACNA1A.
caratae nyperiophy signating		Ũ	GNAI2 GRB2 HRAS Map3k
			7 MAPK 14 MAPK 9 MEF 2C
			PIK 3C2G PIK 3C3 PIK 3CD P
			RKACA RHOBTB1
Acetone Degradation I (to Methylalyoval)	2.58	-1 3/12	CVP2A6 (includes
Actione Degradation I (to Wethylgryoxal)	2.58	-1.542	athers) CVD2C18 CVD2C8 C
			VD4 A 11 DOP
Nitaia Onida Simulian in the	2.56	1	CACNALA CUCY2C USD00
Nuric Oxide Signaling in the	2.30	1	CACNATA, GUC Y 2C, HSP90
Cardiovascular System			AB1,PIK3C2G,PIK3C3,PIK3
			CD,PRKAA1,PRKACA,PRK
			СВ
IL-15 Signaling	2.56	NA	HRAS,MAPK14,PIK3C2G,PI
			K3C3,PIK3CD,STAT3,STAT
			5A
PDGF Signaling	2.55	0	GRB2,HRAS,PIK3C2G,PIK3
			C3,PIK3CD,PRKCB,STAT3,
			SYNJ1
Virus Entry via Endocytic Pathways	2.54	NA	FLNA,FYN,HLA-
			A,HRAS,ITGB2,PIK3C2G,PI
			K3C3,PIK3CD,PRKCB
Complement System	2.53	NA	C1R,C4A/C4B,C6,CFH,ITGB
* -			2
AMPK Signaling	2.53	0.632	ACACA, CHRNA4. FASN.M
			APK14,PBRM1,PIK3C2G.PI
			. , , - , - ,

			K3C3,PIK3CD,PRKAA1,PR
			KACA,SMARCA2,SMARCA
			4,STK11,TSC1
Breast Cancer Regulation by Stathmin1	2.5	NA	ADCY3,ADCY7,CAMK2G,
			GNAI2,GRB2,HRAS,PIK3C2
			G,PIK3C3,PIK3CD,PRKAC
			A,PRKCB,TUBB2A,UHMK1
ErbB Signaling	2.49	-1.414	GRB2.HRAS.MAPK14.MAP
			K9.PIK3C2G.PIK3C3.PIK3C
			D.PRKCB
Ephrin Receptor Signaling	2 48	-0.905	ABI1 ARPC1A DOK1 EPHB
	2.10	0.505	4 FYN GNAI2 GRB2 HRAS
			PIK 3C2G PXN SORBS1 ST
			AT3
Inhibition of Angiogenesis by TSP1	2.48	-2.236	CD36 CD47 FYN MAPK 14
minoriton of Anglogenesis by 1511	2.40	-2.250	МАРК9
Glioma Signaling	2.41	1 13/	CAMK2G CDK4 GPB2 HPA
Ghoma Signanng	2.71	-1.1.54	S DIK 3C2G DIK 3C3 DIK 3CD
			DRVCD DDI 2
Angionojetin Signaling	2.4	1	GPB2 HPAS DIV 2C2G DIV 3
Angropoletin Signaling	2.4	1	$C_2 \text{ DIV}_2 CD \text{ STAT5A TNID1}$
Chugogontiagid Decentor Signaling	2.20	NIA	DAC1 CDD2 CTE2111 LIDAS
Glucocorticola Receptor Signaling	2.38	NA	$BAUI, OKB2, OIF2\PiI, HKAS$ BSD00AD1 MADV 14 MADV
			0 ND2C1 DDDM1 DIV2C2C
			9,NK3C1,PBKM1,PIK3C2G,
			PIK3C3,PIK3CD,PKKAAI,P
			RKACA, SMARCA2, SMARC
DAK C' 1	0.00	274	A4,SIAI3,SIAI5A
FAK Signaling	2.38	NA	DOCK I, FYN, GRB2, HRAS, P
			IK3C2G,PIK3C3,PIK3CD,PX
			N
HMGB1 Signaling	2.38	-1	HRAS,IL1R1,IL33,Kat6b,KA
			17, МАРК 14, МАРК 9, РІК 3С
			2G,PIK3C3,PIK3CD,RHOBT
			B1
Reelin Signaling in Neurons	2.37	NA	FYN,ITGB2,MAPK8IP3,MA
			PK9,PIK3C2G,PIK3C3,PIK3
			CD
Stearate Biosynthesis I (Animals)	2.36	-1.633	ACOT1,ACOT2,ACSL1,CYP
			4A11,ELOVL6,FASN
White Adipose Tissue Browning Pathway	2.35	0.632	ADCY3,ADCY7,CACNA1A,
			FGFR2,FGFR3,MAPK14,PR
			KAA1,PRKACA,RXRA,RX
			RB
PAK Signaling	2.35	-1.414	GIT1,GRB2,HRAS,MAPK9,
			PIK3C2G,PIK3C3,PIK3CD,P
			XN
Tec Kinase Signaling	2.34	-0.333	FYN,GNAI2,GTF2I,MAPK9,
			PIK3C2G,PIK3C3,PIK3CD,P
			RKCB,RHOBTB1,STAT3,ST
			AT5A
GDNF Family Ligand-Receptor	2.34	-1.134	DOK1,GRB2,HRAS,MAPK9,
Interactions			PIK3C2G,PIK3C3,PIK3CD
CNTF Signaling	2.33	0	GRB2,HRAS,PIK3C2G,PIK3
			C3,PIK3CD,STAT3
ILK Signaling	2.3	-0.632	ACTN4,CDH1,DOCK1,FLN
			A,GSK3A,ITGB2,MAPK9,PI
			K3C2G,PIK3C3,PIK3CD,PX
			N,RHOBTB1
Regulation of the Epithelial-Mesenchymal	2.3	NA	ADAM17,CDH1,FGFR2,FGF
Transition Pathway			R3,GRB2,HRAS,PIK3C2G,PI

			K3C3,PIK3CD,STAT3,TCF3,
			ZEB2
Bupropion Degradation	2.3	-1	CYP2A6 (includes
			others),CYP2C18,CYP2C8,P
The Dethermore	2.20	0.707	
Ini Panway	2.29	-0.707	A ITCP2 DIV2C2C DIV2C2
			A,IIOB2,FIK5C20,FIK5C5,
			T3
Sertoli Cell-Sertoli Cell Junction Signaling	2.28	NΔ	ACTN4 CDH1 CI DN12 FPB
Serten een serten een suberen signamig	2.20	141	41 GSK 3A HRAS Map3k7 M
			APK 14 MAPK 9 PRK ACA S
			ORBS1,TUBB2A
Cholecystokinin/Gastrin-mediated	2.27	-1.414	GRB2,HRAS,IL33,MAPK14,
Signaling			MAPK9,MEF2C,PRKCB,PX
			N,RHOBTB1
Endometrial Cancer Signaling	2.25	-0.816	CDH1,GRB2,HRAS,PIK3C2
			G,PIK3C3,PIK3CD
CD28 Signaling in T Helper Cells	2.25	-1.414	ARPC1A,FYN,GRB2,HLA-
			A,MAPK9,PIK3C2G,PIK3C3
			,PIK3CD,PTPRC
Docosahexaenoic Acid (DHA) Signaling	2.25	NA	GSK3A,PIK3C2G,PIK3C3,PI
			K3CD,SERPINF1
IL-23 Signaling Pathway	2.25	-0.447	PIK3C2G,PIK3C3,PIK3CD,S
	2.25		
Mouse Embryonic Stem Cell Pluripotency	2.25	0	GRB2,HRAS,MAPK14,PIK3
			C2G,PIK3C3,PIK3CD,STAT
SADV/INIV Signaling	2.25	1 124	CDD2 LIDAS MADAV5 MAD
SAPK/JINK Signaling	2.23	-1.154	K SID3 MADKO DIK 3C2C DI
			Koli S, WAI K9, I K5C2O, I I
LPS-stimulated MAPK Signaling	2.25	_1.80	HRAS MAPK 1/ MAPK 9 PI
Li 5-stillulatod WAI K Signalling	2.2.5	-1.07	K 3C2G PIK 3C3 PIK 3CD PR
			KCB
Th1 and Th2 Activation Pathway	2.22	NA	GRB2.HLA-
			A,IL33,ITGB2,PIK3C2G,PIK
			3C3,PIK3CD,SOCS1,SOCS3,
			STAT3,STAT5A
PPAR Signaling	2.22	-0.707	AIP,GRB2,HRAS,HSP90AB
			1,IL1R1,IL33,RXRA,STAT5
			Α
Apelin Cardiomyocyte Signaling Pathway	2.22	-1.414	GNAI2,MAPK14,MAPK9,PI
			K3C2G,PIK3C3,PIK3CD,PR
			KCB,SLC9A6
NF-KB Activation by Viruses	2.22	-1.89	HRAS,ITGAV,ITGB2,PIK3C
	2.10	0.052	2G,PIK3C3,PIK3CD,PRKCB
Cardiac Hypertrophy Signaling (Enhanced)	2.19	-0.853	ADCY 3, ADCY /, CACNATA,
			HP CNAI2 CSK2A HDAC5
			HPAS II 1P1 II 23 $Map 3k7$
			MAPK 14 MAPK 9 MFF2C PI
		1	K3C2G.PIK3C3.PIK3CD PR
			KACA.PRKCB.STAT3
Protein Ubiquitination Pathway	2.18	NA	ANAPC5,BAG1.BIRC6.DNA
1	-		JB2,HLA-
			A,HSP90AB1,PAN2,PSMD1
			3,PSMD2,UBE2M,UBE4B,U
			SO1,USP19,USP24,USP36
Endothelin-1 Signaling	2.16	-1.155	ADCY3,ADCY7,GNAI2,GR
			B2,GUCY2C,HRAS,MAPK1

			4,MAPK9,PIK3C2G,PIK3C3,
			PIK3CD,PRKCB
Myc Mediated Apoptosis Signaling	2.15	NA	GRB2,HRAS,MAPK9,PIK3C
			2G,PIK3C3,PIK3CD
IL-17A Signaling in Airway Cells	2.12	-0.816	MAPK14,MAPK9,PIK3C2G,
	0.11	27.4	PIK3C3,PIK3CD,STAT3
Epithelial Adherens Junction Signaling	2.11	NA	ACTN4, ARPCIA, CDHI, CLI
			PI,HRAS,MAGII,PARD3,S
	2.00	214	ORBS1,1CF3,1UBB2A
I Cell Receptor Signaling	2.08	NA	FYN,GRB2,HRAS,PIK3C2G,
			PIK5C5,PIK5CD,PIPKC,KA
Coloractal Cancor Matastasia Signaling	2.08	0	ADCV2 ADCV7 CDH1 CPP
Colorectal Cancer Metastasis Signaling	2.08	0	2 GRK2 HRAS MAPK9 PIK3
			C2G PIK3C3 PIK3CD PRKA
			CA.RHOBTB1.STAT3.TCF3
PKC0 Signaling in T Lymphocytes	2.04	-1	CACNA1A CAMK2G FYN
	2.01	1	GRB2.HLA-
			A,HRAS,Map3k7,PIK3C2G,P
			IK3C3,PIK3CD
SPINK1 General Cancer Pathway	2.03	-0.816	HRAS,Mt2,PIK3C2G,PIK3C
			3,PIK3CD,STAT3
VEGF Family Ligand-Receptor Interactions	2.03	-0.816	GRB2,HRAS,NRP2,PIK3C2
			G,PIK3C3,PIK3CD,PRKCB
IL-12 Signaling and Production in	2.02	NA	APOA4,MAPK14,MAPK9,PI
Macrophages			K3C2G,PIK3C3,PIK3CD,PR
			KCB,RXRA,SERPINA1
Gap Junction Signaling	2	NA	ADCY3, ADCY7, GNAI2, GR
			B2,GUCY2C,HRAS,PIK3C2
			G,PIK3C3,PIK3CD,PKKAC
Pagulation of aIE4 and p7086K Signaling	2	0.447	A,PKKCB,TUBB2A
Regulation of en 4 and p/050K Signating	2	-0.447	B2 HRAS MAPK 14 PARPC1
			PIK 3C2G PIK 3C3 PIK 3CD
HOTAIR Regulatory Pathway	2	-0.632	ATXN1 CDH1 EZH2 KMT2
	-	0.052	A.PIK3C2G.PIK3C3.PIK3CD
			,SETDB1,STAT3,TCF3
P2Y Purigenic Receptor Signaling Pathway	2	-1	ADCY3.ADCY7.GNAI2.HR
			AS,PIK3C2G,PIK3C3,PIK3C
			D,PRKACA,PRKCB
Th2 Pathway	2	0.816	GRB2,HLA-
			A,IL33,ITGB2,PIK3C2G,PIK
			3C3,PIK3CD,SOCS3,STAT5
			A
Role of NFAT in Regulation of the Immune	1.98	-0.632	FYN,GNAI2,GRB2,GSK3A,
Response			HLA-
			A,HRAS,MEF2C,PIK3C2G,P
Detire 1 Die erweth anie	1.09	0.447	IK3C3,PIK3CD,APOI
Reunol Biosynthesis	1.98	0.447	LAS
LIVC-Induced MAPK Signaling	1.08	_2	ATP HPAS MAPK 1/ MAPK
0 VC-Induced IVIAI K Signaling	1.70	-2	9 PRKCB
Thrombin Signaling	1.96	-0.905	ADCY3.ADCY7.CAMK2G
	1.90	01200	GNAI2.GRB2.HRAS.MAPK
			14,PIK3C2G,PIK3C3,PIK3C
			D,PRKCB,RHOBTB1
CREB Signaling in Neurons	1.94	-0.302	ADCY3,ADCY7,CACNA1A,
			CAMK2G,GNAI2,GRB2,HR
			AS,PIK3C2G,PIK3C3,PIK3C
			D,PRKACA,PRKCB

Thyroid Cancer Signaling	1.94	NA	CDH1,HRAS,RXRA,RXRB, TCF3
IL-1 Signaling	1.93	0	ADCY3, ADCY7, GNAI2, IL1
0 0			R1,MAPK14,MAPK9,PRKA
			CA
mTOR Signaling	1.93	-1.667	ATG13,EIF4G1,EIF4G3,HR
0 0			AS,PIK3C2G,PIK3C3,PIK3C
			D,PRKAA1,PRKCB,RHOBT
			B1,STK11,TSC1
GADD45 Signaling	1.9	NA	ATR,CDK4,GADD45G
Small Cell Lung Cancer Signaling	1.89	0	CDK4.PIK3C2G.PIK3C3.PIK
		-	3CD,RXRA,RXRB
Production of Nitric Oxide and Reactive	1.87	-0.632	APOA4,Map3k7,MAPK14,M
Oxygen Species in Macrophages			APK9,PIK3C2G,PIK3C3,PIK
			3CD,PRKCB,RHOBTB1,SE
			RPINA1,SIRPA
Caveolar-mediated Endocytosis Signaling	1.86	NA	ARCN1,FLNA,FYN,HLA-
			A,ITGAV,ITGB2
ATM Signaling	1.86	-0.447	ATR,GADD45G,HERC2,MA
			PK14,MAPK9,TLK2,TRRAP
Glioma Invasiveness Signaling	1.86	-1.342	HRAS,ITGAV,PIK3C2G,PIK
6 6			3C3,PIK3CD,RHOBTB1
Superpathway of Inositol Phosphate	1.83	0	INPP5E,PI4KB,PIK3C2G,PI
Compounds			K3C3,PIK3CD,PPP1R16B,PP
1			P4C,PTPRC,SEC16A,SIRPA,
			SOCS3,SYNJ1
Role of Tissue Factor in Cancer	1.82	NA	FYN,HRAS,ITGAV,MAPK1
			4,PIK3C2G,PIK3C3,PIK3CD,
			STAT5A
Role of IL-17A in Arthritis	1.81	NA	MAPK14,MAPK9,PIK3C2G,
			PIK3C3,PIK3CD
Natural Killer Cell Signaling	1.79	NA	FYN,GRB2,HRAS,PIK3C2G,
			PIK3C3,PIK3CD,PRKCB,SY
			NJ1
Estrogen-Dependent Breast Cancer	1.79	-0.447	HRAS,PIK3C2G,PIK3C3,PI
Signaling			K3CD,STAT5A,TERT
Agrin Interactions at Neuromuscular	1.76	-1.342	AGRN,HRAS,ITGB2,MAPK
Junction			9,PKLR,PXN
Triacylglycerol Degradation	1.75	-0.447	Ces2e,CES3,DDHD2,LPL,PN
			PLA5
IL-8 Signaling	1.74	-1.667	CDH1,GNAI2,HRAS,ITGAV
			,ITGB2,MAPK9,PIK3C2G,PI
			K3C3,PIK3CD,PRKCB,RHO
			BTB1
IL-17 Signaling	1.74	NA	HRAS,MAPK14,MAPK9,PI
			K3C2G,PIK3C3,PIK3CD
D-myo-inositol (1,4,5)-trisphosphate	1.72	NA	INPP5E,SEC16A,SYNJ1
Degradation	1.50		
3-phosphoinositide Biosynthesis	1.72	0	PI4KB,PIK3C2G,PIK3C3,PI
			K3CD,PPP1R16B,PPP4C,PT
	1.7	0.022	PRC,SIRPA,SOCS3,SYNJI
Opioid Signaling Pathway	1.7	-0.832	ADCY3, ADCY7, CACNATA,
			CAMK2G, FYN, GNAI2, GRK
			2, UKNO, HKAS, PIK3U2U, PK
	1.60	1 (22	NAUA, PKKUB, KUSIO
PEDF Signaling	1.69	-1.033	RKAS,MAPK14,PIK3C2G,PI
Sustania Lunus Easth an at Ci1:	1.69	NA	KJUJ, PIKJUJ, SEKPINFI
Systemic Lupus Erymematosus Signaling	1.00	INA	A HRAS II 22 DIV 2020 DIV
			3C3 DIK 3CD DDDE2 DDDE40
			R PTPRC
	1	1	D,1111C

Corticotropin Releasing Hormone Signaling	1.68	0.333	ADCY3,ADCY7,CACNA1A,
			GNAI2,GUCY2C,MAPK14,
			MEF2C,PRKACA,PRKCB
α-tocopherol Degradation	1.66	NA	CYP4A11,CYP4F12
Ga12/13 Signaling	1.66	-1.414	CDH1,HRAS,MAPK9,MEF2
			C,PIK3C2G,PIK3C3,PIK3CD
			,PXN
Synaptogenesis Signaling Pathway	1.66	-0.775	ADCY3,ADCY7,ARPC1A,C
			AMK2G,CDH1,EPHB4,FYN,
			GRB2,HRAS,MAPK14,PIK3
			C2G,PIK3C3,PIK3CD,PRKA
			CA,RASGRP1
PD-1, PD-L1 cancer immunotherapy	1.65	1.134	CBLB,HLA-
pathway			A,PIK3C2G,PIK3C3,PIK3CD
	1.68		,RASGRP1,STAT5A
Phagosome Maturation	1.65	NA	CANX,Dync112,DYNC2H1,
			HLA-
			A,M6PR,PIK3C3,TCIRG1,T
	1.64	1.622	UBB2A,VPS39
Chemokine Signaling	1.64	-1.633	CAMK2G,GNAI2,HRAS,MA
	1.(2	NT A	PK14,PIK3C2G,PRKCB
D-myo-inositol (1,3,4)-trisphosphate	1.62	NA	INPP5E,SEC16A,SYNJI
DMD signations and herein	1.6	0.916	
BMP signaling painway	1.0	-0.810	4 MADEO DEVACA
Operation M Signaling	1.50	1	4,MAPK9,PKKACA
Oncostatili W Signatilig	1.39	1	0KB2,11KA3,51A15,51A15
Maturity Onset Diabetes of Young	1.57	NA	A CACNA1A FARD2 DKI P
(MODV) Signaling	1.57	INA	CACINATA, FABI 2, I KEK
Pancreatic Adenocarcinoma Signaling	1.57	-0.378	CDK4 GRB2 MAPK9 PIK3C
i ancicatici i dichocaremonia Signamig	1.57	-0.576	2G PIK 3C3 PIK 3CD STAT3
2-ketoglutarate Dehydrogenase Compley	1.57	NΔ	DI ST OGDH
Acetate Conversion to Acetyl-CoA	1.57	NA	ACSL1 ACSS3
Autophagy	1.56	NA	ATG13 NBR1 PIK3C3 SOST
rutophugy	1.50	1121	M1.VPS39
PI3K/AKT Signaling	1.56	0.378	GRB2.GSK3A.HRAS.HSP90
			AB1.MCL1.PIK3CD.SYNJ1.
			TSC1
CDK5 Signaling	1.55	1.134	ADCY3,ADCY7,CACNA1A,
			HRAS,MAPK14,MAPK9,PR
			KACA
Type I Diabetes Mellitus Signaling	1.55	-1.633	HLA-
			A,IL1R1,MAPK14,MAPK9,S
			OCS1,SOCS2,SOCS3
CTLA4 Signaling in Cytotoxic T	1.53	NA	FYN,GRB2,HLA-
Lymphocytes			A,PIK3C2G,PIK3C3,PIK3CD
RANK Signaling in Osteoclasts	1.53	-0.816	Map3k7,MAPK14,MAPK9,PI
			K3C2G,PIK3C3,PIK3CD
1D-myo-inositol Hexakisphosphate	1.53	NA	INPP5E,SEC16A,SYNJ1
Biosynthesis II (Mammalian)			
Salvage Pathways of Pyrimidine	1.52	0.378	APOBEC1,CDADC1,CDK4,
Ribonucleotides			DMPK,GRK6,MAPK9,PRK
			AA1
Regulation of Cellular Mechanics by	1.51	NA	ACTN4,CDK4,GRB2,HRAS,
Calpain Protease			PXN
Cell Cycle: G1/S Checkpoint Regulation	1.51	-1	ATR,CDK4,FBXL5,HDAC5,
	1.40	0.017	RBL2
1COS-1COSL Signaling in T Helper Cells	1.48	-0.816	CAMK2G,GKB2,HLA-
			A,PIK3C2G,PIK3C3,PIK3CD
			,FIPKC

Actin Cytoskeleton Signaling	1.48	0	ACTN4,ARPC1A,DOCK1,F
			LNA,GIT1,GRB2,HRAS,PIK
Dama daling of Daith alial Adhanna	1.46	NIA	3C2G,PIK3C3,PIK3CD,PXN
Junctions	1.46	NA	P1,TUBB2A
Glioblastoma Multiforme Signaling	1.45	-0.378	CDK4,GRB2,HRAS,PIK3C2
			G,PIK3C3,PIK3CD,RHOBT B1.TCF3.TSC1
GPCR-Mediated Nutrient Sensing in	1.43	-0.378	ADCY3,ADCY7,CACNA1A,
Enteroendocrine Cells			GNAI2,PRKACA,PRKCB,R APGEF4
EIF2 Signaling	1.43	0.378	EIF2S3,EIF4G1,EIF4G3,GR
			B2,HRAS,PABPC1,PIK3C2G
			,PIK3C3,PIK3CD,RPL18A,R
NGF Signaling	1 42	-0.378	GRB2 HRAS Man3k7 MAPK
	1.72	-0.576	9,PIK3C2G,PIK3C3,PIK3CD
Prostate Cancer Signaling	1.41	NA	GRB2,HRAS,HSP90AB1,PI
Enhrin A Signaling	1.41	NA	K3C2G,PIK3C3,PIK3CD
Epiirin A Signaning	1.41	INA	CD
Role of p14/p19ARF in Tumor Suppression	1.41	NA	PIK3C2G,PIK3C3,PIK3CD
Sphingosine-1-phosphate Signaling	1.4	0	ADCY3,ADCY7,GNAI2,PIK
			3C2G,PIK3C3,PIK3CD,RHO
TCE & Signaling	1.4	1	BIBI CDD2 HDAS MADV 14 MAD
ror-p signaling	1.4	-1	K9 RNF111 TFE3
Role of Macrophages, Fibroblasts and	1.38	NA	CAMK2G,HRAS,IL1R1,IL33
Endothelial Cells in Rheumatoid Arthritis			,MAPK14,MAPK9,PIK3C2G,
			PIK3C3,PIK3CD,PRKCB,SO
H 10.5' 1'	1.27	DT A	CS1,SOCS3,STAT3,TCF3
IL-10 Signaling	1.37	NA	,STAT3
fMLP Signaling in Neutrophils	1.37	-1.134	ARPC1A,GNAI2,HRAS,PIK
			3C2G,PIK3C3,PIK3CD,PRK CB
Ephrin B Signaling	1.35	-0.447	ABI1,EPHB4,GNAI2,HRAS,
			PXN
GP6 Signaling Pathway	1.35	-1.134	COL6A3, FYN, GSK3A, PIK3
			B
UVA-Induced MAPK Signaling	1.34	-1	HRAS,MAPK14,MAPK9,PI
			K3C2G,PIK3C3,PIK3CD
Phagosome Formation	1.34	NA	ITGB2,MARCO,PIK3C2G,PI
			K3C3,PIK3CD,PRKCB,RHO
Oxidative Ethanol Degradation III	1 33	NΔ	ACSI 1 ACSS3 ALDH3A2
Pyridoxal 5'-phosphate Salvage Pathway	1.33	1.342	CDK4.DMPK.GRK6.MAPK9
		-	,PRKAA1
Nicotine Degradation II	1.33	-0.447	CYP2A6 (includes
			others),CYP2C18,CYP2C8,F
Estragon Diogunthosis	1.22	1	MULPOK CVP2A6 (includes
Estrogen Biosynthesis	1.55	-1	others).CYP2C18.CYP2C8.P
			OR
Fcy Receptor-mediated Phagocytosis in	1.32	-1.633	ARPC1A,DOCK1,FYN,PIK3
Macrophages and Monocytes	1.21	0.447	C2G,PRKCB,PXN
Neuregulin Signaling	1.31	-0.447	90AB1,PRKCB.STAT5A
Superpathway of D-myo-inositol (1,4,5)-	1.3	NA	INPP5E,SEC16A,SYNJ1
trisphosphate Metabolism			

Table 11.	Significant	Pathways	for	differentially	expressed	transcripts	in	⁵⁶ Fe	vs.	non-
irradiated c	control at 9 r	nonths.								

Ingenuity Canonical Pathways	uity Canonical Pathways -log10(p-value) z-sco		Molecules
Acute Phase Response Signaling	4.57	-1.265	AKT3,C1R,IKBKB,IKBKG,J AK2,MAPK9,NFKB1,NR3C1 ,PIK3CD,SAA1,SOCS1,SOC S3,TCF3,TF
Lymphotoxin β Receptor Signaling	3.87	0.816	AKT3,BCL2L1,IKBKB,IKBK G,NFKB1,PIK3CD,TRAF3
April Mediated Signaling	3.85	0	IKBKB,IKBKG,MAPK9,NFA T5,NFKB1,TRAF3
B Cell Receptor Signaling	3.74	0.632	AKT3,BCL2L1,FCGR2A,IKB KB,IKBKG,MAP3K13,MAP K9,NFAT5,NFKB1,PIK3CD, PTPRC,SYNJ1,TCF3
B Cell Activating Factor Signaling	3.73	0	IKBKB,IKBKG,MAPK9,NFA T5,NFKB1,TRAF3
JAK/Stat Signaling	3.59	-0.707	AKT3,BCL2L1,JAK2,NFKB1 ,PIK3CD,PTPN1,SOCS1,SOC S3
NF-KB Activation by Viruses	3.48	0.707	AKT3,IKBKB,IKBKG,ITGA3 ,ITGAL,NFKB1,PIK3CD,PR KD3
IL-17A Signaling in Airway Cells	3.37	-0.378	AKT3,IKBKB,IKBKG,JAK2, MAPK9,NFKB1,PIK3CD
RANK Signaling in Osteoclasts	3.28	0.707	AKT3,IKBKB,IKBKG,MAP3 K13,MAPK9,NFKB1,PIK3C D,XIAP
PI3K/AKT Signaling	3.23	-0.632	AKT3,BCL2L1,IKBKB,IKBK G,ITGA3,JAK2,NFKB1,PIK3 CD,SYNJ1,TSC1
Type II Diabetes Mellitus Signaling	3.21	0.707	AKT3,IKBKB,IKBKG,MAPK 9,NFKB1,PIK3CD,PRKAA1, PRKD3,SMPD4,SOCS1,SOC S3
Role of JAK2 in Hormone-like Cytokine Signaling	3.2	NA	JAK2,PTPN1,SH2B1,SOCS1, SOCS3
TWEAK Signaling	3.14	-0.447	IKBKB,IKBKG,NFKB1,TRA F3,XIAP
CD27 Signaling in Lymphocytes	3.11	0	BCL2L1,IKBKB,IKBKG,MA P3K13,MAPK9,NFKB1
Small Cell Lung Cancer Signaling	3.06	0.378	AKT3,BCL2L1,IKBKB,IKBK G,NFKB1,PIK3CD,TRAF3
Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis	3.03	NA	ADAM17,AKT3,APC,AXIN1 ,IKBKB,IKBKG,ITGA3,MAP K9,NFAT5,NFKB1,PIK3CD, TCF3,XIAP
p53 Signaling	3	0.378	AKT3,BCL2L1,COQ8A,GAD D45G,MDM4,PIK3CD,PML, STAG1
IL-6 Signaling	2.92	-0.333	AKT3,IKBKB,IKBKG,JAK2, MAPK9,NFKB1,PIK3CD,SO CS1,SOCS3

Erythropoietin Signaling	2.9	NA	AKT3,JAK2,NFKB1,PIK3CD PRKD3,SOCS1,SOCS3
Chronic Myeloid Leukemia Signaling	2.86	NA	AKT3,BCL2L1,HDAC10,HD AC6,IKBKB,IKBKG,NFKB1, PIK3CD
PTEN Signaling	2.84	-0.333	AKT3,BCL2L1,FGFR2,IKBK B,IKBKG,ITGA3,NFKB1,PI K3CD,SYNJ1
Induction of Apoptosis by HIV1	2.79	0	BCL2L1,IKBKB,IKBKG,MA PK9,NFKB1,XIAP
Role of JAK family kinases in IL-6-type Cytokine Signaling	2.79	NA	JAK2,MAPK9,SOCS1,SOCS3
Activation of IRF by Cytosolic Pattern Recognition Receptors	2.71	-0.816	DDX58,IKBKB,IKBKG,MAP K9,NFKB1,TRAF3
Role of RIG1-like Receptors in Antiviral Innate Immunity	2.68	0.447	DDX58,IKBKB,IKBKG,NFK B1,TRAF3
IL-23 Signaling Pathway	2.68	0.447	AKT3,JAK2,NFKB1,PIK3CD ,SOCS3
IL-4 Signaling	2.65	NA	AKT3,JAK2,NFAT5,NR3C1, PIK3CD,SOCS1,SYNJ1
Glucocorticoid Receptor Signaling	2.65	NA	AKT3,BAG1,BCL2L1,ERCC 3,GTF2A1,IKBKB,IKBKG,J AK2,MAPK9,NFAT5,NFKB1 ,NR3C1,PIK3CD,POLR2E,PR KAA1,TAF1
CD40 Signaling	2.64	-0.816	IKBKB,IKBKG,MAPK9,NFK B1,PIK3CD,TRAF3
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages	2.6	0.302	AKT3,IKBKB,IKBKG,JAK2, MAP3K13,MAPK9,NFKB1,P IK3CD,PPARA,PPP1R10,PR KD3
FAT10 Cancer Signaling Pathway	2.59	0.447	ACVR1,AKT3,IKBKB,IKBK G,NFKB1
Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis	2.55	NA	AKT3,APC,AXIN1,IKBKB,I KBKG,JAK2,MAPK9,NFAT5 ,NFKB1,PIK3CD,PRKD3,SO CS1,SOCS3,TCF3,TRAF3
TNFR2 Signaling	2.49	1	IKBKB,IKBKG,NFKB1,XIA P
RAR Activation	2.48	NA	ADCY4,AKR1C3,AKT3,ERC C3,JAK2,MAPK9,NFKB1,PI K3CD,PML,PRKD3,SDR9C7
NGF Signaling	2.44	0.707	AKT3,IKBKB,IKBKG,MAP3 K13,MAPK9,NFKB1,PIK3C D,SMPD4
Leukocyte Extravasation Signaling	2.43	0	CLDN12,FER,ITGA3,ITGAL, MAPK9,PIK3CD,PRKD3,PX N,RAPGEF4,SIPA1,TEC
4-1BB Signaling in T Lymphocytes	2.38	0	IKBKB,IKBKG,MAPK9,NFK B1
Apelin Endothelial Signaling Pathway	2.38	1.414	ADCY4,AKT3,ARNT,MAPK 9,NFKB1,PIK3CD,PRKAA1, PRKD3
Apoptosis Signaling	2.34	0.378	AIFM1,BCL2L1,CAPNS1,IK BKB,IKBKG,NFKB1,XIAP
CD28 Signaling in T Helper Cells	2.34	1.414	AKT3,IKBKB,IKBKG,MAPK 9,NFAT5,NFKB1,PIK3CD,PT PRC
Reelin Signaling in Neurons	2.25	NA	ARHGEF2,ITGA3,ITGAL,M APK8IP3,MAPK9,PIK3CD

Mouse Embryonic Stem Cell Pluripotency	2.24	1.134	AKT3,APC,AXIN1,JAK2,PIK 3CD,TCF3,XIAP
SAPK/JNK Signaling	2.24	0	GNB1,MAP3K13,MAP4K5, MAPK8IP3,MAPK9,MINK1, PIK3CD
IL-17A Signaling in Fibroblasts	2.24	NA	IKBKB,IKBKG,LCN2,NFKB
Ga12/13 Signaling	2.21	0.707	AKT3,IKBKB,IKBKG,MAPK 9.NFKB1,PIK3CD,PXN,TEC
Amyotrophic Lateral Sclerosis Signaling	2.18	1.633	AKT3,BCL2L1,CAPNS1,GP X1,GRIK5,PIK3CD,XIAP
LPS-stimulated MAPK Signaling	2.14	0	IKBKB,IKBKG,MAPK9,NFK B1,PIK3CD,PRKD3
PEDF Signaling	2.14	1.633	AKT3,BCL2L1,IKBKB,IKBK G,NFKB1,PIK3CD
Sertoli Cell-Sertoli Cell Junction Signaling	2.12	NA	AKT3,AXIN1,CLDN12,EPB4 1,EPN2,ITGA3,MAP3K13,M APK9,TJP2,TJP3
PPARα/RXRα Activation	2.11	0.707	ACVR1,ADCY4,CKAP5,HEL Z2,IKBKB,IKBKG,JAK2,NF KB1,PPARA,PRKAA1
Colorectal Cancer Metastasis Signaling	2.1	0.577	ADCY4,AKT3,APC,ARRB1, AXIN1,BCL2L1,GNB1,JAK2 ,MAPK9,NFKB1,PIK3CD,TC F3
Prolactin Signaling	2.09	-0.447	JAK2,NR3C1,PIK3CD,PRKD 3,SOCS1,SOCS3
T Cell Receptor Signaling	2.09	NA	IKBKB,IKBKG,NFAT5,NFK B1,PIK3CD,PTPRC,TEC
Pancreatic Adenocarcinoma Signaling	2.07	0.378	AKT3,BCL2L1,JAK2,MAPK 9,NFKB1,PIK3CD,PLD2
Cardiac Hypertrophy Signaling (Enhanced)	2.07	1.147	ACVR1,ADCY4,AKT3,DIAP H1,FGFR2,GNB1,HDAC10,H DAC6,IKBKB,IKBKG,ITGA 3,JAK2,MAP3K13,MAPK9,N FAT5,NFKB1,PIK3CD,PRKD 3,RCAN1
Type I Diabetes Mellitus Signaling	2.05	-1.134	IKBKB,IKBKG,JAK2,MAPK 9,NFKB1,SOCS1,SOCS3
HGF Signaling	2.01	0.378	AKT3,ITGA3,MAP3K13,MA PK9,PIK3CD,PRKD3,PXN
Role of PKR in Interferon Induction and Antiviral Response	2	NA	IKBKB,IKBKG,NFKB1,TRA F3
IL-8 Signaling	1.99	1	AKT3,BCL2L1,GNB1,IKBK B,IKBKG,MAPK9,NFKB1,PI K3CD,PLD2,PRKD3
iCOS-iCOSL Signaling in T Helper Cells	1.97	1.633	AKT3,IKBKB,IKBKG,NFAT 5,NFKB1,PIK3CD,PTPRC
Insulin Receptor Signaling	1.96	-0.378	AKT3,JAK2,PIK3CD,PPP1R1 0,PTPN1,SOCS3,SYNJ1,TSC 1
IL-22 Signaling	1.89	NA	AKT3,MAPK9,SOCS3
Role of JAK1, JAK2 and TYK2 in Interferon Signaling	1.89	NA	JAK2,NFKB1,SOCS1
Huntington's Disease Signaling	1.88	1.134	AKT3,BCL2L1,CAPNS1,DN M2,GNB1,HDAC10,HDAC6, MAPK9,PIK3CD,POLR2E,P RKD3
IL-15 Production	1.88	NA	AATK,DYRK1A,FER,FGFR2 ,JAK2,NFKB1,TEC

IL-1 Signaling	1.87	0	ADCY4,GNB1,IKBKB,IKBK G MAPK9 NFKB1
Apelin Pancreas Signaling Pathway	1.85	1	MAPK9,NFKB1,PIK3CD,PR KAA1
Role of NFAT in Regulation of the Immune Response	1.78	2.121	AKT3,FCGR2A,GNB1,IKBK B,IKBKG,NFAT5,NFKB1,PI K3CD,RCAN1
IL-15 Signaling	1.77	NA	AKT3,BCL2L1,JAK2,NFKB1 ,PIK3CD
iNOS Signaling	1.76	0	IKBKB,IKBKG,JAK2,NFKB 1
IL-10 Signaling	1.75	NA	FCGR2A,IKBKB,IKBKG,NF KB1,SOCS3
Fcy Receptor-mediated Phagocytosis in Macrophages and Monocytes	1.74	1.633	AKT3,FCGR2A,PIP5K1A,PL D2,PRKD3,PXN
Sirtuin Signaling Pathway	1.72	-0.632	ADAM10,ATG13,CYC1,GA DD45G,GLUD1,LDHA,NDU FAF1,NDUFV1,NFKB1,NR1 H2,PPARA,PRKAA1,SIRT7
HOTAIR Regulatory Pathway	1.71	0	AEBP2,AKT3,NFKB1,PIK3C D,SETDB1,STK38,TCF3,XIA P
Regulation of the Epithelial-Mesenchymal Transition Pathway	1.7	NA	ADAM17,AKT3,APC,AXIN1 ,FGFR2,JAK2,NFKB1,PIK3C D,TCF3
Caveolar-mediated Endocytosis Signaling	1.7	NA	DNM2,FLOT1,ITGA3,ITGAL ,PTPN1
Growth Hormone Signaling	1.7	-0.447	JAK2,PIK3CD,PRKD3,SOCS 1,SOCS3
TNFR1 Signaling	1.7	1	IKBKB,IKBKG,NFKB1,XIA P
Assembly of RNA Polymerase II Complex	1.7	NA	ERCC3,GTF2A1,POLR2E,TA F1
Molecular Mechanisms of Cancer	1.68	NA	ADCY4,AKT3,APC,ARHGE F2,AXIN1,BCL2L1,CDK19,I TGA3,JAK2,MAPK9,NFKB1, PIK3CD,PRKD3,TCF3,XIAP
Phenylalanine Degradation I (Aerobic)	1.68	NA	PCBD2,QDPR
Angiopoietin Signaling	1.66	1	AKT3,IKBKB,IKBKG,NFKB 1,PIK3CD
Gαq Signaling	1.65	2.121	AKT3,GNB1,IKBKB,IKBKG, NFKB1,PIK3CD,PLD2,PRKD 3
Adipogenesis pathway	1.64	NA	ERCC3,FGFR2,HDAC10,HD AC6,PPIP5K1,SETDB1,TBL1 XR1
Leptin Signaling in Obesity	1.64	0	ADCY4,AKT3,JAK2,PIK3CD ,SOCS3
Phospholipase C Signaling	1.63	1.667	ADCY4,ARHGEF2,FCGR2A, GNB1,HDAC10,HDAC6,ITG A3,NFAT5,NFKB1,PLD2,PR KD3
IGF-1 Signaling	1.63	-0.816	AKT3,JAK2,PIK3CD,PXN,S OCS1,SOCS3
Hepatic Cholestasis	1.63	NA	ADCY4,IKBKB,IKBKG,MA PK9,NFKB1,PPARA,PPRC1, PRKD3,TJP2
IL-12 Signaling and Production in Macrophages	1.63	NA	AKT3,IKBKB,IKBKG,MAPK 9,NFKB1,PIK3CD,PRKD3
Tec Kinase Signaling	1.63	0.378	GNB1,ITGA3,JAK2,MAPK9, NFKB1,PIK3CD,PRKD3,TEC

Agrin Interactions at Neuromuscular Junction	1.61	-1.342	AGRN,ITGA3,ITGAL,MAPK 9,PXN
FXR/RXR Activation	1.61	NA	AKT3,FETUB,LIPC,MAPK9, PPARA,SAA1,TF
Tight Junction Signaling	1.61	NA	AKT3,ARHGEF2,CASK,CLD N12,EPB41,NFKB1,TJP2,TJP 3
IL-17 Signaling	1.6	NA	AKT3,JAK2,MAPK9,NFKB1, PIK3CD
Sumoylation Pathway	1.58	NA	MAPK9,NFKB1,NR3C1,PML ,RNF4,XIAP
Human Embryonic Stem Cell Pluripotency	1.57	NA	ACVR1,AKT3,APC,AXIN1,F GFR2,PIK3CD,TCF3
tRNA Charging	1.55	1.342	FARSA,IARS,LARS2,Qars,V ARS
PI3K Signaling in B Lymphocytes	1.52	1.89	AKT3,IKBKB,IKBKG,NFAT 5,NFKB1,PIK3CD,PTPRC
Germ Cell-Sertoli Cell Junction Signaling	1.52	NA	AXIN1,EPN2,FER,ITGA3,M AP3K13,MAPK9,PIK3CD,PX N
Virus Entry via Endocytic Pathways	1.52	NA	AP1G2,DNM2,ITGA3,ITGAL ,PIK3CD,PRKD3
Antioxidant Action of Vitamin C	1.52	0	IKBKB,IKBKG,JAK2,MAPK 9,NFKB1,PLD2
IL-9 Signaling	1.51	NA	NFKB1,PIK3CD,SOCS3
mTOR Signaling	1.43	0.378	AKT3,ATG13,EIF4G1,PIK3C D,PLD2,PRKAA1,PRKD3,RP S19,TSC1
MIF-mediated Glucocorticoid Regulation	1.42	NA	CD74,NFKB1,NR3C1
Dendritic Cell Maturation	1.41	0.707	AKT3,FCGR2A,IKBKB,IKB KG,JAK2,MAPK9,NFKB1,PI K3CD
TR/RXR Activation	1.39	NA	AKR1C3,AKT3,COL6A3,PIK 3CD,TBL1XR1
Regulation of IL-2 Expression in Activated and Anergic T Lymphocytes	1.39	NA	IKBKB,IKBKG,MAPK9,NFA T5,NFKB1
Role of NFAT in Cardiac Hypertrophy	1.38	1.89	ADCY4,AKT3,GNB1,HDAC 10,HDAC6,MAPK9,PIK3CD, PRKD3,RCAN1
Role of Tissue Factor in Cancer	1.38	NA	AKT3,ARRB1,BCL2L1,ITGA 3,JAK2,PIK3CD
Acute Myeloid Leukemia Signaling	1.37	2.236	AKT3,NFKB1,PIK3CD,PML, TCF3
Factors Promoting Cardiogenesis in Vertebrates	1.35	NA	ACVR1,APC,AXIN1,PRKD3, TCF3
GP6 Signaling Pathway	1.35	1.633	ADAM10,AKT3,COL4A5,CO L6A3,PIK3CD,PRKD3
Renin-Angiotensin Signaling	1.31	0.447	ADCY4,JAK2,MAPK9,NFKB 1,PIK3CD,PRKD3
LPS/IL-1 Mediated Inhibition of RXR Function	1.3	0	CYP2A6 (includes others),CYP4A11,FMO1,FM O2,LIPC,MAPK9,NR1H2,PP ARA,PPARGC1B

Table 12. Significant Pathways for differentially expressed transcripts in ⁵⁶Fe vs. nonirradiated control at 12 months.

6.4.2 IDENTIFICATION OF DYSREGULATED MOLECULAR PATHWAYS CORRESPONDING TO UNANNOTATED TRANSCRIPTS ASSOCIATED WITH ⁵⁶Fe irradiation, using **SOM**

The above IPA analysis (Figure 9) resulted in a collection of 67 statistically significant high-quality functionally unannotated transcripts across all time points from ⁵⁶Fe irradiated mice (Table 13). To characterize the unannotated transcripts, we obtained the log₂ (fold change) expression values of significantly differentially expressed transcripts from ⁵⁶Fe irradiation compared to non-irradiated control across 5 time points and applied the SOM machine learning algorithm. We next identified the modules from SOMs, which contained the majority of unannotated transcripts and combined them to form larger clusters of similar transcription patterns for functional analysis using IPA. We compared the identified 11 clusters across 5 time points and selected the most significant pathways across all clusters (Figure 10f). The activation z-scores were predicted for some of the clusters based on our observed data and the available literature. The Fe 1-month Clusters have an activated positive z-score for organismal death and an inhibited negative z-score for RNA transcription and cell neoplasia. These observations are in line with our current understanding of early cellular response to irradiation and production of reactive oxygen species at earlier time points and activation of neoplasia at later time points. Clusters of unannotated transcripts show inhibition of pathways involved in RNA expression and transcription at 1 month, and activation of these pathways at 9 and 12 months. A complete

list of unannotated transcript ENSMBL IDs with their corresponding module numbers is provided in Table 14.

Ion	1 month	2 months	4 months	9 months	12 months	Total
⁵⁶ Fe	16	16	13	8	14	67
¹⁶ O	24	23	13	13	22	95
²⁸ Si	19	14	17	12	19	81

 Table 13. Number of unannotated transcripts analyzed by IPA.

Figure 10. ⁵⁶Fe analysis of self-organizing maps for each time point.

(a,b,c,d,e) Kohonen Self-Organizing Map (SOM) was applied to the differentially expressed (DE) transcripts obtained from the RNA-Seq data to identify coherent patterns of transcript expression at each time point, as well as patterns within the unannotated transcripts. The SOM clusters transcripts in each module according to $\log_2(\text{fold change})$ of the expression values. SOM clustering analysis demonstrates the distances between correlated transcript groups. The small blue hexagons are modules comprising transcripts with similar log₂(fold change) expression patterns. The numbers of transcripts in each module are provided in Figure 11. Neighboring modules are connected with a red line. The colors of the lines connecting the modules indicate the similarity between modules: Lighter colors represent higher similarity, and darker colors represent lower similarity. (f) Expression patterns of unannotated transcripts were identified, and the corresponding modules (represented in circled numbers) were further analyzed by IPA. Only the most significant pathways across all clusters are shown with available color-coded activation z-scores. Inhibitory, activation, or unknown directionality z-scores correspond to green, red, and white, respectively. The entries with white color indicate the directionality could not be predicted based on the available data, yet the pathway is significantly identified by pathway analysis. The goal of the IPA downstream effects analysis is to identify functional pathways whose activity is expected to be increased or decreased, given the observed expression changes in a user's dataset (see Methods.)

Figure 11. ⁵⁶Fe Analysis of self-organizing maps for each time point.

(a,b,c,d,e) Kohonen Self-Organizing Map (SOM) was applied to the differentially expressed (DE) transcripts obtained from the RNA-Seq data to identify coherent patterns

of transcript expression at each time point, as well as patterns within the unmapped transcripts. The mapping clusters transcripts in each unit according to $log_2(fold change)$ expression values for the transcripts in that unit. SOM clustering analysis demonstrates the distances between correlated transcript groups. The small blue hexagons are modules comprising transcripts with similar $log_2(fold change)$ expression pattern. The numbers inside hexagons correspond to the number of transcripts in each module.

⁵⁶ Fe	Fe, 1 month ⁵⁶ Fe		2 months	⁵⁶ Fe,	4 months	⁵⁶ Fe,	9 months	⁵⁶ Fe,	12 months
Modu le	Transcript Ensemble	Modu le	Transcript Ensemble	Modu le	Transcript Ensemble	Modu le	Transcript Ensemble	Modu le	Transcript Ensemble
	ID		ID		ID		ID		ID
10	ENSMUST0000023 7602	13	ENSMUST0000023 7025	19	ENSMUST0000023 6950	18	ENSMUST0000023 5957	15	ENSMUST0000023 6171
15	ENSMUST0000023 7742	15	ENSMUST0000023 6006	25	ENSMUST0000023 7098	29	ENSMUST0000023 6217	22	ENSMUST0000023 6392
16	ENSMUST0000023 6727	19	ENSMUST0000023 6824	29	ENSMUST0000023 5915	35	ENSMUST0000023 5927	28	ENSMUST0000023 6217
17	ENSMUST0000023 6267	23	ENSMUST0000023 6209	29	ENSMUST0000023 6006	37	ENSMUST0000023 6006	29	ENSMUST0000023 5411
19	ENSMUST0000023 6403	28	ENSMUST0000023 6925	30	ENSMUST0000023 5764	40	ENSMUST0000023 7358	2	ENSMUST0000023 5318
20	ENSMUST0000023 8288	2	ENSMUST0000023 5947	34	ENSMUST0000023 7854	40	ENSMUST0000023 7862	32	ENSMUST0000023 5947
27	ENSMUST0000023 7170	30	ENSMUST0000023 6873	38	ENSMUST0000023 5411	45	ENSMUST0000023 6547	34	ENSMUST0000023 7874
2	ENSMUST0000023 8201	30	ENSMUST0000023 7472	40	ENSMUST0000023 7874	49	ENSMUST0000023 8729	35	ENSMUST0000023 5620
2	ENSMUST0000023 6186	30	ENSMUST0000023 7823	48	ENSMUST0000023 6209			35	ENSMUST0000023 6330
30	ENSMUST0000023 7167	33	ENSMUST0000023 7749	48	ENSMUST0000023 6046			42	ENSMUST0000023 5135
45	ENSMUST0000023 6268	37	ENSMUST0000023 5620	48	ENSMUST0000023 5207			42	ENSMUST0000023 8368
45	ENSMUST0000023 8271	38	ENSMUST0000023 8677	48	ENSMUST0000023 6850			44	ENSMUST0000023 8729
48	ENSMUST0000023 7472	3	ENSMUST0000023 5318	48	ENSMUST0000023 6687			44	ENSMUST0000023 6006
4	ENSMUST0000023 5304	42	ENSMUST0000023 7742					46	ENSMUST0000023 8731
4	ENSMUST0000023 5231	6	ENSMUST0000023 6480						
9	ENSMUST0000023 5929	8	ENSMUST0000023 8176						

Table 14. Unannotated differentially expressed transcripts in ⁵⁶Fe experiments at all time points. Each unannotated ENSEMBLE transcript ID is listed with the corresponding module number in the SOM Figure 10.

6.4.3 DIFFERENTIAL EXPRESSION ANALYSIS OF ¹⁶O REVEALS DYNAMIC TIME-DEPENDENT CHANGES IN INFLAMMATORY RESPONSE AT THE WHOLE TRANSCRIPTOME LEVEL

Transcriptional changes and altered pathways associated with proposed ¹⁶O induced hepatic carcinogenesis were evaluated using differential expression analysis of RNA-Seq data in ¹⁶O irradiated compared to non-irradiated control mice at 5 different time points (1mo, 2mo, 4mo, 9mo, and 12mo). Table 7 shows the total number of differentially expressed transcripts at each time point. IPA was used to functionally annotate and map the biological processes involving these differentially expressed transcripts (Figure 12). The analyses revealed that the LXR/RXR pathway is significantly affected at all time points; specifically, at 1 month (activated), 2 months (directionality unknown), 4 months (activated), 9 months (activated), and 12 months (inhibited). These results indicate that ¹⁶O irradiation shows a time-dependent inflammatory response, similar to that of ⁵⁶Fe. Similarly, PPAR α is significantly affected at 1 month (activated), 4 months (directionality unknown), 9 months (activated), and 12 months (activated). This suggests that, even with a time-dependent inflammatory response, ¹⁶O tend to exert a more potent activation of inflammatory pathways as compared to ⁵⁶Fe. Furthermore, Interleukin 8 (IL-8) signaling is significantly activated at 4 and 12 months, but inhibited at 1 and 2 months. IL-8 is a member of the C-X-C family of chemokines and plays a central role in angiogenesis, tumor growth, and inflammation. IL-8 upregulates the expression of genes involved in tumor growth, angiogenesis, and tumor invasion. IL-8 also enhances cell proliferation by activating cyclin D via a protein kinase B (PKB/Akt) mediated mechanism. [117-119]

Our results show activation of LPS/IL-1 mediated inhibition of RXR function pathway at 1, 2, 9, and 12 months. The RXR plays a role in the following cascade of biological events. Binding of the CD14/TRL4/MD2 receptor complex to toxins promotes the secretion of pro-inflammatory cytokines (IL-1, TNFa) in different cell types, but especially in macrophages. Liver tissue injury downregulates the expression of hepatic specific genes, known as negative hepatic acute phase response (APR). Most of these repressed genes are regulated by retinoid X receptors (RXRs), which dimerizes with LXR. RXRs undergo nuclear export and therefore inhibited in response to proinflammatory cytokines (i.e. IL-1) initiated by the stimuli, and this export leads to impaired lipid metabolism and signaling. [104, 120, 121] The impaired lipid metabolism induced by ¹⁶O irradiation is furthered demonstrated by the adipogenesis pathway, which was significantly affected at 1, 2, 9, and 12 months (directionality/z-score unknown). Adipogenesis, adipocyte differentiation, is a complicated cellular process that is tightly regulated by a number of transcription factors, lipids, hormones, and signaling pathway molecules. [122-124] In addition, similar to the case with ⁵⁶Fe, BCR is affected at 1 month (directionality unknown), 2 months (inhibited), 4 months (activated), 9 months (inhibited) and 12 months (activated). Activation of BCR at 12 months reduces apoptosis, which could further play a role in hepatic carcinogenesis. This is bolstered by the significant activation of the chronic myeloid leukemia signaling (CML) pathway at all time points, triggered by expression of the BCR gene product. The transcriptional changes in CML involve genes that result in cell proliferation. [125-127] A complete list of statistically significant altered pathways (- $\log_{10}(p\text{-value}) \ge 1.3$) is provided in Tables 15, 16, 17, 18, and 19.

Figure 12. IPA of differentially expressed transcripts in ¹⁶O.

(a) Top pathways enrichment analysis at 1 month. (b) Top pathways enrichment analysis at 2 months. (c) Top pathways enrichment analysis at 4 months. (d) Top pathways enrichment analysis at 9 months. (e) Top pathways enrichment analysis at 12 months. (f) The Venn Diagram shows shared and unique differentially expressed transcripts for all time points, in ¹⁶O irradiation compared to control.

Ingenuity Canonical Pathways	-log ₁₀ (p-value)	z-score	Molecules
LXR/RXR Activation	7.8	2.53	ACACA,APOA2,C4A/C4B, C9,CD36,CLU,FASN,FDFT 1,HMGCR,KNG1,MLXIPL, NCOR2,NR1H3,PLTP,SAA 1,SCD,SERPINF1
FXR/RXR Activation	5.86	NA	APOA2,C4A/C4B,C9,CLU, FASN,FETUB,KNG1,MLXI PL,NR0B2,NR1H3,PLTP,S

			AA1,SCARB1,SDC1,SERPI NF1
PPARα/RXRα Activation	4.01	0.577	APOA2,CD36,CKAP5,Cyp2 c70,CYP2C8,FASN,GPD2,G RB2,IKBKB,IKBKG,MED2 3,NCOR2,NR0B2,PLCE1,T GFBR1
Mevalonate Pathway I	3.35	-1.342	ACAT2,HADHB,HMGCR, HMGCS1,MVD
Role of PKR in Interferon Induction and Antiviral Response	3.34	NA	ATF2,CASP8,IKBKB,IKBK G,STAT1,TRAF3
Nicotine Degradation II	3.31	0	CYP2A6 (includes others),CYP2C8,CYP3A5,F MO1,FMO2,FMO4,INMT,U GT2B28
Adipogenesis pathway	3.31	NA	CEBPA,CTNNB1,EZH2,FG FR2,FGFR3,HDAC10,LPIN 1,NOCT,PPIP5K1,RPS6KA 1,SMAD5
LPS/IL-1 Mediated Inhibition of RXR Function	3.26	0.333	ALAS1,CYP2A6 (includes others),CYP2C8,CYP3A5,C YP4A11,Cyp4a14,FMO1,F MO2,FMO4,HMGCS1,NR0 B2,NR1H3,NR1I3,PLTP,SC ARB1
3-phosphoinositide Degradation	3.18	-0.577	CA3,INPP4A,MTMR3,PPIP 5K1,Ppp1cc,PPP1R16B,PTP A,PTPRF,PTPRJ,SET,SIRP A,SYNJ1
Superpathway of Inositol Phosphate Compounds	2.9	0	CA3,PI4K2B,PIP5K1A,PLC E1,PPIP5K1,Ppp1cc,PPP1R1 6B,PTPA,PTPRF,PTPRJ,SE C16A,SET,SIRPA,SYNJ1
3-phosphoinositide Biosynthesis	2.82	0	CA3,PI4K2B,PIP5K1A,PPIP 5K1,Ppp1cc,PPP1R16B,PTP A,PTPRF,PTPRJ,SET,SIRP A,SYNJ1
Superpathway of Geranylgeranyldiphosphate Biosynthesis I (via Mevalonate)	2.82	-1.342	ACAT2,HADHB,HMGCR, HMGCS1,MVD
Epithelial Adherens Junction Signaling	2.81	NA	ACTN4,BAIAP2,CLIP1,CT NNB1,EPN2,MYH10,PARD 3,TCF3,TGFBR1,TUBA4A, TUBB2A
PXR/RXR Activation	2.8	NA	ALAS1,CYP2A6 (includes others),CYP2C8,CYP3A5,N R0B2,NR1I3,SCD
Ephrin B Signaling	2.66	0	ABI1,AXIN1,CAP1,CTNNB 1,EPHB4,GNB2,HNRNPK
D-myo-inositol-5-phosphate Metabolism	2.64	-0.302	CA3,PLCE1,PPIP5K1,Ppp1c c,PPP1R16B,PTPA,PTPRF, PTPRJ,SET,SIRPA,SYNJ1
Inhibition of Angiogenesis by TSP1	2.6	NA	CD36,CD47,HSPG2,SDC1, TGFBR1
D-myo-inositol (1,4,5,6)-Tetrakisphosphate Biosynthesis	2.45	0	CA3,PPIP5K1,Ppp1cc,PPP1 R16B,PTPA,PTPRF,PTPRJ, SET,SIRPA,SYNJ1
D-myo-inositol (3,4,5,6)-tetrakisphosphate Biosynthesis	2.45	0	CA3,PPIP5K1,Ppp1cc,PPP1 R16B,PTPA,PTPRF,PTPRJ, SET,SIRPA,SYNJ1

RAR Activation	2.39	NA	AKR1C4,CARM1,CYP26A
			1,DHRS4,NCOR2,PBRM1,P
			ML,PRKD3,RARB,SDR9C7
			,SMAD5,TNIP1
Role of RIG1-like Receptors in Antiviral Innate Immunity	2.37	0.447	CASP8,IKBKB,IKBKG,TR AF3,TRIM25
Superpathway of Cholesterol Biosynthesis	2.32	-1.89	ACAT2,FDFT1,HADHB,H
			MGCR,HMGCS1,MVD,TM
			7SF2
Acute Phase Response Signaling	2.29	-1.342	APOA2,C1R,C4A/C4B,C9,
			GRB2,HNRNPK,IKBKB,IK
			BKG,SAA1,SERPINF1,TCF
HIPPO signaling	2.29	0	DLG1.ITCH.MOB1A.PARD
		Ť	3,Ppp1cc,PTPA,SMAD5
Regulation of IL-2 Expression in Activated	2.16	NA	Calm1 (includes
and Anergic T Lymphocytes			others),GRB2,IKBKB,IKBK
			G,NFATCI,PPP3CB,TGFB
P Call Pagantar Signaling	2.14	0	KI ATE2 PCL6 Colm1
D Cell Receptor Signaling	2.14	0	(includes
			others).GRB2.IKBKB.IKBK
			G,MAP3K13,NFATC1,PPP3
			CB,SYNJ1,TCF3
Phosphatidylcholine Biosynthesis I	2.12	NA	CHPT1,PCYT1A,PHKA1
Factors Promoting Cardiogenesis in	2.11	NA	ATF2,AXIN1,CTNNB1,PR
Vertebrates			KD3,SMAD5,TCF3,TGFBR
	2.07	214	
Sertoli Cell-Sertoli Cell Junction Signaling	2.07	NA	ACIN4,AIF2,AXINI,CIN
			2 SDTANI TID2 TUDA4A T
			UBB2A
Cardiac Hypertrophy Signaling	2.06	-0.905	ADRA1B.ATF2.Calm1
			(includes
			others),EIF2B4,GNB2,GRB2
			,MAP3K13,MEF2A,PLCE1,
			PPP3CB,RHOBTB1,RPS6K
	1.00		A1,TGFBR1
TWEAK Signaling	1.99	-1	CASP8,IKBKB,IKBKG,TR AF3
Ketogenesis	1.98	NA	ACAT2,HADHB,HMGCS1
Pregnenolone Biosynthesis	1.91	NA	CYP26A1,CYP26B1,CYP4
			A11
Cell Cycle Regulation by BTG Family	1.91	NA	E2F3,E2F5,NOCT,PTPA
Proteins	1.01	1	
Acetone Degradation I (to Methylglyoxal)	1.91	-1	CYP2A6 (includes
			others), CYP2C8, CYP3A5, C
Breast Cancer Regulation by Stathmin1	1.89	NΔ	ARHGEE12 Calm1 (includes
Breast Cancer Regulation by Statismin	1.09	1474	others) E2F3 E2F5 GNB2 G
			RB2.PRKD3.PTPA.TUBA4
			A,TUBB2A,UHMK1
Chronic Myeloid Leukemia Signaling	1.88	NA	E2F3,E2F5,GRB2,HDAC10,
		4	IKBKB,IKBKG,TGFBR1
SAPK/JNK Signaling	1.88	0	ATF2,GRB2,HNRNPK,MA
			P3K13,MAPK8IP3,MINK1,
DTEN Signaling	1.97	0	NFAIUI DCI 21 11 ECEP2 ECEP2 C
	1.0/	U	BCL2L11,FUFK2,FUFK3,G
			TGFBR1
Complement System	1 87	NA	C1R C4A/C4R C8A C9
	1.07	1 14 1	

April Mediated Signaling	1.83	-1	IKBKB,IKBKG,NFATC1,T RAF3
B Cell Activating Factor Signaling	1.76	-1	IKBKB,IKBKG,NFATC1,T RAF3
Activation of IRF by Cytosolic Pattern Recognition Recentors	1.72	0.447	ATF2,IKBKB,IKBKG,STA T1,TRAF3
a-tocopherol Degradation	1 72	NA	CYP4A11 CYP4F3
Choline Biosynthesis III	1.7	NΔ	CHPT1 PCYT1A PHKA1
Ggg Signaling	1.7	1 1 2 /	ADPA1R Calm1 (includes
	1.09	-1.134	others),GNB2,IKBKB,IKBK G,NFATC1,PPP3CB,PRKD 3,RHOBTB1
Production of Nitric Oxide and Reactive	1.67	1	APOA2,CLU,IKBKB,IKBK
Oxygen Species in Macrophages			G,MAP3K13,PRKD3,PTPA, RHOBTB1,SIRPA,STAT1
RANK Signaling in Osteoclasts	1.66	0	Calm1 (includes others),IKBKB,IKBKG,MA P3K13,NFATC1,PPP3CB
Histidine Degradation VI	1.65	NA	CYP26A1,CYP26B1,CYP4 A11
Tetrahydrofolate Salvage from 5,10- methenyltetrahydrofolate	1.63	NA	GART,MTHFD1L
Glioblastoma Multiforme Signaling	1.61	-0.447	AXIN1,CTNNB1,E2F3,E2F 5,GRB2,PLCE1,RHOBTB1, TCF3,TSC1
Protein Kinase A Signaling	1.6	-1.069	ATF2,Calm1 (includes others),CTNNB1,EYA3,GN B2,MTMR3,MYH10,NFAT C1,PLCE1,Ppp1cc,PPP3CB, PRKD3,PTPRF,PTPRJ,SIRP A,TCF3,TGFBR1
Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis	1.59	NA	ATF2,AXIN1,Calm1 (includes others),CEBPA,CTNNB1,IK BKB,IKBKG,NFATC1,PLC E1,PPP3CB,PRKD3,PROK1 ,TCF3,TRAF3
FAT10 Cancer Signaling Pathway	1.59	0	CTNNB1,IKBKB,IKBKG,T GFBR1
Insulin Receptor Signaling	1.58	0	ACLY,EIF2B4,GRB2,Ppp1c c,PTPRF,SYNJ1,TRIP10,TS C1
Remodeling of Epithelial Adherens Junctions	1.57	NA	ACTN4,CLIP1,CTNNB1,TU BA4A,TUBB2A
Xenobiotic Metabolism Signaling	1.57	NA	ARNT,CYP2C8,CYP3A5,E SD,FM01,FM02,FM04,M AP3K13,NCOR2,NR1I3,PR KD3,PTPA,UGT2B28
Bupropion Degradation	1.56	NA	CYP2A6 (includes others),CYP2C8,CYP3A5
NGF Signaling	1.55	0.378	ATF2,GRB2,IKBKB,IKBK G,MAP3K13,RPS6KA1,SM PD4
Phenylalanine Degradation I (Aerobic)	1.55	NA	PCBD2,QDPR
Germ Cell-Sertoli Cell Junction Signaling	1.54	NA	ACTN4,AXIN1,CTNNB1,E PN2,MAP3K13,RHOBTB1, TGFBR1,TUBA4A,TUBB2 A
IL-15 Production	1.53	NA	AXL,EPHB4,FGFR2,FGFR3 ,KIT,STAT1,TNK2

iNOS Signaling	1.53	NA	Calm1 (includes others),IKBKB,IKBKG,STA T1
TGF-β Signaling	1.52	NA	GRB2,RNF111,SMAD5,TF E3,TGFBR1,ZFYVE9
Phospholipase C Signaling	1.51	-1.265	ARHGEF12,ATF2,Calm1 (includes others),GNB2,GRB2,HDAC 10,MEF2A,NFATC1,PLCE1 ,PPP3CB,PRKD3,RHOBTB 1
NF-κB Signaling	1.49	-1	AZI2,CASP8,FGFR2,FGFR 3,IKBKB,IKBKG,TGFBR1, TNIP1,TRAF3
TNFR1 Signaling	1.47	0	CASP8,IKBKB,IKBKG,MA DD
Apoptosis Signaling	1.46	1.633	BCL2L11,CASP8,IKBKB,I KBKG,RPS6KA1,SPTAN1
Estrogen Biosynthesis	1.42	0	AKR1C4,CYP2A6 (includes others),CYP2C8,CYP3A5
14-3-3-mediated Signaling	1.4	-1.342	GRB2,PLCE1,PRKD3,RPS6 KA1,TSC1,TUBA4A,TUBB 2A
Integrin Signaling	1.4	-0.333	ACTN4,ARF5,ASAP1,GRB 2,ITGA7,ITGAL,ITGAV,RH OBTB1,TLN2,TNK2
CD27 Signaling in Lymphocytes	1.39	0	CASP8,IKBKB,IKBKG,MA P3K13
mTOR Signaling	1.39	-0.447	DGKZ,EIF4G3,MT- RNR1,MT- RNR2,PRKD3,PROK1,PTP A,RHOBTB1,RPS6KA1,TS C1
Triacylglycerol Biosynthesis	1.39	0	AGPAT3,LPIN1,PLPP5,TA Z
Mouse Embryonic Stem Cell Pluripotency	1.39	0	AXIN1,CTNNB1,GRB2,LIF R,SMAD5,TCF3
Role of NFAT in Regulation of the Immune Response	1.39	-0.707	ATF2,Calm1 (includes others),GNB2,GRB2,IKBKB ,IKBKG,MEF2A,NFATC1,P PP3CB
PPAR Signaling	1.37	0.816	GRB2,IKBKB,IKBKG,NCO R2,NR0B2,NR1H3
4-1BB Signaling in T Lymphocytes	1.37	NA	ATF2,IKBKB,IKBKG
Ubiquinol-10 Biosynthesis (Eukaryotic)	1.37	NA	CYP26A1,CYP26B1,CYP4 A11
Unfolded protein response	1.32	NA	CEBPA,INSIG1,P4HB,SYV N1
Cyclins and Cell Cycle Regulation	1.32	NA	E2F3,E2F5,FBXL5,HDAC1 0,PTPA
Role of JAK2 in Hormone-like Cytokine Signaling	1.3	NA	SH2B2,SIRPA,STAT1

Table 15. Significant Pathways for differentially expressed transcripts in ¹⁶O vs. nonirradiated control at 1 month.

Ingenuity Canonical	-log ₁₀ (p-	Z-	Molecules
Pathways	value)	score	
Adipogenesis pathway	4.55	NA	ATG7,CTNNB1,EZH2,FGFR2,HDAC10, HDAC5,LPIN1,NOCT,PPIP5K1,SAP130, SIN3A,TBL1XR1
Aryl Hydrocarbon Receptor Signaling	3.5	-0.707	ALDH2,ARNT,ATR,CDKN1B,GSTM4,H SP90AB1,MGST1,NCOR2,NFIA,NFKB1, RXRB
Xenobiotic Metabolism Signaling	2.89	NA	ALDH2,ANKRA2,ARNT,GSTM4,HDAC 5,HSP90AB1,KEAP1,MAP3K13,Map3k7, MAPK9,MGST1,NCOR2,NFKB1,NR1I3, PRKD3
Huntington's Disease Signaling	2.71	0	ATF2,ATP5PB,DNM2,EGFR,GNB2,HDA C10,HDAC5,MAPK9,NCOR1,NCOR2,PR KD3,SGK1,SIN3A
Mitochondrial Dysfunction	2.67	NA	ATP5MC2,ATP5PB,CYB5A,CYC1,MAP K9,MT-ATP6,MT- ND4L,NCSTN,NDUFAF1,PINK1,TXNR D2
Cell Cycle: G1/S Checkpoint Regulation	2.55	0	ATR,CDKN1B,FBXL5,HDAC10,HDAC5, SIN3A
IL-15 Production	2.4	NA	CLK2,EGFR,EPHB4,FES,FGFR2,NFKB1, TEK,TNK2
UVC-Induced MAPK Signaling	2.38	1	ATR,EGFR,MAPK9,PRKD3,SMPD2
Apelin Endothelial Signaling Pathway	2.35	-2.121	ARNT,Calm1 (includes others),HDAC5,MAPK9,MEF2A,NFKB1, PRKD3,TEK
LXR/RXR Activation	2.25	0	APOE,C4A/C4B,CD36,NCOR1,NCOR2,N FKB1,RXRB,TLR3
Protein Kinase A Signaling	2.19	-1.667	AKAP1,AKAP13,ANAPC5,ATF2,Calm1 (includes others),CTNNB1,EYA3,FLNA,GNB2,NA PEPLD,NFKB1,PHKA2,PRKD3,PTPRC,S IRPA,TCF3,TTN
Cyclins and Cell Cycle Regulation	2.15	NA	ATR,CDKN1B,FBXL5,HDAC10,HDAC5, SIN3A
Pancreatic Adenocarcinoma Signaling	2.05	0.447	CDKN1B,EGFR,MAPK9,NAPEPLD,NFK B1,PROK1,SIN3A
Cardiac Hypertrophy Signaling (Enhanced)	2.03	-0.229	ADRA1B,AKAP13,ATF2,Calm1 (includes others),CTNNB1,DIAPH1,FGFR2,HDAC 10,HDAC5,ITGA3,MAP3K13,Map3k7,M APK9,MEF2A,MKNK1,NAPEPLD,NFKB 1,PKN1,PRKD3
Phospholipase C Signaling	1.98	-1.897	ARHGEF2,ATF2,Calm1 (includes others),GNB2,HDAC10,HDAC5,ITGA3, MEF2A,MPRIP,NAPEPLD,NFKB1,PRK D3
RANK Signaling in Osteoclasts	1.95	-0.816	Calm1 (includes others),MAP3K13,Map3k7,MAPK9,NFK B1,XIAP
α-tocopherol Degradation	1.84	NA	CYP4F12,CYP4F3
Prostate Cancer Signaling	1.83	NA	ATF2,CDKN1B,CTNNB1,HSP90AB1,NF KB1,SIN3A
IL-17A Signaling in Gastric Cells	1.83	NA	EGFR,MAPK9,NFKB1
mTOR Signaling	1.79	-1	EIF4A2,EIF4G1,NAPEPLD,PRKD3,PRO K1,RPS11,RPS13,RPS14,RPTOR,TSC1
ATM Signaling	1.79	0	ATF2,ATR,HERC2,MAPK9,MDM4,SMC 2

RhoA Signaling	1.79	-0.378	ACTR3,ARHGAP12,BAIAP2,MPRIP,PK N1 RAPGEF6 TTN
Epithelial Adherens Junction	1.78	NA	ACTR3.BAIAP2.CTNNB1.EGFR.KEAP1.
Signaling	11,0	1.1.1	MYH14,SSX2IP,TCF3
PTEN Signaling	1.74	-0.378	BCAR1,CDKN1B,EGFR,FGFR2,INPP5D, ITGA3 NFKB1
NRF2-mediated Oxidative Stress	1.72	0.447	DNAJB11.DNAJC1.EPHX1.GSTM4.HER
Response			PUD1,KEAP1,MAPK9,MGST1,PRKD3
B Cell Receptor Signaling	1.72	-1.134	ATF2,Calm1 (includes
			others),INPP5D,MAP3K13,Map3k7,MAP
	1.51	0	K9,NFKB1,PTPRC,TCF3
Actin Cytoskeleton Signaling	1.71	0	ACTR3,BAIAP2,BCAR1,DIAPH1,FLNA, FN1,ITGA3,MPRIP,MYH14,TTN
Sirtuin Signaling Pathway	1.69	-1.667	ACLY,ATG7,ATP5PB,CYC1,HSF1,MT-
			ATP6,MT-
			ND4L,NDUFAF1,NFKB1,PFKFB3,PGK1,
Pegulation of eIE4 and p70S6K	1.60	ΝA	FIE2S2 FIE4A2 FIE4G1 ITGA3 MKNK1
Signaling	1.09	INA	RPS11,RPS13,RPS14
HOTAIR Regulatory Pathway	1.69	-0.707	ATG7,CTNNB1,EZH2,HSF1,JARID2,NF
			KB1,TCF3,XIAP
Caveolar-mediated Endocytosis Signaling	1.69	NA	DNM2,EGFR,FLNA,FLOT2,ITGA3
Pyridoxal 5'-phosphate Salvage	1.69	1.342	DMPK,GRK6,MAPK9,PKN1,SGK1
Pathway			
Sertoli Cell-Sertoli Cell Junction	1.67	NA	ATF2,BCAR1,CTNNB1,EPB41,ITGA3,K
Signaling	1.66	<u>^</u>	EAP1,MAP3K13,Map3k7,MAPK9
EIF2 Signaling	1.66	0	EIF2S2,EIF4A2,EIF4G1,NOX4,RPL10A,
Poolin Signaling in Nourons	1.62	NA	ADOE ADHGEE2 ITGA2 MADK SID2 MA
Rechti Signaling in Neurons	1.02	INA	PK9
TNFR2 Signaling	1.61	NA	NFKB1,TBK1,XIAP
CD27 Signaling in Lymphocytes	1.6	0	MAP3K13,Map3k7,MAPK9,NFKB1
VDR/RXR Activation	1.6	0	CDKN1B,NCOR1,NCOR2,PRKD3,RXRB
PI3K/AKT Signaling	1.59	1.134	CDKN1B,CTNNB1,HSP90AB1,INPP5D,I TGA3 NFKB1 TSC1
RAR Activation	1.58	NA	AKR1C4.MAPK9.NCOR1.NCOR2.NFKB
			1,PBRM1,PRKD3,RXRB,TNIP1
Cdc42 Signaling	1.58	0	ACTR3,ATF2,BAIAP2,DIAPH1,ITGA3,
			MAPK9,MPRIP,TNK2
IL-8 Signaling	1.55	-0.378	EGFR,GNB2,MAPK9,NAPEPLD,NFKB1,
4 1DD Simpling in T.Lemmhander	1.54	NIA	NOX4,PRKD3,PROK1,TEK
4-1BB Signaling in 1 Lymphocytes	1.54	NA	ATF2,MAPK9,NFKB1
Complex	1.55	INA	GIF5C4,POLK5D
HGF Signaling	1.48	0	ATF2.ITGA3.MAP3K13.Map3k7.MAPK9
	1.10	Ŭ	,PRKD3
Salvage Pathways of Pyrimidine	1.48	0.816	AK4,DMPK,GRK6,MAPK9,PKN1,SGK1
Ribonucleotides			
GNRH Signaling	1.45	0.378	ATF2,Calm1 (includes
			others),EGFR,MAP3K13,Map3k7,MAPK9
In the stimule of American in the UIIV/1	1.41	1	,NFKBI,PKKD3
Endocannabinoid Cancer Inhibition	1.41	0.378	MATRY, NERDI, OLUZOAO, AIAP
Pathway	1.41	0.378	R SMPD2 TCF3
Oxidative Phosphorvlation	1.4	-0.816	ATP5MC2,ATP5PB,CYB5A,CYC1,MT-
		· · · · · · ·	
			ATP6,MT-ND4L
Ephrin Receptor Signaling	1.4	0	ATP6,MT-ND4L ABI1,ACTR3,ATF2,BCAR1,EPHB4,GNB
Ephrin Receptor Signaling	1.4	0	ATP6,MT-ND4L ABI1,ACTR3,ATF2,BCAR1,EPHB4,GNB 2,ITGA3,PROK1
Ephrin Receptor Signaling NGF Signaling	1.4 1.39	0	ATP6,MT-ND4L ABI1,ACTR3,ATF2,BCAR1,EPHB4,GNB 2,ITGA3,PROK1 ATF2,MAP3K13,Map3k7,MAPK9,NFKB

TR/RXR Activation	1.37	NA	NCOR1,NCOR2,RCAN2,RXRB,TBL1XR
			1
Activation of IRF by Cytosolic	1.37	0	ATF2,MAPK9,NFKB1,TBK1
Pattern Recognition Receptors			
fMLP Signaling in Neutrophils	1.35	-2.236	ACTR3,Calm1 (includes
			others),GNB2,NFKB1,NOX4,PRKD3
Factors Promoting Cardiogenesis in	1.34	NA	ATF2,CTNNB1,NOX4,PRKD3,TCF3
Vertebrates			
Colorectal Cancer Metastasis	1.33	1.414	ARRB1,CTNNB1,EGFR,GNB2,MAPK9,
Signaling			MSH3,NFKB1,PROK1,TCF3,TLR3
Cholecystokinin/Gastrin-mediated	1.33	0	ATF2,BCAR1,EGFR,MAPK9,MEF2A,PR
Signaling			KD3
Autophagy	1.32	NA	ATG7,CTSS,NBR1,VPS33B
Inhibition of Angiogenesis by TSP1	1.32	NA	CD36,MAPK9,SDC1
Phosphatidylcholine Biosynthesis I	1.32	NA	CHKA,PHKA1

Table 16. Significant Pathways for differentially expressed transcripts in ¹⁶O vs. non-

irradiated control at 2 months.

Ingenuity Canonical Pathways	-log ₁₀ (p-value)	z-score	Molecules
Acute Phase Response Signaling	5.06	0.378	AHSG,C1R,C2,FN1,IKBKB, IKBKG,IL1R1,ITIH2,ITIH3, MAP2K3,NR3C1,SAA1,SO CS2,TCF3,TF
TR/RXR Activation	4.6	NA	F10,FASN,G6PC,MDM2,M E1,PIK3C2G,RXRB,SREBF 1,TBL1XR1,THRSP
PPARα/RXRα Activation	4.08	0	ADCY6,ADCY9,AIP,CKAP 5,FASN,HELZ2,HSP90AA1, IKBKB,IKBKG,IL1R1,MAP 2K3,MAP4K4,SLC27A1,TG FBR1
Role of RIG1-like Receptors in Antiviral Innate Immunity	3.48	0.816	CASP8,IKBKB,IKBKG,TB K1,TRAF3,TRIM25
LXR/RXR Activation	3.36	0.378	AHSG,APOE,FASN,IL1R1, NR1H2,RXRB,SAA1,SCD,S REBF1,TF
Role of JAK2 in Hormone-like Cytokine Signaling	3.14	NA	SH2B1,SH2B3,SIRPA,SOC S2,STAT5A
FXR/RXR Activation	3.13	NA	AHSG,APOE,FASN,G6PC, LIPC,NR5A2,PKLR,SAA1,S REBF1,TF
Role of PKR in Interferon Induction and Antiviral Response	2.76	NA	CASP8,IKBKB,IKBKG,MA P2K3,TRAF3
PPAR Signaling	2.75	0	AIP,HSP90AA1,IKBKB,IK BKG,IL1R1,MAP4K4,PDGF RA,STAT5A
Epithelial Adherens Junction Signaling	2.72	NA	AFDN,CLIP1,JUP,KEAP1, MET,MYH10,MYH11,PAR D3,TCF3,TGFBR1
B Cell Receptor Signaling	2.57	0.707	FCGR2A,IKBKB,IKBKG,IN PP5K,MAP2K3,Map3k7,NF AT5,PIK3C2G,PTPRC,SYN J1,TCF3

Type I Diabetes Mellitus Signaling	2.55	-0.378	CASP8,HLA-
			A,IFNGR1,IKBKB,IKBKG,I
			L1R1,MAP2K3,SOCS2
Death Receptor Signaling	2.47	-0.378	CASP8,IKBKB,IKBKG,LM
			NA,MAP4K4,SPTAN1,TBK
			1
Acute Myeloid Leukemia Signaling	2.44	-0.816	CEBPA,JUP,MAP2K3,PIK3
			C2G,PML,STAT5A,TCF3
PXR/RXR Activation	2.42	NA	ALAS1,G6PC,GSTM1,NR1I
			3,NR3C1,SCD
IL-1 Signaling	2.39	0	ADCY6, ADCY9, GNB1, IKB
			KB,IKBKG,IL1R1,MAP2K3
Cardiac β-adrenergic Signaling	2.33	-0.378	ADCY6,ADCY9,AKAP13,A
			TP2A3,GNB1,PDE1A,PDE4
H 10.0' 1'	0.00	27.4	B,PPP1R10,PPP1R3C
IL-10 Signaling	2.33	NA	FCGR2A,IKBKB,IKBKG,IL
	0.07		IRI,MAP2K3,MAP4K4
NF-KB Signaling	2.27	0	CASP8,IKBKB,IKBKG,ILI
			RI,MAP4K4,PDGFRA,PIK3
	0.07	0.016	C2G, IBK I, IGFBR I, IRAF3
Apoptosis Signaling	2.27	-0.816	CAPNS1,CASP8,IKBKB,IK
			BKG,LMNA,MAP4K4,SPT
	0.07	0.447	
CD27 Signaling in Lymphocytes	2.27	0.447	CASP8,IKBKB,IKBKG,MA
	2.10		P2K3,Map3k/
TWEAK Signaling	2.19	-1	CASP8,IKBKB,IKBKG,TR
	2.04		AF3
Production of Nitric Oxide and Reactive	2.04	0	APOE, IFNGR1, IKBKB, IKB
Oxygen Species in Macrophages			KG,Map3k/,PIK3C2G,PPP1
			R10,PPP1R3C,RH011,SIRP
	2.02		
April Mediated Signaling	2.03	1	IKBKB,IKBKG,NFA15,1R
LDC/II 1 Madiated Indiates of DVD	1.07	1 1 2 4	AF5
EPS/IL-1 Mediated Inhibition of KAR	1.97	-1.134	ALASI, APOE, FMOI, GSIM
Function			3 NP5A2 SI C27A1 SPERE
			1
II A Signaling	1.06	ΝA	
IL-4 Signaling	1.90	INA	A INDD5K NEAT5 ND2C1 D
			IK3C2G SVNI1
Activation of IRE by Cytosolic Pattern	1.05	0.447	IKBKB IKBKG STAT2 TB
Recognition Recentors	1.95	0.447	K1 TRAF3
B Cell Activating Factor Signaling	1.05	1	IKBKB IKBKG NEAT5 TR
D Cen Activating Lactor Signaling	1.75	1	AF3
Cellular Effects of Sildenafil (Viagra)	1 91	NA	ADCY6 ADCY9 GUCY2C
Central Effects of Shaenann (Viagra)	1.71	142 1	MPRIP MYH10 MYH11 PD
			E1A.PDE4B
CD40 Signaling	19	-0 447	IKBKB IKBKG MAP2K3 PI
ob to signating		0	K3C2G.TRAF3
Insulin Receptor Signaling	1.89	1 1 3 4	ACLY INPP5K PIK3C2G P
insum receptor orginaling	1.09	1.1.5 1	PP1R10 PPP1R3C PTPRF S
			YNJ1.TSC1
Sphingosine-1-phosphate Signaling	1.82	1,134	ADCY6.ADCY9.CASP8 PD
Beenre - Freeblane orBinning			GFRA.PIK3C2G.RHOT1.S
			MPD4
Protein Kinase A Signaling	1.79	0.535	ADCY6.ADCY9.AKAP13.G
			NB1,MYH10.NFAT5.PDF1
			A,PDE4B.PPP1R10.PPP1R3
			C.PTPN21.PTPRC.PTPRF.S
			IRPA,TCF3,TGFBR1
			. , -,

Role of Oct4 in Mammalian Embryonic	1.78	NA	JARID2,NR5A2,RXRB,TDR
n53 Signaling	1.73	0.447	ATR.MDM2.MDM4.PIK3C
Pro Signaing	1170	,	2G,PML,STAG1
PTEN Signaling	1.69	-1.134	IKBKB,IKBKG,INPP5K,M
			AST2,PDGFRA,SYNJ1,TGF
			BR1
Osteoarthritis Pathway	1.69	-0.632	ACVRL1,CASP8,FN1,IL1R
			1,LKP1,M1F1,P1H1K,SIK3,
Call Cycle: G2/M DNA Damage	1.60	0	ATP FRYL5 MDM2 MDM4
Checkpoint Regulation	1.09	0	ATK, PDAL5, WIDWI2, WIDWI4
Small Cell Lung Cancer Signaling	1.68	1	IKBKB.IKBKG.PIK3C2G.R
			XRB,TRAF3
Relaxin Signaling	1.67	0.816	ADCY6,ADCY9,GNB1,GU
			CY2C,NPR2,PDE1A,PDE4B
			,PIK3C2G
NRF2-mediated Oxidative Stress Response	1.67	NA	DNAJB12,DNAJC1,DNAJC
			5,DNAJC8,FMO1,GSTM1,K
Hanadia Eilanadia / Hanadia Stallata Call	1.67	NIA	EAPI,MAP2K3,PIK3C2G
Activation	1.0/	NA	COL4A1,FN1,IFNGR1,IL1R
Activation			GFRA TGFRR1
TNFR1 Signaling	1.66	0	CASP8 IKBKB IKBKG MA
inter orginaling	1.00	Ŭ	DD
Phenylalanine Degradation I (Aerobic)	1.66	NA	PCBD2,QDPR
Growth Hormone Signaling	1.65	2.236	CEBPA,PIK3C2G,RPS6KC1
			,SOCS2,STAT5A
HOTAIR Regulatory Pathway	1.64	0	DNMT3B,JARID2,MDM2,
			MET,PIK3C2G,SETDB1,ST
			K38,TCF3
Chronic Myeloid Leukemia Signaling	1.63	NA	IKBKB,IKBKG,MDM2,PIK
	1.50	NT A	3C2G,STAT5A,TGFBRI
Clathrin-mediated Endocytosis Signaling	1.59	NA	APOE, CD2AP, MDM2, ME1, DICALM DIV2C2C DID5V1
			C SYNI1 TF
TNFR2 Signaling	1 59	NA	IKBKB IKBKG TBK1
CDP-diacylglycerol Biosynthesis I	1.55	NA	AGPAT3.CDS2.GPAM
PI3K/AKT Signaling	1.55	1.134	HSP90AA1,IKBKB,IKBKG,
			INPP5K,MDM2,SYNJ1,TSC
			1
Tight Junction Signaling	1.55	NA	AFDN,CEBPA,CPSF1,MYH
			10,MYH11,PARD6A,SPTA
	1.52		N1,TGFBR1
Systemic Lupus Erythematosus Signaling	1.53	NA	FCGR2A,HLA-
			A, HINKINPAZBI, HINKINPC,
			PRPF40B PRPF6 PTPRC
Sumovlation Pathway	1.53	-2	CEBPA.MDM2.NR3C1.PM
,			L,RFC1,RHOT1
Lymphotoxin β Receptor Signaling	1.52	1	IKBKB,IKBKG,PIK3C2G,T
			RAF3
Assembly of RNA Polymerase III Complex	1.52	NA	BDP1,GTF3C1
BER pathway	1.52	NA	LIG1,LIG3
PEDF Signaling	1.51	1.342	CASP8,IKBKB,IKBKG,PIK
			3C2G,TCF12
IL-9 Signaling	1.48	NA	PIK3C2G,SOCS2,STAT5A
HER-2 Signaling in Breast Cancer	1.47	NA	MDM2,PARD3,PARD6A,PI
		1	K3C2G,1SCI

Germ Cell-Sertoli Cell Junction Signaling	1.46	NA	AFDN,JUP,KEAP1,MAP2K 3,Map3k7,PIK3C2G,RHOT1 ,TGFBR1
HIPPO signaling	1.43	NA	PARD3,PPP1R10,PPP1R3C, WWTR1,YAP1
IL-17A Signaling in Fibroblasts	1.42	NA	IKBKB,IKBKG,LCN2
iCOS-iCOSL Signaling in T Helper Cells	1.41	2.236	HLA- A,IKBKB,IKBKG,NFAT5,P IK3C2G,PTPRC
Systemic Lupus Erythematosus In B Cell Signaling Pathway	1.41	-0.302	Eda,FCGR2A,IFNGR1,INPP 5K,MAP4K4,NFAT5,PIK3C 2G,STAT2,SYNJ1,TBK1,TR AF3
Telomere Extension by Telomerase	1.4	NA	HNRNPA2B1,TERF2
Cardiac Hypertrophy Signaling (Enhanced)	1.39	0.5	ADCY6,ADCY9,AKAP13,A TP2A3,Eda,GNB1,IKBKB,I KBKG,IL1R1,MAP2K3,Map 3k7,MKNK1,NFAT5,PDE1 A,PDE4B,PIK3C2G,TGFBR 1
Aryl Hydrocarbon Receptor Signaling	1.38	0.816	AIP,ATR,GSTM1,HSP90AA 1,MDM2,NFIA,RXRB
Induction of Apoptosis by HIV1	1.38	-1	CASP8,IKBKB,IKBKG,SLC 25A3
Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis	1.38	NA	CEBPA,CSNK1A1,FN1,IKB KB,IKBKG,IL1R1,LRP1,M AP2K3,NFAT5,PIK3C2G,T CF3,TRAF3
Endocannabinoid Cancer Inhibition Pathway	1.37	-0.378	ADCY6,ADCY9,CASP8,M AP2K3,PIK3C2G,SMPD4,T CF3
Phosphatidylglycerol Biosynthesis II (Non- plastidic)	1.36	NA	AGPAT3,CDS2,GPAM
NGF Signaling	1.35	1.633	IKBKB,IKBKG,Map3k7,PI K3C2G,RPS6KC1,SMPD4
Iron homeostasis signaling pathway	1.34	NA	ATP6AP1,FBXL5,LRP1,NU BP2,PDGFRA,STAT5A,TF
Dopamine Receptor Signaling	1.34	NA	ADCY6,ADCY9,PPP1R10,P PP1R3C,QDPR
Role of NFAT in Regulation of the Immune Response	1.32	2.646	CSNK1A1,FCGR2A,GNB1, HLA- A,IKBKB,IKBKG,NFAT5,P IK3C2G CHK A PHK A1
Phosphatidylcholine Biosynthesis I	1.5	INA	UNKA,PHKAI

Table 17. Significant Pathways for differentially expressed transcripts in ¹⁶O vs. non-

irradiated control at 4 months.

Ingenuity Canonical Pathways	-log ₁₀ (p-value)	z-score	Molecules
LXR/RXR Activation	5.4	1	ACACA,C4A/C4B,CD36,FA SN,ITIH4,LPL,PLTP,PON3,S AA1,SCD,SERPINA1,TF,TL R3
PXR/RXR Activation	4.73	NA	ALAS1,ALDH3A2,CES3,CY P2A6 (includes

			others),CYP2C8,NR0B2,PRK ACA,SCD,SLC01B3
AMPK Signaling	4.4	1.604	ACACA,ACACB,ADRA2B, ARID1A,CHRNA4,FASN,PF KFB3,PFKM,PIK3C2G,PIK3 CA,PPM1B,PRKAA1,PRKA CA,RAB6A,STK11,TSC2
FXR/RXR Activation	3.72	NA	C4A/C4B,FASN,ITIH4,LPL, NR0B2,PLTP,PON3,SAA1,S ERPINA1,SLCO1B3,TF
Role of JAK2 in Hormone-like Cytokine Signaling	3.13	NA	GHR,SIRPA,SOCS2,STAT5 A,TYK2
TR/RXR Activation	3.11	NA	ACACA,FASN,MDM2,ME1, NCOA4,PIK3C2G,PIK3CA,T HRSP
PPARα/RXRα Activation	2.96	0.905	ADCY3,CD36,CKAP5,CYP2 C8,FASN,GHR,LPL,MAP4K 4,MEF2C,NR0B2,PRKAA1,P RKACA
Growth Hormone Signaling	2.94	-0.378	CEBPA,GHR,PIK3C2G,PIK3 CA,RPS6KA1,SOCS2,STAT 5A
LPS/IL-1 Mediated Inhibition of RXR Function	2.84	0.447	ACSL1,ALAS1,ALDH3A2,C yp2a12/Cyp2a22,CYP2A6 (includes others),CYP2C8,CYP4A11,F MO1,GSTP1,NR0B2,PLTP,S LCO1B3,XPO1
Stearate Biosynthesis I (Animals)	2.78	-0.816	ACOT1,ACSL1,CYP4A11,E LOVL1,ELOVL6,FASN
Chronic Myeloid Leukemia Signaling	2.76	NA	CDK4,CDKN1B,HDAC5,M DM2,PIK3C2G,PIK3CA,RB L2,STAT5A
Retinol Biosynthesis	2.33	0.447	CES3,ESD,LPL,PNPLA3,PN PLA5
Melanoma Signaling	2.29	1	CDH1,CDK4,MDM2,PIK3C2 G,PIK3CA
IL-9 Signaling	2.28	NA	PIK3C2G,PIK3CA,SOCS2,S TAT5A
Triacylglycerol Biosynthesis	2.26	-2	AGPAT3,ELOVL1,ELOVL6, PLPP2,PNPLA3
IL-7 Signaling Pathway	2.12	-0.447	BCL6,CDKN1B,MET,PIK3C 2G,PIK3CA,STAT5A
Triacylglycerol Degradation	2.09	0.447	CES3,LPL,PNPLA3,PNPLA5 ,TARS2
B Cell Receptor Signaling	2.08	-1.265	BCL6,CAMK2D,CAMK2G, GAB1,Map3k7,MEF2C,PIK3 C2G,PIK3CA,SYK,SYNJ1
Complement System	2.06	NA	C4A/C4B,C6,C8G,CFH
Adipogenesis pathway	2.05	NA	CEBPA,GTF2H1,HDAC5,Ka t6b,KAT7,LPL,RBBP7,RPS6 KA1
CNTF Signaling	2.03	0.447	LIFR,PIK3C2G,PIK3CA,RPS 6KA1,TYK2
HER-2 Signaling in Breast Cancer	2.02	NA	CDKN1B,MDM2,PARD3,PI K3C2G,PIK3CA,TSC2
Xenobiotic Metabolism Signaling	1.98	NA	ALDH3A2,CAMK2D,CAMK 2G,CES3,CYP2C8,ESD,FMO 1,GSTP1,HDAC5,Map3k7,PI K3C2G,PIK3CA,UGT2B28

cAMP-mediated signaling 1.93 -1.667 ADCT3ADCA2B,AKAP12, ADCT3ADCA2B,AKAP12, ADCT3ACMAC2B,CAMK2B,CAMK2B, CAKP13,CAMK2D,CAMK2B,CAMK2B, CAKP13,CAMK2D,CAMK2B, CAKP13,CAMK2D,CAMK2B, CAKP14,CAMK2B,CAMK2B, CAKP14,CAMK2B,CAMK2B, CAKP14,CAMK2B,CAMK2B,CAMK2B, CAKP14,CAKP14,CAKP14, ADCT3A,CAMK2D,CAMK2B,CAKP3	HGF Signaling	1.93	0	DOCK1,ELF2,GAB1,Map3k
Colori Findunkei agining1.551.607AKAPI,3CAME2D,CAME2 GCREM,LPAR,LPASKAIRAR Activation1.92NAACCY3,ARD1A,CARMI,G TT211,PINSCA,PML,PRKA C,ARDHI,SCA,PML,PRKA C,ARDHI,SCA,PML,PRKA C,ARDHI,SCA,PML,PRKA C,ARDHI,SCA,PML,PRKA C,ARDHI,SCA,PML,PRKA C,ARDHI,SCA,PML,PRKA C,ARDHI,SCA,PML,PRKA C,ARDHI,SCA,PML,PRKA C,ARDHI,SCA,PML,PRKA C,ARDHI,SCA,PML,PRKA C,ARDHI,SCA,PML,PRKA C,CRUBER,COZBP2,CD72,CRE A,HKRNPA2BL,PIK3C2G,PIK3CA STATSA,TYK2Insulin Receptor Signaling1.891CDKNIB PIK3C2G,PIK3CA,SYN J,ISC2Glioma Signaling1.86-1.414CALY,GARJ,PIK3C2G,CDK4, MDM2,PIK3C2G,PIK3CA,R BL2Breast Cancer Regulation by Stathmin I e-to-plenol Degraduation1.85NACDCKNIB,RONI,PIK3C2G,PIK3CA,R BL2Gell Cycle: G1/S Checkpoint Regulation1.84-0.447CDK4,CDKNIB,IDACSM DM2,PIK3C2,APIK3CA,CR BL2a-poline Panereas Signaling1.810PIK3C2G,PIK3CA,R BL2a-poline Panereas Signaling1.810PIK3C2G,PIK3CA,R PIK3C2,CRKACA,R BL2a-poline Panereas Signaling1.810PIK3C2G,PIK3C2,MIK2G CDK4,CDKARA,LPR KACAAryl Hydroarbon Receptor Signaling1.74-0.447CAMK2D,CAMK2Q,CIKACA,GN PIK3C2G,PIK3CA,RRAA1,PR KACAApelin Panereas Signaling1.720.447CAMK2D,CAMK2Q,CIKSC3G,PIK3CA 	cAMP-mediated signaling	1.03	-1.667	ADCV3 ADRA2B AKAP12
RAR Activation1.92NAADC'3ARDRAR Activation1.92NAADC'3ARDRAR Activation1.92NAADC'3ARDSystemic Lapus Erythematosus Signaling1.89NAC6,CSG,CD2BPA,CD7,CREBribb2-ErbB3 Signaling1.89NAC6,CCG,CD2BPA,CD7,CREErbB2-ErbB3 Signaling1.891CDKN1B, pHSAC2G, pHS3CAInsulin Receptor Signaling1.88-1.414ACL', GAB1,PHS3C2G, PHS3CAGlioma Signaling1.86-1CAMK2D,CAMK2G, CDKABreast Cancer Regulation by Stathmin11.85NAADC'3, CAMK2D,CAMK2GBreast Cancer Regulation by Stathmin11.85NACDK'N1B, pHS3C2G, PHS3CA, RPH PH, DPKACA, SINAry Hydrocanb Receptor Signaling1.84-0.447CDKA1B, CDKN1B, PHS3C2G, PHS3CA, RPH PH, DPKACA, SINCell Cycle: G1/S Checkpoint Regulation1.82NACDK'A1B, CDKN1B, CDKN1B, CDKN1B, CDKN1B, CDKN1B, CDKN1B, CDKN1B, CDKN1B, CDKN1B, CDSN, PHA1B, CDKN1B,	CAWI -Inculated signaling	1.75	-1.007	ABC13, ABCA2B, ARAT12, AKAP13 CAMK2D CAMK2
RAR Activation1.92NAADCY3, ARDIA, CARMI, GRAR Activation1.92NAADCY3, ARDIA, CARMI, GSystemic Lupus Erythematosus Signaling1.89NAC6,CGCD2BP2,CD72,CREMIILA-MIILA-MIILA-MIILA-ALINEPA2B1,PIK3CC2,PIK3CCASTAT5A,TYK2Insulin Receptor Signaling1.891CDKNIB,PIK3CC2,PIK3CA,Signaling1.88-1.414ACLY,GAB1,PIK3CC2,PIK3Glioma Signaling1.88-1.414ACLY,GAB1,PIK3CC2,PIK3Glioma Signaling1.86-1CAMK2D,CAMK2D,CAMK2G,CDK4,MDM2,PIK3CC2,GPIK3CA,NAADCY3,CAMK2D,CAMK2G,CDK4,MDM2,PIK3CC2,GPIK3CA,NAADCY3,CAMK2D,CAMK2G,CDK4,Breast Cancer Regulation by Stathmin11.85NAADCY3,CAMK2D,CAMK2G,CDK4,Aryl Hydrocarbon Receptor Signaling1.810ALDH3A2,CDK4,CDKN1B,HDAC5,MAryl Hydrocarbon Receptor Signaling1.810ALDH3A2,CDK4,CDKN1B,HDAC5,MAryl Hydrocarbon Receptor Signaling1.72NACY4A11,CYMF12Aryl Hydrocarbon Receptor Signaling1.720.447CDK4C3C,PIK3CA,PIKAC4,PIK3C2G,PIK3CAGMC-SF Signaling1.72NAACSL1,ACS3Apelin Pancreas Signaling1.72NAACSL2,CARKAC1,PIK3C2G,PIK3CAApilin Signaling1.72NAACSL1,ACS3Ap53 Signaling1.72NACSL2,CARKAC1,PIK3C2G,PIK3CAAryl Hydrocarbon Receptor Signaling1.72NACSL2,CARKAC1,CYRK3C2G,PIK3CAAryl Hydrocarbon Receptor Signaling1.72 <td></td> <td></td> <td></td> <td>G CREM I PAR1 PDF5A PR</td>				G CREM I PAR1 PDF5A PR
RAR Activation 1-92 NA ADCY3_ARID1A_CARMI_G T2111_PRSC4_PML_PRKA CARD116_STAT3A_TAF4 Systemic Lupus Erythematosus Signaling 1.89 NA C6.CSG_CD2BP2_CD2_CRE M_HILA- A_HINRPA2BI_PRST4D4 Systemic Lupus Erythematosus Signaling 1.89 NA C6.CSG_CD2BP2_CD2_CRE M_HILA- A_HINRPA2BI_PRST4D6 ErbB2-ErbB3 Signaling 1.89 1 CDKNIB_PRSC2Q_PRSCA_ STAT5A_TYK2 Insulin Receptor Signaling 1.88 -1.414 CARK2D_CAMK2G_CDK4. (ADM2_PRSC2G_PRSCA_ STAT5A_TYK2 Glioma Signaling 1.86 -1 CAMK2D_CAMK2G_CDK4. (MDM2_PRSC2G_PRSCA_R) Breast Cancer Regulation by Stathmin1 1.85 NA ADCY3_CAMK2D_CAMK2G (DCNNB_GMB_RCA_CA, UHMK1 Cell Cycle: GI/S Checkpoint Regulation 1.84 -0.447 CDK4_CDKNIB_HDAC5, DM2_REL2 Apelin Pancreas Signaling 1.81 0 RACA (DM2_QPKACA,PKRAA_1,PR (AT)Hydrocarbon Receptor Signaling Apelin Pancreas Signaling 1.72 NA CDK4_CDKNIB_GDR (CARK2G_PRSC				KACA RPS6KA1
Dr. M. Korkinin 1.52 Dr. Tr2111,PIK3CA,PML,PRKA CARD116,STATSA,TAF4 Systemic Lupus Erythematosus Signaling 1.89 NA C6CCSC,O2BP2,CD72,CRE M,HLA- A,HNRPA2B1,PIK3C2G,PI SCC,PRPF2,PR40B ErbB2-ErbB3 Signaling 1.89 1 CDKNRPA2B1,PIK3C2G,PIX SCA,PRPF2,PR40B Insulin Receptor Signaling 1.88 -1.414 ACLY,GAB1,PIK3C2G,PIK3CA, STAT5A,TYK2 Glioma Signaling 1.88 -1.414 ACLY,GAB1,PIK3C2G,PIK3CA, STAT5A,TYK2 Breast Cancer Regulation by Stathmin1 1.85 NA ADCY3,CAMK2D,CAMK2G,CDK4, MDM2,PIK3C2G,PIK3CA, BL2 Cell Cycle: GL/S Checkpoint Regulation 1.84 -0.447 CDK4,CDKN1B,GNB,PIK3C2G,PI K3CA, PPP1R10,PRKACA, UHMK1 Cell Cycle: GL/S Checkpoint Regulation 1.84 -0.447 CDK4,CDKN1B,GNB,RB2,RB2 PI,MDM2,NEDDS,NR0B2,RB2, PI,MDM2,NEDDS,NR0B2,RB2, PI,MDM2,NEDDS,NR0B2,RB2, PI,MDM2,NEDDS,NR0B2,RB2, PI,MDM2,NEDDS,NR0B2,RB2, PI,MDM2,NEDDS,NR0B2,RB2, PI,MDM2,NEDDS,NR0B2,RB2, PI,SCA,RCK1 Acetate Conversion to Acetyl-CoA 1.73 NA ACSL1ACSS3 ACEG,PIK3CA,PRKAA1,PR KAC3 Ght-SF Signaling 1.71 NA ACSL1ACSS3 ACEG,PIK3CA,REA1,PR KAC3 I-15 Signaling 1.72 0.447 CDK4CQSA,MDM2,PIK3C2G,PIK3CA, PIK3CA,GPIK3CA,STAT5A,SY KAC3 I-15 Signaling 1.71 NA ACSL1ACS	RAR Activation	1.92	NA	ADCY3 ARID1A CARM1 G
Systemic Lupus Erythematosus Signaling1.89NAC6.CSG(D2DP2/CD72,CRE M,HLA- A,HNRPA2B1P,HS2C2,CP172,CRE M,HLA- A,HNRPA2B1P,HS2C2G,P1RS2CA,CPRESA,CSG(CSC)ErbB2-ErbB3 Signaling1.891CDKN1B,P1RSC2G,P1RS2CA,CSTATSA,TYK2Insulin Receptor Signaling1.88-1.414ACLY,GAB1,P1RSC2G,P1RS2CA,CSTATSA,TYK2Insulin Receptor Signaling1.86-1CAMK2D,CAMK2G,CDK4,MD2,P1K3C2G,P1RS2CA,RB12Glioma Signaling1.86-1CAMK2D,CAMK2G,CDK4,MD2,P1K3C2G,P1RS2CA,RB12Breast Cancer Regulation by Stathmin11.85NAADCY3,CAMK2D,CAMK2G,CDK4,MD2,P1K3C2G,P1RS2CA,PP1R10,PRKACA,S1NCell Cycle: G1/S Checkpoint Regulation1.82NACYP4A11,CYP4P12Aryl Hydroarbon Receptor Signaling1.810ADCY3,CAMK2D,CAMK2G,CDK4,MD3,CP1RS2CB,P1K3CA,PP1R10,PRKACA,S1NApelin Pancreas Signaling1.810ADDY3,CAMK2D,CAMK2G,CDK4,MD3,CDK4,CDKN1B,GSTAryl Hydroarbon Receptor Signaling1.810ADDM2,NEDDSMB2,BB12Apelin Pancreas Signaling1.74-0.447CDK4CDKN1B,GSTAcetate Conversion to Acetyl-CoA1.73NAACSES15Acetate Conversion to Acetyl-CoA1.73NAASL,CASS13T-15 Signaling1.71NAMSC2,PIK3CA,STATSA,SYRole of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CASittvin Signaling Pathway1.55NAACACAACACCBPD-1, PD-1, Clacrier Protein Assembly1.55NAACACAACACCBPD-1, PD-1, Clacrier Protein Assembly1.55NAACACAACACACB </td <td></td> <td>1.72</td> <td>142 \$</td> <td>TE2H1 PIK3CA PMI PRKA</td>		1.72	142 \$	TE2H1 PIK3CA PMI PRKA
Systemic Lupus Erythematosus Signaling1.89NACo.C8G, CD2BP2, CD72, CEE M, HLA A, HRNNPA2B1, PIK3C2G, PIK3CA, STATSA, TYK2ErbB2-ErbB3 Signaling1.891CDKN IB, PIK3C2G, PIK3CA, STATSA, TYK2Insulin Receptor Signaling1.88-1.414ACLY, GAB1, PIK3C2G, PIK3CA, STATSA, TYK2Glioma Signaling1.88-1.414ACLY, GAB1, PIK3C2G, PIK3CA, STATSA, TYK2Glioma Signaling1.86-1CAMK2D, CAMK2D, C				CA RDH16 STAT5A TAF4
Systemic Explose Explored Explor	Systemic Lupus Frythematosus Signaling	1.89	NΔ	C6 C8G CD2BP2 CD72 CRF
ErbB2-ErbB3 Signaling1.891CKNIB,PIK3C2G,PI K3CA,PRP740BErbB2-ErbB3 Signaling1.891CKNIB,PIK3C2G,PIK3CA, STATSA,TYK2Insulin Receptor Signaling1.88-1.414ACLY,GAB,PIK3C2G,PIK3CA, STATSA,TYK2Glioma Signaling1.86-1CAMK2D,CAMK2G,CDK4, MDM2,PIK3C2G,PIK3CA, BL2Breast Cancer Regulation by Stathmin11.85NAADCY3,CAMK2D,CAMK2G,CDK4, MDM2,PIK3C2G,PIK3CA, BL2Breast Cancer Regulation by Stathmin11.85NAADCY3,CAMK2D,CAMK2G,CDK4, MDM2,PIK3C2G,PIK3CA,PP1R10,PIKACA, UHMK1Cell Cycle: G1/S Checkpoint Regulation1.84-0.447CDK4,CDKN1B,GNB1,PIK3C2G,PI BCACA,PP1R10,PIKACA, UHMK1Aryl Hydrocarbon Receptor Signaling1.810PIK3C2G,PIK3CA,PIK3CA,PP1R10,PIKACA, UHMK1Apelin Pancreas Signaling Pathway1.80RACA RCSC1,ACKS1B,CSTAcetate Conversion to Acetyl-CoA1.73NAACSE1,ACSS3p35 Signaling1.720.447CAMK2D,CAMK2G,PIK3C2,GPIK3CA,PIK3C2 RSC1,ACSS3fAK Signaling1.71NAASP1,CAPNSI,DOCK1,PIK3C2 G,PIK3CA,RISC2factate Conversion to Acetyl-CoA1.73NAACSE1,ACSS3f55 Signaling1.72NAASAP1,CAPNSI,DOCK1,PIK3C2 G,PIK3CA,RISC2facta fig1.71NAASP1,CAPNSI,DOCK1,PIK3C2 G,PIK3CA,RISC2,SASTAT5A,SY K11f55NAACCA,ACACBPD-1, PD-1, cancer immunotherapy pathway1.55NAACCA,ACACBPD-1, PD-1, Cancer immunotherapy pathway1.55NAACCA,ACAC	Systemic Eupus Erythematosus Signamig	1.09	1 12 1	M HLA-
ErbB2-ErbB3 Signaling1.891CIKNI B, PIK 32C, PIK 3CA, STATS A, TYK2Insulin Receptor Signaling1.88-1.414ACLY, GABL, PIK 3CG, PIK 3CA, STATS A, TYK2Glioma Signaling1.88-1.414ACLY, GABL, PIK 3CG, PIK 3CA, CAMK2D, CAMK2G, CDK4, MDM2, PIK 3C2C, PIK 3CA, RSYN JI, TSC2Glioma Signaling1.86-1CAMK2D, CAMK2G, CDK4, MDM2, PIK 3C2C, PIK 3CA, RSYN BL2Breast Cancer Regulation by Stathmin11.85NAADCY3, CAMK2G, CDK4, UMK1Cell Cycle: GI/S Checkpoint Regulation1.84-0.447CDK4, CDKN1B, HDAC5,M DM2, RB12a-tocopherol Degradation1.82NACYP4A11, CYP4F12Aryl Hydrocarbon Receptor Signaling1.810ALD13A2, CDK4, CDKN1B, RDAC5,M DM2, RB12Apelin Pancreas Signaling1.74-0.447CDK4, CDKN1B, CR3C, PIK 3CA, PIK AA1, PRAryl Hydrocarbon Keceptor Signaling1.720.447CAMK2D, CAMK2G, PIK 3CA, PIK AA1, PRApelin Pancreas Signaling1.720.447CAMK2D, CAMK2G, PIK 3CA, PIK AA1, PRAp53 Signaling1.720.447CDK4, COK AAA1, PRFAK Signaling1.72NAACSU1, ACSU3p53 Signaling1.71NAACSU1, ACSU3FAK Signaling1.610.905ACLY, ATSI2G, PIK 3CA, PIK 3CA				A HNRNPA2B1 PIK3C2G PI
ErbB2-ErbB3 Signaling1.891CDKNIB,PIR3CG,PIK3CA, STAT5A,TYK2Insulin Receptor Signaling1.88-1.414ACLY,GABI,PIK3C2G,PIK3CA, STAT5A,TYK2Glioma Signaling1.88-1.414ACLY,GABI,PIK3C2G,PIK3CA,R BL2Breast Cancer Regulation by Stathmin11.85NAADCY3,CAMK2Q,CAK4,A MDM2,PIK3C2G,PIK3CA,R BL2Breast Cancer Regulation by Stathmin11.85NAADCY3,CAMK2Q,CAK4CQ,CAK4,A MDM2,PIK3C2G,PIK3CA,R BL2Cell Cycle: G1/S Checkpoint Regulation1.84-0.447CDK4,CDKN1B,HDAC5,M DM2,RB12a-tocopherol Degradation1.82NACYP4A11,CYP4F12Aryl Hydrocarbon Receptor Signaling1.810PIK3C2C,PIK3CA,PRKAA1,PR KACAGM-CSF Signaling1.74-0.447CAK4CDKN1B,GST PIK3C2G,PIK3CA,PKAA1,PR KACAGM-CSF Signaling1.720.447CMK2G,CARK3C2G,PIK3C2G,PIK3CA,PKAA1,PR KACAFAK Signaling1.720.447CDK4,CORNIB,CC2G,PIK3CA,PRKAA1,PR 				K3CA PRPF3 PRPF40B
InstructureInstructur	FrbB2-FrbB3 Signaling	1.89	1	CDKN1B PIK 3C2G PIK 3CA
Insulin Receptor Signaling1.88-1.414ACLY (GAB I, FIK3 C2 G, FIK3 CA, PP IR10, PRKACA, SYN J, TSC2Glioma Signaling1.86-1CAMK2D, CAMK2G, CDK4, MDM2, PIK3 C2 G, PIK3 CA, R BL2Breast Cancer Regulation by Stathmin11.85NAADCY3, CAMK2D, CAMK2G, CDKN IB, GNB1, PIK3 C2 G, PIK3 CA, R BL2Cell Cycle: G1/S Checkpoint Regulation1.84-0.447CDK4, CDKNIB, BHDAC5,M DM2, PIK3 C2, APK2, CAKN2G, CDK4, DM2, PIK3 C2, APK2, CAKN1B, HDAC5,M DM2, RB12c-tocopherol Degradation1.82NACYP4A11, CYP4F12Aryl Hydrocarbon Receptor Signaling1.810ALDH3A2, CDK4, CDKN1B, GNB2, RB12Apelin Pancreas Signaling Pathway1.80PIK3C2, OPK3C2, PIK3C2, P	LIGHZ LIGHS Signaming	1.09	1	STAT5A TYK2
Initial Receipt Cogning1001111CA,PPP1R10,PRKACA,SYN J,TSC2Glioma Signaling1.86-1CAMK2D,CAMK2G,CDK4, MDM,PIK3C2G,PIK3CA,R BL2Breast Cancer Regulation by Stathmin11.85NAADCY3,CAMK2D,CAMK2G,CDK4, MDM,PIK3C2G,PIK3CA,R BL2Breast Cancer Regulation by Stathmin11.85NAADCY3,CAMK2D,CAMK2G,CDK4, CDK4,CDKN1B,ORB,PIK3C2G,PIK3CA,R UHMK1Cell Cycle: GI/S Checkpoint Regulation1.82NACDK4,CDKN1B,HDAC5,M DM2,RBL2a-tocopherol Degradation1.82NACYt4AIL(PY4F12a-tocopherol Degradation1.82NACYt4AIL(PY4F12Aryl Hydrocarbon Receptor Signaling1.810ALDH3A2,CDK4,CDKN1B,GST,RBL2Apelin Panereas Signaling Pathway1.80PIK3C2,OPKKAAL,PR KACAGM-CSF Signaling1.74-0.447CDK4,COQSA,MDM2,PIK3C2G,PIK3C2G,PI HX3C2,OPKKAAL,PR KACA,PMLGade Conversion to Acetyl-CoA1.73NAACSL1,ACS33FAK Signaling1.720.447CDK4,COQSA,MDM2,PIK3C2G PIK3C2G,PIK3CA,STAT5A,SY RDI of p14/p19ARF in Tumor Suppression1.62NASirtuin Signaling Pathway1.610.905ACLY ATG13,ATF5F1B,ATP5P F,CDH1,MT- ATP6,NDH210,NDUFA4,PFK PB3,PFKM,PRKAAL3),RT4,ST RDI of p14/p19ARF in Tumor Suppression1.62NABiotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-1,1 cancer immunotherapy pathway1.55NAACGPLA3CA,STAT5A,T YK2DY-1, PD-1,1 cancer immunotherapy pathway1.55NAACGPLA3CA,STAT5A,T YK2<	Insulin Recentor Signaling	1.88	-1 414	ACLY GAB1 PIK3C2G PIK3
Glioma Signaling1.86-1CAMK2D,CAMK2G,CDK4, MDM2,PIK3C2G,PIK3CA,R BL2Breast Cancer Regulation by Stathmin11.85NAADCZ9,CXAK2G,CDK4, CDKNIB,GNB1,PIK3C2G,PIK3CA,R BL2Breast Cancer Regulation by Stathmin11.85NAADCZ9,CXAK2D,CAMK2G, CDKNIB,GNB1,PIK3C2G,PIK3CCA,PPP1R10,PPKACA, UHMK1Cell Cycle: G1/S Checkpoint Regulation1.82NACDK4,CDKNIB,HDAC5,M DM2,RBL2a-tocopherol Degradation1.82NACYP4A11,CYP4F12Aryl Hydrocarbon Receptor Signaling1.810ALDH3A2,CDK4,CDKNIB,GSR,RBL2Apelin Pancreas Signaling Pathway1.80PIK3C2G,PIK3CA,PRKAA1,PR KACAGM-CSF Signaling1.74-0.447CAMK2D,CAMK2G,FIK3C2G,PI K3CA,ARCK1Acetate Conversion to Acetyl-CoA1.73NAACSE1,ACS53p53 Signaling1.720.447CDK4,CQSA,MDM2,PIK3C2G,PIK3CA,PRKAC1,PR K3CA,PMLFAK Signaling1.71NAASSP1,CAPNS1,DOCK1,PIK3C2 G,PIK3CA,RNS1IL-15 Signaling1.71NAASSP1,CAPNS1,DOCK1,PIK3C2 G,PIK3CA,TNS1IL-15 Signaling1.610.905ACLY,ATG13,ATP5F1B,ATP5P F,CDH,MT- ATP6,NDUFA10,NDUFA4,PFK H33,PFM,PRKAA1,SIRT4,ST K11Biotin-carboxyl Carrier Protein Assembly1.55NAACACAACACBPD-1, PD-L1 cancer immunotherapy pathway1.55NAACCYA,ACAS,AL,ASS,ALDH3A2PIKA/KAT Signaling1.540.447PIK3C2G,PIK3CA,STAT5A,TT YK2PIK/KAT Signaling1.540.447PIK3C2G,PIK3CA,SC,STAT5 A,STYK2PIK/KAT Signaling <td>insum receptor signamig</td> <td>1.00</td> <td>1.111</td> <td>CA PPP1R10 PRKACA SYN</td>	insum receptor signamig	1.00	1.111	CA PPP1R10 PRKACA SYN
Glioma Signaling1.86-1CAMK2D,CAMK2G,CDK4, MDL_PIK3C2G,PIK3CA,R BL2Breast Cancer Regulation by Stathmin11.85NAADCY3,CAMK2D,CAMK2G,CDK4, MDL2Breast Cancer Regulation by Stathmin11.85NAADCY3,CAMK2D,CAMK2G,CDK4, CDKNB,GNB1,PIK3C2G,PIK3CA,R UHMK1Cell Cycle: G1/S Checkpoint Regulation1.84-0.447CDK4,CDKN1B,HDAC5,M DM2,RBL2actocopherol Degradation1.82NACYP4411,CYP4F12Aryl Hydrocarbon Receptor Signaling1.810ATDH3A2,CDK4,CDKN1B,GST PI,MDM2,NEDD8,NR0B2,RBL2Apelin Pancreas Signaling Pathway1.80PIK3C2G,PIK3CA,PKAA1,PR KACAGM-CSF Signaling1.74-0.447CAMK2D,CAMK2G,PIK3C2G,PI IK3CA,PKAC1,PR KACAAcetate Conversion to Acetyl-CoA1.73NAACSL1,ACSS3p53 Signaling1.720.447CDK4,COQ8A,MDM2,PIK3C2G,PIK3CA,PMLFAK Signaling1.72NAASAPI,CAPNS1,DOCK1,PIK3C2 DF4,COQ8A,MDM2,PIK3C2G,PIK3CA,TSS1IL-15 Signaling1.71NAPIK3C3,PIK3CA,STAT5A,SY K,TYC2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CA,STAT5A,SY K,TYC2Botin-carboxyl Carrier Protein Assembly1.58NAACCACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.55NAACCACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.540.816CDKNIB,GAB1,MDM2,PIK3C2 A,STAT5A,T YK2AktStat Signaling1.540.447PIK3C3,GPIK3CA,STAT5A,T YK2Ahtiproliferative Role of Somatostatin Recept				II TSC2
Orional Signaling1.001Check Particular StructureBreast Cancer Regulation by Stathmin11.85NAADCY3,CAMK20,CAMK20,CAMK20,CDKNB,GNB1,PIK3C2G,PIK3C3C,PIK2G2G,PIK3C	Glioma Signaling	1.86	-1	CAMK2D CAMK2G CDK4
BitBitBreast Cancer Regulation by Stathminl1.85NAADCY3,CAMK2D,CAMK2G ,CDKNIB,GNB1,PIR3C2G,P ,R3CA,PPP1R10,PRKACA, ,UMMK1Cell Cycle: G1/S Checkpoint Regulation1.84-0.447CDK4,CDKNIB,HDAC5,M ,DM2,RBL2a-tocopherol Degradation1.82NACYP4A11,CYP4F12Aryl Hydrocarbon Receptor Signaling1.810ALDH3A2,CDK4,CDKNIB,GST PI,MDM2,NEDDS,NR0B2,RBL2Apelin Pancreas Signaling Pathway1.80PIK32CQFR3CA,PRKAA1,PR ,KACAGM-CSF Signaling1.74-0.447CAMK2D,CAMK2G,PIK3C2G,PIK3CA,PRKAA1,PR ,KACAAcetate Conversion to Acetyl-CoA1.73NAASLALACSS3p53 Signaling1.720.447CDK4,COQ8A,MDM2,PIK3C2G,PIK3CA,PRK3CA,PIK3C2G,PIK3CA,PIK3C2G,PIK3CA,PIK3C2G,PIK3CA,STAT5A,SY ,KITX2FAK Signaling1.71NAASAPI,CAPNS1,DOCKI,PIK3C2 ,GPIK3CA,PIK3C2G,PIK3CA,STAT5A,SY ,KITX2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CA,STAT5A,SY ,KITS2Sirtuin Signaling Pathway1.510.905ACLYATG13,ATP5F1B,ATP5F1	Shoha Sighaning	1.00	1	MDM2 PIK 3C2G PIK 3CA R
Breast Cancer Regulation by Stathmin11.85NAADCY3,CAMK2D,CAMK2G,CDKN1B,GNB1,PIK3C2G,PBreast Cancer Regulation1.84-0.447CDKN1B,GNB1,PIK3C2G,PCell Cycle: G1/S Checkpoint Regulation1.84-0.447CDK4,CDKN1B,HDACS,MDublest Composition1.82NACYP4A11,CYP4F12a-tocopherol Degradation1.82NACYP4A11,CYP4F12Aryl Hydrocarbon Receptor Signaling1.810ALD13A2,CDK4,CDKN1B,GSTApelin Panereas Signaling Pathway1.80PIK3C2G,PIK3CA,PKKAA1,PRGM-CSF Signaling1.74-0.447CAMK2D,CAMK2G,PIK3C2G,PGM-CSF Signaling1.720.447CAMK2D,CAMK2G,PIK3C2G,PFAK Signaling1.720.447CDK4,COQ8A,MDM2,PIK3C2GFAK Signaling1.72NAASSL1,ACSS3FAK Signaling1.71NAPIK3C2,QPIK3CA,PMLFAK Signaling1.71NAPIK3C2G,PIK3CA,STAT5A,SYKrithin Signaling Pathway1.610.905ACLY,ATG13,ATP5F1B,ATP5PFic D11/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CASirtuin Signaling Pathway1.55NAACACA.ACACBPD-1, PD-1, 1 cancer immunotherapy pathway1.55NAACACA.ACACBPD-1, PD-1, 1 cancer immunotherapy pathway1.55NAACGEA.ACACBPD-1, PD-1, 1 cancer immunotherapy pathway1.55NAACCACA.ACACBPD-1, PD-1, 1 cancer immunotherapy pathway1.55NAACCACA.ACACBPD-1, PD-1, 1 cancer immunotherapy pathway1.55N				BL2
International Logistic ConstraintsInternational ConstraintsInternational ConstraintsInternational ConstraintsColl Cycle: GL/S Checkpoint Regulation1.84-0.447CDKN1B,GNB1,PIK3C2G,PIColl Cycle: GL/S Checkpoint Regulation1.82NACTY4A11,CYP4F12Aryl Hydrocarbon Receptor Signaling1.810ALD13A2,CDK4,CDKN1B,GSTApelin Pancreas Signaling Pathway1.80PIK3C2G,PIK3CA,PRKAA1,PRApelin Pancreas Signaling1.74-0.447CAMK2D,CAMK2G,PIK3C2G,PIK3C2G,PIK3CA,CRKAA1,PRAcctate Conversion to Acetyl-CoA1.73NAACSL1,ACSS3p53 Signaling1.720.447CDK4,COQ8A,MDM2,PIK3C2GFAK Signaling1.720.447CDK4,COQ8A,MDM2,PIK3C2GFAK Signaling1.71NAASAPI,CAPNS1,DOCK1,PIK3CFAK Signaling1.71NAMDM2,PIK3C2G,PIK3CA,STAT5A,SYK,TYK2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CA,STAT5A,SYSirtuin Signaling Pathway1.510.905ACCLY,ATG13,ATP5F1B,ATP5PPD-1, PD-L1 cancer immunotherapy pathway1.55NAACACA,CACCBPD-1, PD-L1 cancer immunotherapy pathway1.55NAACGA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.52NAACACA,CACCBPJS/AKT Signaling1.540.447CDKN1B,GN1,GUCY2C,PIK3CPJS/AKT Signaling1.540.447CDKN1B,GN1,GUCY2C,PIK3CPJS/AKT Signaling1.540.447CDKN1B,GN1,GUCY2C,PIK3CPJS/AKT Signaling1.54 <t< td=""><td>Breast Cancer Regulation by Stathmin1</td><td>1.85</td><td>NA</td><td>ADCY3.CAMK2D.CAMK2G</td></t<>	Breast Cancer Regulation by Stathmin1	1.85	NA	ADCY3.CAMK2D.CAMK2G
Cell Cycle: G1/S Checkpoint Regulation1.84-0.447IK3CA,PP1R10,PRKACA, UHMK1Cell Cycle: G1/S Checkpoint Regulation1.82NACDK4,CDKN1B,HDACS,M DM2,RBL2a-tocopherol Degradation1.82NACVP4A11,CYP4F12Aryl Hydroarbon Receptor Signaling1.810ALDH3A2,CDK4,CDKN1B,GSTApelin Pancreas Signaling Pathway1.80PH3C2C,PHS2CA,PKSAA1,PR KACAGG-CSF Signaling1.74-0.447CCMK2D,CAMK2G,PHS2C2G,P IK3CCA,RACK1Acetate Conversion to Acetyl-CoA1.73NAACSL1,ACSS3p53 Signaling1.720.447CDK4,COQ8A,MDM2,PHS3C2G,PHS3CA,PMLFAK Signaling1.72NAASAP1,CAPNS1,DOCK1,PHS3C 2G,PHS3CA,TNS1IL-15 Signaling1.71NAPHS3C2G,PHS3CA,STAT5A,SY K,TYK2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2,PHS3C2G,PHS3CASirtuin Signaling Pathway1.51NAACLY,ATG13,ATP5F1B,ATP5P F,CDH1,MT- ATP6,NDUFA4,DFK H3,27PD-1, PD-L1 cancer immunotherapy pathway1.55NAACCA,CA,CACBPD-1, PD-L1 cancer immunotherapy pathway1.55NAACGA,CA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.55NAACGA,CA,ACCABPD-1, PD-L1 cancer immunotherapy pathway1.55NAACGN1,CSS3,21,PH23Oxidative Ethanol Degradation III1.55NAACGN1,ACS3,ALDH32P13K/AKT Signaling1.540.816CDKN1B,GAB1,MDM2,PIK3C A,SYNJ1,GSUP1,PRKAA1, PRK3C2G,PIK3CA,SOCS2,STAT SA,TYK2-1CDKN1B,GNB1,GUCY2C,PIK3C <b< td=""><td></td><td>1.00</td><td>1.1.1</td><td>.CDKN1B.GNB1.PIK3C2G.P</td></b<>		1.00	1.1.1	.CDKN1B.GNB1.PIK3C2G.P
Cell Cycle: G1/S Checkpoint Regulation1.84-0.447CDK4,CDKNIB,HDAC5,M DM2,RBL2a-tocopherol Degradation1.82NACYP4A11,CYP4F12Aryl Hydrocarbon Receptor Signaling1.810ALDH3A2,CDK4,CDKNIB,GST PLMDM2,NEDD8,NB02,RBL2,GSTApelin Pancreas Signaling Pathway1.80PIK3C2G,PIK3CA,PRKAA1,PR KACAGM-CSF Signaling1.74-0.447CAMK2D,CAMK2G,PIK3C2G,PI K3CA,RACK1Acetate Conversion to Acetyl-CoA1.73NAACSL1,ACSS3Acetate Conversion to Acetyl-CoA1.720.447CDK4,COQ8A,MDM2,PIK3C2G PIK3CA,RACK1FAK Signaling1.720.447CDK4,COQ8A,MDM2,PIK3C2GFAK Signaling1.72NAASSL1,CAPNS1,DOCK1,PIK3C 2G,PIK3CA,TNS1IL-15 Signaling1.71NAPIK3C2G,PIK3CA,STAT5A,SY K,TYK2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CASirtuin Signaling Pathway1.510.905ACLY,ATG13,ATP5F1B,ATP5P F,CDH1,MT- ATP6MDUFA10,DUFA4,PFK FB3,PFKM,PKRAA1,SIRT4,ST K11Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.55NAACGR43,CASS3,ALDH3A2PISK/AKT Signaling1.540.816CDKN1B,GIA3,2Oxidative Ethanol Degradation III1.55NAACGR43,CASC3,SIX5A,T ASTAT5A,T YK2JAK/Stat Signaling1.540.447PIK3C2G,PIK3CA,SIX7K2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GIB1,GUCY2C,PIK3CA ASTN1,ITSC				IK3CA.PPP1R10.PRKACA.
Cell Cycle: G1/S Checkpoint Regulation1.84-0.447CDK4,CDKN1B,HDAC5,M DM2,RBL2actocopherol Degradation1.82NACYP4A11,CYP4F12Aryl Hydrocarbon Receptor Signaling1.810ALDH3A2,CDK4,CDKN1B,GST P1,MDM2,NEDD8,NR0B2,RBL2Apelin Pancreas Signaling Pathway1.80PRS22G,PIK3CA,PRKAA1,PR KACAGM-CSF Signaling1.74-0.447CAMK2D,CAMK2G,PIK3C2G,PIK3CA,PRKAA1,PR KACAGM-CSF Signaling1.720.447CDK4,COQ8A,MDM2,PIK3C2G PIK3C2A,PRKA2G,PIK3CA,PRKACAAcetate Conversion to Acetyl-CoA1.73NAACSL1,ACSS3p53 Signaling1.720.447CDK4,COQ8A,MDM2,PIK3C2G PIK3CA,TNS1FAK Signaling1.72NAASAP1,CAPNS1,DOCK1,PIK3C 2G,PIK3CA,TNS1IL-15 Signaling1.71NAPIK3C2G,PIK3CA,STAT5A,SY K,TYK2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CASirtuin Signaling Pathway1.510.905ACLY,ATG13,ATP5F1B,ATP5P F,CDH1,MT- ATP6NDUFA10,NDUFA4,PFK KTR3Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.55NAACEX,ASCG,PIK3CA,STAT5A,T YK2IAK/Stat Signaling1.540.816CDKN1B,GLA3,COSC2,STAT5A,T YK2IAK/Stat Signaling1.540.447PIK3C2G,PIK3CA,SOC52,STAT5A,T YK2IAK/Stat Signaling1.52I.342ACEX,ASCA,SOC52,STAT5A,T YK2JAK/KT Signaling1.540.447PIKACA,SOC2,STAT5A,T YK2IAK/St				UHMK1
ConstructionDM2, RBL2a-tocopherol Degradation1.82NACYP4A11, CYP4F12Aryl Hydrocarbon Receptor Signaling1.810ALDH3A2, CDKA4, CDKN1B, GST P1, MDM2, NEDD8, NR0B2, RBL2Apelin Pancreas Signaling Pathway1.80PIK3C2G, PIK3CA, PRKAA1, PR KACAGM-CSF Signaling1.74-0.447CAMK2D, CAMK2G, PIK3C2G, PIK3CA, PRKAA1, PR KACAGM-CSF Signaling1.720.447CAMK2D, CAMK2G, PIK3C2G, PIK3CA, PRKAA1, PR KACAAcetate Conversion to Acetyl-CoA1.73NAACSL1, ACSS3p53 Signaling1.720.447CDK4, COQ8A, MDM2, PIK3C2G PIK3CA, PRLFAK Signaling1.72NAASAP1, CAPNS1, DOCK1, PIK3C2 2G, PIK3CA, TNS1IL-15 Signaling1.71NAPIK3C2G, PIK3CA, STAT5A, SY K, TYK2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2, PIK3C2G, PIK3CASirtuin Signaling Pathway1.610.905ACLY, ATG13, ATPSF1B, ATPSP F, CDH1, MT- ATP6, NDUFA10, NDUFA4, PFK FB3, PFKM, PRKAA1, SIRT4, ST K11Biotin-carboxyl Carrier Protein Assembly1.58NAACACA, ACACBPD-1, PD-L1 cancer immunotherapy pathway1.55NAAGPAT3, CDS2, PNPLA3Oxidative Ethanol Degradation III1.55NAACSL1, ACSS3, ALDH3A2JAK/Stat Signaling1.540.447PIK3C2G, PIK3CA, STAT5A, T YK2JAK/Stat Signaling1.540.447PIK3CAG, PIK3CA, STAT5A, T YK2Apelin Adipocyte Signaling Pathway1.52-1CDKNIB, GM1, GUCY2C, PIK3C C2, PIK3CA, CA <td>Cell Cycle: G1/S Checkpoint Regulation</td> <td>1.84</td> <td>-0.447</td> <td>CDK4.CDKN1B.HDAC5.M</td>	Cell Cycle: G1/S Checkpoint Regulation	1.84	-0.447	CDK4.CDKN1B.HDAC5.M
a-tocopherol Degradation1.82NACYP4A11,CYP4F12Aryl Hydrocarbon Receptor Signaling1.810ALDH3A2,CDK4,CDKNIB,GSTApelin Pancreas Signaling Pathway1.80PIK3C2G,PIK3CA,PRKAA1,PRGM-CSF Signaling1.74-0.447CAMk2D,CAMK2G,PIK3C2G,PIGM-CSF Signaling1.73NAACSL1,ACSS3p53 Signaling1.720.447CDKk2,COR8A,MDM2,PIK3C2G,PIK3CA,PRKAA1,PIK3CA,PRLFAK Signaling1.720.447CDKk2,COR8A,MDM2,PIK3C2GFAK Signaling1.72NAASAPI,CAPNS1,DOCK1,PIK3C2Gole of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CA,TNS1IL-15 Signaling Pathway1.610.905ACLY,ATG13,ATP5F1B,ATP5PF,CDH1,MT- ATP6,NDUFA10,NDUFA4,PFK FB3,PFKM,PRKAA1,SIRT4,ST K111.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.55NAACGALACAGP13K/AKT Signaling1.540.816CDKN1B,GR1,ACA,SS3,ALDH3A2P13K/AKT Signaling1.540.447PIK3C2G,PIK3CA,STAT5A,T YK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CA,SCA,SCS2,STAT SA,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CA,SCA,SCS2,STAT SA,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CA,SCA,SCS2,STAT SA,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GU		1.0.1	01117	DM2.RBL2
Aryl Hydrocarbon Receptor Signaling1.810ALDH3A2_CDK4_CDKN1B,GST P1,MDM2,NEDD8,NR0B2,RBL2Apelin Pancreas Signaling Pathway1.80PIK3C2G,PIK3CA,PRKAA1,PR KACAGM-CSF Signaling1.74-0.447CAMK2D,CAMK2G,PIK3C2G,PIK3CCG,PIK3CA,RKAA1,PR KACAAcetate Conversion to Acetyl-CoA1.73NAACSL1,ACSS3p53 Signaling1.720.447CDK4,COQ8,MDM2,PIK3C2G 2G,PIK3CA,TNS1FAK Signaling1.72NAASAPI,CAPNS1,DOCK1,PIK3C 2G,PIK3CA,TNS1IL-15 Signaling1.71NAPIK3C2G,PIK3CA,STAT5A,SY K,TYK2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CASirtuin Signaling Pathway1.610.905ACLY,ATG13,ATP5F1B,ATP5P F,CDH1,MT- ATP6,NDUFA10,NDUFA4,PFK FR3,PFKM,PRKAA1,SIRT4,ST K11Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.55NAACGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.55NAACGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.540.447PIK3C2G,PIK3CA,SOCS2,STAT 5A,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CA,SOCS2,STAT 5A,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CA,SOCS2,STAT 5A,TYK2Apelin Adipocyte Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIKACA, C2G,PIK3CA,SOCS2,STAT 5A,TYK2	α-tocopherol Degradation	1.82	NA	CYP4A11,CYP4F12
Apelin Pancreas Signaling Pathway1.80PI,MDM2,NEDDS,NR0B2,RBL2Apelin Pancreas Signaling Pathway1.80PIK3C2G,PIK3CA,PRKAA1,PR KACAGM-CSF Signaling1.74-0.447CAMK2D,CAMK2D,CAMK2C,PIK3C2G,PI IK3CA,RACK1Acetate Conversion to Acetyl-CoA1.73NAACSL1,ACSS3p53 Signaling1.720.447CDK4,COQ8A,MDM2,PIK3C2G .PIK3CA,PMLFAK Signaling1.720.447CDK4,COQ8A,MDM2,PIK3C2G .PIK3CA,PMLFAK Signaling1.71NAASAP1,CAPNS1,DOCK1,PIK3C .GG,PIK3CA,TNS1IL-15 Signaling1.71NAPIK3C2G,PIK3CA,STAT5A,SY .K,TYK2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CASirtuin Signaling Pathway1.610.905ACLY,ATG13,ATP5F1B,ATP5P F,CDH1,MT- ATP6,NDUFA10,NDUFA4,PFK FB3,PFKM,PRKAA1,SIRT4,ST .K11Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.55NAACACA,ACACBPD51, PD-L1 cancer immunotherapy pathway1.55NAACSL1,ACSS3,ALDH3A2PJK/KAKT Signaling1.540.816CDKN1B,GAB1,MDM2,PIK3C .A,STYK1Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 .C2G,PIK3CA,SOCS2,STAT .C2G,PIK3CA,CN1B,MDM2,PIK3C2 .A,STYK2Apelin Adipocyte Signaling Pathway1.521.342ADCY3,GPX1,GSTP1,PRKAA1, .PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDK47,CNN1B,MDM2,PIK3C2 .C2G,PIK3CA	Aryl Hydrocarbon Receptor Signaling	1.81	0	ALDH3A2,CDK4,CDKN1B,GST
Apelin Pancreas Signaling Pathway1.80PIK3C2G,PIK3CA,PRKAA1,PR KACAGM-CSF Signaling1.74-0.447CAMK2D,CAMK2G,PIK3C2G,PIK3CA,PRKAA1,PR KACAAcetate Conversion to Acetyl-CoA1.73NAACSL1,ACSS3p53 Signaling1.720.447CDK4,COQ8A,MDM2,PIK3C2G ,PIK3CA,PMLFAK Signaling1.72NAASAP1,CAPNS1,DOCK1,PIK3C 2G,PIK3CA,TNS1IL-15 Signaling1.71NAPIK3C2,G,PIK3CA,STAT5A,SY K,TYK2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CASirtuin Signaling Pathway1.610.905ACLY,ATG13,ATP5F1B,ATP5P F,CDH1,MT- ATP6,NDUFA10,NDUFA4,PFK FB3,PFKM,PRKAA1,SIRT4,ST K11Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.55NAACBACA,ACACBPD53 Cipaling1.540.816CDKN1B,HLA- A,PIK3C2G,PIK3CA,STAT5A,T YK2JAK/Stat Signaling1.540.447PIK3C2G,PIK3CA,SCS2,STAT5A,T YK2JAK/Stat Signaling1.52-1CDKN1B,GAB1,MDM2,PIK3C2 C2,PIK3CA,SOCS2,STAT 5A,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2,PIK3CA, PIKACA, PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 CDF,HSMDM2,PIKSC2 C2,PIK3CA,TYK2				P1,MDM2,NEDD8,NR0B2,RBL2
GM-CSF Signaling1.74-0.447CAM&ZD,CAM&ZG,PIK3C2G,PAcetate Conversion to Acetyl-CoA1.73NAACSL1,ACSS3p53 Signaling1.720.447CDK4,COQ8A,MDM2,PIK3C2G ,PIK3CA,PMLFAK Signaling1.72NAASAP1,CAPNS1,DOCK1,PIK3C 2G,PIK3CA,TNS1IL-15 Signaling1.71NAPIK3C2G,PIK3CA,STAT5A,SY K,TYK2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CA,STAT5A,SY K,TYK2Sirtuin Signaling Pathway1.610.905ACLY,ATG13,ATP5F1B,ATP5P F,CDH1,MT- ATP6,NDUFA10,NDUFA4,PFK FB3,PFKM,PKKAA1,SIRT4,ST K11Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.55NAACBAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.55NAACS1,ACS3,ALDH3A2PISK/AKT Signaling1.540.816CDKN1B,GAB1,MDM2,PIK3C2 ASYN1,TSC2,TYK2JAK/Stat Signaling1.540.447PIK3C2G,PIK3CA,STAT5A,T YK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CA,SYN1,TSC2,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CA, C2G,PIK3CA,SYN1,PISC2,GYL3,GAApelin Adipocyte Signaling Pathway1.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CA,TYK2Apelin Adipocyte Signaling Pathway1.52-1CDKN1B,GNB1,GUCY2C,PIK3C2 G,PIK3CA,TYK2Antiproliferative Role of Somatostatin Receptor 21.54-0.447CDK4,	Apelin Pancreas Signaling Pathway	1.8	0	PIK3C2G,PIK3CA,PRKAA1,PR
Chine Conversion to Acetyl-CoA1.741.741.741.74Acetate Conversion to Acetyl-CoA1.73NAACSL1,ACSS3p53 Signaling1.720.447CDK4,COQ8A,MDM2,PIK3C2G PIK3CA,PMLFAK Signaling1.72NAASAP1,CAPNS1,DOCK1,PIK3C2 2G,PIK3CA,TNS1IL-15 Signaling1.71NAPIK32CG,PIK3CA,STAT5A,SY K,TYK2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CASirtuin Signaling Pathway1.610.905ACLY,ATG13,ATP5F1B,ATP5P F,CDH1,MT- ATP6,NDUFA10,NDUFA4,PFK FB3,PFKM,PRKAA1,SIRT4,ST K11Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.55NAACGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.55NAAGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.540.816CDKN1B,GAB1,MDM2,PIK3C2 A,SYN11,TSC2,TYK2JAK/Stat Signaling1.540.447PIK3C2G,PIK3CA,SOCS2,STAT SA,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CA,SOCS2,STAT SA,TYK2Apelin Adipocyte Signaling Pathway1.521.342ADCY3,GPX1,GSTP1,PRKAA1, PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDKALGSTP,PIKAA1, PRKACA, TYK2	GM-CSE Signaling	1 74	-0.447	KACA CAMK2D CAMK2G PIK3C2G P
Acetate Conversion to Acetyl-CoA1.73NAACSL1ACSS3p53 Signaling1.720.447CDK4.COQ8A,MDM2,PIK3C2G .PIK3CA,PMLFAK Signaling1.72NAASAPI,CAPNS1,DOCK1,PIK3C .2G,PIK3CA,TNS1IL-15 Signaling1.71NAPIK3C2G,PIK3CA,STAT5A,SY K,TYK2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CASirtuin Signaling Pathway1.610.905ACLY,ATG13,ATP5F1B,ATP5P 	GWI-CSI Signaling	1./4	-0.447	IK3CA.RACK1
p53 Signaling1.720.447CDK4,COQ8A,MDM2,PIK3C2G ,PIK3CA,PMLFAK Signaling1.72NAASAP1,CAPNS1,DOCK1,PIK3C 2G,PIK3CA,TNS1IL-15 Signaling1.71NAPIK3C2G,PIK3CA,STAT5A,SY K,TYK2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CASirtuin Signaling Pathway1.610.905ACLY,ATG13,ATP5F1B,ATP5P F,CDH1,MT- ATP6,NDUFA10,NDUFA4,PFK FB3,PFKM,PRKAA1,SIRT4,ST K11Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.550CDKN1B,HLA- A,PIK3C2G,PIK3CA,STAT5A,T YK2CDP-diacylglycerol Biosynthesis I1.55NAAGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.540.816CDKN1B,GAB1,MDM2,PIK3C A,STYJ1,TSC2,TYK2JAK/Stat Signaling1.540.447PIK3C2G,PIK3CA,SCS2,STAT SA,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 CZG,PIK3CA,Apelin Adipocyte Signaling Pathway1.521.342ADCY3,GPX1,GSTP1,PRKAA1, PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 G,PIK3CA,TKZ2	Acetate Conversion to Acetyl-CoA	1.73	NA	ACSL1,ACSS3
FAK SignalingI.72NAASAPI,CAPNSI,DOCK1,PIK3C 2G,PIK3CA,TNSIIL-15 Signaling1.71NAPIK3C2G,PIK3CA,STAT5A,SY K,TYK2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CASirtuin Signaling Pathway1.610.905ACLY,ATG13,ATP5F1B,ATP5P F,CDH1,MT- ATP6,NDUFA10,NDUFA4,PFK FB3,PFKM,PRKAA1,SIRT4,ST K11Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.550CDKN1B,HLA- A,PIK3C2G,PIK3CA,STAT5A,T YK2CDP-diacylglycerol Biosynthesis I1.55NAAGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.540.816CDKN1B,GB1,MDM2,PIK3C A,SYNJ1,TSC2,TYK2JAK/Stat Signaling1.540.447PIK3C2G,PIK3CA,SOCS2,STAT SA,TYK2Antiproliferative Role of Somatostatin Receptor 21.521.342ADCY3,GPX1,GSTP1,PRKAA1, PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 G,PIK3CA,TYK2	p53 Signaling	1.72	0.447	CDK4,COQ8A,MDM2,PIK3C2G
FAK Signaling1.72NAASAPI, CAPNSI, DOCK1, PIK3C 2G, PIK3CA, TNS1IL-15 Signaling1.71NAPIK3C2G, PIK3CA, STAT5A, SY K, TYK2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2, PIK3C2G, PIK3CASirtuin Signaling Pathway1.610.905ACLY, ATG13, ATP5F1B, ATP5P F, CDH1, MT- ATP6, NDUFA10, NDUFA4, PFK FB3, PFKM, PRKAA1, SIRT4, ST K11Biotin-carboxyl Carrier Protein Assembly1.58NAACACA, ACACBPD-1, PD-L1 cancer immunotherapy pathway1.550CDKN1B, HLA- A, PIK3C2G, PIK3CA, STAT5A, T YK2CDP-diacylglycerol Biosynthesis I1.55NAAGPAT3, CDS2, PNLA3Oxidative Ethanol Degradation III1.540.816CDKN1B, GAB1, MDM2, PIK3C A, SYN1I, TSC2, TYK2JAK/Stat Signaling1.540.447PIK3C2G, PIK3CA, SOCS2, STAT SA, TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B, GNB1, GUCY2C, PIK3CA CA, PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4, CDKN1B, MDM2, PIK3C2 G, PIK3CAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4, CDKN1B, MDM2, PIK3C2 G, PIK3CA				,PIK3CA,PML
IL-15 Signaling1.71NAPIK3C2G,PIK3CA,ISS1IL-15 Signaling1.71NAPIK3C2G,PIK3CA,STAT5A,SY K,TYK2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CASirtuin Signaling Pathway1.610.905ACLY,ATG13,ATP5F1B,ATP5P F,CDH1,MT- ATP6,NDUFA10,NDUFA4,PFK FB3,PFKM,PRKAA1,SIRT4,ST K11Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.550CDKN1B,HLA- A,PIK3C2G,PIK3CA,STAT5A,T YK2CDP-diacylglycerol Biosynthesis I1.55NAACGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.55NAACSL1,ACSS3,ALDH3A2PI3K/AKT Signaling1.540.816CDKN1B,GAB1,MDM2,PIK3C A,SYNJ1,TSC2,TYK2JAK/Stat Signaling1.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CAAntiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 G,PIK3CA,TYK2	FAK Signaling	1.72	NA	ASAP1,CAPNS1,DOCK1,PIK3C
IL-15 Signaling1./1NAPIRSC2G,PIRSCA,STATSA,SY K,TYK2Role of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CASirtuin Signaling Pathway1.610.905ACLY,ATG13,ATP5F1B,ATP5P F,CDH1,MT- ATP6,NDUFA10,NDUFA4,PFK FB3,PFKM,PRKAA1,SIRT4,ST K11Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.550CDKN1B,HLA- A,PIK3C2G,PIK3CA,STAT5A,T YK2CDP-diacylglycerol Biosynthesis I1.55NAAGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.55NAACSL1,ACSS3,ALDH3A2P13K/AKT Signaling1.540.816CDKN1B,GAB1,MDM2,PIK3C A,SYNJ1,TSC2,TYK2JAK/Stat Signaling1.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CA,SOCS2,STAT SA,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CA, <td>H 15 Singeline</td> <td>1.71</td> <td>NIA</td> <td>2G,PIK3CA,INSI DW2C2C DW2CA STAT5A SV</td>	H 15 Singeline	1.71	NIA	2G,PIK3CA,INSI DW2C2C DW2CA STAT5A SV
Role of p14/p19ARF in Tumor Suppression1.62NAMDM2,PIK3C2G,PIK3CASirtuin Signaling Pathway1.610.905ACLY,ATG13,ATP5F1B,ATP5P F,CDH1,MT- ATP6,NDUFA10,NDUFA4,PFK FB3,PFKM,PRKAA1,SIRT4,ST K11Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.550CDKN1B,HLA- A,PIK3C2G,PIK3CA,STAT5A,T YK2CDP-diacylglycerol Biosynthesis 11.55NAAGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.55NAACSL1,ACSS3,ALDH3A2PI3K/AKT Signaling1.540.816CDKN1B,GAB1,MDM2,PIK3C 	IL-15 Signaling	1./1	NA	K TVK2
Sirtuin Signaling Pathway1.610.905ACLY,ATG13,ATP5F1B,ATP5P F,CDH1,MT- ATP6,NDUFA10,NDUFA4,PFK FB3,PFKM,PRKAA1,SIRT4,ST K11Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.550CDKN1B,HLA- A,PIK3C2G,PIK3CA,STAT5A,T YK2CDP-diacy/glycerol Biosynthesis I1.55NAAGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.55NAACSL1,ACSS3,ALDH3A2PI3K/AKT Signaling1.540.816CDKN1B,GAB1,MDM2,PIK3C A,SYN1,TSC2,TYK2JAK/Stat Signaling1.52-1CDKNIB,GNB1,GUCY2C,PIK3 C2G,PIK3CAArtiproliferative Role of Somatostatin Receptor 21.52-1CDKNIB,GNB1,GUCY2C,PIK3 C2G,PIK3CAApelin Adipocyte Signaling Pathway1.521.342ADCY3,GPX1,GSTP1,PRKAA1, PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 G,PIK3CA,TYK2	Role of p14/p19ARF in Tumor Suppression	1.62	NA	MDM2.PIK3C2G.PIK3CA
Sirtuin Signaling Pathway1.610.905ACLY,ATG13,ATP5F1B,ATP5P F,CDH1,MT- ATP6,NDUFA10,NDUFA4,PFK FB3,PFKM,PRKAA1,SIRT4,ST K11Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.550CDKN1B,HLA- A,PIK3C2G,PIK3CA,STAT5A,T YK2CDP-diacylglycerol Biosynthesis I1.55NAAGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.55NAACSL1,ACSS3,ALDH3A2PI3K/AKT Signaling1.540.816CDKN1B,GAB1,MDM2,PIK3C A,SYNJ1,TSC2,TYK2JAK/Stat Signaling1.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CA, A,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CA, C2G,PIK3CA, C2G,PIK3CA, C2G,PIK3CA, C2G,PIK3CA,TYK2Pancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 G,PIK3CA,TYK2				
F,CDH1,MT- ATP6,NDUFA10,NDUFA4,PFK FB3,PFKM,PRKAA1,SIRT4,ST K11Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.550CDKN1B,HLA- A,PIK3C2G,PIK3CA,STAT5A,T YK2CDP-diacylglycerol Biosynthesis I1.55NAAGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.55NAACSL1,ACSS3,ALDH3A2PI3K/AKT Signaling1.540.816CDKN1B,GAB1,MDM2,PIK3C A,SYN11,TSC2,TYK2JAK/Stat Signaling1.540.447PIK3C2G,PIK3CA,SOCS2,STAT SA,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 PIK3CA,TYK2	Sirtuin Signaling Pathway	1.61	0.905	ACLY,ATG13,ATP5F1B,ATP5P
Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.550CDKN1B,HLA- A,PIK3C2G,PIK3CA,STAT5A,T YK2CDP-diacylglycerol Biosynthesis I1.55NAAGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.55NAACSL1,ACSS3,ALDH3A2PI3K/AKT Signaling1.540.816CDKN1B,GAB1,MDM2,PIK3C A,SYNJ1,TSC2,TYK2JAK/Stat Signaling1.540.447PIK3C2G,PIK3CA,SOCS2,STAT 5A,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CAApelin Adipocyte Signaling Pathway1.521.342ADCY3,GPX1,GSTP1,PRKAA1, PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 G,PIK3CA,TYK2				F,CDH1,MT-
Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.550CDKN1B,HLA- A,PIK3C2G,PIK3CA,STAT5A,T YK2CDP-diacylglycerol Biosynthesis I1.55NAAGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.55NAACSL1,ACSS3,ALDH3A2PI3K/AKT Signaling1.540.816CDKN1B,GAB1,MDM2,PIK3C A,SYNJ1,TSC2,TYK2JAK/Stat Signaling1.540.447PIK3C2G,PIK3CA,SOCS2,STAT 5A,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CAApelin Adipocyte Signaling Pathway1.521.342ADCY3,GPX1,GSTP1,PRKAA1, PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 G,PIK3CA,TYK2				ATP6,NDUFA10,NDUFA4,PFK
Biotin-carboxyl Carrier Protein Assembly1.58NAACACA,ACACBPD-1, PD-L1 cancer immunotherapy pathway1.550CDKN1B,HLA- A,PIK3C2G,PIK3CA,STAT5A,T YK2CDP-diacylglycerol Biosynthesis I1.55NAAGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.55NAACSL1,ACSS3,ALDH3A2PI3K/AKT Signaling1.540.816CDKN1B,GAB1,MDM2,PIK3C A,SYNJ1,TSC2,TYK2JAK/Stat Signaling1.540.447PIK3C2G,PIK3CA,SOCS2,STAT 5A,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 G,PIK3CA,TYK2				FB3,PFKM,PRKAA1,SIR14,S1
Down outbody Currier FischeryFiscFiscFiscFiscFiscPD-1, PD-L1 cancer immunotherapy pathway1.550CDKN1B,HLA- A,PIK3C2G,PIK3CA,STAT5A,T YK2CDP-diacylglycerol Biosynthesis I1.55NAAGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.55NAACSL1,ACSS3,ALDH3A2PI3K/AKT Signaling1.540.816CDKN1B,GAB1,MDM2,PIK3C A,SYNJ1,TSC2,TYK2JAK/Stat Signaling1.540.447PIK3C2G,PIK3CA,SOCS2,STAT SA,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CAApelin Adipocyte Signaling Pathway1.521.342ADCY3,GPX1,GSTP1,PRKAA1, PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 G,PIK3CA,TYK2	Biotin-carboxyl Carrier Protein Assembly	1.58	NA	ACACA ACACB
CDP-diacylglycerol Biosynthesis I1.55NAA,PIK3C2G,PIK3CA,STAT5A,T YK2CDP-diacylglycerol Biosynthesis I1.55NAAGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.55NAACSL1,ACSS3,ALDH3A2PI3K/AKT Signaling1.540.816CDKN1B,GAB1,MDM2,PIK3C A,SYNJ1,TSC2,TYK2JAK/Stat Signaling1.540.447PIK3C2G,PIK3CA,SOCS2,STAT 5A,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CAApelin Adipocyte Signaling Pathway1.521.342ADCY3,GPX1,GSTP1,PRKAA1, PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 G,PIK3CA,TYK2	PD-1. PD-L1 cancer immunotherapy pathway	1.55	0	CDKN1B.HLA-
CDP-diacylglycerol Biosynthesis I1.55NAAGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.55NAACSL1,ACSS3,ALDH3A2PI3K/AKT Signaling1.540.816CDKN1B,GAB1,MDM2,PIK3C A,SYNJ1,TSC2,TYK2JAK/Stat Signaling1.540.447PIK3C2G,PIK3CA,SOCS2,STAT 5A,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CAApelin Adipocyte Signaling Pathway1.521.342ADCY3,GPX1,GSTP1,PRKAA1, PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 G,PIK3CA,TYK2			-	A,PIK3C2G,PIK3CA,STAT5A,T
CDP-diacylglycerol Biosynthesis I1.55NAAGPAT3,CDS2,PNPLA3Oxidative Ethanol Degradation III1.55NAACSL1,ACSS3,ALDH3A2PI3K/AKT Signaling1.540.816CDKN1B,GAB1,MDM2,PIK3C A,SYNJ1,TSC2,TYK2JAK/Stat Signaling1.540.447PIK3C2G,PIK3CA,SOCS2,STAT 5A,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CAApelin Adipocyte Signaling Pathway1.521.342ADCY3,GPX1,GSTP1,PRKAA1, PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 G,PIK3CA,TYK2				YK2
Oxidative Ethanol Degradation III1.55NAACSL1,ACSS3,ALDH3A2PI3K/AKT Signaling1.540.816CDKN1B,GAB1,MDM2,PIK3C A,SYNJ1,TSC2,TYK2JAK/Stat Signaling1.540.447PIK3C2G,PIK3CA,SOCS2,STAT 5A,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CAApelin Adipocyte Signaling Pathway1.521.342ADCY3,GPX1,GSTP1,PRKAA1, PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 G,PIK3CA,TYK2	CDP-diacylglycerol Biosynthesis I	1.55	NA	AGPAT3,CDS2,PNPLA3
PI3K/AKT Signaling 1.54 0.816 CDKN1B,GAB1,MDM2,PIK3C A,SYNJ1,TSC2,TYK2 JAK/Stat Signaling 1.54 0.447 PIK3C2G,PIK3CA,SOCS2,STAT 5A,TYK2 Antiproliferative Role of Somatostatin Receptor 2 1.52 -1 CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CA Apelin Adipocyte Signaling Pathway 1.52 1.342 ADCY3,GPX1,GSTP1,PRKAA1, PRKACA Pancreatic Adenocarcinoma Signaling 1.48 -0.447 CDK4,CDKN1B,MDM2,PIK3C2 G.PIK3CA.TYK2	Oxidative Ethanol Degradation III	1.55	NA	ACSL1,ACSS3,ALDH3A2
JAK/Stat Signaling1.540.447PIK3C2G,PIK3CA,SOCS2,STAT 5A,TYK2Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CAApelin Adipocyte Signaling Pathway1.521.342ADCY3,GPX1,GSTP1,PRKAA1, PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 G.PIK3CA.TYK2	PI3K/AK1 Signaling	1.54	0.816	CDKN1B,GAB1,MDM2,PIK3C
Antiproliferative Role of Somatostatin Receptor 21.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CAApelin Adipocyte Signaling Pathway1.521.342ADCY3,GPX1,GSTP1,PRKAA1, PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 	JAK/Stat Signaling	1.54	0.447	PIK3C2G.PIK3CA.SOCS2.STAT
Antiproliferative Role of Somatostatin Receptor1.52-1CDKN1B,GNB1,GUCY2C,PIK3 C2G,PIK3CA2Apelin Adipocyte Signaling Pathway1.521.342ADCY3,GPX1,GSTP1,PRKAA1, PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 G.PIK3CA.TYK2				5A,TYK2
2C2G,PIK3CAApelin Adipocyte Signaling Pathway1.521.342ADCY3,GPX1,GSTP1,PRKAA1, PRKACAPancreatic Adenocarcinoma Signaling1.48-0.447CDK4,CDKN1B,MDM2,PIK3C2 G.PIK3CA.TYK2	Antiproliferative Role of Somatostatin Receptor	1.52	-1	CDKN1B,GNB1,GUCY2C,PIK3
Apelin Adipocyte Signaling Pathway 1.52 1.342 ADCY3,GPX1,GSTP1,PRKAA1, PRKACA Pancreatic Adenocarcinoma Signaling 1.48 -0.447 CDK4,CDKN1B,MDM2,PIK3C2 G.PIK3CA.TYK2	2			C2G,PIK3CA
Pancreatic Adenocarcinoma Signaling 1.48 -0.447 CDK4,CDKN1B,MDM2,PIK3C2 G.PIK3CA.TYK2	Apelin Adipocyte Signaling Pathway	1.52	1.342	ADCY3,GPX1,GSTP1,PRKAA1,
rancicatic Adenocatemonia Signating 1.46 -0.447 CDK4,CDKN1B,MDM2,PIK3C2 G.PIK3CA.TYK2	Deparatia Adapagarainama Signaling	1.49	0.447	PKKACA
	r ancreatic Adenocarcinolità Signannig	1.70	-0.777/	G,PIK3CA,TYK2

eNOS Signaling	1.48	-0.816	ADCY3,AQP8,CHRNA4,LPAR1 ,PIK3C2G,PIK3CA,PRKAA1,PR KACA
Nitric Oxide Signaling in the Cardiovascular System	1.47	1.633	GUCY2C,PDE5A,PIK3C2G,PIK 3CA,PRKAA1,PRKACA
Ethanol Degradation IV	1.44	NA	ACSL1,ACSS3,ALDH3A2
HIPPO signaling	1.42	1	AMOT,ITCH,PARD3,PPP1R10, WWTR1
Endocannabinoid Developing Neuron Pathway	1.4	-0.447	ADCY3,CDKN1B,GNB1,PIK3C 2G,PIK3CA,PRKACA
IL-4 Signaling	1.4	NA	HLA- A,PIK3C2G,PIK3CA,SYNJ1,TY K2
Cardiac β-adrenergic Signaling	1.39	-1	ADCY3,AKAP12,AKAP13,GNB 1,PDE5A,PPP1R10,PRKACA
Acute Phase Response Signaling	1.37	NA	C4A/C4B,ITIH3,ITIH4,PIK3CA, SAA1,SERPINA1,SOCS2,TF
Oxidative Phosphorylation	1.36	1.633	ATP5F1B,ATP5PF,MT- ATP6,NDUFA10,NDUFA4,SUR F1
Endocannabinoid Cancer Inhibition Pathway	1.36	1.134	ADCY3,CDH1,CDKN1B,PIK3C 2G,PIK3CA,PRKAA1,PRKACA
mTOR Signaling	1.35	-1.89	ATG13,EIF4G1,EIF4G3,PIK3C2 G,PIK3CA,PRKAA1,RPS6KA1, STK11,TSC2
Phosphatidylglycerol Biosynthesis II (Non- plastidic)	1.35	NA	AGPAT3,CDS2,PNPLA3
Acetone Degradation I (to Methylglyoxal)	1.35	NA	CYP2A6 (includes others),CYP2C8,CYP4A11
IL-2 Signaling	1.33	0	PIK3C2G,PIK3CA,STAT5A,SY K
Acute Myeloid Leukemia Signaling	1.32	-0.447	CEBPA,PIK3C2G,PIK3CA,PML, STAT5A
Apelin Endothelial Signaling Pathway	1.3	0.816	ADCY3,HDAC5,MEF2C,PIK3C 2G,PIK3CA,PRKAA1
Role of NFAT in Cardiac Hypertrophy	1.3	-0.707	ADCY3,CAMK2D,CAMK2G,G NB1,HDAC5,MEF2C,PIK3C2G, PIK3CA,PRKACA

Table 18. Significant Pathways for differentially expressed transcripts in ¹⁶O vs. non-

irradiated control at 9 months.

Ingenuity Canonical Pathways	-log10(p-value)	z-score	Molecules
Acute Phase Response Signaling	16.5	2.2	A2M,AKT3,APOA2,CP,FGA
			,FN1,HMOX1,HP,HPX,IKB
			KG,IL18,IL1R1,IL1RN,IL33,
			ITIH3,ITIH4,JAK2,JUN,LBP,
			MAP2K6,MAPK9,NFKB1,O
			SMR,PIK3CD,SAA1,Saa3,SE
			RPINA3,SERPINE1,SOCS1,
			SOCS3,TCF3,TF
IL-6 Signaling	8.05	1.5	A2M,AKT3,CD14,IKBKG,IL
			18,IL1R1,IL1RN,IL33,JAK2,
			JUN,LBP,MAP2K6,MAPK9,
			NFKB1,PIK3C3,PIK3CD,SO
			CS1,SOCS3
LXR/RXR Activation	7.1	-0.5	APOA2,CD14,FGA,HPX,IL1
			8,IL1R1,IL1RN,IL33,ITIH4,L
			BP,NCOR1,NFKB1,NR1H2,
			NR1H4,RXRA,SAA1,TF

IL-10 Signaling	7.09	NA	CD14,FCGR2A,HMOX1,IKB KG,IL18,IL1R1,IL1RN,IL33, JUN,LBP,MAP2K6,NFKB1,S OCS3
FXR/RXR Activation	5.95	NA	ABCB11,AKT3,APOA2,FET UB,FGA,HPX,IL18,IL1RN,I L33,ITIH4,LIPC,MAPK9,NR 1H4,RXRA,SAA1,TF
Toll-like Receptor Signaling	5.94	0.632	CD14,IKBKG,IL18,IL1RN,IL 33,IRAK2,JUN,LBP,MAP2K 6,NFKB1,TLR2,TNFAIP3
Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis	5.09	NA	AKT3,ATF2,AXIN1,CEBPD, FN1,IKBKG,IL17RA,IL18,IL 1R1,IL1RN,IL33,IRAK2,JAK 2,JUN,MAP2K6,MAPK9,NF AT5,NFKB1,PIK3C3,PIK3C D,SOCS1,SOCS3,TCF3,TLR 2
JAK/Stat Signaling	4.96	0.302	AKT3,BCL2L1,CDKN1A,JA K2,JUN,NFKB1,PIK3C3,PIK 3CD,PTPN1,SOCS1,SOCS3
Adipogenesis pathway	4.69	NA	CEBPD,ERCC3,EZH2,FGFR 2,FGFR3,HDAC3,HDAC6,H DAC7,KDM1A,KMT2B,PPI P5K1,SAP130,SETDB1,SOX 9
Hepatic Cholestasis	4.45	NA	ABCB11,ADCY1,ADCY4,C D14,IKBKG,IL18,IL1R1,IL1 RN,IL33,IRAK2,JUN,LBP,M APK9,NFKB1,NR1H4,PPRC 1,RXRA
IL-17 Signaling	4.2	NA	AKT3,ATF2,IL17RA,JAK2,J UN,MAP2K6,MAPK9,NFKB 1,PIK3C3,PIK3CD
Iron homeostasis signaling pathway	4.12	NA	ARNT,ATP6AP1,ATP6V0A4 ,CP,FBXL5,HMOX1,HP,HP X,JAK2,SLC11A2,SLC39A1 4,TCIRG1,TF,TFR2
LPS-stimulated MAPK Signaling	4.1	1.667	ATF2,CD14,IKBKG,JUN,LB P,MAP2K6,MAPK9,NFKB1, PIK3C3,PIK3CD
Chronic Myeloid Leukemia Signaling	3.92	NA	AKT3,BCL2L1,CDKN1A,C DKN1B,HDAC3,HDAC6,HD AC7,IKBKG,NFKB1,PIK3C3 ,PIK3CD
Osteoarthritis Pathway	3.91	0.5	ACVRL1,ATF2,DDIT4,DDR 2,FGFR3,FN1,H19,HDAC3,I L1R1,MTF1,MYBBP1A,NF KB1,PRKAA1,SLC39A8,SO X9,TCF3,TLR2
NF-ĸB Signaling	3.9	0.775	AKT3,FGFR2,FGFR3,IKBK G,IL18,IL1R1,IL1RN,IL33,M AP2K6,NFKB1,PIK3C3,PIK 3CD,TBK1,TLR2,TNFAIP3
TNFR2 Signaling	3.86	1.342	IKBKG,JUN,NFKB1,TBK1,T NFAIP3,XIAP
RANK Signaling in Osteoclasts	3.8	1.897	AKT3,IKBKG,JUN,MAP2K6 ,MAP3K13,MAPK9,NFKB1, PIK3C3,PIK3CD,XIAP
Dendritic Cell Maturation	3.77	2.324	AKT3,ATF2,DDR2,FCGR2A ,HLA-
			A,IKBKG,IL18,IL1RN,IL33,J
--	-------	---------	---------------------------
			AK2,MAPK9,NFKB1,PIK3C
			3,PIK3CD,TLR2
TR/RXR Activation	3.72	NA	AKT3,COL6A3,FGA,HDAC
			3,HP,NCOR1,PIK3C3,PIK3C
			D,RXRA,SYT12
Glucocorticoid Receptor Signaling	3.69	NA	A2M,AKT3,BAG1,BCL2L1,
			CDKN1A,ERCC3,FKBP5,IK
			BKG,IL1RN,JAK2,JUN,MAP
			K9,NCOR1,NFAT5,NFKB1,
			PIK3C3,PIK3CD,PRKAA1,S
			ERPINE1,SMARCA2,SMAR
			CA4,TAF1
B Cell Receptor Signaling	3.62	1.941	AKT3.ATF2.BCL2L1.FCGR
1 8 8		-	2A.IKBKG.JUN.MAP2K6.M
			AP3K13.MAPK9.NFAT5.NF
			KB1.PIK3C3.PIK3CD.SYNJ
			1.TCF3
IL-1 Signaling	3.6	1.134	ADCY1.ADCY4.GNB1.IKB
88			KG.IL 1R1.IRAK2IUN.MAP
			2K6 MAPK9 NFKB1
Activation of IRF by Cytosolic Pattern	3.51	0.707	ATF2.DDX58.IKBKG.IUN
Recognition Recentors	5.51	0.,07	MAPK9 MAVS NFK B1 TBK
			1
iNOS Signaling	3 51	0.816	
in too bighaning	5.51	0.010	UN LBP NFK B1
II -17A Signaling in Fibroblasts	3 47	NA	CEBPD IK BKG IL 17R A ILI
	5.17	1 1 1 1	N L CN2 NFK B1
CD40 Signaling	3.42	0.707	IKBKG IUN MAP2K6 MAP
		01,07	K9 NFK B1 PIK 3C3 PIK 3CD
			TNFAIP3
IL-17A Signaling in Airway Cells	3.37	1.414	AKT3.IKBKG.IL17RA.JAK2
	5.0 /		MAPK9.NFKB1.PIK3C3.PI
			K3CD
RAR Activation	3.35	NA	ADCY1.ADCY4.AKT3.CSF2
	0.00	1.1.1	RB.ERCC3.JAK2.JUN.MAP
			K9 NCOR1 NFKB1 PIK3CD
			RXRA.SMARCA2.SMARCA
			4.ZBTB16
IL-15 Production	3.31	NA	AATK.CLK4.DDR2.EPHB4.
	0.01	1.1.1	FGFR2 FGFR3 IAK2 MAP2
			K6.NFKB1.ROR1.TEC
HOTAIR Regulatory Pathway	3.3	-0.832	AKT3.CDKN1A.DNMT3B.E
	0.0	0.002	ZH2 HSF1 KDM1A KMT2A
			NFKB1.PIK3C3.PIK3CD.SE
			TDB1.TCF3.XIAP
Role of IAK family kinases in II -6-type	33	NA	IAK2 MAPK9 OSMR SOCS
Cytokine Signaling	5.5	1.1.1	1.SOCS3
Role of Osteoblasts, Osteoclasts and	3.29	NA	AKT3.AXIN1.IKBKG.IL18.I
Chondrocytes in Rheumatoid Arthritis	•		L1R1.IL1RN.IL33.IUN.MAP
			2K6 MAPK9 NFAT5 NFKB1
			.PIK3C3.PIK3CD.TCF3.XIA
			P
SAPK/JNK Signaling	3.28	1.667	ATF2, DUSP8, GNB1, JUN, M
			AP3K13,MAPK8IP3,MAPK9
			,MINK1,PIK3C3,PIK3CD
Hereditary Breast Cancer Signaling	3.27	NA	AKT3,CDKN1A,GADD45G.
			HDAC3,HDAC6,HDAC7,MS
			H2,PIK3C3,PIK3CD,RAD50,
			SMARCA2, SMARCA4

CD27 Signaling in Lymphocytes	3.24	1.633	BCL2L1,IKBKG,JUN,MAP2 K6,MAP3K13,MAPK9,NFK
LPS/IL-1 Mediated Inhibition of RXR Function	3.22	1.155	ABCB11,ABCC4,CD14,IL18, IL1R1,IL1RN,IL33,JUN,LBP ,LIPC,MAPK9,NR1H2,NR1H 4,PPARGC1B,RXRA,SLC27 A1
Cardiac Hypertrophy Signaling (Enhanced)	3.2	1.961	ADCY1,ADCY4,AKT3,ATF 2,CSF2RB,DIAPH1,FGFR2,F GFR3,GNB1,HDAC3,HDAC 6,HDAC7,IKBKG,IL17RA,IL 18,IL1R1,IL33,JAK2,JUN,M AP2K6,MAP3K13,MAPK9,N FAT5,NFKB1,PIK3C3,PIK3 CD,RCAN1
PTEN Signaling	3.1	0.302	AKT3,BCL2L1,CDKN1A,C DKN1B,FGFR2,FGFR3,IKB KG,MAST2,NFKB1,PIK3CD ,SYNJ1
Role of IL-17A in Arthritis	3.1	NA	ATF2,IL17RA,MAP2K6,MA PK9,NFKB1,PIK3C3,PIK3C D
Small Cell Lung Cancer Signaling	3.04	1.89	AKT3,BCL2L1,CDKN1B,IK BKG,NFKB1,PIK3C3,PIK3C D,RXRA
Pancreatic Adenocarcinoma Signaling	3.03	2.333	AKT3,BCL2L1,CDKN1A,C DKN1B,HMOX1,JAK2,MAP K9,NFKB1,PIK3C3,PIK3CD
PPARα/RXRα Activation	3.01	0.277	ADCY1,ADCY4,APOA2,CK AP5,IKBKG,IL1R1,JAK2,JU N,MAP2K6,NCOR1,NFKB1, PRKAA1,RXRA,SLC27A1
IL-23 Signaling Pathway	2.92	0.816	AKT3,JAK2,NFKB1,PIK3C3 ,PIK3CD,SOCS3
IL-12 Signaling and Production in Macrophages	2.89	NA	AKT3,APOA2,IKBKG,IL18,J UN,MAPK9,NFKB1,PIK3C3, PIK3CD,RXRA,TLR2
Endocannabinoid Developing Neuron Pathway	2.88	0.632	ADCY1,ADCY4,AKT3,ATF 2,CDKN1B,GNB1,MAP2K6, MAPK9,PIK3C3,PIK3CD
Erythropoietin Signaling	2.85	NA	AKT3,JAK2,JUN,NFKB1,PI K3C3,PIK3CD,SOCS1,SOCS 3
Adrenomedullin signaling pathway	2.8	2.138	ADCY1,ADCY4,AKT3,ARN T,IL18,IL1RN,IL33,MAP2K6 ,MAPK9,NFKB1,NPR2,PIK3 C3,PIK3CD,RXRA
Molecular Mechanisms of Cancer	2.79	NA	ADCY1,ADCY4,AKT3,ARH GEF1,ARHGEF2,AXIN1,BC L2L1,CDK10,CDK9,CDKN1 A,CDKN1B,CTNND1,FNBP 1,JAK2,JUN,MAP2K6,MAP K9,NFKB1,PIK3C3,PIK3CD, TCF3,XIAP
4-1BB Signaling in T Lymphocytes	2.79	2.236	ATF2,IKBKG,JUN,MAPK9, NFKB1
HMGB1 Signaling	2.7	0.632	AKT3,FNBP1,IL18,IL1R1,IL 33,JUN,MAP2K6,MAPK9,N FKB1,PIK3C3,PIK3CD,SER PINE1

Th1 Pathway	2.69	0	HLA-
			A,IL18,JAK2,MAP2K6,NFIL
			3,NFKB1,PIK3C3,PIK3CD,S
	2.60	1.007	OCS1,SOCS3
Apelin Endothelial Signaling Pathway	2.69	1.89/	ADCY1,ADCY4,AK13,ARN
			1,JUN,MAPK9,NFKB1,PIK3
Coloractal Cancer Metastasis Signaling	2.68	2 3 2 4	ADCV1 ADCV4 AKT3 AVI
Colorectar Cancer Micrastasis Signamig	2.08	2.324	N1 BCI 2I 1 FNBP1 GNB1 I
			AK2.JUN.MAPK9.MSH2.NF
			KB1,PIK3C3,PIK3CD,TCF3,
			TLR2
Role of JAK2 in Hormone-like Cytokine	2.67	NA	JAK2,PTPN1,SH2B1,SOCS1,
Signaling			SOCS3
PPAR Signaling	2.66	-1	IKBKG,IL18,IL1R1,IL1RN,I
			L33,JUN,NCOR1,NFKB1,RX
ICE 1 Signaling	26	0.279	KA
IGF-1 Signaling	2.0	0.378	K3C3 PIK3CD SOCS1 SOCS
			3 YWHAZ
IL-4 Signaling	2.58	NA	AKT3.HLA-
			A,JAK2,NFAT5,PIK3C3,PIK
			3CD,SOCS1,SYNJ1
Aryl Hydrocarbon Receptor Signaling	2.57	0.302	ARNT,CDKN1A,CDKN1B,J
			UN,NFIA,NFIC,NFIX,NFKB
	2.57		I,RXRA,SMARCA4,TGM2
Sertoli Cell-Sertoli Cell Junction Signaling	2.57	NA	A2M,AK13,A1F2,AXIN1,C
			2 IIIN MAP3K13 MAPK9 M
			YO7A SPTAN1
Neuroinflammation Signaling Pathway	2.56	2.357	AKT3.ATF2.HLA-
			A,HMOX1,IKBKG,IL18,IL1
			R1,IRAK2,JAK2,JUN,MAPK
			9,NFAT5,NFKB1,PIK3C3,PI
	0.55	1.500	K3CD,TBK1,TLR2,XIAP
Endocannabinoid Cancer Inhibition	2.55	-1.508	ADCY1,ADCY4,AK13,A1F
Painway			2,CDKNIA,CDKNIB,MAP2 K6 PIK3C3 PIK3CD PRKAA
			1.TCF3
Th1 and Th2 Activation Pathway	2.53	NA	HLA-
			A,IL18,IL33,JAK2,JUN,MAP
			2K6,NFIL3,NFKB1,PIK3C3,
			PIK3CD,SOCS1,SOCS3
Huntington's Disease Signaling	2.53	1.414	AKT3,ATF2,BCL2L1,CAPN
			S1,DNM2,GNB1,HDAC3,HD
			AC0,HDAC/,JUN,MAPK9,N
			M2
Type I Diabetes Mellitus Signaling	2.44	0	HLA-
51			A,IKBKG,IL1R1,JAK2,MAP
			2K6,MAPK9,NFKB1,SOCS1,
			SOCS3
Lymphotoxin β Receptor Signaling	2.42	2.236	AKT3,BCL2L1,IKBKG,NFK
	2.42		B1,PIK3C3,PIK3CD
Choline Biosynthesis III	2.42	0	CHPTI,HMOXI,PCYTIA,P
April Mediated Signaling	24	1 3/12	IINAI IKBKG IIIN MADVO NEATS
		1.342	.NFKB1
STAT3 Pathway	2.37	-1.134	CDKN1A,CSF2RB.FGFR2.F
			GFR3,IL17RA,IL1R1,JAK2,
			MAPK9,SOCS1,SOCS3

IL-17A Signaling in Gastric Cells	2.35	NA	IL17RA,JUN,MAPK9,NFKB 1
P2Y Purigenic Receptor Signaling Pathway	2.35	3.162	ADCY1,ADCY4,AKT3,ATF 2,GNB1,JUN,NFKB1,P2RY2 .PIK3C3,PIK3CD
PI3K/AKT Signaling	2.35	1.265	AKT3,BCL2L1,CDKN1A,C DKN1B,IKBKG,JAK2,NFKB 1,PIK3CD,SYNJ1,YWHAZ
B Cell Activating Factor Signaling	2.3	1.342	IKBKG,JUN,MAPK9,NFAT5 ,NFKB1
p53 Signaling	2.27	-1.134	AKT3,BCL2L1,CDKN1A,C OQ8A,GADD45G,JUN,PIK3 C3,PIK3CD
Leptin Signaling in Obesity	2.26	0.447	ADCY1,ADCY4,AKT3,JAK 2,PIK3C3,PIK3CD,SOCS3
Role of NFAT in Regulation of the Immune Response	2.26	2.111	AKT3,ATF2,FCGR2A,GNB1 ,HLA- A,IKBKG,JUN,NFAT5,NFK B1,PIK3C3,PIK3CD,RCAN1
VDR/RXR Activation	2.23	1.342	CD14,CDKN1A,CDKN1B,IG FBP1,NCOR1,RXRA,THBD
Induction of Apoptosis by HIV1	2.2	0	BCL2L1,IKBKG,MAPK9,NF KB1,SLC25A3,XIAP
Phospholipase C Signaling	2.19	0.577	ADCY1,ADCY4,ARHGEF1, ARHGEF2,ATF2,FCGR2A,F NBP1,GNB1,HDAC3,HDAC 6,HDAC7,HMOX1,NFAT5,N FKB1,TGM2
Tight Junction Signaling	2.18	NA	AKT3,ARHGEF2,CLDN12,C LDN14,CPSF1,EPB41,HSF1, JUN,NFKB1,PATJ,SPTAN1
Role of RIG1-like Receptors in Antiviral Innate Immunity	2.17	0.447	DDX58,IKBKG,MAVS,NFK B1,TBK1
PEDF Signaling	2.15	1.134	AKT3,BCL2L1,IKBKG,NFK B1,PIK3C3,PIK3CD,TCF12
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages	2.14	1.732	AKT3,APOA2,FNBP1,IKBK G,JAK2,JUN,MAP3K13,MA PK9,NFKB1,PIK3C3,PIK3C D,TLR2
CD28 Signaling in T Helper Cells	2.13	2.121	AKT3,HLA- A,IKBKG,JUN,MAPK9,NFA T5,NFKB1,PIK3C3,PIK3CD
MIF Regulation of Innate Immunity	2.13	2.236	CD14,CD74,JUN,MAPK9,NF KB1
Apelin Pancreas Signaling Pathway	2.13	0.447	MAPK9,NFKB1,PIK3C3,PIK 3CD,PRKAA1
Role of p14/p19ARF in Tumor Suppression	2.12	-2	PIK3C3,PIK3CD,POLR3D,U BTF
Renin-Angiotensin Signaling	2.09	1.89	ADCY1,ADCY4,ATF2,JAK2 ,JUN,MAPK9,NFKB1,PIK3C 3,PIK3CD
Germ Cell-Sertoli Cell Junction Signaling	2.05	NA	A2M,AXIN1,CTNND1,EPN2 ,FNBP1,MAP2K6,MAP3K13, MAPK9,MYO7A,PIK3C3,PI K3CD
Cell Cycle: G1/S Checkpoint Regulation	2	0.447	CDKN1A,CDKN1B,FBXL5, HDAC3,HDAC6,HDAC7
Gα12/13 Signaling	2	2.333	AKT3,ARHGEF1,IKBKG,JU N,MAPK9,NFKB1,PIK3C3,P IK3CD,TEC

Sumoylation Pathway	2	0	DNMT3A,FNBP1,JUN,KDM 1A,MAPK9,NFKB1,SP3,XIA
IL-8 Signaling	1.99	2.111	AKT3,BCL2L1,FNBP1,GNB 1,HMOX1,IKBKG,IRAK2,JU N,MAPK9,NFKB1,PIK3C3,P IK3CD
Phosphatidylcholine Biosynthesis I	1.98	NA	CHPT1,PCYT1A,PHKA1
FGF Signaling	1.98	0.378	AKT3,ATF2,FGFR2,FGFR3, MAP2K6,PIK3C3,PIK3CD
SPINK1 General Cancer Pathway	1.94	0	AKT3,JAK2,Mt1,Mt2,PIK3C 3,PIK3CD
TNFR1 Signaling	1.94	2	IKBKG,JUN,NFKB1,TNFAI P3,XIAP
IL-9 Signaling	1.92	1	NFKB1,PIK3C3,PIK3CD,SO CS3
HGF Signaling	1.89	2.121	AKT3,ATF2,CDKN1A,JUN, MAP3K13,MAPK9,PIK3C3, PIK3CD
Acute Myeloid Leukemia Signaling	1.89	1.134	AKT3,CSF2RB,MAP2K6,NF KB1,PIK3C3,PIK3CD,TCF3
GM-CSF Signaling	1.89	1.633	AKT3,BCL2L1,CSF2RB,JA K2,PIK3C3,PIK3CD
DNA Methylation and Transcriptional Repression Signaling	1.87	NA	DNMT3A,DNMT3B,MTA1, SAP130
IL-15 Signaling	1.86	NA	AKT3,BCL2L1,JAK2,NFKB 1,PIK3C3,PIK3CD
Type II Diabetes Mellitus Signaling	1.84	1.89	AKT3,IKBKG,MAPK9,NFK B1,PIK3C3,PIK3CD,PRKAA 1,SLC27A1,SOCS1,SOCS3
Coagulation System	1.83	0	A2M,FGA,SERPINE1,THBD
Prostate Cancer Signaling	1.81	NA	AKT3,ATF2,CDKN1A,CDK N1B,NFKB1,PIK3C3,PIK3C D
Hepatic Fibrosis / Hepatic Stellate Cell Activation	1.8	NA	A2M,CD14,COL4A1,COL4A 5,COL6A3,FGFR2,FN1,IL1R 1,LBP,NFKB1,SERPINE1
p38 MAPK Signaling	1.8	0.707	ATF2,IL18,IL1R1,IL1RN,IL3 3,IRAK2,MAP2K6,TIFA
Growth Hormone Signaling	1.78	0	A2M,JAK2,PIK3C3,PIK3CD, SOCS1,SOCS3
NGF Signaling	1.76	2.828	AKT3,ATF2,IKBKG,MAP3K 13,MAPK9,NFKB1,PIK3C3, PIK3CD
ILK Signaling	1.76	2.111	AKT3,ATF2,FLNA,FN1,FNB P1,JUN,MAP2K6,MAPK9,N FKB1,PIK3C3,PIK3CD
TREM1 Signaling	1.75	0.816	AKT3,IL18,JAK2,NFKB1,N LRP12,TLR2
Role of NFAT in Cardiac Hypertrophy	1.72	1.667	ADCY1,ADCY4,AKT3,GNB 1,HDAC3,HDAC6,HDAC7, MAP2K6,MAPK9,PIK3C3,PI K3CD,RCAN1
Reelin Signaling in Neurons	1.7	NA	ARHGEF1,ARHGEF2,MAP K8IP3,MAPK9,PIK3C3,PIK3 CD
Estrogen-Dependent Breast Cancer Signaling	1.7	2.449	AKT3,ATF2,JUN,NFKB1,PI K3C3,PIK3CD
Cholecystokinin/Gastrin-mediated Signaling	1.68	0.707	ATF2,FNBP1,IL18,IL1RN,IL 33,JUN,MAP2K6,MAPK9

GP6 Signaling Pathway	1.68	2.121	ADAM10,AKT3,COL4A1,C
			OL4A5,COL6A3,FGA,PIK3
			C3,PIK3CD
IL-3 Signaling	1.68	1.633	AKT3,CSF2RB,JAK2,JUN,PI
			K3C3,PIK3CD
Inhibition of Angiogenesis by TSP1	1.67	1	AKT3,CD47,JUN,MAPK9
Role of BRCA1 in DNA Damage Response	1.65	NA	BABAM2.CDKN1A.MSH2.
			RAD50.SMARCA2.SMARC
			A4
IL-7 Signaling Pathway	1.65	0	AKT3.CDKN1B.JUN.PIK3C
	1100	0	3.PIK3CD.SOCS1
MSP-RON Signaling Pathway	1.65	NΔ	CSF2RB IAK2 PIK3C3 PIK3
Wibi -Rort Signaling Fattway	1.05	1121	$CD TL R^2$
Systemic Lunus Erythematosus In B Cell	1.65	0	AKT3 BCI 2I 1 ECGR2A II 1
Signaling Dathway	1.05	0	8 II 33 IAK2 II IN MAVS NE
Signaling I allway			AT5 NEV D1 DIV2C2 DIV2C
			D SVNII TDV 1
Maura Embryania Stan Call Divinatorati	1 64	1 1 2 4	AKT2 AVINI LAK2 DIK2C2
Mouse Embryonic Stem Cen Pluripotency	1.04	1.134	AKIS, AAINI, JAK2, PIKSUS, DIV2CD TCE2 VIAD
	1.(2	0.447	PIK5CD, ICF5, AIAP
Antiprofilerative Role of Somatostatin	1.03	0.447	CDKNIA,CDKNIB,GNBI,N
Receptor 2	1.(2	NT A	PR2,PIK3C3,PIK3CD
Cyclins and Cell Cycle Regulation	1.63	NA	CDKNIA,CDKNIB,FBXL5,
			HDAC3,HDAC6,HDAC/
Apelin Cardiac Fibroblast Signaling	1.62	NA	AKT3,PRKAA1,SERPINE1
Pathway			
Role of PKR in Interferon Induction and	1.6	NA	ATF2,IKBKG,MAP2K6,NFK
Antiviral Response			B1
Role of Pattern Recognition Receptors in	1.59	1.89	DDX58,IL18,IL33,MAPK9,
Recognition of Bacteria and Viruses			MAVS,NFKB1,PIK3C3,PIK3
			CD,TLR2
Amyotrophic Lateral Sclerosis Signaling	1.58	0.816	AKT3,BCL2L1,CAPNS1,GR
			IK5,PIK3C3,PIK3CD,XIAP
IL-22 Signaling	1.57	NA	AKT3,MAPK9,SOCS3
Role of JAK1, JAK2 and TYK2 in	1.57	NA	JAK2,NFKB1,SOCS1
Interferon Signaling			
Prolactin Signaling	1.56	0	JAK2,JUN,PIK3C3,PIK3CD,
			SOCS1,SOCS3
HER-2 Signaling in Breast Cancer	1.56	NA	AKT3.CDKN1A.CDKN1B.P
6 6			ARD3,PIK3C3,PIK3CD
Telomerase Signaling	1.56	NA	AKT3.CDKN1A.HDAC3.HD
8			AC6.HDAC7.PIK3C3.PIK3C
			D
PD-1. PD-L1 cancer immunotherapy	1.56	-1.134	AKT3.BCL2L1.CDKN1B.HL
pathway	1100		A-A.JAK2.PIK3C3.PIK3CD
II -2 Signaling	1 54	1	AKT3 IUN PIK3C3 PIK3CD
	1.01	1	SOCS1
Relaxin Signaling	1.51	2 3 3 3	ADCY1 ADCY4 AKT3 GNB
Relaxin Signamig	1.01	2.555	1 II IN NEK B1 NPR2 PIK 3C3
			PIK 3CD
T Cell Receptor Signaling	15	NΔ	IKBKG II IN NEATS NEK P1
I Cell Receptor Signaling	1.5	INA	DIK 2C2 DIK 2CD TEC
Docosahevaenoic Acid (DHA) Signaling	15	NA	AKT3 BCI 2J 1 DIK 2C2 DIK 2
Decosarie Acid (DIIA) Signalling	1.J		CD
Muc Mediated Amentosis Signaling	1.40	NA	AKT2 MADKO DIK2C2 DIK2
wryc wiediaied Apopiosis Signaling	1.49	INA	AKI 3, WIARNY, PIKSU 3, PIK3
	1.40	1.242	
wnt/Ca+ patnway	1.49	1.342	AIF2,AAIN1,NFAT5,NFKB
	1.46	1.2.42	
Th2 Pathway	1.46	1.342	HLA-
			A,IL33,JAK2,JUN,NFKBI,PI
			K3C3,PIK3CD,SOCS3

mTOR Signaling	1.45	0.378	AKT3,ATG13,DDIT4,EIF4G 1,FNBP1,HMOX1,PIK3C3,PI K3CD,PRKAA1,RPS14,RPS 19
NRF2-mediated Oxidative Stress Response	1.44	1.633	ABCC4,DNAJB2,FKBP5,H MOX1,JUN,JUNB,MAP2K6, MAPK9,PIK3C3,PIK3CD
Altered T Cell and B Cell Signaling in Rheumatoid Arthritis	1.43	NA	HLA- A,IL18,IL1RN,IL33,NFKB1, TLR2
Rac Signaling	1.43	1.633	ABI2,JUN,NFKB1,PARD3,PI K3C3,PIK3CD,PIP5K1C
HIF1a Signaling	1.41	NA	AKT3,ARNT,JUN,LDHA,M APK9,PIK3C3,PIK3CD
Death Receptor Signaling	1.41	0.816	IKBKG,NFKB1,SPTAN1,TB K1,TIPARP,XIAP
Regulation of the Epithelial-Mesenchymal Transition Pathway	1.4	NA	AKT3,AXIN1,FGFR2,FGFR 3,JAK2,MAP2K6,NFKB1,PI K3C3,PIK3CD,TCF3
iCOS-iCOSL Signaling in T Helper Cells	1.4	1.89	AKT3,HLA- A,IKBKG,NFAT5,NFKB1,PI K3C3,PIK3CD
Role of JAK1 and JAK3 in γc Cytokine Signaling	1.39	NA	JAK2,PIK3C3,PIK3CD,SOC S1,SOCS3
Tec Kinase Signaling	1.39	0.707	FNBP1,GNB1,GTF2I,JAK2, MAPK9,NFKB1,PIK3C3,PIK 3CD,TEC
Th17 Activation Pathway	1.38	0	IL1R1,IRAK2,JAK2,NFAT5, NFKB1,SOCS3
PI3K Signaling in B Lymphocytes	1.37	2.121	AKT3,ATF2,ATF5,IKBKG,J UN,NFAT5,NFKB1,PIK3CD
White Adipose Tissue Browning Pathway	1.37	1.414	ADCY1,ADCY4,ATF2,FGF R2,FGFR3,LDHA,PRKAA1, RXRA
Actin Cytoskeleton Signaling	1.36	0.707	ABI2,ARHGEF1,CD14,DIAP H1,FLNA,FN1,GIT1,LBP,PI K3C3,PIK3CD,PIP5K1C
Graft-versus-Host Disease Signaling	1.35	NA	HLA-A,IL18,IL1RN,IL33
Cell Cycle: G2/M DNA Damage Checkpoint Regulation	1.35	1	CDKN1A,FBXL5,TRIP12,Y WHAZ
Assembly of RNA Polymerase III Complex	1.32	NA	GTF3C1,POLR3D
TGF-β Signaling	1.32	1.633	INHBB,JUN,MAP2K6,MAP K9,SERPINE1,SKI
ATM Signaling	1.3	2	ATF2,CDKN1A,GADD45G,J UN,MAPK9,RAD50

 Table 19. Significant Pathways for differentially expressed transcripts in ¹⁶O vs. nonirradiated control at 12 months.

6.4.4 IDENTIFICATION OF DYSREGULATED MOLECULAR PATHWAYS CORRESPONDING TO UNANNOTATED TRANSCRIPTS ASSOCIATED WITH ¹⁶O IRRADIATION, USING SOM

The above IPA analyses (Figure 12) resulted in a collection of 95 statistically significant high-quality functionally unannotated transcripts across all time points from ¹⁶O irradiated mice (Table 13). To characterize the unannotated transcripts, we obtained the log₂(fold change) expression values of differentially expressed transcripts from ¹⁶O irradiation compared to non-irradiated control across 5 time points and applied the SOM machine learning algorithm. We next identified the modules from SOMs which contained the majority of unannotated transcripts and combined them to form larger clusters of similar transcription patterns for functionality analysis using IPA. We compared the identified 13 clusters across 5 time points using IPA (Figure 13f). Figure 4f shows the most significant pathways across all clusters. The activation z-scores were predicted for some of the clusters based on our observed data and the available literature. The clusters of unannotated transcripts tended to show inhibitory responses with negative z-scores at 1 and 2 months, and activation at later time points. Even though the directionality could not be determined for some of these pathways, some of the identified significant pathways are similar to those previously observed in Figure 3, and are involved in immune response (B cell receptor signaling and acute phase response signaling), cholesterol biosynthesis, and the hepatic fibrosis signaling pathway. A complete list of unannotated transcript ENSMBL IDs with their corresponding module numbers is provided in Table 20.

Figure 13. ¹⁶O analysis of self-organizing maps for each time point.

(a,b,c,d,e) Kohonen Self-Organizing Map (SOM) was applied to the differentially expressed (DE) transcripts obtained from the RNA-Seq data to identify coherent patterns of transcript expression at each time point, as well as patterns within the unannotated transcripts. The SOM clusters transcripts in each module according to $\log_2(\text{fold change})$ of the expression values. SOM clustering analysis demonstrates the distances between correlated transcript groups. The small blue hexagons are modules comprising transcripts with similar log₂(fold change) expression patterns. The numbers of transcripts in each module are provided in Figure 14. Neighboring modules are connected with a red line. The colors of the lines connecting the modules indicate the similarity between modules: Lighter colors represent higher similarity, and darker colors represent lower similarity. (f) Expression patterns of unannotated transcripts were identified, and the corresponding modules (represented in circled numbers) were further analyzed by IPA. Only the most significant pathways across all clusters are shown with available color-coded activation z-scores. Inhibitory, activation, or unknown directionality z-scores corresponds to green, red, and white respectively. The entries with white color indicate the directionality could not be predicted based on the available data, yet the pathway is significantly identified by pathway analysis. The goal of the IPA downstream effects analysis is to identify functional pathways whose activity is expected to be increased or decreased, given the observed expression changes in a user's dataset (see Methods.)

Figure 14. ¹⁶O Analysis of self-organizing maps for each time point.

(a,b,c,d,e) Kohonen Self-Organizing Map (SOM) was applied to the differentially expressed (DE) transcripts obtained from the RNA-Seq data to identify coherent patterns

of transcript expression at each time point, as well as patterns within the unmapped transcripts. The mapping clusters transcripts in each unit according to $log_2(fold change)$ expression values for the transcripts in that unit. SOM clustering analysis demonstrates the distances between correlated transcript groups. The small blue hexagons are modules comprising transcripts with similar $log_2(fold change)$ expression pattern. The numbers inside hexagons correspond to the number of transcripts in each module.

¹⁶ O,	1 month	¹⁶ O,	2 months	¹⁶ O,	4 months	¹⁶ O, 9 months		9 months ¹⁶ O, 12 m	
Modu	Transcript	Modu	Transcript	Modu	Transcript	Modu	Transcript	Modu	Transcript
le	Ensemble	le	Ensemble	le	Ensemble	le	Ensemble	le	Ensemble
	ID		ID		ID		ID		ID
19	ENSMUST0000023 7265	11	ENSMUST0000023 5160	17	ENSMUST0000023 7369	14	ENSMUST0000023 5927	10	ENSMUST0000023 7369
1	ENSMUST0000023 5180	15	ENSMUST0000023 7442	1	ENSMUST0000023 7170	15	ENSMUST0000023 7814	10	ENSMUST0000023 8098
23	ENSMUST0000023 6215	16	ENSMUST0000023 5764	27	ENSMUST0000023 7874	16	ENSMUST0000023 7749	10	ENSMUST0000023 5828
25	ENSMUST0000023 5160	17	ENSMUST0000023 6950	30	ENSMUST0000023 7472	17	ENSMUST0000023 5957	12	ENSMUST0000023 7042
28	ENSMUST0000023 6591	17	ENSMUST0000023 8418	31	ENSMUST0000023 5764	21	ENSMUST0000023 6736	15	ENSMUST0000023 6504
29	ENSMUST0000023 5927	23	ENSMUST0000023 7060	35	ENSMUST0000023 6046	30	ENSMUST0000023 8222	15	ENSMUST0000023 8021
29	ENSMUST0000023 6925	23	ENSMUST0000023 5620	35	ENSMUST0000023 6687	31	ENSMUST0000023 7125	22	ENSMUST0000023 8288
2	ENSMUST0000023 5304	26	ENSMUST0000023 8151	39	ENSMUST0000023 6950	31	ENSMUST0000023 6330	23	ENSMUST0000023 5318
2	ENSMUST0000023 6824	28	ENSMUST0000023 6925	41	ENSMUST0000023 6209	35	ENSMUST0000023 8729	23	ENSMUST0000023 8267
2	ENSMUST0000023 5231	29	ENSMUST0000023 6873	45	ENSMUST0000023 7798	40	ENSMUST0000023 6898	2	ENSMUST0000023 8677
36	ENSMUST0000023 6950	29	ENSMUST0000023 7472	47	ENSMUST0000023 6030	45	ENSMUST0000023 5558	31	ENSMUST0000023 6414
37	ENSMUST0000023 5647	30	ENSMUST0000023 6303	49	ENSMUST0000023 7854	8	ENSMUST0000023 6824	32	ENSMUST0000023 7170
3	ENSMUST0000023 5957	30	ENSMUST0000023 7854	4	ENSMUST0000023 8288	9	ENSMUST0000023 6950	34	ENSMUST0000023 5648
3	ENSMUST0000023 7185	36	ENSMUST0000023 6186					36	ENSMUST0000023 5411
3	ENSMUST0000023 7146	37	ENSMUST0000023 7305					37	ENSMUST0000023 8331
40	ENSMUST0000023 7170	37	ENSMUST0000023 5518					37	ENSMUST0000023 7823
40	ENSMUST0000023 5620	3	ENSMUST0000023 8288					3	ENSMUST0000023 6873
40	ENSMUST0000023 5633	3	ENSMUST0000023 7603					40	ENSMUST0000023 8368
41	ENSMUST0000023 6195	46	ENSMUST0000023 7103					41	ENSMUST0000023 5135
45	ENSMUST0000023 6567	49	ENSMUST0000023 7742					44	ENSMUST0000023 6006
47	ENSMUST0000023 6873	7	ENSMUST0000023 7749					48	ENSMUST0000023 8306
47	ENSMUST0000023 6414	7	ENSMUST0000023 6480					49	ENSMUST0000023 5620
47	ENSMUST0000023 7587	9	ENSMUST0000023 5318						
7	ENSMUST0000023 8288								

Table 20. Unannotated differentially expressed transcripts in ¹⁶O experiments at all time points. Each unannotated ENSEMBLE transcript ID is listed with the corresponding module number in the SOM Figure 13.

6.4.5 DIFFERENTIAL EXPRESSION ANALYSIS OF ²⁸SI REVEALS DYNAMIC TIME-DEPENDENT CHANGES IN INFLAMMATORY RESPONSE AT THE WHOLE TRANSCRIPTOME LEVEL

Transcriptional changes and altered pathways associated with proposed ²⁸Si induced hepatic carcinogenesis were evaluated using differential expression analysis of RNA-Seq data in ²⁸Si irradiated compared to non-irradiated control mice at 5 different time points (1mo, 2mo, 4mo, 9mo, and 12mo). Table 7 shows the total number of differentially expressed transcripts at each time point. IPA was used to functionally annotate and map the biological processes involving these differentially expressed transcripts (Figure 15). The analyses revealed that LXR/RXR is significantly affected at 1 month (activated), 2 months (directionality unknown), 4 months (inhibited), 9 months (activated), and 12 months (activated). Acute phase response signaling pathway demonstrated a different dynamic post ²⁸Si irradiation as compared to ⁵⁶Fe. In particular, it was significantly inhibited at 1, 2, 4, and 12 months and activated at 9 months. In addition, IL-8 signaling shows a pattern opposite to that of ¹⁶O irradiation. Unlike ¹⁶O irradiation, IL-8 signaling pathway is significantly activated at 1, 9 and 12 months, while it is inhibited at 4 months. Furthermore, PI3K/AKT signaling was significantly activated at 1, 4, and 9 months post ²⁸Si irradiation. This might suggest that ²⁸Si has an earlier cellular survival response compared to ⁵⁶Fe and ¹⁶O. Additionally, the results show that aryl hydrocarbon receptor signaling is significantly inhibited at 2, 4, 9, and 12 months post ²⁸Si irradiation. Aryl hydrocarbon receptor (AHR) is a cytosolic protein associated chaperone and immunophilin-like protein. Upon ligand activation, AHR dissociates from the complex,

translocates into the nucleus and induces transcriptional activation of genes in various signaling pathways involved in cell cycle progression, tumorigenesis, apoptosis, and cell proliferation. [128-130]

The analyses revealed that BCR signaling was significantly affected at 1 month (inhibited), 2 months (activated), 4 months (inhibited), 9 months (activated), and 12 months (activated). This is also indicative of a stronger inhibitory apoptosis response later in time after ²⁸Si irradiation. In addition, the production of nitric oxide and reactive oxygen species in macrophages were significantly affected at all time points; specifically, at 1 month (activated), 2 months (activated), 9 months (activated), and 12 months (inhibited). The tumoricidal properties of macrophages are dependent on the production of reactive oxygen species (ROS). Production of ROS happens through the activation of the nicotinamide adenine diphosphate oxidase (NADPH oxidase), which is part of the electron transport chain. Factors such as bacterial products and metabolites can activate NADPH oxidase, which will lead to ROS production in macrophages and help defend against noxious stimuli. [131-133] The inhibition of ROS production at 12 months contributes to the carcinogenic process triggered by ²⁸Si irradiation. This process is especially pronounced during later time points when the immune response cannot properly regulate apoptosis or control tissue damage. Moreover, Insulin-like growth factor-1 (IGF-1) signaling, which promotes cell proliferation, growth, and survival, is significantly activated at 4, and 9 months. IGF-1 receptor is a transmembrane tyrosine kinase protein that activates many downstream pathways, which in turn induce genes that promote cell growth and differentiation, as well as pathways for cell survival [134-136]. IGF-1 targeted antibodies are currently under phase I clinical investigation as anticancer therapeutic drugs for advanced or refractory solid tumors (NCT03746431). These pathways demonstrate a complex dynamic interplay with different immunological pathways after ²⁸Si irradiation, which could contribute to hepatic carcinogenic processes. A complete list of significantly impacted pathways ($-\log_{10}(p-value) \ge 1.3$) is provided in Tables 21, 22, 23, 24, and 25.

Figure 15. IPA of differentially expressed transcripts in ²⁸Si.

(a) Top pathways enrichment analysis at 1 month. (b) Top pathways enrichment analysis at 2 months. (c) Top pathways enrichment analysis at 4 months. (d) Top pathways enrichment analysis at 9 months. (e) Top pathways enrichment analysis at 12 months. (f)

The Venn Diagram shows shared and unique differentially expressed transcripts for all time points, in ²⁸Si irradiation compared to control.

Ingenuity Canonical Pathways	-log ₁₀ (p-value)	z-score	Molecules
LXR/RXR Activation	6.61	0.258	APOA2,APOA5,APOB,APOE, CD36,CLU,CYP7A1,FASN,H MGCR,IRF3,KNG1,LDLR,NF KB1,NR1H2,PLTP,SERPINF1, TF
Role of JAK2 in Hormone-like Cytokine Signaling	5.28	NA	SH2B1,SH2B2,SH2B3,SHC1,S IRPA,SOCS2,STAT1,TYK2
FXR/RXR Activation	4.24	NA	APOA2,APOB,APOE,CLU,C YP7A1,FASN,FETUB,G6PC3, KNG1,LIPC,PLTP,SCARB1,S ERPINF1,TF
Clathrin-mediated Endocytosis Signaling	3.59	NA	ACTR3,AP1B1,APOA2,APOB ,APOE,CD2AP,CLU,DNM2,F 2,LDLR,MET,NUMB,PICAL M,PROK1,RAB7A,TF
LPS/IL-1 Mediated Inhibition of RXR Function	3.3	0	ACSL3,ALAS1,APOE,CAT,C YP2B6,CYP2C8,CYP7A1,FA BP5,FMO1,FMO2,LIPC,NDST 1,NDST2,NR1H2,NR1I3,PLTP ,SCARB1
Circadian Rhythm Signaling	3.29	NA	ARNTL,ATF2,CREB1,PER1,P ER2,PER3
Bupropion Degradation	2.98	-0.447	CYP2B6,CYP2C8,CYP2E1,C YP2F1,POR
ERK5 Signaling	2.85	0	ATF2,CREB1,GAB1,MAPK7, RPS6KC1,WNK1,YWHAG,Y WHAQ
Acute Phase Response Signaling	2.53	-0.816	APOA2,C1R,F2,HNRNPK,IK BKG,ITIH3,MAPK14,NFKB1, NR3C1,SERPINF1,SHC1,SOC S2,TF
Mitochondrial Dysfunction	2.39	NA	ATP5F1B,ATP5MC2,ATP5PB ,ATPAF1,CAT,COX6B1,CYB 5A,GPX4,NDUFA4,PARK7,P DHA1,PINK1,VDAC2
Estrogen Biosynthesis	2.37	-0.816	CYP2B6,CYP2C8,CYP2E1,C YP2F1,HSD17B12,POR
Acetone Degradation I (to Methylglyoxal)	2.35	-0.447	CYP2B6,CYP2C8,CYP2E1,C YP2F1,POR
PXR/RXR Activation	2.34	NA	ALAS1,CYP2B6,CYP2C8,CY P7A1,IGFBP1,NR1I3,NR3C1
Sumoylation Pathway	2.29	0	CEBPA,NFKB1,NR3C1,RHO BTB1,RHOT1,RPA1,SENP5,S P3,XIAP
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages	2.27	2.309	APOA2,APOB,APOE,CAT,CL U,IKBKG,MAPK14,NFKB1,R HOBTB1,RHOT1,SIRPA,STA T1,TYK2
Ephrin B Signaling	2.2	1.342	ABI1,CAP1,CTNNB1,EPHB4, GNB1,GNB2,HNRNPK
Nicotine Degradation II	2.17	-0.378	CYP2B6,CYP2C8,CYP2E1,C YP2F1,FM01,FM02,POR

Actin Cytoskeleton Signaling	2.16	0.905	ACTN4,ACTR3,ARHGEF12,C
			YFIP1,F2,FLNA,GIT1,KNG1,
			MYH10,MYH14,PFN1,RDX,S
	0.14	27.4	HC1,TLN2
Antiviral Response	2.16	NA	ATF2,IKBKG,MAPK14,NFKB 1,STAT1
Adipogenesis pathway	2.16	NA	ARNTL,CEBPA,CTNNB1,EZ
			H2,FGFR2,KMT2B,LPIN1,NO
			CT,PER2,RPS6KC1
PI3K/AKT Signaling	2.11	1.667	CTNNB1,GAB1,IKBKG,NFK
			B1,SHC1,SYNJ2,TSC1,TYK2,
	2.00		YWHAG,YWHAQ
ATM Signaling	2.09	0	ATF2,BRAT1,CREB1,GADD4
			SG,HERC2,MAPK14,1DP1,U
NGE Signaling	2.03	0.333	ATE2 CREB1 GAB1 IKRKG
Nor Signaling	2.03	0.555	MAPK7 NFKB1 RPS6KC1 SH
			C1.SMPD4
IL-15 Production	2	NA	EPHB4.FGFR2.IRF3.KIT.ME
			T,NFKB1,STAT1,TNK2,TYK
			2
SAPK/JNK Signaling	1.94	0.378	ATF2,GAB1,GNB1,HNRNPK,
			MAP4K3,MAPK8IP3,MINK1,
			SHC1
mTOR Signaling	1.9	0.378	DGKZ,EIF4A2,EIF4G1,EIF4G
			2,FKBP1A,PLD2,PROK1,RH
			OBIBI,RHOII,RPS14,RPS6
NOC Circulian	1.07	1 2 4 2	KUI,SIKII,ISUI
inos signaling	1.87	1.342	TI TVK2
HIPPO signaling	1.86	0.447	AMOT DI G1 ITCH PARD3 P
	1.00	0.117	pp1cc,YWHAG,YWHAO
4-1BB Signaling in T Lymphocytes	1.85	0	ATF2,IKBKG,MAPK14,NFKB
			1
Cell Cycle: G2/M DNA Damage	1.84	NA	FBXL5,HIPK2,TRIP12,YWH
Checkpoint Regulation			AG,YWHAQ
Remodeling of Epithelial Adherens	1.79	-1	ACTN4,ACTR3,CTNNB1,DN
Junctions	1.7(27.4	M2,MET,RAB/A
DNA Methylation and Transcriptional	1.70	NA	CHD4,H3F3A/H3F3B,MECP2,
TR/RXR Activation	1 74	NA	APOA5 CVP7A1 FASN GPS2
	1./7	1474	LDLR.SCARB1.THRSP
IL-12 Signaling and Production in	1.7	NA	APOA2.APOB.APOE.CLU.IK
Macrophages			BKG,MAPK14,NFKB1,RAB7
			A,STAT1
Estrogen Receptor Signaling	1.68	NA	G6PC3,H3F3A/H3F3B,IGFBP
			1,MED23,NR3C1,RBFOX2,S
			HC1,TAF10,TAF6
Protein Kinase A Signaling	1.67	-1.069	ADCY9,AKAP1,ANAPC5,AT
			F2,CREB1,CTNNB1,FLNA,G
			NB1,GNB2,H3F3A/H3F3B,M VIII0 NEAT5 NEVD1 Drp1cc
			PTCH1 PTPRC PTPRI SIRPA
			YWHAG YWHAO
Hypoxia Signaling in the Cardiovascular	1.65	NA	ARNT.ATF2.CDC34.CREB1.P
System	1.00		4HB,UBE2D3
Melanocyte Development and Pigmentation	1.62	0	ADCY9,ATF2,CREB1,KIT,RP
Signaling			S6KC1,SH2B2,SHC1
p38 MAPK Signaling	1.62	-0.378	ATF2,CREB1,H3F3A/H3F3B,
			HMGN1,MAPK14,PLA2G6,R
			rsukui,siaii

Unfolded protein response	1.61	NA	CD82,CEBPA,HSPA5,P4HB,S YVN1
B Cell Receptor Signaling	1.58	-0.632	ATF2,BCL6,CREB1,GAB1,IK
			BKG,MAPK14,NFAT5,NFKB 1 PTPRC SHC1 SYNI2
April Mediated Signaling	1.56	0	IKBKG,MAPK14,NFAT5,NF
	1.52	0.622	KB1
ILK Signaling	1.53	0.632	ACTN4,ATF2,CREB1,CTNNB 1 FLNA MYH10 MYH14 NFK
			B1,PROK1,RHOBTB1,RHOT1
PPARα/RXRα Activation	1.51	-1	ADCY9,APOA2,CD36,CKAP5
			,CYP2C8,FASN,IKBKG,MAP K14 MED23 NEKB1 SHC1
Role of BRCA1 in DNA Damage Response	1.5	NA	BABAM2,E2F8,RBL2,RPA1,S
			MARCA2,STAT1
B Cell Activating Factor Signaling	1.49	0	IKBKG,MAPK14,NFAT5,NF
Atherosclerosis Signaling	1.49	NA	ABHD3,APOA2,APOB,APOE,
			CD36,CLU,NFKB1,PLA2G6
IL-22 Signaling	1.48	NA	MAPK14,STAT1,TYK2
Interferon Signaling	1.48	NA	NFKB1,STAT1,TYK2
D-myo-inositol (1,3,4)-trisphosphate	1.48	NA	IPMK,SEC16A,SYNJ2
Biosynthesis	1.40	0.916	ADOVO CAT ODVI ODVAM
Apelin Adipocyte Signaling Pathway	1.48	-0.816	ADCY9,CA1,GPX1,GPX4,M APK14.MAPK7
ERK/MAPK Signaling	1.48	0.333	ATF2,CREB1,ELF1,ELF4,H3F
			3A/H3F3B,PLA2G6,SHC1,ST
Nigoting Degradation III	1 46	0.447	ATT, TLN2, YWHAG, YWHAQ
Nicotine Degradation III	1.40	-0.447	YP2F1,POR
PCP pathway	1.46	0.447	ATF2,DAAM1,LGR4,PFN1,P
tPNA Charging	1.46	2 4 4 0	RICKLEI EADSA EADSD LADS2 MAD
INVA Charging	1.40	-2.77)	S,Qars,TARS
Role of JAK family kinases in IL-6-type	1.44	NA	MAPK14,STAT1,TYK2
Cytokine Signaling	1.41	0.447	ATE2 IZDZC IDE2 NEZDI C
Recognition Receptors	1.41	0.447	TATI
1D-myo-inositol Hexakisphosphate	1.39	NA	IPMK,SEC16A,SYNJ2
Biosynthesis II (Mammalian)	1.20	NTA	ACTNIA ACTD2 CTNND1 ED
Epithelial Adherens Junction Signaling	1.38	NA	N2.MET.MYH10.MYH14.PA
			RD3,SSX2IP
BMP signaling pathway	1.37	0.816	ATF2,CHRD,CREB1,MAPK1
Autophagy	1 36	NΔ	4,NFKB1,XIAP
Autophagy	1.50	1474	A,NBR1
BAG2 Signaling Pathway	1.36	0	HSPA5,MAPK14,NFKB1,PIN
Mevalonate Pathway I	1.35	NA	HADHB,HMGCR,IDI1
FGF Signaling	1.33	-0.816	ATF2,CREB1,FGFR2,GAB1,
Pancreatic Adenocarcinoma Signaling	1 33	1 633	MAPK14,ME1 CVP2E1 E2E8 NEK B1 DI D2 D
	1.33	1.055	ROK1,STAT1,TYK2

 Table 21. Significant Pathways for differentially expressed transcripts in ²⁸Si vs. nonirradiated control at 1 month.

Ingenuity Canonical Pathways	-log ₁₀ (p-value)	z-score	Molecules
Role of JAK2 in Hormone-like Cytokine Signaling	3.82	NA	SH2B1,SH2B2,SH2B3,SHC1, SIRPA,STAT1
Huntington's Disease Signaling	3.5	-0.447	ATF2,ATP5F1B,ATP5PB,GN B1,GNB2,GPAA1,HDAC5,H DAC6,MAPK9,NCOR1,NCO R2,PDPK1,SGK1,SHC1,SIN3 A,TCERG1
Adipogenesis pathway	3.33	NA	CEBPA,EZH2,FGFR2,HDAC5 ,HDAC6,KAT2A,KMT2B,PPI P5K1,RPS6KA1,SIN3A,TBL1 XR1
FXR/RXR Activation	3.28	NA	APOA2,BAAT,FETUB,LIPC, MAPK9,NR0B2,PKLR,SAA1, SCARB1,SERPINF1,SLC22A 7
RhoA Signaling	3.02	-0.632	ACTR3,ARHGEF1,BAIAP2,C DC42EP4,MPRIP,PFN1,RAP GEF6,SEPT2,SEPT9,TTN
Aryl Hydrocarbon Receptor Signaling	2.97	-0.707	ALDH2,ATR,CDKN1B,HSP9 0AB1,MGST1,NCOR2,NFIA, NFIX,NQ02,NR0B2,RBL2
Cell Cycle: G1/S Checkpoint Regulation	2.92	-0.816	ATR,CDKN1B,E2F3,HDAC5, HDAC6,RBL2,SIN3A
D-myo-inositol (1,4,5)-trisphosphate Degradation	2.75	0	INPP5A,INPP5D,SEC16A,SY NJ2
Mitochondrial Dysfunction	2.65	NA	ATP5F1B,ATP5PB,CAT,COX 6B1,CYB5A,CYC1,GPX4,MA PK9,MT- ND4L,NDUFAF1,NDUFV1,PI NK1
D-myo-inositol (1,3,4)-trisphosphate Biosynthesis	2.6	0	INPP5A,INPP5D,SEC16A,SY NJ2
1D-myo-inositol Hexakisphosphate Biosynthesis II (Mammalian)	2.47	0	INPP5A,INPP5D,SEC16A,SY NJ2
FLT3 Signaling in Hematopoietic Progenitor Cells	2.39	-1.134	ATF2,INPP5D,PDPK1,RPS6K A1,SHC1,STAT1,STAT2
LXR/RXR Activation	2.39	0	APOA2,APOA5,CD36,ECHS1 ,NCOR1,NCOR2,NR1H2,SAA 1,SERPINF1
LPS/IL-1 Mediated Inhibition of RXR Function	2.38	1.134	ACOX2,ACSL3,ACSL4,ALA S1,ALDH2,CAT,LIPC,MAPK 9,MGST1,NDST2,NR0B2,NR 1H2,SCARB1
Ephrin Receptor Signaling	2.28	-0.333	ACTR3,ATF2,BCAR1,EPHB4 ,GNB1,GNB2,GRIN3A,PROK 1,PXN,RAPGEF1,SHC1
Sirtuin Signaling Pathway	2.2	-0.277	ACLY,ATP5F1B,ATP5PB,CY C1,GABPB1,GABPB2,GLUD 1,KAT2A,MT- ND4L,NDUFAF1,NDUFV1,N R1H2,PFKFB3,PFKM,POLR3 D,STK11
Superpathway of D-myo-inositol (1,4,5)- trisphosphate Metabolism	2.14	0	INPP5A,INPP5D,SEC16A,SY NJ2
Actin Cytoskeleton Signaling	2.06	-1.265	ACTR3,ARHGEF1,BAIAP2,B CAR1,DIAPH1,FLNA,MPRIP, MYH14,PFN1,PXN,SHC1,TT N

NGF Signaling	2.04	0	ATF2,MAP3K13,Map3k7,MA PK9,PDPK1,RPS6KA1,SHC1, SMPD4
SAPK/JNK Signaling	1.89	0.816	ATF2,GNB1,HNRNPK,MAP3 K13,MAPK8IP3,MAPK9,SHC 1
Role of BRCA1 in DNA Damage Response	1.88	NA	ATR,E2F3,PBRM1,RBL2,SM ARCC1,STAT1
Cyclins and Cell Cycle Regulation	1.85	NA	ATR,CDKN1B,E2F3,HDAC5, HDAC6,SIN3A
Calcium Signaling	1.8	0.816	ATF2,ATP2A2,CACNA1A,C ALR,GRIA3,GRIN3A,HDAC5 ,HDAC6,MICU1,MYH14,NF AT5
Signaling by Rho Family GTPases	1.77	0.333	ACTR3,ARHGEF1,ARHGEF1 0,ARHGEF3,BAIAP2,CDC42 EP4,GNB1,GNB2,MAPK9,PA RD3,SEPT2,SEPT9
B Cell Receptor Signaling	1.74	0.333	ATF2,INPP5D,MAP3K13,Map 3k7,MAPK9,NFAT5,PDPK1,S HC1,SYNJ2,TCF3
α-tocopherol Degradation	1.72	NA	CYP4F12,CYP4F3
Estrogen Receptor Signaling	1.72	NA	MED12,NCOR1,NCOR2,NR0 B2,SHC1,TAF10,TAF6,TRRA P
Glutamate Receptor Signaling	1.71	NA	GNB1,GRIA3,GRIN3A,GRM8 ,SLC38A1
γ-linolenate Biosynthesis II (Animals)	1.71	NA	ACSL3,ACSL4,CYB5A
Glucocorticoid Receptor Signaling	1.68	NA	CEBPA,FKBP5,HSP90AB1,M APK9,NCOR1,NCOR2,NFAT 5,PBRM1,SGK1,SHC1,SMAR CC1,STAT1,TAF10,TAF6,TA T
PPARα/RXRα Activation	1.67	0	ADCY4,APOA2,CD36,CKAP 5,HSP90AB1,MED12,NCOR1, NCOR2,NR0B2,SHC1
Cdc42 Signaling	1.65	0	ACTR3,ATF2,BAIAP2,CDC4 2BPA,DIAPH1,MAPK9,MPRI P,PARD3,TNK2
Protein Kinase A Signaling	1.62	-0.302	ADCY4,ADD1,AKAP1,ANAP C5,ATF2,EYA3,FLNA,GNB1, GNB2,NFAT5,PPP1R10,PTPN 4,PTPRJ,PXN,SIRPA,TCF3,T TN
RAR Activation	1.59	NA	ADCY4,AKR1C4,MAPK9,NC OR1,NCOR2,PBRM1,PDPK1, PML,SMARCC1,TNIP1
Insulin Receptor Signaling	1.59	-0.707	ACLY,INPP5D,PDPK1,PPP1R 10,RAPGEF1,SGK1,SHC1,SY NJ2
Oxidative Phosphorylation	1.58	-1.134	ATP5F1B,ATP5PB,COX6B1, CYB5A,CYC1,MT- ND4L,NDUFV1
Phospholipase C Signaling	1.53	0.632	ADCY4,ARHGEF1,ARHGEF 10,ARHGEF3,ATF2,GNB1,G NB2,HDAC5,HDAC6,MPRIP, NFAT5,SHC1
Breast Cancer Regulation by Stathmin1	1.53	NA	ADCY4,ARHGEF1,ARHGEF 10,ARHGEF3,CDKN1B,E2F3, GNB1,GNB2,PPP1R10,SHC1

ATM Signaling	1.51	1.342	ATF2,ATR,HERC2,MAPK9,S MC2,TRRAP
Ephrin B Signaling	1.47	NA	EPHB4,GNB1,GNB2,HNRNP K,PXN
PTEN Signaling	1.43	0.378	BCAR1,CDKN1B,FGFR2,INP P5D,PDPK1,SHC1,SYNJ2
Integrin Signaling	1.42	-1.667	ACTR3,BCAR1,ITGA8,MPRI P,PFN1,PXN,RAPGEF1,SHC1 ,TNK2,TTN
Phagosome Maturation	1.42	NA	ATP6AP1,CALR,CTSH,CTSV ,Dync1i2,DYNC1LI2,GPAA1, VPS33B
Assembly of RNA Polymerase III Complex	1.41	NA	GTF3C1,POLR3D
Chronic Myeloid Leukemia Signaling	1.4	NA	CDKN1B,E2F3,HDAC5,HDA C6,RBL2,SIN3A
Reelin Signaling in Neurons	1.38	NA	ARHGEF1,ARHGEF10,ARH GEF3,MAPK8IP3,MAPK9
FcyRIIB Signaling in B Lymphocytes	1.36	-1	CACNA1A,INPP5D,MAPK9, PDPK1,SHC1
Amyotrophic Lateral Sclerosis Signaling	1.35	1.342	CACNA1A,CAT,GRIA3,GRI N3A,PROK1,XIAP
3-phosphoinositide Degradation	1.35	0	INPP4A,INPP5D,PPIP5K1,PP P1R16B,PTPRJ,SIRPA,SYNJ2 ,UBLCP1
Type II Diabetes Mellitus Signaling	1.34	1	ACSL3,ACSL4,CACNA1A,C D36,MAPK9,PDPK1,PKLR,S MPD4
Apelin Adipocyte Signaling Pathway	1.33	-0.447	ADCY4,CAT,GPX4,MAPK9, MGST1
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages	1.32	0.333	APOA2,CAT,IRF1,MAP3K13, Map3k7,MAPK9,PPP1R10,SI RPA,STAT1
Sertoli Cell-Sertoli Cell Junction Signaling	1.32	NA	ATF2,BCAR1,CLDN12,EPB4 1,MAP3K13,Map3k7,MAPK9, SPTAN1,TJP3
DNA Methylation and Transcriptional Repression Signaling	1.31	NA	ARID4B,CHD4,SIN3A
Sumoylation Pathway	1.3	0	CEBPA,MAPK9,PML,RCC1,S ENP6,XIAP

 Table 22. Significant Pathways for differentially expressed transcripts in ²⁸Si vs. nonirradiated control at 2 months.

Ingenuity Canonical Pathways	-log10(p-value)	z-score	Molecules
Acute Phase Response Signaling	10	-1.5	APOA2,CFB,CP,F2,FGA,FN 1,GRB2,HNRNPK,HP,IKBK B,IL1R1,ITIH2,ITIH3,ITIH4, JAK2,LBP,NR3C1,PIK3CD,S AA1,SAA2- SAA4,Saa3,SERPINA1,SERP INA3,SOCS2,SOCS3,TF

LXR/RXR Activation	4.93	-0.577	ABCG8,APOA2,APOA5,FG
			A,IL1R1,ITIH4,LBP,LPL,NC
			OR2,NR1H2,NR1H3,SAA1,S
			ERPINA1,TF,TLR3
Role of JAK2 in Hormone-like Cytokine	4.13	NA	JAK2.SH2B1.SH2B3.SIRPA.
Signaling	-		SOCS2,SOCS3,STAT5A
IL-4 Signaling	4.07	NA	GRB2.HLA-
	,	1.1.1	A INPP5B INPP5D IAK2 NF
			AT5 NR3C1 PIK3C2G PIK3
			CD SYNII SYNI2
FIF2 Signaling	3.98	-2 111	ACTB FIF4G1 FIF4G3 GRB
Ell 2 Signaling	5.90	2.111	2 HSPA5 MT-
			TM PIK 3C2G PIK 3CD PTBP
			1 RPI 10A RPI 11 RPI 12 RP
			L 18A RPI 37 RPI 38 RPS14
			RPS15A RPS19 XIAP
Clathrin-mediated Endocytosis Signaling	3.81	NΔ	ACTB APIG2 APOA2 ARRB
Clatinin-inculated Endocytosis Signaling	5.01	1424	$1 \text{ CD}^2 \text{AP} \text{ F}^2 \text{ GRB}^2 \text{ MDM}^2$
			MET PICAL M PIK 3C2G PIK
			3CD PIP5K1C RAB11A SER
			PINA1 SVNI1 TF
Sumovlation Pathway	3.8	-1.89	CERPA DNMT3A MDM2 N
Sumoyiation I aniway	5.6	-1.07	P3C1 DML PANGAD1 PCC1
			PEC1 PHOPTP1 PHOT1 SE
			ND6 YIAD
DI2V/AVT Signaling	2 12	0.832	CDVN1D CDD2 IV DVD IND
FISK/AKT Signaling	5.42	0.652	D5D INID5D ITCA2 LAV2M
			DM2 DIV2CD SVNULSVNU2
			TSC1 VWILLC
Handitana Davat Canan Simulian	2.27	NIA	,ISCI, I WHAU
Hereditary Breast Cancer Signaling	3.27	NA	ACTB,ARIDTA,ATR,BRCA2
			,FANCW,GADD45G,HDACI
			0,HDAC0,PIK3C2G,PIK3CD,
52.0: 1:	2	0.279	RAD50,RFC1,SMARCA2
p53 Signaling	3	0.378	ATR,COQ8A,GADD45G,MD
			M2,PIDD1,PIK3C2G,PIK3C
	2.0	1 414	D,PML,S113,S1AG1
Prolactin Signaling	2.9	1.414	GRB2,JAK2,NK3C1,PIK3C2
			G,PIK3CD,PKKCE,SUCS2,S
	2.0		OC53,STAT5A
HER-2 Signaling in Breast Cancer	2.9	NA	CDKNIB,GRB2,MDM2,PAR
			D3,PARD6A,PIK3C2G,PIK3
	2.02	274	CD,PKKCE,ISCI
Chronic Myeloid Leukemia Signaling	2.85	NA	CDKN1B,GRB2,HDAC10,H
			DAC6,IKBKB,MDM2,PIK3C
			2G,PIK3CD,STAT5A,TGFB
		0.050	KI
Relaxin Signaling	2.82	0.378	ADCY3,ADCY6,GNAI2,GN
			BI,GNG12,GUCY2C,NPR2,P
			DETA,PDE4B,PDE4C,PDE5
			A,PIK3C2G,PIK3CD
Insulin Receptor Signaling	2.68	-0.302	ACLY,GRB10,GRB2,INPP5
			B,INPP5D,JAK2,PIK3C2G,PI
			K3CD,SOCS3,SYNJ1,SYNJ2
			,TSC1
TR/RXR Activation	2.66	NA	APOA5,DIO1,FGA,HP,MDM
			2,ME1,NCOR2,PIK3C2G,PI
			K3CD
PTEN Signaling	2.63	0.302	CDKN1B,FGFR3,GRB2,IKB
			KB,INPP5B,INPP5D,ITGA3,
			PIK3CD,SYNJ1,SYNJ2,TGF
			BR1

Growth Hormone Signaling	2.63	2.121	CEBPA,JAK2,PIK3C2G,PIK 3CD,PRKCE,SOCS2,SOCS3,
Tec Kinase Signaling	2.63	1	ACTB,GNAI2,GNB1,GNG12 ,GTF2I,ITGA3,JAK2,PIK3C2 G,PIK3CD,PRKCE,RHOBTB 1,RHOT1,STAT5A
Pancreatic Adenocarcinoma Signaling	2.59	-0.378	BRCA2,CDKN1B,GRB2,JAK 2,MDM2,PIK3C2G,PIK3CD, PLD1,RALBP1,TGFBR1
Nitric Oxide Signaling in the Cardiovascular System	2.56	0.632	ATP2A2,ATP2A3,Calm1 (includes others),GUCY2C,ITPR1,PDE 1A,PDE5A,PIK3C2G,PIK3C D,PRKCE
IL-9 Signaling	2.47	1	PIK3C2G,PIK3CD,SOCS2,S OCS3,STAT5A
Adipogenesis pathway	2.45	NA	ARNTL,ATG7,CEBPA,FGFR 3,HDAC10,HDAC6,KAT6A, LPL,NOCT,PPIP5K1,SETDB 1
Role of BRCA1 in DNA Damage Response	2.45	NA	ACTB,ARID1A,ATR,BRCA2 ,FANCM,RAD50,RFC1,SMA RCA2
JAK/Stat Signaling	2.45	0.707	GRB2,JAK2,PIAS3,PIK3C2G,PI K3CD,SOCS2,SOCS3,STAT5A
Cardiac Hypertrophy Signaling (Enhanced)	2.36	0.962	ACVR2B,ADCY3,ADCY6,ATF2 ,ATP2A2,ATP2A3,Calm1 (includes others),DIAPH1,FGFR3,GNAI2, GNB1,HDAC10,HDAC6,IKBKB, IL1R1,ITGA3,ITPR1,JAK2,NFA T5,PDE1A,PDE4B,PDE4C,PDE5 A,PIK3C2G,PIK3CD,PRKCE,TG FBR1
Phospholipase C Signaling	2.36	-0.302	ADCY3,ADCY6,ATF2,Calm1 (includes others),FCGR2A,GNB1,GNG12, GRB2,HDAC10,HDAC6,ITGA3, ITPR1,NFAT5,PLD1,PRKCE,RH OBTB1,RHOT1
D-myo-inositol (1,4,5)-trisphosphate Degradation	2.35	0	INPP5B,INPP5D,SYNJ1,SYNJ2
Cell Cycle: G1/S Checkpoint Regulation	2.31	1.633	ATR,CDKN1B,FBXL5,HDAC10, HDAC6,MDM2,RPL11
Ephrin Receptor Signaling	2.29	0.905	ABI1,ADAM10,ATF2,GNAI2,G NB1,GNG12,GRB2,ITGA3,ITSN 1,JAK2,MAP4K4,PIK3C2G,SOR BS1
Breast Cancer Regulation by Stathmin1	2.25	NA	ADCY3,ADCY6,Calm1 (includes others),CDKN1B,GNAI2,GNB1, GNG12,GRB2,ITPR1,PIK3C2G, PIK3CD,PRKCE,TUBB2A,UHM K1
Natural Killer Cell Signaling	2.25	NA	FCGR2A,GRB2,INPP5B,INPP5D ,LAIR1,PIK3C2G,PIK3CD,PRK CE,SYNJ1,SYNJ2
Role of JAK1 and JAK3 in γc Cytokine Signaling	2.24	NA	FES,GRB2,JAK2,PIK3C2G,PIK3 CD,SOCS3,STAT5A
Phagosome Formation	2.22	NA	C5AR1,FCGR2A,FN1,ITGA3,PI K3C2G,PIK3CD,PRKCE,RHOB TB1,RHOT1,TLR3
D-myo-inositol (1,3,4)-trisphosphate Biosynthesis	2.21	0	INPP5B,INPP5D,SYNJ1,SYNJ2

Role of NFAT in Regulation of the Immune	2.21	0	ATF2,Calm1 (includes
Response			others),FCGR2A,GNAI2,GNB1,
			GNG12,GRB2,HLA-
			A,IKBKB,ITPR1,NFAT5,PIK3C2
			G,PIK3CD
Renin-Angiotensin Signaling	2.17	0	ADCY3,ADCY6,ATF2,GRB2,IT
			PR1,JAK2,PIK3C2G,PIK3CD,PR
			KCE,SHF
Protein Ubiquitination Pathway	2.17	NA	BAG1,CUL2,DNAJB2,DNAJC12
			,DNAJC21,DNAJC5,HLA-
			A,HSPA5,MDM2,PAN2,UBE2M
			,UBE4A,USP15,USP19,USP34,U
			SP45,XIAP
NRF2-mediated Oxidative Stress Response	2.15	NA	ACTB,DNAJB2,DNAJC21,DNA
			JC5,FKBP5,FMO1,GSTM4,Gstm
			6,KEAP1,MGST1,PIK3C2G,PIK
			3CD,PRKCE
Aryl Hydrocarbon Receptor Signaling	2.13	-1.134	ALDH2,ATR,CDKN1B,GSTM4,
			Gstm6,MDM2,MGST1,NCOR2,
			NEDD8,NFIA,TRIP11
Systemic Lupus Erythematosus In B Cell	2.13	-1.213	Calm1 (includes
Signaling Pathway			others),FCGR2A,GRB2,INPP5B,I
			NPP5D,IRF5,JAK2,MAP4K4,NF
			AT5,PIK3C2G,PIK3CD,PRKCE,
			SHF,SYNJ1,SYNJ2,TBK1,TLR3
Thrombin Signaling	2.11	1.508	ADCY3,ADCY6,F2,GNAI2,GNB
			1,GNG12,GRB2,IKBKB,ITPR1,P
			IK3C2G,PIK3CD,PRKCE,RHOB
			TB1,RHOT1
PDGF Signaling	2.08	0	GRB2,INPP5B,INPP5D,JAK2,PI
The second second	2.00		K3C2G,PIK3CD,SYNJ1,SYNJ2
Lipid Antigen Presentation by CDI	2.08	NA	APIG2,CALR,CANX,PSAP
ID-myo-inositol Hexakisphosphate Biosynthesis	2.08	0	INPP5B,INPP5D,SYNJ1,SYNJ2
Iron homeostasis signaling nathway	2.07	NA	ATD6V0A1 CD FRYL5 HRA1/H
from nonicostasis signamig patiway	2.07	INA	DA2 HD LAV2 MMS10 NIIDD2 S
			$DA2, \Pi P, JAK2, MINIST9, NUDP2, S$
DNA Double Strand Break Penair by	2.07	NA	BPCA2 LIG1 PAD50
Homologous Recombination	2.07	INA	BRCA2,EIGI,RAD50
Calcium Transport I	2.07	NΔ	ΔΤΡ2Δ2 ΔΤΡ2Δ3 ΔΤΡ2C1
PPARa/RXRa Activation	2.06	0	ACVR2B ADCY3 ADCY6 APO
	2.00	Ũ	A2 CKAP5 GRB2 IKBKB IL1R1
			IAK2 LPL MAP4K4 NCOR2 TG
			FBR1
Caveolar-mediated Endocytosis Signaling	2.04	NA	ACTB ARCN1 FLNA FLOT2 HL
	2.0.		A-A ITGA3 ITSN1
Virus Entry via Endocytic Pathways	2.04	NA	ACTB AP1G2 FLNA HLA-
	2.01	1.1.1	A ITGA3 ITSN1 PIK3C2G PIK3
			CD PRKCE
Germ Cell-Sertoli Cell Junction Signaling	2.03	NA	ACTB.CTNND1.EPN2.ITGA3.K
Serie Serie Serie Contraction Signating	2.00	1.1.1	EAP1 PIK3C2G PIK3CD RHOB
			TB1 RHOT1 SORBS1 TGFBR1
			TUBB2A
Epithelial Adherens Junction Signaling	2.01	NA	ACTB.ACVR2B.CLIP1 CTNND
			1.EPN2.KEAP1.MET PARD3 SO
			RBS1.TGFBR1.TUBB2A
Huntington's Disease Signaling	2	0	ATF2 ATP5PF CAPNS1 DNAIC
	-	Ť	5.GNB1.GNG12.GRB2.HDAC10
			.HDAC6.HSPA5.ITPR1.NCOR2
			PIK3C2G,PIK3CD.PRKCE
Role of NFAT in Cardiac Hypertrophy	2	0.302	ADCY3,ADCY6,Calm1 (includes
			others),GNAI2,GNB1,GNG12,G
			RB2,HDAC10,HDAC6,ITPR1,PI
			K3C2G,PIK3CD,PRKCE,TGFBR
			1
iCOS-iCOSL Signaling in T Helper Cells	1.97	0	Calm1 (includes
			others),GRB2,HLA-
			A,IKBKB,INPP5D,ITPR1,NFAT
			5,PIK3C2G,PIK3CD

Actin Cytoskeleton Signaling	1.96	-0.905	ACTB,DIAPH1,F2,FLNA,FN1,G
			IT1,GNG12,GRB2,ITGA3,LBP,P
FXR/RXR Activation	1.95	NA	ABCG8 APOA2 FGA ITIH4 LPL
			,NR1H3,PKLR,SAA1,SERPINA1
Leptin Signaling in Obesity	1.95	0.447	ADCY3,ADCY6,GRB2,JAK2,PI K3C2G PIK3CD SOCS3
ATM Signaling	1.95	-1	ATF2,ATR,BRAT1,GADD45G,H
Glucocorticoid Receptor Signaling	1.92	NA	ACTB.ARID1A.BAG1.CEBPA.C
g			REBZF,FKBP5,GRB2,HSPA5,IK
			BKB,JAK2,NCOR2,NFAT5,NR3
			2,STAT5A,TAT,TGFBR1
Erythropoietin Signaling	1.92	NA	GRB2,JAK2,PIK3C2G,PIK3CD, PRKCE,SOCS3,STAT5A
IL-3 Signaling	1.92	1.134	GRB2,INPP5D,JAK2,PIK3C2G,P IK3CD,PRKCE,STAT5A
3-phosphoinositide Degradation	1.88	0.302	CA3,INPP5B,INPP5D,MTM1,M
			TMR4,PPIP5K1,SET,SIRPA,SO CS3,SYNJ1,SYNJ2
LPS/IL-1 Mediated Inhibition of RXR Function	1.87	0	ABCG8,ACOX2,ALAS1,ALDH2
			,FMO1,GSTM4,Gstm6,HMGCS2 .HS3ST6.IL1R1.LBP.MGST1.NR
			1H2,NR1H3
Antiproliferative Role of Somatostatin Receptor 2	1.87	0	CDKN1B,GNB1,GNG12,GUCY2 C,NPR2,PIK3C2G,PIK3CD
TNFR2 Signaling	1.86	NA	IKBKB,TBK1,TNFAIP3,XIAP
Gaq Signaling	1.82	1	calm1 (includes others).GNB1.GNG12.IKBKB.IT
			PR1,PIK3C2G,PIK3CD,PLD1,PR KCE,RHOBTB1,RHOT1
fMLP Signaling in Neutrophils	1.81	0.707	Calm1 (includes
			others),GNAI2,GNB1,GNG12,IT PR1 NFAT5 PIK3C2G PIK3CD P
			RKCE
Cellular Effects of Sildenafil (Viagra)	1.81	NA	ACTB,ADCY3,ADCY6,Calm1
			(includes others).GUCY2C.ITPR1.PDE1A.
			PDE4B,PDE4C,PDE5A
Apelin Cardiomyocyte Signaling Pathway	1.78	1.414	ATP2A2,ATP2A3,GNAI2,ITPR1, PIK3C2G PIK3CD PPKCE SLC9
			A8
RhoA Signaling	1.77	-2.121	ACTB,ARHGAP1,ARHGAP12,N
			RP2,PIP5K1C,PLD1,RAPGEF6, RHPN2.TTN
B Cell Receptor Signaling	1.77	-0.905	ATF2,Calm1 (includes
			others),FCGR2A,GRB2,IKBKB,I
			G,PIK3CD,SYNJ1,SYNJ2
IL-6 Signaling	1.77	0	GRB2,IKBKB,IL1R1,JAK2,LBP,
			MAP4K4,PIK3C2G,PIK3CD,SO CS3
Superpathway of D-myo-inositol (1,4,5)- trisphosphate Metabolism	1.77	0	INPP5B,INPP5D,SYNJ1,SYNJ2
α-Adrenergic Signaling	1.76	1	ADCY3,ADCY6,Calm1 (includes
			others),GNAI2,GNB1,GNG12,IT PR1,PRKCE
Thrombopoietin Signaling	1.74	0.816	GRB2,JAK2,PIK3C2G,PIK3CD, PRKCE,STAT5A
Cardiac β-adrenergic Signaling	1.74	0	ADCY3,ADCY6,ATP2A2,ATP2
			B,PDE4C,PDE5A
IGF-1 Signaling	1.74	0.378	GRB10,GRB2,JAK2,PIK3C2G,PI K3CD SOCS2 SOCS3 VWHAC
Lysine Degradation II	1.69	NA	AADAT,AASDH,AASDHPPT
FGF Signaling	1.69	-1.134	ATF2,FGFR3,GRB2,ITPR1,MET
			,PIK3C2G,PIK3CD

Calcium-induced T Lymphocyte Apoptosis	1.65	0.816	ATP2A2,ATP2A3,Calm1
			(includes others),HLA-
CXCR4 Signaling	1.65	1.667	ADCY3.ADCY6.GNAI2.GNB1.
6 6			GNG12,ITPR1,PIK3C2G,PIK3C
			D,PRKCE,RHOBTB1,RHOT1
Signaling by Rho Family GTPases	1.64	0	ACTB,CLIP1,GNAI2,GNB1,GN
			G12,11GA3,PARD3,PARD6A,PI K3C2G PIK3CD PIP5K1C PI D1
			RHOBTB1,RHOT1
Superpathway of Inositol Phosphate Compounds	1.62	-0.277	CA3,INPP5B,INPP5D,MTMR4,P
			IK3C2G,PIK3CD,PIP5K1C,PPIP
			5K1,SE1,SIRPA,SOCS3,SYNJ1, SVN12
Formaldehvde Oxidation II (Glutathione-	1.62	NA	ADH5.ESD
dependent)			
Synaptogenesis Signaling Pathway	1.61	0	ADCY3,ADCY6,AP1G2,ATF2,C
			alm1 (includes others) CTNND1 DNA IC5 CPP2
			ITPR1 ITSN1 NRXN1 PIK3C2G
			,PIK3CD,PRKCE,SHF,STXBP1,
			STXBP6
3-phosphoinositide Biosynthesis	1.61	0.302	CA3,INPP5B,MTMR4,PIK3C2G,
			SIRPA SOCS3 SYNI1
Endothelin-1 Signaling	1.6	0.577	ADCY3,ADCY6,GNAI2,GRB2,
			GUCY2C,ITPR1,PIK3C2G,PIK3
H 0.0' 1'	1.57	1.265	CD,PLD1,PRKCE,PTGS1,SHF
IL-8 Signaling	1.57	1.265	GNAI2,GNB1,GNG12,IKBKB,M AP4K4 PIK3C2G PIK3CD PLD1
			PRKCE,RHOBTB1,RHOT1,TEK
IL-10 Signaling	1.57	NA	FCGR2A,IKBKB,IL1R1,LBP,M
			AP4K4,SOCS3
Sirtuin Signaling Pathway	1.55	0	ACLY,ACSS2,ADAMI0,ARNTL
			5G.GLUD1.HMGCS2.MT-
			ATP6,NDUFA4,NDUFAF1,NDU
			FV1,NR1H2,NR1H3,VDAC2
IL-1 Signaling	1.55	NA	ADCY3,ADCY6,GNAI2,GNB1,
Ephrin B Signaling	1.55	2	ABI1.GNAI2.GNB1.GNG12.HN
Zprim 2 signing	100	-	RNPK,ITSN1
P2Y Purigenic Receptor Signaling Pathway	1.54	0	ADCY3, ADCY6, ATF2, GNAI2, G
			NBI,GNG12,PIK3C2G,PIK3CD, PRKCE
Th2 Pathway	1.54	0	ACVR2B.GRB2.HLA-
		-	A,JAK2,PIK3C2G,PIK3CD,SOC
			S3,STAT5A,TGFBR1
Endocannabinoid Developing Neuron Pathway	1.53	0	ADCY3,ADCY6,ATF2,CDKN1B
			D
HOTAIR Regulatory Pathway	1.52	-1.265	ATG7,JARID2,KMT2A,MDM2,
			MET,PIK3C2G,PIK3CD,SETDB
Anciencistin Signaling	1.47	0	1,SUZ12,XIAP
Angiopoleun Signaling	1.4/	0	D.STAT5A.TEK
Oxidative Phosphorylation	1.47	-2.121	ATP5PF,COX6B1,COX7A2,CO
			X7B,MT-
			ATP6,NDUFA4,NDUFV1,SURF
FAK Signaling	1.46	NA	ACTB,CAPNS1,GRB2,ITGA3,PI
			K3C2G,PIK3CD,TNS1
Gap Junction Signaling	1.46	NA	ACTB,ADCY3,ADCY6,GNAI2,
			GKB2,GUUY2C,HPR1,NPR2,PI K3C2G PIK3CD PRKCF TUBR2
			A
Mitochondrial Dysfunction	1.46	NA	ATP5PF,COX6B1,COX7A2,CO
			X/B,MT-
1	1	1	

			ATP6,NDUFA4,NDUFAF1,NDU FV1,OGDH,SURF1,VDAC2
Protein Kinase A Signaling	1.45	-0.243	ADCY3,ADCY6,ATF2,Calm1 (includes others),FLNA,GNAI2,GNB1,GN G12,ITPR1,NFAT5,NTN1,PDE1 A,PDE4B,PDE4C,PDE5A,PRKC E,SIRPA,TGFBR1,TTN,YWHA G
Sperm Motility	1.45	0.816	Calm1 (includes others),ERBB4,FES,FGFR3,ITPR 1,JAK2,MET,PDE1A,PDE4B,PD E4C,PRKCE,TEK,TNK2
Sphingosine-1-phosphate Signaling	1.44	1.134	ADCY3,ADCY6,GNAI2,PIK3C2 G,PIK3CD,RHOBTB1,RHOT1,S MPD4
Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes	1.42	-0.378	ACTB,FCGR2A,INPP5D,PIK3C 2G,PLD1,PRKCE,RAB11A
Choline Biosynthesis III Pala of Tierror Fractor in Concern	1.42	NA	CHP11,PHKA1,PLD1
CREB Signaling in Neurons	1.42		ARKB1,F2,FGA,HGA3,JAK2,PI K3C2G,PIK3CD,STAT5A
	1.41	0	(includes others),GNAI2,GNB1,GNG12,G RB2,ITPR1,PIK3C2G,PIK3CD,P RKCE
Integrin Signaling	1.41	0.632	ACTB,ARF4,CAPNS1,GIT1,GR B2,ITGA3,PIK3C2G,PIK3CD,R HOBTB1,RHOT1,TNK2,TTN
Aldosterone Signaling in Epithelial Cells	1.41	0.447	DNAJB2,DNAJC12,DNAJC21,D NAJC5,HSPA5,ITPR1,PIK3C2G, PIK3CD,PIP5K1C,PRKCE
Neuregulin Signaling	1.4	0.816	CDKN1B,ERBB4,ERRFI1,GRB2 ,ITGA3,PRKCE,STAT5A
IL-7 Signaling Pathway	1.4	-0.816	CDKN1B,GRB2,MET,PIK3C2G, PIK3CD,STAT5A
Semaphorin Signaling in Neurons	1.4	NA	ARHGAP1,FES,MET,RHOBTB1 ,RHOT1
Fc Epsilon RI Signaling	1.4	0	GRB2,INPP5B,INPP5D,PIK3C2 G,PIK3CD,PRKCE,SYNJ1,SYNJ 2
Apelin Endothelial Signaling Pathway	1.4	0.707	ADCY3,ADCY6,Calm1 (includes others),GNAI2,PIK3C2G,PIK3C D,PRKCE,TEK
mTOR Signaling	1.4	0.816	EIF4G1,EIF4G3,PIK3C2G,PIK3 CD,PLD1,PRKCE,RHOBTB1,R HOT1,RPS14,RPS15A,RPS19,TS C1
GP6 Signaling Pathway	1.38	0	ADAM10,Calm1 (includes others),COL27A1,FGA,ITPR1,PI K3C2G,PIK3CD,PRKCE
Role of JAK family kinases in IL-6-type Cytokine Signaling	1.37	NA	JAK2,SOCS3,STAT5A
Lysine Degradation V	1.37	NA	AADAT,AASDH,AASDHPPT
CD28 Signaling in T Helper Cells	1.37	-0.378	Calm1 (includes others),GRB2,HLA- A,IKBKB,ITPR1,NFAT5,PIK3C2 G,PIK3CD
SAPK/JNK Signaling	1.37	-0.378	ATF2,GNB1,GRB2,HNRNPK,M AP4K4,PIK3C2G,PIK3CD
LPS-stimulated MAPK Signaling	1.36	0.447	ATF2,IKBKB,LBP,PIK3C2G,PI K3CD,PRKCE
PPAR Signaling	1.35	1.134	GRB2,IKBKB,IL1R1,MAP4K4,N COR2,NR1H3,STAT5A
FL13 Signaling in Hematopoietic Progenitor Cells	1.34	0	A1F2,GKB2,INPP5D,PIK3C2G,P IK3CD,STAT5A
IL-23 Signaling Pathway	1.32	1	JAK2,PIK3C2G,PIK3CD,SOCS3

Molecular Mechanisms of Cancer	1.32	NA	ADCY3,ADCY6,ATR,CDK9,CD KN1B,CTNND1,GNAI2,GRB2,I TGA3,JAK2,MDM2,PIK3C2G,PI K3CD,PRKCE,RALBP1,RHOBT B1,RHOT1,TGFBR1,XIAP
14-3-3-mediated Signaling	1.3	-0.378	CDKN1B,GRB2,PIK3C2G,PIK3 CD,PRKCE,TSC1,TUBB2A,YW HAG
CCR3 Signaling in Eosinophils	1.3	NA	Calm1 (includes others),GNAI2,GNB1,GNG12,IT PR1,PIK3C2G,PIK3CD,PRKCE

 Table 23. Significant Pathways for differentially expressed transcripts in ²⁸Si vs. nonirradiated control at 4 months.

Ingenuity Canonical Pathways	-log ₁₀ (p-value)	z-score	Molecules
Acute Phase Response Signaling	10.9	1.807	A2M,AKT3,APCS,APOA2,C 1R,C4A/C4B,GRB2,HPX,IL1 R1,IL33,ITIH3,ITIH4,JAK2, MAPK9,NR3C1,PIK3CA,PI K3CD,SAA1,Saa3,SERPINA 3,SOCS2,SOCS3,STAT3,TF
EIF2 Signaling	5.58	2.121	AKT3,EIF2S3,EIF4G1,EIF4 G3,EIF5,GRB2,MT- RNR1,MT-RNR2,MT- TM,MYCN,PABPC1,PIK3C A,PIK3CD,RPL10A,RPL18A ,RPL38,RPS14,RPS15A,RPS 3
PI3K/AKT Signaling	5.25	2.673	AKT3,CDKN1B,GRB2,GSK 3A,HSP90AB1,INPPL1,ITG A3,JAK2,MDM2,PIK3CA,PI K3CD,SYNJ1,SYNJ2,TSC1
IGF-1 Signaling	5.04	1.265	AKT3,GRB10,GRB2,IGFBP1 ,IGFBP2,JAK2,PIK3CA,PIK3 CD,PXN,SOCS2,SOCS3,STA T3
Insulin Receptor Signaling	4.97	1.387	ACLY,AKT3,GRB10,GRB2, GSK3A,INPPL1,JAK2,PIK3 CA,PIK3CD,PPP1R10,SOCS 3,SYNJ1,SYNJ2,TSC1
IL-9 Signaling	4.97	1.342	CISH,PIK3CA,PIK3CD,SOC S2,SOCS3,STAT3,STAT5A
Growth Hormone Signaling	4.93	1.265	A2M,CEBPA,JAK2,PIK3CA, PIK3CD,RPS6KA1,SOCS2,S OCS3,STAT3,STAT5A
LXR/RXR Activation	4.89	0.832	APOA2,C4A/C4B,CD14,CD3 6,HPX,IL1R1,IL33,ITIH4,NR 1H2,PON3,RXRB,SAA1,TF
PTEN Signaling	4.89	-0.277	AKT3,CDKN1B,FGFR3,GR B2,GSK3A,INPPL1,ITGA3, MAGI1,MAST2,PIK3CA,PI K3CD,SYNJ1,SYNJ2
JAK/Stat Signaling	4.68	1.897	AKT3,CISH,GRB2,JAK2,PI K3CA,PIK3CD,SOCS2,SOC S3,STAT3,STAT5A

Regulation of eIF4 and p70S6K Signaling	4.45	2.236	AKT3,EIF2S3,EIF4G1,EIF4 G3,GRB2,ITGA3,MT-
			RNR1,M1- RNR2,PABPC1,PIK3CA,PIK 3CD,RPS14,RPS15A,RPS3
Chronic Myeloid Leukemia Signaling	4.43	NA	AKT3,CDKN1B,E2F3,GRB2, HDAC5,HDAC6,MDM2,PIK
			A
IL-4 Signaling	4.36	NA	AKT3,GRB2,INPPL1,JAK2, NFAT5,NR3C1,PIK3CA,PIK 3CD,SYNJ1,SYNJ2
IL-6 Signaling	4.32	1.508	A2M,AKT3,CD14,GRB2,IL1 R1,IL33,JAK2,MAPK9,PIK3 CA,PIK3CD,SOCS3,STAT3
Pancreatic Adenocarcinoma Signaling	4.13	1	AKT3,CDKN1B,E2F3,GRB2, JAK2,MAPK9,MDM2,PIK3C A,PIK3CD,PLD1,STAT3
HGF Signaling	4.03	1.897	AKT3,DOCK1,ELF4,GRB2,I TGA3,Map3k7,MAPK9,PIK3 CA,PIK3CD,PXN,STAT3
Role of JAK2 in Hormone-like Cytokine Signaling	3.85	NA	JAK2,SIRPA,SOCS2,SOCS3, STAT3,STAT5A
Prolactin Signaling	3.74	1.414	GRB2,JAK2,NR3C1,PIK3CA ,PIK3CD,SOCS2,SOCS3,ST AT3,STAT5A
HER-2 Signaling in Breast Cancer	3.74	NA	AKT3,CDKN1B,GRB2,GSK 3A,MDM2,PARD3,PIK3CA, PIK3CD,TSC1
IL-22 Signaling	3.65	0.447	AKT3,MAPK9,SOCS3,STAT 3,STAT5A
Role of JAK family kinases in IL-6-type Cytokine Signaling	3.56	NA	JAK2,MAPK9,SOCS3,STAT 3,STAT5A
GM-CSF Signaling	3.53	2.121	AKT3,CAMK2G,CISH,GRB 2,JAK2,PIK3CA,PIK3CD,ST AT3
Acute Myeloid Leukemia Signaling	3.44	1	AKT3,ARAF,CEBPA,GRB2, PIK3CA,PIK3CD,PML,STA T3,STAT5A
HOTAIR Regulatory Pathway	3.28	0	AKT3,ATXN1,CDH1,DZIP3, KMT2A,MDM2,PIK3CA,PI K3CD,SETDB1,STAT3,STK 38,SUZ12
CNTF Signaling	3.25	1.89	GRB2,JAK2,LIFR,PIK3CA,P IK3CD,RPS6KA1,STAT3
IL-23 Signaling Pathway	3.22	1.633	AKT3,JAK2,PIK3CA,PIK3C D,SOCS3,STAT3
mTOR Signaling	3.12	0.378	AKT3,EIF4G1,EIF4G3,MT- RNR1,MT- RNR2,PIK3CA,PIK3CD,PLD 1,RPS14,RPS15A,RPS3,RPS 6KA1,STK11,TSC1
ErbB2-ErbB3 Signaling	3.04	1.633	CDKN1B,GRB2,GSK3A,PIK 3CA,PIK3CD,STAT3,STAT5 A
Cancer Drug Resistance By Drug Efflux	3.04	NA	ABCC10,AKT3,ARAF,MDM 2,PDK1,PIK3CA,PIK3CD
Telomerase Signaling	2.96	2.646	AKT3,ELF4,GRB2,HDAC5, HDAC6,HSP90AB1,PIK3CA ,PIK3CD,TEP1

14-3-3-mediated Signaling	2.95	0	AKT3,CDKN1B,GRB2,GSK
			3A,MAPK9,PIK3CA,PIK3C
			D,RPS6KA1,STK11,TSC1
Paxillin Signaling	2.91	1	ACTN4,DOCK1,GIT2,GRB2,
			ITGA3,MAPK9,PIK3CA,PIK
	2.00		3CD,PXN
Role of JAK1 and JAK3 in γc Cytokine	2.89	NA	GRB2,JAK2,PIK3CA,PIK3C
Signaling			D,SOCS3,STAT3,STAT5A
SPINK1 General Cancer Pathway	2.89	1.134	AKT3,JAK2,Mt1,Mt2,PIK3C
			A,PIK3CD,STAT3
LPS/IL-1 Mediated Inhibition of RXR	2.88	0.816	ACSL1,ALDH3A2,CD14,CY
Function			P2A6 (includes
			others),CYP2B6,CYP2C8,FM
			OI,Gstm3,ILIRI,IL33,MAP
			K9,MGST1,NR1H2,SLC27A
	2.05	1 207	
Adrenomedullin signaling pathway	2.85	1.38/	AK13,ARAF,CFH,GRB2,GS
			K3A,GUCYIBI,GUCY2C,IL
			33,11PR1,MAPK9,PIK3CA,P
DVD/DVD A -titi	2.95	NIA	AKT2 ALDU2A2 CVD2A(
PAR/RAR Activation	2.83	INA	AK15,ALDH5A2,CYP2A0
			(Includes others) CVD2D6 CVD2C8 IC
			FDD1 ND2C1
TD/DVD A stimution	2.91	NIA	FBP1,NK3CI
IR/RAR Activation	2.81	NA	AKKIC3,AKI3,COL6A3,M
			DWI2,PIK5CA,PIK5CD,KAK
A din a con esis notherese	2.91	NA	D, I DLIAKI
Adipogenesis patnway	2.81	INA	CEBPA,FGFK5,G1F2H1,HD
			$AC3, \Pi DAC0, Kaloo, KA17, K$ DS6V A1 SETDD1 TDI 1VD1
Systemia Lunus Engthematosus Signaling	2 70	NA	AKT2 C6 C8P CD2PP2 CD7
Systemic Lupus Erythematosus Signaning	2.79	INA	2 CDEM CDD2 UNDNDA2D
			1 II 23 NEAT5 DIV 2CA DIV 3
			CD DDDE2 DDDE40B
PDGE Signaling	2.78	1 414	GPR2 INDDI 1 LAK2 DIK3C
T DOI' Signaling	2.76	1.414	A PIK3CD STAT3 SVNI1 S
			VNI2
D-myo-inositol (1.4.5)-trisphosphate	2 77	0	INPPL 1 SEC16A SYNII SY
Degradation	2.77	Ū.	NI2
FXR/RXR Activation	2.76	NA	AKT3 APOA2 C4A/C4B HP
	2.70	1111	X II 33 ITIH4 MAPK9 PON3
			SAA1.TF
Complement System	2.69	NA	C1R.C4A/C4B.C6.C8B.CFH
B Cell Receptor Signaling	2.66	1.155	AKT3.CAMK2G.GRB2.GSK
			3A.INPPL1.Map3k7.MAPK9.
			NFAT5.PIK3CA.PIK3CD.SY
			NJ1,SYNJ2
Inhibition of Angiogenesis by TSP1	2.64	-1	AKT3,CD36,CD47,GUCY1B
			1,MAPK9
D-myo-inositol (1,3,4)-trisphosphate	2.63	0	INPPL1,SEC16A,SYNJ1,SY
Biosynthesis			NJ2
FAK Signaling	2.61	NA	AKT3,DOCK1,GIT2,GRB2,I
			TGA3,PIK3CA,PIK3CD,PX
			N
Leptin Signaling in Obesity	2.58	1.89	AKT3,GRB2,JAK2,PIK3CA,
			PIK3CD,SOCS3,STAT3
EGF Signaling	2.55	2.449	AKT3,GRB2,ITPR1,PIK3CA,
			PIK3CD,STAT3
Erythropoietin Signaling	2.55	NA	AKT3,GRB2,JAK2,PIK3CA,
			PIK3CD,SOCS3,STAT5A

IL-3 Signaling	2.55	2.646	AKT3,GRB2,JAK2,PIK3CA, PIK3CD STAT3 STAT5A
ERK/MAPK Signaling	2.53	1.508	ARAF,DOCK1,ELF4,GRB2,I TGA3,MYCN,PIK3CA,PIK3 CD PPP1R10 PXN RPS6K A1
IL-7 Signaling Pathway	2.51	1.134	,STAT3 AKT3,CDKN1B,GRB2,GSK
			3A,PIK3CA,PIK3CD,STAT5 A
Antiproliferative Role of TOB in T Cell Signaling	2.49	NA	CDKN1B,PABPC1,PABPC4, RPS6KA1
1D-myo-inositol Hexakisphosphate Biosynthesis II (Mammalian)	2.49	0	INPPL1,SEC16A,SYNJ1,SY NJ2
Aryl Hydrocarbon Receptor Signaling	2.49	-1.89	AIP,ALDH3A2,CDKN1B,Gst m3,HSP90AB1,MDM2,MGS T1,NFIB,RBL2,RXRB
Mouse Embryonic Stem Cell Pluripotency	2.47	2.121	AKT3,APC,GRB2,JAK2,LIF R,PIK3CA,PIK3CD,STAT3
FLT3 Signaling in Hematopoietic Progenitor Cells	2.42	1.89	AKT3,GRB2,PIK3CA,PIK3C D,RPS6KA1,STAT3,STAT5 A
Docosahexaenoic Acid (DHA) Signaling	2.41	NA	AKT3,BID,GSK3A,PIK3CA, PIK3CD
Glucocorticoid Receptor Signaling	2.41	NA	A2M,AKT3,ANXA1,BAG1, CEBPA,GRB2,GTF2H1,HSP 90AB1,JAK2,MAPK9,NFAT 5,NR3C1,PIK3CA,PIK3CD,S TAT3,STAT5A,TAT
Xenobiotic Metabolism Signaling	2.34	NA	AIP,ALDH3A2,CAMK2G,C YP2B6,CYP2C8,ESD,FMO1, Gstm3,HDAC5,HSP90AB1, Map3k7,MAPK9,MGST1,PI K3CA,PIK3CD
Myc Mediated Apoptosis Signaling	2.34	NA	AKT3,BID,GRB2,MAPK9,PI K3CA,PIK3CD
IL-17A Signaling in Airway Cells	2.3	1.633	AKT3,JAK2,MAPK9,PIK3C A,PIK3CD,STAT3
FGF Signaling	2.28	1.89	AKT3,FGFR3,GRB2,ITPR1, PIK3CA,PIK3CD,STAT3
Thrombopoietin Signaling	2.27	2.449	GRB2,JAK2,PIK3CA,PIK3C D,STAT3,STAT5A
Cell Cycle: G1/S Checkpoint Regulation	2.27	0	CDKN1B,E2F3,HDAC5,HD AC6,MDM2,RBL2
Glutamine Degradation I	2.26	NA	GLS,GLS2
Superpathway of D-myo-inositol (1,4,5)- trisphosphate Metabolism	2.16	0	INPPL1,SEC16A,SYNJ1,SY NJ2
ILK Signaling	2.15	1.265	ACTN4,AKT3,CDH1,DOCK 1,FLNA,GSK3A,MAPK9,M YH10,PIK3CA,PIK3CD,PXN
Regulation of the Epithelial-Mesenchymal Transition Pathway	2.15	NA	AKT3,APC,ARAF,CDH1,FG FR3,GRB2,JAK2,PIK3CA,PI K3CD,STAT3,ZEB2
Sertoli Cell-Sertoli Cell Junction Signaling	2.14	NA	A2M,ACTN4,AKT3,CDH1,E PB41,EPN2,GSK3A,GUCY1 B1,ITGA3,Map3k7,MAPK9
IL-15 Signaling	2.12	NA	AKT3,JAK2,PIK3CA,PIK3C D,STAT3,STAT5A
Glioma Signaling	2.12	1.342	AKT3,CAMK2G,E2F3,GRB2 ,MDM2,PIK3CA,PIK3CD,R BL2

PPARα/RXRα Activation	2.12	-2.333	AIP,APOA2,CD36,CKAP5,C
			YP2C8,GRB2,HSP90AB1,IL
			1R1.JAK2.MED12.SLC27A1
Actin Cytoskeleton Signaling	2.11	1 667	ACTN4 APC CD14 DOCK1
rethi Cytoskeleton Sighaning	2.11	1.007	FI NA GPR2 ITGA3 MVH10
			NCV AD1 DIV2CA DIV2CD
			NCKAPI,PIK5CA,PIK5CD,
			PAN
Prostate Cancer Signaling	2.1	NA	AKT3,CDKN1B,GRB2,HSP9
			0AB1,MDM2,PIK3CA,PIK3
			CD
Clathrin-mediated Endocytosis Signaling	2.1	NA	APOA2, EPS15, GAK, GRB2,
			MDM2.PICALM.PIK3CA.PI
			K3CD SH3GL1 SYNII TE
Polo of NANOG in Mommolion Embryonia	2.1	2 6 4 6	AKT2 ADC CDD2 LAK2 LIE
	2.1	2.040	D DW2CA DW2CD STAT2
Stem Cell Pluripotency	2.1	2	R,PIK3CA,PIK3CD,STAT3
Melanoma Signaling	2.1	2	AK13,CDH1,MDM2,PIK3C
			A,PIK3CD
Estrogen Biosynthesis	2.1	-1.342	AKR1C3,CYP2A6 (includes
			others),CYP2B6,CYP2C8,HS
			D17B10
Glioblastoma Multiforme Signaling	2.09	2 3 3 3	AKT3 APC CDKN1B E2E3
Ghobiastonia Multifornie Signating	2.09	2.335	CDD2 ITDD1 MDM2 DIV2C
			A DIV2CD TSC1
			A,PIK3CD,ISCI
Small Cell Lung Cancer Signaling	2.06	1.342	AKT3,BID,CDKN1B,PIK3C
			A,PIK3CD,RXRB
ATM Signaling	2.06	-1.633	BID,HERC2,MAPK9,MDM2,
			MDM4.SMC2.TRRAP
p53 Signaling	2.03	-0.378	AKT3.COO8A.MDM2.MDM
per signing	2.00	0.070	4 PIK3CA PIK3CD PMI
Ea Engilon DI Signaling	2.02	1 414	AKT2 CDD2 NIDDI 1 MADY
re Epsnon Ki signanig	2.02	1.414	AKIS, OKD2, INFELI, MAFK
			9,PIK3CA,PIK3CD,SYNJI,S
			YNJ2
TREM1 Signaling	2.01	2.449	AKT3,GRB2,JAK2,STAT3,S
			TAT5A,TLR1
Germ Cell-Sertoli Cell Junction Signaling	2.01	NA	A2M,ACTN4,CDH1,EPN2,IT
			GA3.Map3k7.MAPK9.PIK3C
			A PIK 3CD PXN
Non Small Cell Lung Concer Signaling	1.03	2 236	AKT3 CPB2 ITDP1 DIK3CA
Non-Sman Cen Lung Cancer Signating	1.95	2.230	DIV2CD DVDD
	1.0	27.4	PIKSCD,KAKB
Epithelial Adherens Junction Signaling	1.9	NA	ACTN4,AKT3,APC,CDHI,C
			LIP1,EPN2,MAGI1,MYH10,
			PARD3
Phagosome Maturation	1.87	NA	ATP6V0A1,ATP6V0C,CAN
			X,CTSC,CTSH,Dync1i2,M6P
			R.PRDX1.VPS39
VEGE Signaling	1.86	1 633	ACTNA AKT3 EIE2S3 GRB2
V LOI Signaling	1.00	1.055	DIV 2 CA DIV 2 CD DVN
	1.70	1 2 4 2	AKT2 CDU1 CDD2 DW2CA
Endometrial Cancer Signaling	1.79	1.342	AK15,CDH1,GKB2,PIK5CA,
			PIK3CD
NRF2-mediated Oxidative Stress Response	1.78	NA	DNAJB2,DNAJC21,DNAJC5
			,FMO1,Gstm3,MAPK9,MGS
			T1,PIK3CA,PIK3CD,PRDX1
STAT3 Pathway	1.77	-0.378	CISH.FGFR3.IL1R1.JAK2.M
			APK9.SOCS2.SOCS3 STAT3
Type II Diabetes Mellitus Signaling	1 77	0.447	ACSI 1 AKT3 CD26 MADKO
Type II Diabetes Menitus Signaling	1.//	0.77/	DIV2CA DIV2CD SI C27A1
			,FIK3CA,FIK3CD,SLC2/AI,
			50052,50053
IL-2 Signaling	1.76	2.236	AKT3,GRB2,PIK3CA,PIK3C
			D,STAT5A

Estrogen Receptor Signaling	1.76	NA	GRB2,GTF2H1,IGFBP1,ME D12,MED13L,MED15,NR3C 1,TRRAP
Nitric Oxide Signaling in the Cardiovascular System	1.74	2.646	AKT3,GUCY1B1,GUCY2C, HSP90AB1,ITPR1,PIK3CA,P IK3CD
Oncostatin M Signaling	1.72	2	GRB2,JAK2,STAT3,STAT5 A
CD40 Signaling	1.71	0.447	MAPK9,PIK3CA,PIK3CD,S TAT3,TNFAIP3
Aldosterone Signaling in Epithelial Cells	1.69	NA	DNAJB2,DNAJC12,DNAJC2 ,DNAJC21,DNAJC5,HSP90A B1,ITPR1,PIK3CA,PIK3CD
iCOS-iCOSL Signaling in T Helper Cells	1.66	1.633	AKT3,CAMK2G,GRB2,ITPR 1,NFAT5,PIK3CA,PIK3CD
Endocannabinoid Developing Neuron Pathway	1.66	0.378	AKT3,ARAF,CDKN1B,MAP K9,PIK3CA,PIK3CD,STAT3
Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis	1.66	NA	AKT3,APC,CAMK2G,CEBP A,IL1R1,IL33,JAK2,MAPK9, NFAT5,PIK3CA,PIK3CD,SO CS3,STAT3,TLR1
Regulation of Cellular Mechanics by Calpain Protease	1.65	NA	ACTN4,CDKN1B,GRB2,ITG A3,PXN
2-ketoglutarate Dehydrogenase Complex	1.64	NA	DLST,OGDH
RAR Activation	1.63	NA	AKR1C3,AKT3,GTF2H1,JA K2,MAPK9,PIK3CA,PIK3C D,PML,RXRB,STAT5A
Th17 Activation Pathway	1.61	1.633	HSP90AB1,IL1R1,JAK2,NF AT5,SOCS3,STAT3
NGF Signaling	1.59	1.134	AKT3,GRB2,Map3k7,MAPK 9,PIK3CA,PIK3CD,RPS6KA 1
Bupropion Degradation	1.58	NA	CYP2A6 (includes others),CYP2B6,CYP2C8
Role of Tissue Factor in Cancer	1.56	NA	AKT3,ITGA3,JAK2,PIK3CA, PIK3CD,RPS6KA1,STAT5A
NF-κB Signaling	1.54	0.333	AKT3,ARAF,FGFR3,IL1R1,I L33,PIK3CA,PIK3CD,TLR1, TNFAIP3
Cell Cycle: G2/M DNA Damage Checkpoint Regulation	1.53	1	MDM2,MDM4,RPS6KA1,TR IP12
Natural Killer Cell Signaling	1.52	NA	AKT3,GRB2,INPPL1,PIK3C A,PIK3CD,SYNJ1,SYNJ2
IL-10 Signaling	1.51	NA	CD14,IL1R1,IL33,SOCS3,ST AT3
CD28 Signaling in T Helper Cells	1.51	1.89	AKT3,GRB2,ITPR1,MAPK9, NFAT5,PIK3CA,PIK3CD
Role of p14/p19ARF in Tumor Suppression	1.5	NA	MDM2,PIK3CA,PIK3CD
PAK Signaling	1.5	0.816	GRB2,ITGA3,MAPK9,PIK3 CA,PIK3CD,PXN
Molecular Mechanisms of Cancer	1.49	NA	AKT3,APC,BID,CAMK2G,C DH1,CDK9,CDKN1B,E2F3, GRB2,GSK3A,ITGA3,JAK2, MAPK9,MDM2,PIK3CA,PIK 3CD
Renin-Angiotensin Signaling	1.48	1.633	GRB2,ITPR1,JAK2,MAPK9, PIK3CA,PIK3CD,STAT3
Neuregulin Signaling	1.46	1	AKT3,CDKN1B,GRB2,HSP9 0AB1,ITGA3,STAT5A

Protein Ubiquitination Pathway	1.45	NA	BAG1,DNAJB2,DNAJC12,D NAJC2,DNAJC21,DNAJC5, HSP90AB1,MDM2,NEDD4L ,UBE2M,USP24,USP8
Glutathione Redox Reactions I	1.43	NA	GPX1,GPX4,MGST1
Angropoleun Signanng	1.45	INA	D.STAT5A
Ceramide Degradation	1.43	NA	ACER2,ASAH1
Systemic Lupus Erythematosus In B Cell Signaling Pathway	1.42	1.732	AKT3,CD72,GRB2,IL33,INP PL1,JAK2,NFAT5,PIK3CA,P IK3CD,STAT3,SYNJ1,SYNJ 2
PPAR Signaling	1.41	-1.633	AIP,GRB2,HSP90AB1,IL1R1 ,IL33,STAT5A
Estrogen-Dependent Breast Cancer Signaling	1.41	2	AKT3,HSD17B10,PIK3CA,P IK3CD,STAT5A
VDR/RXR Activation	1.39	NA	CD14,CDKN1B,CEBPA,IGF BP1,RXRB
GDNF Family Ligand-Receptor Interactions	1.39	1	GRB2,ITPR1,MAPK9,PIK3C A,PIK3CD
3-phosphoinositide Degradation	1.38	0	INPP4A,INPPL1,MTM1,PPP 1R16B,SIRPA,SOCS3,SYNJ 1,SYNJ2
IL-17 Signaling	1.37	NA	AKT3,JAK2,MAPK9,PIK3C A,PIK3CD
Superpathway of Inositol Phosphate Compounds	1.37	1.265	INPPL1,PI4KB,PIK3CA,PIK 3CD,PPP1R16B,SEC16A,SIR PA,SOCS3,SYNJ1,SYNJ2
PD-1, PD-L1 cancer immunotherapy pathway	1.36	-1.633	AKT3,CDKN1B,JAK2,PIK3 CA,PIK3CD,STAT5A
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages	1.35	1	AKT3,APOA2,JAK2,Map3k7 ,MAPK9,PIK3CA,PIK3CD,P PP1R10,SIRPA
Antiproliferative Role of Somatostatin Receptor 2	1.35	NA	CDKN1B,GUCY1B1,GUCY 2C,PIK3CA,PIK3CD
Role of IL-17A in Arthritis	1.35	NA	MAPK9,PIK3CA,PIK3CD,R PS6KA1
HMGB1 Signaling	1.34	1.134	AKT3,IL1R1,IL33,Kat6b,KA T7,MAPK9,PIK3CA,PIK3CD
Th2 Pathway	1.33	2.449	GRB2,IL33,JAK2,PIK3CA,PI K3CD,SOCS3,STAT5A
Sumoylation Pathway	1.33	-1	CDH1,CEBPA,MAPK9,MD M2,NR3C1,PML
Colorectal Cancer Metastasis Signaling	1.32	1.897	AKT3,APC,CDH1,GRB2,JA K2,MAPK9,MSH3,PIK3CA, PIK3CD,STAT3,TLR1
Tec Kinase Signaling	1.32	1.414	GTF2I,ITGA3,JAK2,MAPK9 ,PIK3CA,PIK3CD,STAT3,ST AT5A

 Table 24. Significant Pathways for differentially expressed transcripts in ²⁸Si vs. nonirradiated control at 9 months.

Ingenuity Canonical Pathways -log₁₀(p-value) z-score Molecules

Acute Phase Response Signaling	6	-2.53	C2,C4A/C4B,CP,HP,IL18,ITI
			H3,MAPK9,NFKB1,NR3C1,
			PIK3CD,PIK3CG,SAA1,Saa3
			,SERPINA1,SERPINE1,TCF
			3,TF
LXR/RXR Activation	5.1	0.302	C4A/C4B,CD36,IL18,LYZ,M
			LXIPL.NCOR2.NFKB1.NR1
			H2.RXRA.S100A8.SAA1.SE
			RPINA1 TF
Adipogenesis pathway	4 18	NA	FRCC3 FGFR2 FGFR3 HDA
rupogenesis panway		1421	C6 HDAC7 KDM1A KMT2B
			PPIP5K1 RPS6K A1 SAP130
			SETDB1 SIN3A
LPS/II -1 Mediated Inhibition of RXR	4.08	-0.707	ABCB11 ACSL1 ACSL4 AL
Function	1.00	0.707	AS1 CYP2B6 CYP2C8 GST
1 unetion			M4 GSTM5 Gstm6 II 18 LIP
			C MAPKO NR 1H2 PPARGC
			1B PYPA SI C27A1
DDADa/DVDa Activation	2 76	1 265	ADCV4 ADIPOP2 CD26 CV
FFARu/RARu Activation	3.70	1.205	ADC 14, ADIFOR2, CD30, CK
			APJ,CIP2C6, HELZ2, HSP90
			ABI,MEDI2,MED25,NCOK
			2,NFKBI,PKKAAI,KXKA,S
	2 (0	NTA	LC2/AI
Germ Cell-Sertoli Cell Junction Signaling	3.68	NA	ACIN4,CDHI,CINNDI,EP
			N2,FNBP1,MAP3K13,MAPK
			9,MYO/A,PIK3C3,PIK3CD,
			PIK3CG,PXN,RHOT1
Role of IL-17A in Arthritis	3.55	NA	ATF2,MAPK9,NFKB1,PIK3
			C3,PIK3CD,PIK3CG,RPS6K
			A1
Small Cell Lung Cancer Signaling	3.54	0.447	APAF1,MYC,NFKB1,PIK3C
			3,PIK3CD,PIK3CG,RXRA,SI
			N3A
IL-12 Signaling and Production in	3.51	NA	IL18,LYZ,MAPK9,NFKB1,P
Macrophages			IK3C3,PIK3CD,PIK3CG,PR
			KD3,RXRA,S100A8,SERPIN
			A1
FXR/RXR Activation	3.49	NA	ABCB11,C4A/C4B,FETUB,I
			L18,LIPC,MAPK9,MLXIPL,
			RXRA, SAA1, SERPINA1, TF
Type II Diabetes Mellitus Signaling	3.41	0.333	ACSL1,ACSL4,ADIPOR2,C
			D36,MAPK9,NFKB1,PIK3C
			3.PIK3CD.PIK3CG.PRKAA1
			.PRKD3.SLC27A1
Reelin Signaling in Neurons	3.38	NA	ARHGEF2, ARHGEF3, ITGA
recent signaling in rearons	5.50	1.11	L.MAPK8IP3.MAPK9.PIK3
			C3 PIK3CD PIK3CG
Xenobiotic Metabolism Signaling	3 38	NA	ARNT CYP2B6 CYP2C8 FS
Achoolotic Wetabolishi Sighaling	5.50	1424	D GSTM4 GSTM5 Gstm6 HS
			P90AB1 MAP3K13 MAPK9
			NCOR2 NEK B1 PIK 3C3 PIK
			3CD PIK 3CG PRK D3 R XR A
II K Signaling	3 27	-1 387	ACTN4 ATE2 CDH1 ENIPD1
	5.21	-1.507	MADEA MYC MVU10 NEV
			B1 DIK 2C2 DIK 2CD DIK 2CC
			DYN DHOT1
Analin Danaraag Signaling Dathway	2 27	0	MADEANEED DIV 202 DIV
Apenn rancieas Signaling Pathway	5.27	0	WIATKY, NEKDI, PIKJUJ, PIK
Analia Endethal' 10' 1' D.4	2.26	0.622	ADOVA ADVT C 1 1
Apelin Endothelial Signaling Pathway	3.20	0.632	ADCY4,AKN1,Calm1
			(includes
			others),MAPK9,NFKB1,PIK3

			C3,PIK3CD,PIK3CG,PRKA
			A1,PRKD3
Production of Nitric Oxide and Reactive	3.25	-1.387	FNBP1,LYZ,MAP3K13,MAP
Oxygen Species in Macrophages			K9,NFKB1,PIK3C3,PIK3CD,
			PIK3CG,PRKD3,RHOT1,S10
			0A8,SERPINA1,TYK2
Chronic Myeloid Leukemia Signaling	3.22	NA	HDAC6,HDAC7,MECOM,M
			YC,NFKB1,PIK3C3,PIK3CD
			,PIK3CG,SIN3A
SAPK/JNK Signaling	3.22	0	ATF2,GNB1,MAP3K13,MA
			PK8IP3,MAPK9,MINK1,PIK
			3C3,PIK3CD,PIK3CG
Clathrin-mediated Endocytosis Signaling	3.21	NA	AP1G2,CD2AP,DNM2,EPS1
			5,LYZ,MYO6,PICALM,PIK3
			C3,PIK3CD,PIK3CG,S100A8
			,SERPINA1,TF
Aryl Hydrocarbon Receptor Signaling	3.18	-1.134	APAF1,ARNT,GSTM4,GST
			M5,Gstm6,HSP90AB1,MYC,
			NCOR2,NFIX,NFKB1,RXR
			А
IL-8 Signaling	3.06	-1.508	CDH1,FNBP1,GNB1,IRAK3,
			ITGAV,MAPK9,NFKB1,PIK
			3C3,PIK3CD,PIK3CG,PLD1,
			PRKD3,RHOT1
Leukocyte Extravasation Signaling	3.05	0	ACTN4,CLDN12,CTNND1,I
			TGAL,MAPK9,PIK3C3,PIK3
			CD,PIK3CG,PRKD3,PXN,R
			APGEF4,SIPA1,TEC
Adrenomedullin signaling pathway	3.03	0.277	ADCY4,ARNT,Calm1
			(includes
			others),CFH,GUCY2C,IL18,
			MAPK9,NFKB1,PIK3C3,PIK
			3CD,PIK3CG,RXRA,SHF
Pancreatic Adenocarcinoma Signaling	2.98	-1.134	BRCA2,MAPK9,NFKB1,PIK
			3C3,PIK3CD,PIK3CG,PLD1,
		0.000	SIN3A,TYK2
Nitric Oxide Signaling in the	2.95	0.333	Calm1 (includes
Cardiovascular System			others), GUC Y 2C, HSP90AB1,
			PDETA,PIK3C3,PIK3CD,PIK
	2.04	NT A	3CG,PRKAAI,PRKD3
IR/RXR Activation	2.94	NA	COL6A3,DIO1,HP,NCOR2,P
			IK3C3,PIK3CD,PIK3CG,RX
	2.0	1.0.41	KA
Phospholipase C Signaling	2.9	1.941	ADC Y4, ARHGEF2, ARHGE
			F5,A1F2,Callin (Includes
			D1 LIDAC(LIDAC7 NEATS
			NEVDI DI DI DEVDI DIOT
mTOP Signaling	2.82	1 807	1 ATG13 EIE4G1 EIE4G3 END
III I OK Signaling	2.02	-1.097	P1 PIK 3C3 PIK 3CD PIK 3CG
			OT1 RPS19 RPS6K A1
Tec Kinase Signaling	2 77	-0.632	FNBP1 GNB1 MAPK9 NFK
Tee Isinuse Signaning	2.11	0.052	B1.PIK3C3 PIK3CD PIK3CG
			PRKD3,RHOT1.TEC.TYK?
GP6 Signaling Pathway	2.65	1	ADAM10.Calm1 (includes
			others).COL4A1.COL4A5.C
			OL6A3,PIK3C3,PIK3CD,PIK
			3CG.PRKD3
		1	/ -
Molecular Mechanisms of Cancer	2.62	NA	ADCY4, APAF1, ARHGEF2,
--	-------	---------	--------------------------------
			ARHGEF3,CDH1,CDK9,CT
			NND1.FNBP1.MAPK9.MYC
			.NFKB1.PIK3C3.PIK3CD.PI
			K3CG PRKD3 RHOT1 SIN3
			Δ TCF3 TVK2
Endegennahingid Concer Inhibition	2.61	0	ADCV4 ATE2 CDU1 MVC D
Endocannabinoid Cancer Inhibition	2.01	0	ADC 14,ATF2,CDH1,M1C,P
Pathway			IK3C3,PIK3CD,PIK3CG,PR
			KAAI, ICF3, ICF/L2
Renin-Angiotensin Signaling	2.58	0.707	ADCY4,ATF2,MAPK9,NFK
			B1,PIK3C3,PIK3CD,PIK3CG
			,PRKD3,SHF
Colorectal Cancer Metastasis Signaling	2.58	-0.535	ADCY4,CDH1,FNBP1,GNB
			1,MAPK9,MYC,NFKB1,PIK
			3C3.PIK3CD.PIK3CG.RHOT
			1.TCF3.TCF7L2.TYK2
I PS-stimulated MAPK Signaling	2.56	-0.378	$\Delta TF2 MAPK9 NFK B1 PIK3$
Li 5-stillulated Wi A R Signaling	2.50	-0.570	C3 PIK3CD PIK3CG PRKD3
	2.52	0.270	TCAL ITCAN NEWDI DIV2
NF-KB Activation by Viruses	2.53	-0.3/8	IIGAL, IIGAV, NFKBI, PIK3
			C3,PIK3CD,PIK3CG,PRKD3
IL-23 Signaling Pathway	2.49	-0.447	NFKB1,PIK3C3,PIK3CD,PI
			K3CG,TYK2
Paxillin Signaling	2.44	-0.816	ACTN4,ITGAL,ITGAV,MAP
			K9,PIK3C3,PIK3CD,PIK3CG
			PXN
CD40 Signaling	2 43	0	MAPK9 NFK B1 PIK 3C3 PIK
CD 10 Signamig	2.15	v	3CD PIK 3CG TNFAIP3
Mua Madiatad Apoptagia Signaling	2 / 2	NA	ADAE1 MADYO MYC DIV2C
Wye Wediated Apoptosis Signating	2.43	INA	2 DIV2CD DIV2CC
H 4 C' 1'	2.42	NT A	3,PIKSCD,PIKSCG
IL-4 Signaling	2.42	NA	HLA-
			A,NFAT5,NR3C1,PIK3C3,PI
			K3CD,PIK3CG,TYK2
IL-17A Signaling in Airway Cells	2.4	-0.816	MAPK9,NFKB1,PIK3C3,PIK
			3CD,PIK3CG,TYK2
HOTAIR Regulatory Pathway	2.39	-0.632	CDH1,KDM1A,MYC,NFKB
			1.PIK3C3.PIK3CD.PIK3CG.
			SETDB1.TCF3.TCF7L2
Role of n14/n19ARF in Tumor Suppression	2 39	0	PIK3C3 PIK3CD PIK3CG U
Role of praprior in runor suppression	2.59	v	BTF
Huntington's Disassa Signaling	2.28	1 1 2 4	ADAE1 ATE2 DNM2 CNID1
Inditingion's Disease Signating	2.38	1.134	AFAFI,ATT2,DINM2,ONDI,
			HDAC6, HDAC/, MAPK9, NC
			OR2,PIK3C3,PIK3CD,PIK3C
			G,PRKD3,SIN3A
RANK Signaling in Osteoclasts	2.36	0.378	Calm1 (includes
			others),MAP3K13,MAPK9,N
			FKB1,PIK3C3,PIK3CD,PIK3
			CG
P2Y Purigenic Receptor Signaling Pathway	2.36	1	ADCY4.ATF2.GNB1.MYC.
			NFKB1.PIK3C3.PIK3CD.PI
			K3CG PRKD3
Signaling by Dha Family CTDagas	2.25	1 508	ADUCEE2 ADUCEE2 CDU1
Signaling by Kilo Falliny OFFases	2.55	-1.508	ENIDELCNID1 MADKO NEK
			,FINBP1,GINB1,MAPK9,NFK
			BI,PARD3,PIK3C3,PIK3CD,
	2.24		PIK3CG,PLDI,RHOTT
Virus Entry via Endocytic Pathways	2.34	NA	AP1G2,DNM2,HLA-
			A,ITGAL,PIK3C3,PIK3CD,P
			IK3CG,PRKD3
B Cell Receptor Signaling	2.34	1	ATF2,Calm1 (includes
			others),FCGR2A,MAP3K13,
			MAPK9,NFAT5,NFKB1.PIK
			3C3.PIK3CD.PIK3CG.TCF3
			1

HGF Signaling	2.32	0	ATF2,MAP3K13,MAPK9,PI
			K3C3,PIK3CD,PIK3CG,PRK
			D3.PXN
Gaa Signaling	2.31	0	Calm1 (includes
our organing	2.01	Ŭ	others) FNBP1 GNB1 NFKB
			1 PIK3C3 PIK3CD PIK3CG
			PI D1 PPV D2 PUOT1
	2.29	0.270	PLDI,PRKD3,RHOTT
Acute Myeloid Leukemia Signaling	2.28	-0.3/8	MYC,NFKBI,PIK3C3,PIK3C
			D,PIK3CG,TCF3,TCF7L2
PXR/RXR Activation	2.27	NA	ABCB11,ALAS1,CYP2B6,C
			YP2C8,NR3C1,RXRA
Systemic Lupus Erythematosus In B Cell	2.26	0	Calm1 (includes
Signaling Pathway			others).FCGR2A.IL18.MCL1.
			MYC.NFAT5.NFKB1.PIK3C
			3 PIK3CD PIK3CG PRKD3 S
			HF TBK 1 TYK 2
Prostate Cancer Signaling	2.21	NA	ATE2 USD00AD1 NEVD1 DI
Tiostate Calleer Signaling	2.21	INA	K112,1151 JOADI,NIKDI,II
			K3C3,PIK3CD,PIK3CG,SIN3
			Α
NGF Signaling	2.19	0	ATF2,MAP3K13,MAPK9,NF
			KB1,PIK3C3,PIK3CD,PIK3C
			G,RPS6KA1
eNOS Signaling	2.19	0.378	ADCY4,AQP8,Calm1
			(includes
			others). DNM2. HSP90AB1.PI
			K3C3 PIK3CD PIK3CG PRK
			$\Delta \Delta 1 PRKD3$
II 0 Signaling	2.18	0	NEV D1 DIV2C2 DIV2CD DI
IL-9 Signaling	2.18	0	NFKBI,PIK5C5,PIK5CD,PI
	2.10	27.4	
Thyroid Cancer Signaling	2.18	NA	CDH1,MYC,RXRA,TCF3,TC
			F7L2
UVB-Induced MAPK Signaling	2.18	-0.447	MAPK9,PIK3C3,PIK3CD,PI
			K3CG,PRKD3
CXCR4 Signaling	2.14	-1.265	ADCY4,FNBP1,GNB1,MAP
			K9,PIK3C3,PIK3CD,PIK3CG
			.PRKD3.PXN.RHOT1
Caveolar-mediated Endocytosis Signaling	2.13	NA	DNM2.FLOT1.FLOT2.HLA-
	2.1.0		A ITGAL ITGAV
Glioma Invasiveness Signaling	2.13	1 633	FNIRD1 ITGAV DIK 3C3 DIK 3
Ghoma mvasiveness Signamig	2.15	-1.035	CD BIK2CC BIJOT1
	0.10	1 414	
fMLP Signaling in Neutrophils	2.13	1.414	Calm1 (includes
			others),GNB1,NFAT5,NFKB
			1,PIK3C3,PIK3CD,PIK3CG,
			PRKD3
Macropinocytosis Signaling	2.1	0.447	ABI1,ACTN4,PIK3C3,PIK3C
			D,PIK3CG,PRKD3
CD28 Signaling in T Helper Cells	2.09	0.378	Calm1 (includes others), HLA-
			A.MAPK9.NFAT5.NFKB1.PI
			K3C3.PIK3CD.PIK3CG
Phagosome Formation	2.09	NΔ	FCGR2A FNBP1 MARCO PI
Thagosome Tormation	2.09	1121	$V_{2}C_{2}$ DIV 2CD DIV 2CC DDV
			D2 PHOT1
Lymphotonin Q D C' 1'	2.08	0.447	ADAE1 NEVD1 DW2C2 DW
Lympholoxin p Receptor Signaling	2.08	-0.44 /	APAFI,NFKBI,PIK3C3,PIK
			3CD,PIK3CG
NF-KB Signaling	2.07	0	FGFR2,FGFR3,IL18,IRAK3,
			NFKB1,PIK3C3,PIK3CD,PI
			K3CG,TBK1,TNFAIP3
Fatty Acid Activation	2.05	NA	ACSL1,ACSL4,SLC27A1
Mouse Embryonic Stem Cell Pluripotency	2.02	-1.134	MYC,PIK3C3,PIK3CD,PIK3
			CG,TCF3,TCF7L2,TYK2

Epithelial Adherens Junction Signaling	2.02	NA	ACTN4,CDH1,CTNND1,EP N2,MYH10,MYO7A,PARD3,
			TCF3,TCF7L2
IL-17 Signaling	2	NA	ATF2,MAPK9,NFKB1,PIK3 C3,PIK3CD,PIK3CG
Thrombin Signaling	1.97	-0.632	ADCY4,ARHGEF2,ARHGE
			K3C3 PIK3CD PIK3CG PRK
			D3,RHOT1
Ga12/13 Signaling	1.97	0	CDH1,MAPK9,NFKB1,PIK3
			C3,PIK3CD,PIK3CG,PXN,T
	1.07	1	EC
Stearate Biosynthesis I (Animals)	1.96	-1	C2,C4A/C4B,CFH,MASP2
Scarace Diosynthesis I (Animais)	1.95	1.342	VL1,SLC27A1
Role of NFAT in Regulation of the Immune	1.95	1.667	ATF2,Calm1 (includes
Response			others),FCGR2A,GNB1,HLA
			A,NFAT5,NFKB1,PIK3C3,PI K3CD,PIK3CG
Cardiac Hypertrophy Signaling (Enhanced)	1.94	0.447	ADCY4,ATF2,Calm1
			(includes
			others),DIAPH1,FGFR2,FGF
			K3,GNB1,HDAC6,HDAC7,I
			C NFAT5 NFK B1 PDF1A PI
			K3C3.PIK3CD.PIK3CG.PRK
			D3
Telomerase Signaling	1.94	-0.447	HDAC6,HDAC7,HSP90AB1,
			MYC,PIK3C3,PIK3CD,PIK3
	1.02		CG
Mitochondrial L-carnitine Shuttle Pathway	1.93	NA 1.242	ACSL1,ACSL4,SLC2/A1
CNTF Signaling	1.92	-1.542	S6K A1 TYK2
Nur77 Signaling in T Lymphocytes	1.92	NA	APAF1,Calm1 (includes
			others),HLA-A,RXRA,SIN3A
Cardiac Hypertrophy Signaling	1.9	0	ADCY4,ATF2,Calm1
			(includes others) ENIDD1 CNID1 MAD2
			K13 MAPK9 PIK3C3 PIK3C
			D,PIK3CG,RHOT1,RPS6KA
			1
Prolactin Signaling	1.9	-0.447	MYC,NR3C1,PIK3C3,PIK3C
	1.00	0.445	D,PIK3CG,PRKD3
Sumoylation Pathway	1.89	-0.447	CDHI,FNBPI,KDMIA,MAP
Osteoarthritis Pathway	1.89	0.333	ACVRL1 ATF2 FGFR3 MY
osteoartinitis i anway	1.09	0.555	BBP1A,NFKB1,PRKAA1,S1
			00A8,SIK3,SLC39A8,TCF3,
			TCF7L2
Proline Degradation	1.87	NA	LOC102724788/PRODH,PR ODH2
T Cell Receptor Signaling	1.87	NA	Calm1 (includes
			others),NFAT5,NFKB1,PIK3
		0.4/-	C3,PIK3CD,PIK3CG,TEC
Endometrial Cancer Signaling	1.86	-0.447	CDH1,MYC,PIK3C3,PIK3C D.PIK3CG
Regulation of the Epithelial-Mesenchymal	1.86	NA	CDH1,FGFR2,FGFR3,NFKB
Transition Pathway			1,PIK3C3,PIK3CD,PIK3CG,
			TCF3,TCF7L2,TYK2

HMGB1 Signaling	1.85	-1.414	FNBP1,IL18,MAPK9,NFKB1
			,PIK3C3,PIK3CD,PIK3CG,R
			HOT1,SERPINE1
Protein Kinase A Signaling	1.84	2.309	ADCY4.AKAP1.ANAPC5.A
6 6	-		TF2.Calm1 (includes
			others) DUSP3 EVA3 GNB1
			MVH10 NEATS NEV D1 DDE
			1 A DDKD2 DTDN21 DXN TC
			IA,PKKD3,PIPN21,PAN,IC
			F3,1CF/L2
Activation of IRF by Cytosolic Pattern	1.83	-0.447	ATF2,DDX58,MAPK9,NFK
Recognition Receptors			B1,TBK1
Role of Macrophages, Fibroblasts and	1.81	NA	ATF2,Calm1 (includes
Endothelial Cells in Rheumatoid Arthritis			others).IL18.IRAK3.MAPK9.
			MYC.NFAT5.NFKB1.PIK3C
			3 PIK3CD PIK3CG PRKD3 T
			CF3 TCF7L 2
Clutamata Decentor Signaling	1.91	NA	Colm1 (includes
Glutamate Receptor Signaling	1.81	NA	Caimi (includes
			others),GNB1,GRIK5,SLCIA
			4,SLC38A1
Aldosterone Signaling in Epithelial Cells	1.8	0	DNAJB2, DNAJC12, DNAJC2
			,HSP90AB1,HSPA4L,PIK3C
			3,PIK3CD,PIK3CG,PRKD3
FGF Signaling	1.8	0	ATF2.FGFR2.FGFR3.PIK3C
1 of Signaing		0	3 PIK3CD PIK3CG
EnhD2 EnhD2 Signaling	1 79	1 2 4 2	MVC DIV2C2 DIV2CD DIV2
Erob2-Erob3 Signaling	1.78	-1.342	MTC,PIK3C3,PIK3CD,PIK3
			CG,1YK2
γ-linolenate Biosynthesis II (Animals)	1.77	NA	ACSL1,ACSL4,SLC27A1
Choline Biosynthesis III	1.77	NA	CHPT1,PCYT1A,PLD1
Opioid Signaling Pathway	1.76	0.577	ADCY4,AP1G2,ATF2,Calm1
			(includes
			others).GNB1.GRK6.MYC.N
			FKB1.PDE1A.PIK3CG.PRK
			D3 RPS6K A1
iCOS-iCOSL Signaling in T Helper Cells	1.76	1 1 3 4	Calm1 (includes others) HI A_
1005-1005E Signating in T Helper Cens	1.70	1.1.54	A NEATS NEV D1 DIV 2C2 DI
			A,NFAT3,NFKDT,PIK5C5,PT
	1.75		K3CD,PIK3CG
Endocannabinoid Developing Neuron	1.76	-0.378	ADCY4,ATF2,GNB1,MAPK
Pathway			9,PIK3C3,PIK3CD,PIK3CG
RAR Activation	1.75	NA	ADCY4,ERCC3,MAPK9,NC
			OR2,NFKB1,PIK3CD,PIK3C
			G.PRKD3.RXRA.TRIM24
Endothelin-1 Signaling	1.75	-0.632	ADCY4 GUCY2C MAPK9
Endothenni i Signaning	1.75	0.052	MVC PIK 3C3 PIK 3CD PIK 3
			CC DI D1 DDV D2 SUE
	1.74	274	
Docosahexaenoic Acid (DHA) Signaling	1.74	NA	APAF1,PIK3C3,PIK3CD,PIK
			3CG
Sirtuin Signaling Pathway	1.74	0.302	ACSS2,ADAM10,ATG13,CD
			H1,CYC1,GLUD1,MYC,ND
			UFAF1,NDUFV1,NFKB1,N
			R1H2,PFKM,PRKAA1.SIRT
			7
Thrombonoietin Signaling	1 73	-0.447	MYC PIK3C3 PIK3CD PIK3
Thromoopoleum Signaning	1.75	-0.++7	CC DPVD2
	1.71	1	A COL 1 A COL 4 SCP2 SL C27
Fatty Acid p-oxidation I	1./1	1	ACSL1,ACSL4,SCP2,SLC2/
	1.00		Al
Acetate Conversion to Acetyl-CoA	1.68	NA	ACSL1,ACSS2
Remodeling of Epithelial Adherens	1.68	NA	ACTN4,CBLL1,CDH1,CTN
Junctions			ND1,DNM2
SPINK1 General Cancer Pathway	1.68	-0.447	Mt2,PIK3C3,PIK3CD,PIK3C
			G,TYK2

IL-15 Production	1.67	NA	AATK,DYRK1A,FGFR2,FG
			FR3,NFKB1,TEC,TYK2
GNRH Signaling	1.65	0.707	ADCY4,ATF2,Calm1
			(includes
			others),GNB1,MAP3K13,MA
			PK9,NFKB1,PRKD3,PXN
Melanocyte Development and Pigmentation	1.64	0	ADCY4,ATF2,PIK3C3,PIK3
Signaling			CD,PIK3CG,RPS6KA1
Bupropion Degradation	1.63	NA	CYP2B6,CYP2C8,POR
Th1 Pathway	1.63	-0.378	HLA-
			A.IL18.NFKB1.PIK3C3.PIK3
			CD.PIK3CG.TYK2
iNOS Signaling	1.62	NA	Calm1 (includes
in too bighuning	1.02	1121	others) IRAK3 NFKB1 TYK2
Iron homeostasis signaling nathway	1.62	NΛ	APNT ATP6AP1 CP ELVCP
from nonicostasis signating patiway	1.02	INA	1 HD TCIDC1 TE TVV2
	1.(2	1.124	ATE2 ENDD1 II 19 MADKO D
Cholecystokinin/Gastrin-mediated	1.62	-1.134	ATF2,FNBP1,IL18,MAPK9,P
Signaling	1.61		RKD3,PXN,RHOTT
IL-15 Signaling	1.61	NA	NFKB1,PIK3C3,PIK3CD,PI
			K3CG,TYK2
IL-6 Signaling	1.6	-0.378	IL18,MAPK9,MCL1,NFKB1,
			PIK3C3,PIK3CD,PIK3CG
p53 Signaling	1.6	0.816	APAF1,COQ8A,PIK3C3,PIK
			3CD,PIK3CG,STAG1
Ephrin A Signaling	1.59	NA	ADAM10,PIK3C3,PIK3CD,P
			IK3CG
Role of Pattern Recognition Receptors in	1.59	0.378	DDX58,IL18,MAPK9,NFKB
Recognition of Bacteria and Viruses			1.PIK3C3.PIK3CD.PIK3CG.
6			PRKD3
Dendritic Cell Maturation	1 58	0 333	ATE2 ECGR2A HLA-
	1.00	0.555	A II 18 MAPK9 NFK B1 PIK
			3C3 PIK 3CD PIK 3CG
Apoptosis Signaling	1.58	0	APAF1 I MNA MCI 1 NFKB
Apoptosis Signaling	1.50	0	1 RPS6K A1 SPTAN1
Glucocorticoid Pecentor Signaling	1.57	ΝA	BAG1 EPCC2 HSP00AB1 M
Grueocorricola Receptor Signating	1.57	INA	ADVO NCOD2 NEAT5 NEV
			D1 ND2C1 DIV2C2 DIV2CD
			DI, NK3CI, PIK3C3, PIK3CD,
			1 TAE1
CDED C: 1: . N	1.57	1	
CREB Signaling in Neurons	1.57	1	ADCY4,ATF2,Calm1
			(includes
			others),GNB1,GRIK5,PIK3C
			3,PIK3CD,PIK3CG,PRKD3,
			RPS6KA1
Integrin Signaling	1.57	-1.265	ACTN4,ARF4,FNBP1,ITGA
			L,ITGAV,PIK3C3,PIK3CD,P
			IK3CG,PXN,RHOT1
Growth Hormone Signaling	1.54	-0.447	PIK3C3,PIK3CD,PIK3CG,PR
			KD3,RPS6KA1
Pyridoxal 5'-phosphate Salvage Pathway	1.54	0.447	DAPK1,DYRK1A,GRK6,MA
			PK9,PRKAA1
Relaxin Signaling	1.52	0.378	ADCY4,GNB1,GUCY2C,NF
		1	KB1,PDE1A,PIK3C3,PIK3C
			D,PIK3CG
Neuroinflammation Signaling Pathway	1.51	-0.577	ATF2.BACE1.HLA-
			A.IL18.IRAK3.MAPK9 NFA
			T5.NFKB1 PIK3C3 PIK3CD
			PIK 3CG TRK1 TVK?
TNER2 Signaling	1.51	NA	NFKB1 TRK1 TNFAID2
Melanoma Signaling	1.51	NA	CDH1 DIK2C2 DIV2CD DIV2
wicianoma Signanng	1.31	INA	CG
	1	1	

NRF2-mediated Oxidative Stress Response	1.5	NA	DNAJB2,GSTM4,GSTM5,Gs
-			tm6,MAPK9,PIK3C3,PIK3C
			D,PIK3CG,PRKD3
Role of NFAT in Cardiac Hypertrophy	1.5	0.707	ADCY4,Calm1 (includes
			others), GNB1, HDAC6, HDA
			C7,MAPK9,PIK3C3,PIK3CD
			.PIK3CG.PRKD3
Apelin Cardiomyocyte Signaling Pathway	1.49	-0.447	ARNT, MAPK 9, PIK 3C3, PIK 3
ripenn curdientyeeyte signaning i animay	1.19	0.117	CD PIK 3CG PRKD3
CD27 Signaling in Lymphocytes	1 48	1	APAF1 MAP3K13 MAPK9
CD27 Signaling in Lymphocytes	1.10	1	NEKB1
Estrogen Dependent Breast Concer	1 / 8	0.447	ATE2 NEK B1 DIK 2C3 DIK 3
Signaling	1.40	0.447	CD BIK 2CG
Assembly of PNA Polymorese III Complex	1.46	NA	CD,FIK3CO
Easthropoint Signaling	1.40	NA	NEVD1 DIV2C2 DIV2CD DI
Erythropoleun Signaling	1.40	INA	NFKBI,PIK3C3,PIK3CD,PI
	1.46	N T 4	K3CG,PKKD3
Non-Small Cell Lung Cancer Signaling	1.46	NA	PIK3C3,PIK3CD,PIK3CG,R
			XRA,SIN3A
Amyotrophic Lateral Sclerosis Signaling	1.45	0	ALS2,APAF1,GRIK5,PIK3C
			3,PIK3CD,PIK3CG
VEGF Signaling	1.45	-0.447	ACTN4,ARNT,PIK3C3,PIK3
			CD,PIK3CG,PXN
Sertoli Cell-Sertoli Cell Junction Signaling	1.45	NA	ACTN4,ATF2,CDH1,CLDN1
			2,EPN2,MAP3K13,MAPK9,
			MYO7A,SPTAN1
Role of Osteoblasts, Osteoclasts and	1.44	NA	Calm1 (includes
Chondrocytes in Rheumatoid Arthritis			others),IL18,MAPK9,NFAT5,
			NFKB1,PIK3C3,PIK3CD,PI
			K3CG,TCF3,TCF7L2
4-1BB Signaling in T Lymphocytes	1.44	NA	ATF2.MAPK9.NFKB1
PD-1 PD-L1 cancer immunotherapy	1 44	0.816	HLA-
nathway	1.11	0.010	A PDCD4 PIK 3C3 PIK 3CD P
pullivay			IK3CG TYK2
IAK/Stat Signaling	1 44	-0.447	NEK B1 PIK3C3 PIK3CD PI
JAR Stat Signaling	1.77	-0.447	K3CG TVK2
II 7 Signaling Pathway	1 44	0.447	MCL 1 MVC PIK3C3 PIK3C
1L-7 Signaning I atriway	1.77	-0.447	D PIK 2CG
EIE2 Signaling	1.42	0.279	ATES EIE2AVA EIE4C1 EIE
EIF2 Signaling	1.45	-0.578	A1F5,EIF2AK4,EIF401,EIF
			ACO, MITC, PIKSCS, PIKSCD,
	1.40	0	PIK3CG, RPL18A, RPS19
Antiproliterative Role of Somatostatin	1.42	0	GNB1,GUCY2C,PIK3C3,PIK
Receptor 2	1.40	0.445	3CD,PIK3CG
Neurotrophin/TRK Signaling	1.42	-0.447	ATF2,PIK3C3,PIK3CD,PIK3
			CG,RPS6KA1
Estrogen Receptor Signaling	1.41	NA	ERCC3,MED12,MED23,NC
			OR2,NR3C1,TAF1,TRRAP
PEDF Signaling	1.4	-0.447	NFKB1,PIK3C3,PIK3CD,PI
			K3CG,TCF7L2
FLT3 Signaling in Hematopoietic	1.38	-0.447	ATF2,PIK3C3,PIK3CD,PIK3
Progenitor Cells			CG,RPS6KA1
DNA Methylation and Transcriptional	1.37	NA	MTA1,SAP130,SIN3A
Repression Signaling			, , ,
Human Embryonic Stem Cell Pluripotency	1.37	NA	FGFR2,FGFR3,PIK3C3.PIK3
			CD,PIK3CG,TCF3.TCF7L2
HER-2 Signaling in Breast Cancer	1.36	NA	PARD3 PIK3C3 PIK3CD PI
Tiere 2 Signaring in Dreast Calleer	1.50	1111	K3CG PRKD3
Ovarian Cancer Signaling	1 36	NΔ	BRCA2 PIK3C3 PIK3CD PI
	1.30		K2CG SIN2A TOE2 TOE7L2
DI2V Signaling in D Lymphosytes	1 22	1 1 2 4	ATE2 ATE5 Colm1 (moluder
FISK Signating in 6 Lymphocytes	1.33	1.134	AIF2, AIF3, Calmi (includes others) NEAT5 NEV D1 DW2
		1	OD DW200
			CD,PIK3CG

Rac Signaling	1.32	-0.447	NFKB1,PARD3,PIK3C3,PIK 3CD,PIK3CG,PLD1
Salvage Pathways of Pyrimidine	1.32	0	AK4,DAPK1,DYRK1A,GRK
Ribonucleotides			6,MAPK9,PRKAA1
Breast Cancer Regulation by Stathmin1	1.31	NA	ADCY4,ARHGEF2,ARHGE
			F3,Calm1 (includes
			others),GNB1,PIK3C3,PIK3C
			D,PIK3CG,PRKD3
MIF-mediated Glucocorticoid Regulation	1.31	NA	CD74,NFKB1,NR3C1

 Table 25. Significant Pathways for differentially expressed transcripts in ²⁸Si vs. nonirradiated control at 12 months.

6.4.6 IDENTIFICATION OF DYSREGULATED MOLECULAR PATHWAYS CORRESPONDING TO UNANNOTATED TRANSCRIPTS ASSOCIATED WITH ²⁸SI IRRADIATION, USING SOM

The above IPA analysis (Figure 15) resulted in a collection of 81 statistically significant high-quality functionally unannotated transcripts across all time points from ²⁸Si irradiated mice (Table 13). To characterize the unannotated transcripts, we obtained the log₂ (fold change) expression values of significantly differentially expressed transcripts from ²⁸Si irradiation compared to non-irradiated control across 5 time points and applied the SOM machine learning algorithm. We next identified the modules from SOMs which contained the majority of unannotated transcripts and combined them to form larger clusters of similar transcription patterns for functionality analysis using IPA. We compared the identified 12 clusters across 5 time points using IPA (Figure 16f). Figure 6f shows the most significant pathways across all clusters. The activation z-scores were predicted for some of the clusters based on our observed data and the available literature. Even though the directionality could not be determined for some of these pathways, the significant

pathways included B cell signaling, hepatic fibrosis signaling, tec kinase signaling, neuroinflammation signaling, LXR/RXR activation, phospholipase C signaling, and the senescence pathway. A complete list of unannotated transcript ENSMBL IDs with their corresponding module numbers is provided in Table 26.

Figure 16. ²⁸Si analysis of self-organizing maps for each time point.

(a,b,c,d,e) Kohonen Self-Organizing Map (SOM) was applied to the differentially expressed (DE) transcripts obtained from the RNA-Seq data to identify coherent patterns of transcript expression at each time point, as well as patterns within the unannotated transcripts. The SOM clusters transcripts in each module according to $\log_2(\text{fold change})$ of the expression values. SOM clustering analysis demonstrates the distances between correlated transcript groups. The small blue hexagons are modules comprising transcripts with similar log₂(fold change) expression patterns. The numbers of transcripts in each module are provided in Figure 17. Neighboring modules are connected with a red line. The colors of the lines connecting the modules indicate the similarity between modules: Lighter colors represent higher similarity, and darker colors represent lower similarity. (f) Expression patterns of unannotated transcripts were identified, and the corresponding modules (represented in circled numbers) were further analyzed by IPA. Only the most significant pathways across all clusters are shown with available color-coded activation z-scores. Inhibitory, activation, or unknown directionality z-scores corresponds to green, red, and white respectively. The entries with white color indicate the directionality could not be predicted based on the available data, yet the pathway is significantly identified by pathway analysis. The goal of the IPA downstream effects analysis is to identify functional pathways whose activity is expected to be increased or decreased, given the observed expression changes in a user's dataset (see Methods.)

Figure 17. ²⁸Si Analysis of self-organizing maps for each time point.

(a,b,c,d,e) Kohonen Self-Organizing Map (SOM) was applied to the differentially expressed (DE) transcripts obtained from the RNA-Seq data to identify coherent patterns

of transcript expression at each time point, as well as patterns within the unmapped transcripts. The mapping clusters transcripts in each unit according to $log_2(fold change)$ expression values for the transcripts in that unit. SOM clustering analysis demonstrates the distances between correlated transcript groups. The small blue hexagons are modules comprising transcripts with similar $log_2(fold change)$ expression pattern. The numbers inside hexagons correspond to the number of transcripts in each module.

²⁸ Si,	1 month	²⁸ Si,	2 months	²⁸ Si,	4 months	²⁸ Si,	9 months	²⁸ Si, 12 months				
Modu le	Transcript Ensemble ID	Modu le	Transcript Ensemble ID	Modu le	Transcript Ensemble ID	Modu le	Transcript Ensemble ID	Modu le	Transcript Ensemble ID			
10	ENSMUST0000023 8749	29	ENSMUST0000023 5620	16	ENSMUST0000023 7125	19	ENSMUST0000023 7305	11	ENSMUST0000023 8098			
11	ENSMUST0000023 7098	33	ENSMUST0000023 8125	1	ENSMUST0000023 7749	26	ENSMUST0000023 7358	13	ENSMUST0000023 5207			
11	ENSMUST0000023 6403	35	ENSMUST0000023 7742	1	ENSMUST0000023 6336	27	ENSMUST0000023 6687	17	ENSMUST0000023 6414			
26	ENSMUST0000023 6171	35	ENSMUST0000023 6925	20	ENSMUST0000023 7305	2	ENSMUST0000023 6504	1	ENSMUST0000023 8267			
27	ENSMUST0000023 6591	37	ENSMUST0000023 7337	28	ENSMUST0000023 6046	2	ENSMUST0000023 8267	21	ENSMUST0000023 5620			
28	ENSMUST0000023 5620	37	ENSMUST0000023 7529	30	ENSMUST0000023 6414	30	ENSMUST0000023 5318	22	ENSMUST0000023 7798			
29	ENSMUST0000023 5647	37	ENSMUST0000023 7854	34	ENSMUST0000023 7854	30	ENSMUST0000023 6414	23	ENSMUST0000023 6171			
34	ENSMUST0000023 7472	38	ENSMUST0000023 6006	36	ENSMUST0000023 5620	34	ENSMUST0000023 5927	29	ENSMUST0000023 5915			
36	ENSMUST0000023 6546	3	ENSMUST0000023 6950	36	ENSMUST0000023 7499	35	ENSMUST0000023 8729	29	ENSMUST0000023 7823			
3	ENSMUST0000023 6292	44	ENSMUST0000023 5929	36	ENSMUST0000023 8729	36	ENSMUST0000023 8021	29	ENSMUST0000023 8513			
40	ENSMUST0000023 6873	45	ENSMUST0000023 5335	36	ENSMUST0000023 5411	47	ENSMUST0000023 6898	2	ENSMUST0000023 8288			
43	ENSMUST0000023 8729	45	ENSMUST0000023 7478	38	ENSMUST0000023 7602	9	ENSMUST0000023 6950	2	ENSMUST0000023 5318			
44	ENSMUST0000023 7337	45	ENSMUST0000023 7364	38	ENSMUST0000023 5332			34	ENSMUST0000023 5135			
44	ENSMUST0000023 6215	6	ENSMUST0000023 8731	44	ENSMUST0000023 8021			36	ENSMUST0000023 6006			
44	ENSMUST0000023 8271			44	ENSMUST0000023 8267			40	ENSMUST0000023 5648			
47	ENSMUST0000023 8288			45	ENSMUST0000023 6794			41	ENSMUST0000023 8368			
8	ENSMUST0000023 7749			48	ENSMUST0000023 6850			44	ENSMUST0000023 5411			
8	ENSMUST0000023 7832							45	ENSMUST0000023 8021			
9	ENSMUST0000023 6824							5	ENSMUST0000023 8677			

Table 26. Unannotated differentially expressed transcripts in ²⁸Si across all time points.

 Each unannotated ENSEMBLE transcript ID is listed with the corresponding module

 number in the SOM Figure 16.

6.5 Discussion

Despite knowledge that deep spaceflight is associated with multiple carcinogenic processes, the different responses to HZE irradiation are still relatively unexplored. This study was designed to help identify the molecular mechanisms of HZE induced HCC focusing on transcription expression patterns at different time points after irradiation, and to elucidate novel unannotated transcripts that are significantly affected by HZEirradiation. It has been hypothesized that a major driver of HZE induced carcinogenesis occurs through inflammatory responses, reactive oxygen species, and DNA damage. [137] Our results support an association between early proinflammatory response, downstream biomarkers of cytokine activity, and downregulation of such responses at later time points. The exact molecular factors that regulate these responses are not well defined, but HZEengenders directionality irradiation complex immune response where а (activation/inhibition) cannot be predicted for some pathways.

We observed some significant commonly dysregulated immunological pathways in the HZE-irradiated mice, including PI3K signaling in B lymphocytes, acute phase response signaling, IL-8 signaling, IL-7 signaling, IL-3 signaling, and B cell receptor signaling. PI3K was mainly activated at later time points across all HZE ions. PI3K regulates numerous biological functions such as survival, differentiation, proliferation, migration, and metabolism. In the immune system, inhibited PI3K leads to immunodeficiency, whereas activation of this signaling cascade leads to leukemia and autoimmune responses. [135, 138, 139] The acute phase response signaling was activated at 1 month in ⁵⁶Fe but inhibited at this time point for both ¹⁶O and ²⁸Si. This response is triggered by initiation of irradiation-induced tissue injury which leads to changes in concentration of several plasma proteins as a result of significantly altered hepatic metabolism. [105, 106, 140] It has been previously shown that ¹⁶O total body irradiation significantly decreases peripheral blood cell counts in mice as early as 2 weeks post irradiation, particularly white blood cells (WBC) and platelets (PLT). [95] This rapid deletion of peripheral WBC can be a potential contributor to an impaired acute phase response in ¹⁶O and ²⁸Si irradiated mice through a similar mechanism. Additionally, IL-8 signaling was activated at 12 months post ⁵⁶Fe and ¹⁶O irradiation, while it was inhibited in ²⁸Si. Given that IL-8 upregulates the expression of genes involved in tumor growth (EGFR, MMP2, MMP9), angiogenesis (VEGF), and cell proliferation through a metalloproteinase dependent pathway [117-119, 141, 142], its activation at 12 months post ⁵⁶Fe and ¹⁶O irradiation is in line with the tumor growth and spontaneous incidences of HCC seen previously. [7, 117-119, 142] It has been previously shown that ²⁸Si increases the levels of apoptotic cell death in the heart and bone marrow up to 6 months post-irradiation. [97] This chronic apoptotic response might be associated with the observed IL-8 suppression.

Nonetheless, as mentioned earlier, the focus of this study was limited to transcriptional changes induced in the liver by ⁵⁶Fe,¹⁶O, and ²⁸Si irradiation at 5 different time points. Hence, it remains unclear how the detected changes reflect the magnitude of carcinogenic processes in the liver. In future studies, it is therefore important to investigate these differences by conducting a comparison both histologically and quantitively, in addition to measuring the different levels of enzymes/proteins responsible for the indicated pathways. A complete list of comparison analyses with predicted z-scores for significant pathways comparing between all HZE types of irradiated mice across all time points is provided Table 27.

Moreover, to assess the transcriptional pathways of our novel unannotated transcripts, we examined their activity patterns across 5 time points utilizing SOMs. To elucidate the biological functions associated with these transcript clusters, we then performed functional pathway analyses (Figure 9, 12, and 15). The deep mining of biological knowledge from these unannotated transcripts remains challenging due to the incompleteness of genome functional annotation. The SOM machine learning methodology takes advantage of already annotated and studied transcripts and pathways to infer the biological functions of the unannotated transcripts. Future studies should assess the transcriptional and regulatory activity of these unannotated transcripts using different techniques such as histone modifications (H3K4me3 and H3K27ac), which have been associated with activation of transcription and enhancer activity, respectively. [143, 144] Some of these unannotated transcripts may originate from enhancer regions or promotor upstream transcripts and thus play key regulatory roles in controlling gene expression following HZE irradiation, since they are significantly affected by irradiation. Additionally, aligning these significant unannotated transcripts to the human genome will help identify those that are conserved in humans. Even though, the precise functions of our unannotated transcripts remain to be elucidated, their significant changes post HZEirradiation, their similar expression patterns with the annotated genes in specified modules and neighboring modules in the described SOMs, and their functional roles in transcription activity, organismal death, hepatic fibrosis signaling, and LXR/RXR signaling pathways, all provide compelling evidence to support further studies of the roles of these transcripts in the carcinogenic processes of HCC following low-dose HZE irradiation.

Canonical Pathways	⁵⁶ Fe	¹⁶ O	28Si	28Si	28Si	²⁸ Si	28Si								
	1	2	4	9	12	1	2	4	9	12	1	2	4	9	12
DIALL OF US IN D	mo	mo	mo	mo	mo	mo	mo	mo	mo	mo	mo	mo	mo	mo	mo
PI3K Signaling in B	-	- 0.71	-	-	1.89	- 0.38	-	1.00	-	2.12	0.82	0.00	- 0.38	1.89	1.13
Acute Phase Response	0.33	-	-	-	-	-	-	0.38	N/A	2.20	-	-	-	1.81	-
Signaling		1.67	1.41	1.07	1.27	1.34	1.00				0.82	0.45	1.50		2.53
Synaptogenesis Signaling	-	-	-	-	1.34	-	-	0.71	-	3.16	0.58	-	0.00	1.90	0.91
Pathway	1.27	0.91	1.73	0.78		0.82	1.13		1.00			1.27			
Thrombin Signaling	-	-	-	-	1.13	-	-	1.34	-	0.33	0.71	-	1.51	1.63	-
Protein Kingse A Signaling	1.89	1.63	1.67	0.91	0.00	1.34	1.00	0.54	0.45	0.01		0.82			0.63
Totelli Kilase A Signallig	2.31	1.94	0.50	0.30	0.00	1.07	-	0.54	2.31	0.91	1.07	0.30	0.24	1.41	2.31
3-phosphoinositide	-	-	1.63	0.00	2.65	0.00	0.00	1.89	1.34	2.12	1.63	0.45	0.30	1.89	0.45
Biosynthesis	1.41	1.00													
fMLP Signaling in	-	-	-	-	2.24	-	-	N/A	N/A	1.34	1.00	N/A	0.71	2.00	1.41
Neutrophils	1.00	1.63	0.82	1.13		1.00	2.24		27/1			27/1	1.00		0.00
Gaq Signaling	N/A	-	-	0.00	2.12	-	-	2.24	N/A	2.12	2.24	N/A	1.00	1.34	0.00
Role of NEAT in Regulation	N/A	1.05	0.55	_	2.12	1.15	2.24	2.65	-	2.11	0.45	N/A	0.00	1.63	1.67
of the Immune Response	11/71	1.00	0.91	0.63	2.12	0.71	1.34	2.05	0.45	2.11	0.45	10/4	0.00	1.05	1.07
CREB Signaling in Neurons	-	-	-	-	2.24	-	-	N/A	-	2.65	0.00	-	0.00	1.13	1.00
	0.82	0.45	1.41	0.30		1.63	2.00		1.13			0.82			
Opioid Signaling Pathway	-	1.41	-	-	1.67	-	-	0.38	-	1.63	1.00	1.13	0.58	-	0.58
	1.27		1.94	0.83	2.65	0.38	0.38	1.41	1.41	2.12	1.00	0.22		0.82	0.45
Phosphate Compounds	-	- 1.51	1.13	0.00	2.65	0.00	0.82	1.41	1.34	2.12	1.00	0.33	- 0.28	1.27	0.45
D-myo-inositol-5-phosphate	-	-	2.00	0.82	2.24	-	0.00	1 34	N/A	2.24	1.63	0.45	0.28	1.00	N/A
Metabolism	1.34	1.00	2.00	0.02	2.21	0.30	0.00	1.51	10/11	2.21	1.05	0.15	0.71	1.00	1071
Phospholipase C Signaling	0.38	0.00	-	0.00	1.67	-	-	2.24	0.00	0.58	1.00	0.63	-	2.24	1.94
			0.63			1.27	1.90						0.30		
Apelin Endothelial Signaling	-	-	-	-	1.41	-	-	N/A	0.82	1.90	N/A	N/A	0.71	0.45	0.63
Pathway	2.00	0.45	1.63	0.58	1.00	2.00	2.12	1.(2		2.11	1.(2	NT/A	1.07	0.00	
IL-8 Signaling	N/A	- 1 41	0.33	- 1.67	1.00	- 0.45	- 0.38	1.63	-	2.11	1.63	N/A	1.27	0.00	- 1.51
CD28 Signaling in T Helper	N/A	-	-	-	1.41	-	-	1.34	N/A	2.12	1.34	0.00	-	1.89	0.38
Cells		0.71	1.13	1.41		0.82	1.34						0.38		
iCOS-iCOSL Signaling in T	N/A	-	-	-	1.63	-	N/A	2.24	-	1.89	0.00	-	0.00	1.63	1.13
Helper Cells		0.82	0.82	0.82		0.82			1.34			1.00			
D-myo-inositol (1,4,5,6)-	-	-	2.00	0.82	2.24	0.00	0.00	1.34	N/A	2.24	1.13	0.45	0.71	1.00	N/A
l etrakisphosphate	1.34	0.71													
D-myo-inositol (3.4.5.6)-			2.00	0.82	2.24	0.00	0.00	1 34	N/A	2.24	1.13	0.45	0.71	1.00	N/A
tetrakisphosphate	1.34	0.71	2.00	0.02	2.27	0.00	0.00	1.54	11/21	2.27	1.15	0.45	0.71	1.00	10/14
Biosynthesis															
B Cell Receptor Signaling	-	0.00	-	-	0.63	0.00	-	0.71	-	1.94	-	0.33	-	1.16	1.00
	1.63		1.21	1.39			1.13		1.27		0.63		0.91		
Role of NFAT in Cardiac	-	-	-	- 79	1.89	-	- 0.45	0.82	- 0.71	1.67	0.00	- 0.45	0.30	1.13	0.71
Colorectal Cancer Metastasis	1.13	0.82	0.33	0.78	0.58	0.82	0.43	0.38	0.71	2 32	2.12	0.45	0.63	1.90	_
Signaling	1.41	0.02	0.20	0.00	0.50	0.02	1.41	0.50	0.00	2.52	2.12	0.50	0.05	1.90	0.54
Type II Diabetes Mellitus	N/A	-	-	-	0.71	-	0.45	2.00	-	1.89	N/A	1.00	1.34	0.45	0.33
Signaling		0.45	0.45	2.12		1.00			1.00						
Adrenomedullin signaling	-	-	-	0.00	1.63	-	-	-	0.38	2.14	0.00	N/A	-	1.39	0.28
pathway	0.45	1.89	0.63		0.20	2.00	1.34	0.38		0.20	0.20	0.45	0.63	0.00	
mTOR Signaling	-	- 0.45	0.00	-	0.38	- 0.45	-	2.00	-	0.38	0.38	0.45	0.82	0.38	-
Neuroinflammation	0.91	-	-	-	-	0.43	-	0.30	0.38	2.36	1 94	0.00	0.28	1.00	-
Signaling Pathway	0.91	0.73	1.41	0.71	0.91	0.05	1.00	0.50	0.00	2.50		0.00	0.20	1.00	0.58
Cardiac Hypertrophy	-	-	0.00	-	1.15	-	-	0.50	-	1.96	1.16	0.83	0.96	0.73	0.45
Signaling (Enhanced)	1.07	0.66		0.85		0.47	0.23		2.00						
AMPK Signaling	0.38	0.00	-	0.63	0.82	0.38	-	-	1.60	1.41	0.00	-	-	1.13	-
Clicklasterre Makiferre			1.13				1.34	1.34			1.00	0.82	1.63	2.22	0.38
Signaling	- 0.82	- 1.63	0.33	- 0.38	- 0.45	- 0.45	0.45	1.05	- 0.45	- 0.38	1.00	IN/A	0.71	2.33	- 1.89
Arvl Hydrocarbon Receptor	-	0.71	0.45	-	N/A	-	-	0.82	0.00	0.30	1.34	-	-	-	-
Signaling	1.34			1.41		0.82	0.71					0.71	1.13	1.89	1.13
Integrin Signaling	-	-	0.30	-	-	-	0.45	0.00	-	0.45	-	-	0.63	2.12	-
	1.34	1.41		1.16	0.38	0.33			0.82		0.33	1.67			1.27
P2Y Purigenic Receptor	-	-	- 71	-	2.45	N/A	N/A	1.00	-	3.16	1.34	N/A	0.00	N/A	1.00
Nitric Oxide Signaling in the	0.45 N/A	1.00 N/A	0.71	1.00	2.00		0.00	0.45	1.63	2.00	N/A	0.00	0.63	2.65	0.33
Cardiovascular System	11/21	19/74	0.82	1.00	2.00	1.00	0.00	0.45	1.05	2.00	19/25	0.00	0.05	2.05	0.55
3-phosphoinositide	-	-	1.63	0.00	1.89	-	0.82	0.38	2.00	2.24	0.71	0.00	0.30	0.00	N/A
Degradation	1.63	0.33				0.58									
White Adipose Tissue	1.00	-	-	0.63	1.34	1.00	N/A	N/A	0.00	1.41	0.82	0.00	-	1.00	1.63
Browning Pathway		1.63	1.00		0.20	1.00		0.00	1.12	1 = 2		0.00	1.00	1.00	
Production of Nitric Oxide	- 0.29	-	0.00	- 0.62	0.30	1.00	- 0.29	0.00	1.13	1.73	2.31	0.33	0.33	1.00	-
Species in Macronhages	0.58	1.59		0.05			0.58								1.39
Dendritic Cell Maturation	-	-	-	-	0.71	0.45	0.00	1.63	0.00	2.32	0.82	0.00	0.71	0.82	0.33
	1.34	0.33	0.91	1.89											

PI3K/AKT Signaling	-	-	0.00	0.38	-	0.38	1.13	1.13	0.82	1.27	1.67	0.00	0.83	2.67	-
Apelin Cardiomyocyte	- 0.45	- 0.30	-	-	1.00	N/A	N/A	N/A	N/A	2.00	N/A	N/A	1.41	1.34	-
Signaling Pathway	1.63	1.41	1.34	1.41											0.45
Mouse Embryonic Stem Cell Pluripotency	1.13	- 0.82	- 1.67	0.00	1.13	0.00	N/A	N/A	1.00	1.13	1.34	N/A	- 0.45	2.12	-
Systemic Lupus	-	0.02	-	-	0.63	0.63	-	-	-	0.00	1.00	-	-	1.73	0.00
Erythematosus In B Cell	0.38		1.29	1.16			1.13	0.30	1.27			1.13	1.21		
NF-rB Activation by	N/A	-	-	-	0.71	-	N/A	N/A	N/A	2.24	1.00	N/A	1 34	2.00	-
Viruses	10/11	1.34	0.38	1.89	0.71	0.45	10/11	10/11	10/11	2.21	1.00	10/11	1.51	2.00	0.38
ILK Signaling	1.34	0.71	-	-	0.45	0.00	0.00	0.45	1.34	2.11	0.63	0.38	-	1.27	-
Endocannabinoid Cancer	-	-	0.63	0.63	-	0.00	0.38	-	1 13	-	-	-	0.38	-	0.00
Inhibition Pathway	2.83	0.38	0.00	0.50	1.63	0.00	0.50	0.38		1.51	0.38	0.82		0.45	0.00
Tec Kinase Signaling	N/A	N/A	1.89	-	0.38	N/A	0.45	1.00	0.45	0.71	2.24	-	1.00	1.41	-
LXR/RXR Activation	1.73	-	_	0.33	0.00	2 53	0.00	0.38	1.00	_	0.26	1.00	_	0.83	0.63
Enterenteritenter	1.75	0.71	1.51	1.10	0.00	2.55	0.00	0.50	1.00	0.50	0.20	0.00	0.58	0.05	0.50
Sirtuin Signaling Pathway	-	0.83	0.00	1.00	-	-	-	0.00	0.91	-	0.28	-	0.00	0.91	0.30
FRK/MAPK Signaling	2.00	-	-	-	0.63	0.38	1.67	-	0.00	2.00	0.33	0.28	0.00	1.51	-
Ercte which it organizing	0.82	0.38	1.00	0.28	0.45	0.38	1.00	1.00	0.00	2.00	0.55	1.00	0.00	1.51	0.71
Osteoarthritis Pathway	0.45	0.71	1.41	0.82	0.38	0.71	1.41	-	N/A	0.50	0.82	N/A	0.38	2.24	0.33
Relaxin Signaling	N/A	N/A	0.00	0.38	2 24	N/A	N/A	0.63	0.00	2 33	2.00	N/A	0.38	2 24	0.38
Relaxin Signamig	1071	1011	0.00	0.50	2.21	10/11	1011	0.02	0.00	2.55	2.00	1011	0.50	2.21	0.50
14-3-3-mediated Signaling	-	- 0.71	- 0.45	-	0.45	-	0.00	N/A	-	1.89	0.00	0.45	- 28	0.00	-
cAMP-mediated signaling	0.45	0.71 N/A	-	0.71	N/A	0.00	-	0.45	-	2.24	N/A	-	-	-	0.82
			1.00				2.00		1.67			0.45	0.33	0.45	
PPARα/RXRα Activation	0.33	-	- 0.22	-	0.71	0.58	0.45	0.00	0.91	0.28	-	0.00	0.00	-	1.27
Ephrin Receptor Signaling	0.00	0.45	-	-	-	1.00	0.00	1.00	-	0.45	1.13	-	0.91	1.13	0.45
			0.30	0.91	0.45				2.00			0.33			
RANK Signaling in	N/A	-	-	-	0.71	0.00	-	1.00	N/A	1.90	1.00	0.00	-	1.34	0.38
PKC0 Signaling in T	N/A	1.00	0.00	0.82	1.63	0.00	0.82 N/A	1.63	-	2.12	N/A	N/A	0.45	1.63	1 13
Lymphocytes		0.38	0.00	1.00	1105	0.00	1011	1105	0.82	2.112		1011	0.00	1.05	
Growth Hormone Signaling	N/A	N/A	1.13	-	-	-	N/A	2.24	-	0.00	0.00	0.00	2.12	1.27	-
Signaling by Rho Family	N/A	-	0.38	-	0.43	1.00 N/A	0.00	2.00	0.38	1.00	1.89	0.33	0.00	0.82	-
GTPases		0.71		0.82											1.51
Oxidative Phosphorylation	2.65	0.00	N/A	N/A	N/A	N/A	-	N/A	1.63	N/A	-	-	-	N/A	N/A
PEDF Signaling	N/A	-	-	-	1.63	1.00	0.82 N/A	1.34	N/A	1.13	0.00	N/A	1.00	N/A	-
		1.34	0.71	1.63											0.45
eNOS Signaling	N/A	N/A	-		1.34	-	-	0.00	-	1.63	0.45	N/A	-	2.00	0.38
CXCR4 Signaling	N/A	0.00	0.82	-	0.38	0.45 N/A	1.00 N/A	1.34	0.82	1.00	N/A	1.34	0.38	1.13	-
offort of Signating		0.00	0100	0.91	0.50			1.5 1	01.15	1100	1011		1107		1.27
Cardiac Hypertrophy	-	0.00	0.00	0.00	1.34	-	-	0.71	-	2.11	0.82	0.71	-	0.82	0.00
Signaling Huntington's Disease	0.45	0.00	0.00	-	1 13	0.91 N/A	0.00	0.82	0.33	1 41	N/A	-	0.30	1.89	1 13
Signaling	1.00	0.00	0.00	0.38		1011	0.00	0.02	1.34			0.45	0.00	1.05	
Actin Cytoskeleton	0.00	-	0.00	0.00	0.82	-	0.00	0.82	1.00	0.71	0.91	-	-	1.67	-
Apelin Adipocyte Signaling	-	0.71		-	-	0.38 N/A	N/A	0.00	1 34	0.00		1.27	0.91		0.38 N/A
Pathway	1.34	0.02	2.00	0.33	1.00			0.00	1.5 .	0.00	0.82	0.45	0110	1.00	1011
FGF Signaling	N/A	-	-	-	N/A	0.00	N/A	N/A	-	0.38	-	N/A	-	1.89	0.00
Endothelin-1 Signaling	-	-	-	-	0.45	-	N/A	0.45	-	1.13	0.82	N/A	0.58	-	-
	1.13	0.38	1.34	1.16		0.45			1.41		0.00			0.33	0.63
Leukocyte Extravasation	-	0.71	-	-	0.00	0.00	1.13	-	N/A	1.89	0.00	0.45	0.00	0.82	0.00
T Cell Exhaustion Signaling	0.45 N/A	1.00	0.71	1.94	-	0.45	N/A	0.00	1.00	-	1.00	N/A	0.00	0.38	0.45
Pathway		1.00	0100	1100	1.34	0115		0.00	1.00	2.45	1.00		0.00	0.50	0115
PTEN Signaling	N/A	1.51	0.28	1.90	-	0.00	-	-	1.34	0.30	-	0.38	0.30	-	0.45
LPS-stimulated MAPK	-	-	-	-	0.33	0.00	0.38	1.13	N/A	1.67	0.82	N/A	0.45	0.28	-
Signaling	1.00	0.38	1.13	1.89	0.00	0.00	0.00	1.00		1107	0.45		0110	1.00	0.38
IL-7 Signaling Pathway	N/A	-	-	-	N/A	N/A	N/A	N/A	-	0.00	-	-	-	1.13	-
NGF Signaling	0.00	2.45	-	-	0.71	0.38	0.00	1.63	- 0.45	2.83	0.33	2.00	0.82	1.13	0.45
			0.71	0.38					0.45						0.00
STAT3 Pathway	N/A	-	-	-	-	N/A	N/A	N/A	N/A	-	0.00	N/A	0.82	-	-
LPS/II -1 Mediated	0.63	1.00	0.71	2.53	1.34	0.33	2.00	-	0.45	1.13	0.00	1 13	0.00	0.38	1.34
Inhibition of RXR Function	0.05	0.50	0.00	0.45	0.00	0.55	2.00	1.13	0.75	1.10	0.00	1.15	0.00	0.02	0.71
Role of Pattern Recognition	-	N/A	-	-	1.34	N/A	0.00	N/A	N/A	1.89	N/A	N/A	-	1.00	0.38
Receptors in Recognition of Bacteria and Viruses	1.00		1.63	1.34									0.45		
Fc Epsilon RI Signaling	-	0.00	-	-	0.45	N/A	N/A	0.00	-	0.82	0.00	0.00	0.00	1.41	-
	1.00		1.67	1.90					1.34						0.45

Insulin Receptor Signaling	N/A	-	-	-	-	0.00	0.00	1.13	-	-	-	-	-	1.39	N/A
Acute Myeloid Leukemia	N/A	0.38 N/A	-	0.00	2.24	1.34	N/A	-	-	1.13	0.45 N/A	0./1 N/A	-	1.00	-
Signaling Pancreatic Adenocarcinoma	N/A	N/A	0.71	-	0.38	N/A	0.45	0.82 N/A	0.45	2.33	1.63	N/A	0.82	1.00	0.38
Signaling			0.71	0.38	0.50		27/1		0.45	2.00	0.00		0.38	1.00	1.13
IL-17A Signaling in Airway Cells	N/A	- 1.63	- 1.13	- 0.82	- 0.38	N/A	N/A	N/A	N/A	1.41	0.00	N/A	1.00	1.63	- 0.82
Th2 Pathway	N/A	N/A	1.41	0.82	1.34	N/A	N/A	N/A	1.00	1.34	N/A	N/A	0.00	2.45	- 0.45
IL-3 Signaling	N/A	N/A	0.38	0.00	1.00	0.00	N/A	N/A	N/A	1.63	N/A	- 2.00	1.13	2.65	0.43
GP6 Signaling Pathway	N/A	N/A	-	-	1.63	- 0.45	N/A	N/A	0.00	2.12	N/A	N/A	0.00	1.63	1.00
Cdc42 Signaling	0.00	0.71	0.38	-	0.00	0.45	0.00	N/A	N/A	2.00	-	0.00	1.63	-	N/A
Amyotrophic Lateral	N/A	N/A	1.34	-	1.63	N/A	N/A	N/A	-	0.82	-	1.34	- 0.45	0.00	0.00
Cholecystokinin/Gastrin-	-	0.00	-	-	N/A	-	0.00	N/A	N/A	0.71	-	0.45	0.45	-	-
mediated Signaling PPAR Signaling	1.34	-	0.82	1.41	-	1.00	0.00	0.00	N/A	-	0.45 N/A	0.45	1.13	0.82	1.13
C 12/12 S' 1'	NT/ A	0.38	0.00	0.71	1.00	0.00	0.00	NT/A		1.00	2.24	NT/ A	1.00	1.63	0.00
Ga12/13 Signaling	N/A	0.38	0.00	- 1.41	0.71	0.00	0.00	N/A	0.45	2.33	2.24	N/A	1.00	0.00	0.00
Renin-Angiotensin Signaling	N/A	0.00	- 0.82	- 1.00	0.45	N/A	- 1.00	N/A	0.00	1.89	- 1.00	N/A	0.00	1.63	0.71
EIF2 Signaling	0.00	0.00	- 1.63	0.38	0.45	N/A	0.00	N/A	N/A	0.38	-	N/A	- 2 11	2.12	- 0.38
NF-KB Signaling	N/A	-	-	-	1.13	-	0.38	0.00	-	0.78	N/A	N/A	-	0.33	0.00
NRF2-mediated Oxidative	-	0.38	-	-	-	0.00	0.45	N/A	0.38 N/A	1.63	-	-	0.05 N/A	N/A	N/A
Stress Response CDK5 Signaling	0.45	0.45	0.82	1.13	1.00 N/A	N/A	N/A	-	N/A	N/A	1.41	1.00	N/A	N/A	N/A
		0.15	1101					1.00				2.00			1011
Endocannabinoid Developing Neuron Pathway	0.38	0.33	- 1.67	- 0.63	0.45	N/A	- 0.45	0.45	- 0.45	0.63	0.38	1.34	0.00	0.38	- 0.38
GDNF Family Ligand- Receptor Interactions	N/A	N/A	-	-	N/A	N/A	N/A	N/A	- 1.00	1.34	- 1.00	N/A	N/A	1.00	- 1.00
HMGB1 Signaling	N/A	-	-	-	1.00	N/A	N/A	0.45	0.45	0.63	N/A	N/A	0.45	1.13	-
Melanocyte Development	1.00	0.43	-	-	N/A	0.00	N/A	1.00	-	2.24	0.00	0.00	-	1.00	0.00
and Pigmentation Signaling Apoptosis Signaling	N/A	0.82	0.82	0.33 N/A	0.38	1.63	N/A	-	0.45	0.00	N/A	N/A	0.82	N/A	0.00
Neurotrophin/TRK Signaling	N/A	N/A	-	-	N/A	N/A	N/A	0.82 N/A	1.00	1.34	-	0.00	1.00	1.00	-
Type I Diabetes Mellitus	N/A	-	1.34 N/A	0.45	-	1.00	N/A	-	1.00 N/A	0.00	1.00	N/A	1.00	-	0.45 N/A
Signaling	1.00	0.82		1.63	1.13	0.00		0.38				0.00		0.82	
Pathway	1.00	0.00	- 0.82	- 0.63	0.00	0.00	- 0.71	0.00	- 1.13	- 0.83	- 0.38	0.00	- 1.27	0.00	- 0.63
ATM Signaling	N/A	0.45	- 0.45	- 0.45	N/A	N/A	0.00	N/A	N/A	2.00	0.00	1.34	- 1.00	- 1.63	N/A
CD40 Signaling	N/A	-	- 2.12	-	- 0.82	N/A	N/A	- 0.45	N/A	0.71	N/A	N/A	0.00	0.45	0.00
PD-1, PD-L1 cancer	N/A	N/A	-	1.13	0.00	N/A	N/A	-	0.00	-	N/A	N/A	-	-	0.82
Small Cell Lung Cancer	N/A	-	0.38	0.00	0.38	N/A	N/A	1.34	0.00	1.13	N/A	N/A	0.82	1.63	0.45
Signaling Duridanal 51 abaarbata	NI/A	1.34	0.82	1.24	0.00	NT/A	1.24	1.00	NI/A	NI/A	1.00	1.00	NI/A	NI/A	0.45
Salvage Pathway	IN/A	0.00	1.00	1.34	0.00	IN/A	1.34	1.00	IN/A	IN/A	1.00	1.00	IN/A	IN/A	0.43
Fcy Receptor-mediated Phagocytosis in	N/A	N/A	0.00	- 1.63	1.63	N/A	- 1.00	N/A	N/A	N/A	2.00	N/A	- 0.38	0.00	- 0.45
Macrophages and															
Role of NANOG in	1.00	N/A	-	0.00	N/A	N/A	N/A	N/A	0.45	1.00	0.45	N/A	0.00	2.65	-
Mammalian Embryonic Stem Cell Pluripotency			0.45												1.00
Prolactin Signaling	N/A	N/A	0.82	- 1 39	- 0.45	N/A	N/A	N/A	0.00	0.00	N/A	-	1.41	1.41	- 0.45
FLT3 Signaling in	N/A	0.00	-	0.00	N/A	0.00	N/A	N/A	0.00	2.00	-	-	0.00	1.89	-
Cells			1.00								0.45	1.13			0.45
BMP signaling pathway	0.45	- 0.45	- 2.00	- 0.82	N/A	N/A	- 1.00	N/A	N/A	1.34	0.82	N/A	N/A	N/A	N/A
PAK Signaling	N/A	N/A	0.82	- 1.41	- 1.00	N/A	N/A	N/A	N/A	1.00	N/A	N/A	0.45	0.82	- 1.34
GNRH Signaling	- 0.38	0.00	0.00	- 0.58	0.38	0.00	0.38	- 0.45	- 0.82	1.67	0.38	0.38	0.71	0.00	0.71
tRNA Charging	N/A	N/A	N/A	N/A	1.34	N/A	N/A	N/A	N/A	N/A	-	-	N/A	N/A	-
Sphingosine-1-phosphate	-	N/A	-	0.00	0.00	N/A	N/A	1.13	N/A	0.00	2.43 N/A	2.00 N/A	1.13	N/A	-
Signaling	2.00		0.82												1.63

Gas Signaling	N/A	N/A	-	0.00	N/A	N/A	N/A	0.00	N/A	2.45	1.00	-	0.00	N/A	2.00
SAPK/JNK Signaling	N/A	0.45	0.82	-	0.00	0.00	N/A	0.00	-	1.67	0.38	0.43	-	0.45	0.00
JAK/Stat Signaling	N/A	N/A	0.00	-	- 0.71	N/A	N/A	1.00	0.45	0.30	0.45	N/A	0.38	1.90	- 0.45
Wnt/β-catenin Signaling	N/A	0.82	0.00	0.63 N/A	0.00	1.41	2.00	-	N/A	0.00	N/A	N/A	N/A	0.00	-
PDGF Signaling	N/A	N/A	0.38	0.00	N/A	N/A	N/A	0.00	1.00	1.34	0.00	-	0.00	1.41	-
EGF Signaling	N/A	N/A	-	-	N/A	N/A	N/A	N/A	N/A	2.00	N/A	1.00 N/A	0.00	2.45	1.34 N/A
Antioxidant Action of	1.00	0.38	-	0.38 N/A	0.00	0.00	N/A	N/A	N/A	-	-	N/A	-	0.00	N/A
Calcium Signaling	-	0.00	-	0.45	N/A	-	N/A	N/A	-	N/A	N/A	0.82	-	N/A	N/A
Estrogen-Dependent Breast	N/A	N/A	-	-	N/A	0.45 N/A	N/A	N/A	0.45 N/A	2.45	N/A	N/A	0.82	2.00	0.45
Rac Signaling	N/A	-	0.00	-	1.00	N/A	-	N/A	N/A	1.63	N/A	N/A	0.00	0.45	-
Lymphotoxin ß Receptor	N/A	-	-	1.34 N/A	0.82	N/A	0.45 N/A	1.00	N/A	2.24	N/A	N/A	N/A	N/A	- 45
Signaling Sumoylation Pathway	-	1.00 N/A	0.82 N/A	N/A	N/A	N/A	N/A	-	N/A	0.00	0.00	0.00	-	-	
p53 Signaling	0.82 N/A	N/A	0.82	1.34	0.38	N/A	N/A	2.00 0.45	0.45	-	N/A	N/A	0.38	-	0.45
Th17 Activation Pathway	N/A	-	N/A	1.00	1.00	N/A	N/A	N/A	N/A	1.13 0.00	N/A	N/A	-	0.38	-
Glioma Signaling	N/A	1.00 N/A	-	-	N/A	N/A	N/A	N/A	-	N/A	N/A	N/A	-	1.34	0.45
IL-6 Signaling	N/A	-	1.63	-	-	N/A	N/A	0.00	1.00 N/A	1.50	0.00	N/A	0.45	1.51	-
RhoA Signaling	0.00	0.82	0.38 N/A	0.83 N/A	0.33 N/A	0.45	-	-	N/A	N/A	1.34	-	-	N/A	0.38 N/A
Salvage Pathways of	N/A	0.38	0.45	0.38	0.00	N/A	0.38	0.45	N/A	1.34	1.00	0.63	2.12 N/A	N/A	0.00
Pyrimidine Ribonucleotides Endometrial Cancer	N/A	0.38 N/A	-	-	N/A	N/A	N/A	N/A	N/A	2.00	N/A	N/A	N/A	1.34	-
Signaling Thrombopoietin Signaling	N/A	N/A	1.00 0.82	0.82	N/A	N/A	N/A	N/A	N/A	1.00	N/A	N/A	0.82	2.45	0.45
VEGF Signaling	N/A	N/A	-	0.00	0.00	N/A	N/A	N/A	N/A	2.00	N/A	N/A	-	1.63	0.45
ErbB Signaling	N/A	N/A	0.45	-	N/A	N/A	N/A	N/A	N/A	1.34	N/A	N/A	1.00 0.45	1.00	0.45
Telomerase Signaling	N/A	N/A	0.82	1.41	N/A	N/A	N/A	N/A	1.00	N/A	N/A	N/A	0.00	2.65	0.45
UVB-Induced MAPK	N/A	N/A	1.34	-	N/A	N/A	N/A	N/A	N/A	2.00	N/A	N/A	N/A	N/A	0.45
Signaling Corticotropin Releasing	-	N/A	1.34	1.63	N/A	N/A	N/A	0.00	1.00	1.00	-	N/A	0.38	N/A	0.45
Hormone Signaling	0.45	21/12	0.82	0.55	0.00	10/1	2011	0.00	1.00	1.00	0.45	10/1	0.50	0.10	1.00
GM-CSF Signaling	N/A	N/A	0.00	- 0.71	0.00	N/A	N/A	N/A	- 0.45	1.63	N/A	N/A	- 0.45	2.12	N/A
Superpathway of Cholesterol Biosynthesis	- 2.45	N/A	N/A	N/A	N/A	- 1.89	N/A	N/A	N/A	N/A	- 1.00	N/A	N/A	N/A	N/A
Death Receptor Signaling	N/A	- 1.34	1.00	N/A	0.00	0.45	N/A	- 0.38	N/A	0.82	N/A	N/A	0.82	N/A	0.45
Nicotine Degradation II	- 1.34	N/A	0.00	- 0.45	- 1.00	0.00	N/A	N/A	0.00	N/A	- 0.38	N/A	N/A	- 1.00	1.00
p38 MAPK Signaling	0.00	N/A	- 1.00	0.00	N/A	0.00	N/A	- 1.00	N/A	0.71	- 0.38	N/A	- 1.00	N/A	- 1.00
HGF Signaling	N/A	0.00	0.00	- 0.30	0.38	0.00	0.00	N/A	0.00	2.12	N/A	0.00	- 0.38	1.90	0.00
UVC-Induced MAPK Signaling	- 2.00	N/A	N/A	- 2.00	N/A	N/A	1.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Triacylglycerol Biosynthesis	- 2.00	N/A	N/A	N/A	N/A	0.00	N/A	N/A	- 2.00	N/A	-	N/A	N/A	N/A	N/A
Melanoma Signaling	N/A	N/A	- 0.45	- 0.45	N/A	N/A	N/A	N/A	1.00	1.00	N/A	N/A	N/A	2.00	N/A
IL-23 Signaling Pathway	N/A	N/A	0.00	- 0.45	0.45	N/A	N/A	N/A	N/A	0.82	N/A	N/A	1.00	1.63	- 0.45
Acetone Degradation I (to	-	N/A	N/A	-	N/A	-	N/A	N/A	N/A	N/A	- 0.45	N/A	N/A	N/A	N/A
Ephrin B Signaling	0.00	N/A	-	- 0.45	N/A	0.00	N/A	N/A	N/A	N/A	1.34	N/A	2.00	N/A	N/A
IGF-1 Signaling	N/A	N/A	0.00	-	-	N/A	N/A	N/A	0.00	0.38	N/A	N/A	0.38	1.27	-
SPINK1 General Cancer	-	N/A	0.00	-	0.82 N/A	N/A	N/A	N/A	N/A	0.00	N/A	N/A	1.34	1.13	- 0.45
April Mediated Signaling	N/A	-	-	0.82 N/A	0.00	-	N/A	1.00	N/A	1.34	0.00	N/A	N/A	N/A	0.43 N/A
B Cell Activating Factor	N/A	- 0.38	-	N/A	0.00	-	N/A	1.00	N/A	1.34	0.00	N/A	N/A	N/A	N/A
Signamig		0.50	1.00		1	1.00		1				1	1	1	

PCP pathway	N/A	N/A	-	N/A	N/A	N/A	N/A	N/A	N/A	2.00	0.45	N/A	N/A	N/A	N/A
Wnt/Ca+ pathway	N/A	0.00	- 2.24	N/A	N/A	-	N/A	N/A	N/A	1.34	0.00	N/A	N/A	N/A	N/A
Role of RIG1-like Receptors	N/A	-	1.00	N/A	0.45	0.45	N/A	0.82	N/A	0.45	N/A	N/A	N/A	N/A	N/A
ErbB2-ErbB3 Signaling	N/A	N/A	0.45	0.00	N/A	N/A	N/A	N/A	1.00	N/A	N/A	N/A	0.00	1.63	-
Cardiac β-adrenergic Signaling	N/A	N/A	1.00	1.00	N/A	N/A	N/A	- 0.38	-	N/A	N/A	-	0.00	N/A	N/A
Cell Cycle: G1/S Checkpoint Regulation	N/A	N/A	N/A	-	N/A	N/A	0.00	N/A	- 0.45	0.45	N/A	- 0.82	1.63	0.00	N/A
IL-9 Signaling	N/A	N/A	1.00	0.00	N/A	N/A	N/A	N/A	N/A	1.00	N/A	N/A	1.00	1.34	0.00
Paxillin Signaling	N/A	N/A	0.45	- 0.63	- 1.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	- 0.45	1.00	- 0.82
Inhibition of Angiogenesis by TSP1	N/A	N/A	N/A	- 2.24	N/A	N/A	N/A	N/A	N/A	1.00	N/A	N/A	N/A	- 1.00	N/A
Activation of IRF by Cytosolic Pattern Recognition Receptors	N/A	0.38	0.45	N/A	- 0.82	0.45	0.00	0.45	N/A	0.71	0.45	0.00	N/A	N/A	- 0.45
Agrin Interactions at Neuromuscular Junction	N/A	N/A	0.45	- 1.34	- 1.34	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	- 1.00
Non-Small Cell Lung Cancer Signaling	N/A	N/A	-	- 0.45	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.00	2.24	N/A
Oncostatin M Signaling	N/A	N/A	1.00	1.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2.00	N/A
IL-2 Signaling	N/A	N/A	- 0.38	- 0.38	N/A	N/A	N/A	N/A	0.00	1.00	N/A	N/A	0.00	2.24	N/A
Th1 Pathway	N/A	N/A	N/A	- 0.71	- 0.45	N/A	N/A	N/A	0.00	0.00	N/A	N/A	0.82	1.63	- 0.38
VEGF Family Ligand- Receptor Interactions	N/A	N/A	-	- 0.82	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.00	2.00	0.00
Stearate Biosynthesis I (Animals)	N/A	N/A	N/A	- 1.63	N/A	N/A	N/A	N/A	- 0.82	N/A	N/A	N/A	N/A	N/A	1.34
TNFR2 Signaling	N/A	- 0.45	1.00	N/A	1.00	N/A	N/A	N/A	N/A	1.34	N/A	N/A	N/A	N/A	N/A
CNTF Signaling	N/A	N/A	0.00	0.00	N/A	0.00	N/A	N/A	0.45	N/A	N/A	N/A	0.00	1.89	-
TGF-β Signaling	N/A	N/A	-	-	N/A	N/A	N/A	N/A	N/A	1.63	N/A	N/A	N/A	N/A	N/A
CCR3 Signaling in Eosinophils	-	N/A	-	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.00
Chemokine Signaling	-	N/A	-	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Superpathway of Geranylgeranyldiphosphate Biosynthesis I (via Mevalonate)	- 2.24	N/A	N/A	N/A	N/A	- 1.34	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CD27 Signaling in	N/A	0.45	N/A	N/A	0.00	0.00	0.00	0.45	N/A	1.63	N/A	N/A	N/A	N/A	1.00
iNOS Signaling	N/A	-	N/A	N/A	0.00	N/A	N/A	N/A	N/A	0.82	1.34	N/A	N/A	N/A	N/A
Toll-like Receptor Signaling	N/A	- 0.82	-	N/A	N/A	N/A	N/A	0.00	N/A	0.63	N/A	N/A	-	N/A	N/A
TNFR1 Signaling	N/A	0.45	0.00	N/A	1.00	0.00	N/A	0.00	N/A	2.00	0.00	N/A	N/A	N/A	N/A
TWEAK Signaling	N/A	- 1.00	N/A	N/A	- 0.45	- 1.00	N/A	- 1.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Angiopoietin Signaling	N/A	0.45	0.00	1.00	1.00	- 1.00	N/A	N/A	N/A	N/A	N/A	N/A	0.00	N/A	N/A
Glioma Invasiveness Signaling	N/A	N/A	- 0.45	- 1.34	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	- 1.63
FcγRIIB Signaling in B Lymphocytes	N/A	N/A	N/A	- 0.38	N/A	N/A	N/A	N/A	N/A	N/A	N/A	- 1.00	0.00	1.00	- 1.00
Mevalonate Pathway I	- 2.00	N/A	N/A	N/A	N/A	- 1.34	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TREM1 Signaling	N/A	N/A	0.00	N/A	N/A	N/A	N/A	N/A	N/A	0.82	N/A	N/A	0.00	2.45	N/A
4-1BB Signaling in T Lymphocytes	N/A	0.00	- 1.00	N/A	0.00	N/A	N/A	N/A	N/A	2.24	0.00	N/A	N/A	N/A	N/A
Leptin Signaling in Obesity	N/A	N/A	- 0.45	0.00	0.00	N/A	N/A	N/A	N/A	0.45	N/A	N/A	0.45	1.89	N/A
Estrogen Biosynthesis	N/A	N/A	N/A	- 1.00	N/A	0.00	N/A	N/A	N/A	N/A	- 0.82	N/A	N/A	- 1.34	N/A
Regulation of eIF4 and p70S6K Signaling	N/A	N/A	- 0.45	- 0.45	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.00	2.24	N/A
ERK5 Signaling	N/A	1.00	- 1.00	N/A	N/A	N/A	0.00	N/A	- 1.00	N/A	0.00	N/A	N/A	N/A	N/A
UVA-Induced MAPK Signaling	N/A	N/A	- 1.00	- 1.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	- 1.00
Neuregulin Signaling	- 0.45	N/A	0.00	- 0.45	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.82	1.00	N/A

Macropinocytosis Signaling	N/A	N/A	N/A	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.45	N/A	0.45
Induction of Apoptosis by	N/A	- 0.45	N/A	N/A	0.00	N/A	1.00	-	N/A	0.00	N/A	N/A	N/A	N/A	N/A
Nicotine Degradation III	N/A	N/A	N/A	-	N/A	0.00	N/A	N/A	N/A	N/A	- 0.45	N/A	N/A	N/A	1.00
Aldosterone Signaling in	N/A	-	N/A	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.45	N/A	0.00
HIPPO signaling	1.00	N/A	N/A	N/A	N/A	0.00	N/A	N/A	1.00	0.00	0.45	N/A	N/A	0.00	N/A
Antiproliferative Role of Somatostatin Recentor 2	N/A	N/A	0.00	-	N/A	N/A	N/A	N/A	-	0.45	N/A	N/A	0.00	N/A	0.00
MIF Regulation of Innate	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	2.24	N/A	N/A	N/A	N/A	N/A
ErbB4 Signaling	N/A	N/A	- 0.45	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.45	N/A	0.00
Cell Cycle: G2/M DNA Damage Checkpoint Regulation	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.00	N/A	1.00	N/A	N/A	N/A	1.00	N/A
Role of p14/p19ARF in Tumor Suppression	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	- 2.00	N/A	N/A	N/A	N/A	0.00
Remodeling of Epithelial Adherens Junctions	N/A	- 1.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	- 1.00	N/A	N/A	N/A	N/A
Triacylglycerol Degradation	N/A	N/A	N/A	- 0.45	N/A	N/A	N/A	N/A	0.45	N/A	N/A	-	N/A	N/A	N/A
Sperm Motility	N/A	N/A	N/A	N/A	N/A	-	N/A	N/A	N/A	N/A	N/A	N/A	0.82	N/A	N/A
Ovarian Cancer Signaling	N/A	N/A	- 0.82	0.00	N/A	N/A	N/A	N/A	1.00	N/A	N/A	N/A	N/A	N/A	N/A
IL-1 Signaling	N/A	- 0.38	N/A	0.00	0.00	N/A	N/A	0.00	N/A	1.13	N/A	N/A	N/A	N/A	N/A
Bupropion Degradation	N/A	N/A	N/A	-	N/A	N/A	N/A	N/A	N/A	N/A	- 0.45	N/A	N/A	N/A	N/A
Apelin Pancreas Signaling	N/A	N/A	N/A	0.00	1.00	N/A	N/A	N/A	0.00	0.45	N/A	N/A	N/A	N/A	0.00
VDR/RXR Activation	N/A	N/A	N/A	N/A	N/A	N/A	0.00	N/A	N/A	1.34	N/A	N/A	N/A	N/A	N/A
IL-22 Signaling	N/A	N/A	- 0.45	- 0.45	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.45	N/A
α-Adrenergic Signaling	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.00	N/A	N/A
Phosphatidylcholine Biosynthesis I	N/A	1.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Fatty Acid β-oxidation I	N/A	0.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	1.00
Glycolysis I	N/A	1.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Complement System	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	- 1.00
Amyloid Processing	N/A	N/A	- 1.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Regulation of Cellular Mechanics by Calpain Protease	N/A	N/A	0.00	N/A	N/A	N/A	1.00	N/A	N/A	N/A	N/A	N/A	0.00	N/A	N/A
Retinol Biosynthesis	N/A	N/A	N/A	0.45	N/A	N/A	N/A	N/A	0.45	N/A	N/A	N/A	N/A	N/A	N/A
Calcium-induced T Lymphocyte Apoptosis	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.82	N/A	N/A
FAT10 Cancer Signaling Pathway	N/A	0.00	0.00	N/A	0.45	0.00	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
GPCR-Mediated Nutrient Sensing in Enteroendocrine Cells	N/A	N/A	N/A	- 0.38	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.00	N/A	N/A
Regulation of the Epithelial- Mesenchymal Transition Pathway	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
CDP-diacylglycerol Biosynthesis I	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pregnenolone Biosynthesis	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Cyclins and Cell Cycle Regulation	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Xenobiotic Metabolism Signaling	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Ephrin A Signaling	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Sertoli Cell-Sertoli Cell Junction Signaling	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
trisphosphate Degradation		IN/A	IN/A	IN/A		IN/A	IN/A			IN/A		0.00	0.00	0.00	N/A
Protein Ubiquitination Pathway	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Altered T Cell and B Cell Signaling in Rheumatoid Arthritis	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

IL-15 Signaling	N/A	N/A	N/A	N/A	
Hepatic Cholestasis	N/A	N/A	N/A	N/A	
DNA Double-Strand Break Repair by Homologous Recombination	N/A	N/A	N/A	N/A	
Maturity Onset Diabetes of Young (MODY) Signaling	N/A	N/A	N/A	N/A	
Role of PKR in Interferon Induction and Antiviral Response	N/A	N/A	N/A	N/A	
Cancer Drug Resistance By Drug Efflux	N/A	N/A	N/A	N/A	
Systemic Lupus Erythematosus Signaling	N/A	N/A	N/A	N/A	
MIF-mediated Glucocorticoid Regulation	N/A	N/A	N/A	N/A	
Glycerol Degradation I	N/A	N/A	N/A	N/A	
Factors Promoting	N/A	N/A	N/A	N/A	
Reelin Signaling in Neurons	N/A	N/A	N/A	N/A	
α-tocopherol Degradation	N/A	N/A	N/A	N/A	
Fatty Acid Activation	N/A	N/A	N/A	N/A	
G Protein Signaling Mediated by Tubby	N/A	N/A	N/A	N/A	
TR/RXR Activation	N/A	N/A	N/A	N/A	
Ubiquinol-10 Biosynthesis (Eukaryotic)	N/A	N/A	N/A	N/A	
FAK Signaling	N/A	N/A	N/A	N/A	
Bladder Cancer Signaling	N/A	N/A	N/A	N/A	
Phenylalanine Degradation I (Aerobic)	N/A	N/A	N/A	N/A	
CTLA4 Signaling in Cytotoxic T Lymphocytes	N/A	N/A	N/A	N/A	
Chronic Myeloid Leukemia Signaling	N/A	N/A	N/A	N/A	
Role of JAK1 and JAK3 in	N/A	N/A	N/A	N/A	
Glutamate Receptor	N/A	N/A	N/A	N/A	
Tight Junction Signaling	N/A	N/A	N/A	N/A	
Natural Killer Cell Signaling	N/A	N/A	N/A	N/A	
RAR Activation	N/A	N/A	N/A	N/A	
Autophagy	N/A	N/A	N/A	N/A	
Estrogen Receptor Signaling	N/A	N/A	N/A	N/A	
Adipogenesis pathway	N/A	N/A	N/A	N/A	
Cell Cycle Regulation by BTG Family Proteins	N/A	N/A	N/A	N/A	
Lysine Degradation II	N/A	N/A	N/A	N/A	
Regulation of IL-2 Expression in Activated and Anergic T Lymphocytes	N/A	N/A	N/A	N/A	
Th1 and Th2 Activation Pathway	N/A	N/A	N/A	N/A	
Proline Degradation	N/A	N/A	N/A	N/A	
Tetrahydrofolate Salvage from 5,10-	N/A	N/A	N/A	N/A	
DNA Methylation and Transcriptional Repression Signaling	N/A	N/A	N/A	N/A	
D-myo-inositol (1,3,4)- trisphosphate Biosynthesis	N/A	0.00	0.00	0.00	N/A
IL-12 Signaling and Production in Macrophages	N/A	N/A	N/A	N/A	
IL-17A Signaling in Fibroblasts	N/A	N/A	N/A	N/A	
Tetrapyrrole Biosynthesis II	N/A	N/A	N/A	N/A	
Assembly of RNA Polymerase III Complex	N/A	N/A	N/A	N/A	

G-Protein Coupled Receptor	N/A	N/A	N/A	N/A	N/A	N/A	
γ -linolenate Biosynthesis II	N/A	N/A	N/A	N/A	N/A	N/A	
(Animals) Thyroid Cancer Signaling	N/A	N/A	N/A	N/A	N/A	N/A	
T Cell Receptor Signaling	N/A	N/A	N/A	N/A	N/A	N/A	
Axonal Guidance Signaling	N/A	N/A	N/A	N/A	N/A	N/A	
Ketogenesis	N/A	N/A	N/A	N/A	N/A	N/A	
Oxidative Ethanol Degradation III	N/A	N/A	N/A	N/A	N/A	N/A	
MSP-RON Signaling	N/A	N/A	N/A	N/A	N/A	N/A	
Lysine Degradation V	N/A	N/A	N/A	N/A	N/A	N/A	
Apelin Cardiac Fibroblast Signaling Pathway	N/A	N/A	N/A	N/A	N/A	N/A	
IL-17A Signaling in Gastric Cells	N/A	N/A	N/A	N/A	N/A	N/A	
Nur77 Signaling in T Lymphocytes	N/A	N/A	N/A	N/A	N/A	N/A	
Cleavage and Polyadenylation of Pre- mRNA	N/A	N/A	N/A	N/A	N/A	N/A	
Lipid Antigen Presentation	N/A	N/A	N/A	N/A	N/A	N/A	
Formaldehyde Oxidation II (Glutathione-dependent)	N/A	N/A	N/A	N/A	N/A	N/A	
Semaphorin Signaling in	N/A	N/A	N/A	N/A	N/A	N/A	
Circadian Rhythm Signaling	N/A	N/A	N/A	N/A	N/A	N/A	
Iron homeostasis signaling	N/A	N/A	N/A	N/A	N/A	N/A	
Atherosclerosis Signaling	N/A	N/A	N/A	N/A	N/A	N/A	
2-ketoglutarate	N/A	N/A	N/A	N/A	N/A	N/A	
Role of BRCA1 in DNA	N/A	N/A	N/A	N/A	N/A	N/A	
Ceramide Degradation	N/A	N/A	N/A	N/A	N/A	N/A	
Coagulation System	N/A	0.00	N/A	N/A	N/A	N/A	N/A
BAG2 Signaling Pathway	N/A	0.00	N/A	N/A	N/A	N/A	
Hereditary Breast Cancer Signaling	N/A	N/A	N/A	N/A	N/A	N/A	
Assembly of RNA Polymerase II Complex	N/A	N/A	N/A	N/A	N/A	N/A	
Myc Mediated Apoptosis	N/A	N/A	N/A	N/A	N/A	N/A	
IL-17 Signaling	N/A	N/A	N/A	N/A	N/A	N/A	
Glutathione Redox	N/A	N/A	N/A	N/A	N/A	N/A	
Telomere Extension by	N/A	N/A	N/A	N/A	N/A	N/A	
HER-2 Signaling in Breast	N/A	N/A	N/A	N/A	N/A	N/A	
Cancer Valine Degradation I	N/A	N/A	N/A	N/A	N/A	N/A	
Human Embryonic Stem	N/A	N/A	N/A	N/A	N/A	N/A	
Gap Junction Signaling	N/A	N/A	N/A	N/A	N/A	N/A	
FXR/RXR Activation	N/A	N/A	N/A	N/A	N/A	N/A	
Caveolar-mediated	N/A	N/A	N/A	N/A	N/A	N/A	
Ethanol Degradation IV	N/A	N/A	N/A	N/A	N/A	N/A	
BER pathway	N/A	N/A	N/A	N/A	N/A	N/A	
Dopamine Receptor Signaling	N/A	N/A	N/A	N/A	N/A	N/A	
IL-4 Signaling	N/A	N/A	N/A	N/A	N/A	N/A	
Transcriptional Regulatory Network in Embryonic Stem Cells	N/A	N/A	N/A	N/A	N/A	N/A	
Mitochondrial L-carnitine Shuttle Pathway	N/A	N/A	N/A	N/A	N/A	N/A	
Glutamine Degradation I	N/A	N/A	N/A	N/A	N/A	N/A	

Role of Oct4 in Mammalian	N/A	N/A	N/A	N/A	N/A	N/A									
Embryonic Stem Cell Pluripotency															
IL-10 Signaling	N/A	N/A	N/A	N/A	N/A	N/A									
Germ Cell-Sertoli Cell Junction Signaling	N/A	N/A	N/A	N/A	N/A	N/A									
Prostate Cancer Signaling	N/A	N/A	N/A	N/A	N/A	N/A									
Phosphatidylglycerol Biosynthesis II (Non- plastidic)	N/A	N/A	N/A	N/A	N/A	N/A									
Epithelial Adherens Junction Signaling	N/A	N/A	N/A	N/A	N/A	N/A									
Phagosome Maturation	N/A	N/A	N/A	N/A	N/A	N/A									
Clathrin-mediated Endocytosis Signaling	N/A	N/A	N/A	N/A	N/A	N/A									
Superpathway of D-myo- inositol (1,4,5)-trisphosphate Metabolism	N/A	N/A	0.00	0.00	0.00	N/A									
Histidine Degradation VI	N/A	N/A	N/A	N/A	N/A	N/A									
Unfolded protein response	N/A	N/A	N/A	N/A	N/A	N/A									
Role of JAK1, JAK2 and TYK2 in Interferon Signaling	N/A	N/A	N/A	N/A	N/A	N/A									
Antiproliferative Role of TOB in T Cell Signaling	N/A	N/A	N/A	N/A	N/A	N/A									
PXR/RXR Activation	N/A	N/A	N/A	N/A	N/A	N/A									
Cellular Effects of Sildenafil (Viagra)	N/A	N/A	N/A	N/A	N/A	N/A									
Mitochondrial Dysfunction	N/A	N/A	N/A	N/A	N/A	N/A									
Breast Cancer Regulation by Stathmin1	N/A	N/A	N/A	N/A	N/A	N/A									
Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis	N/A	N/A	N/A	N/A	N/A	N/A									
Role of JAK2 in Hormone-	N/A	N/A	N/A	N/A	N/A	N/A									
Role of IL-17A in Arthritis	N/A	N/A	N/A	N/A	N/A	N/A									
Calcium Transport I	N/A	N/A	N/A	N/A	N/A	N/A									
Role of Tissue Factor in	N/A	N/A	N/A	N/A	N/A	N/A									
Erythropoietin Signaling	N/A	N/A	N/A	N/A	N/A	N/A									
Docosahexaenoic Acid	N/A	N/A	N/A	N/A	N/A	N/A									
Choline Biosynthesis III	N/A	0.00	N/A	N/A	N/A	N/A	N/A								
Phagosome Formation	N/A	N/A	N/A	N/A	N/A	N/A									
Role of JAK family kinases in IL-6-type Cytokine Signaling	N/A	N/A	N/A	N/A	N/A	N/A									
HIF1a Signaling	N/A	N/A	N/A	N/A	N/A	N/A									
Role of Osteoblasts, Osteoclasts and Chondrocytes in Rheumatoid Arthritis	N/A	N/A	N/A	N/A	N/A	N/A									
1D-myo-inositol Hexakisphosphate Biosynthesis II (Mammalian)	N/A	N/A	0.00	0.00	0.00	N/A									
GADD45 Signaling	N/A	N/A	N/A	N/A	N/A	N/A									
Hypoxia Signaling in the Cardiovascular System	N/A	N/A	N/A	N/A	N/A	N/A									
Molecular Mechanisms of	N/A	N/A	N/A	N/A	N/A	N/A									
IL-15 Production	N/A	N/A	N/A	N/A	N/A	N/A									
Virus Entry via Endocytic Pathways	N/A	N/A	N/A	N/A	N/A	N/A									
Graft-versus-Host Disease	N/A	N/A	N/A	N/A	N/A	N/A									
Hepatic Fibrosis / Hepatic	N/A	N/A	N/A	N/A	N/A	N/A									
Glucocorticoid Receptor Signaling	N/A	N/A	N/A	N/A	N/A	N/A									

Biotin-carboxyl Carrier	N/A														
Protein Assembly															
Acetate Conversion to	N/A														
Acetyl-CoA															

Table 27. A complete list of predicted z-scores for significantly altered pathways in all HZE irradiated mice across all time points. NA indicates that the directionality for the significant pathway could not be predicted based on the available literature and observed data.

6.6 Conclusions

⁵⁶Fe, ¹⁶O, and ²⁸Si are all major HZE contributors in the space radiation environment, yet the differences in biological effects (both acute and chronic) of these HZE ions after total body irradiation in mice remain largely unexplored. To understand the molecular mechanisms of HZE-induced HCC, we investigated the effects of ⁵⁶Fe,¹⁶O, and ²⁸Si ions irradiation on transcript expression utilizing RNA-Seq data collected from the livers of mice at 5 different time points post-irradiation. Our findings revealed an early activation of proinflammatory response along with various cytokine activities, and inhibition of these responses at later time points post-irradiation. Additionally, our results revealed a number of unannotated transcripts that were significantly affected post low-dose HZE irradiation, and their associations with specific functional pathways. Taken together, these findings provide leads regarding potentially important new transcripts and transcriptional products, which could lead to identification of novel countermeasures and therapeutic targets. Identification of novel transcriptional products may be accomplished by in silico translation of unannotated transcripts into amino acid sequences which can be used to search Data Independent Acquisition (DIA) proteomics datasets from similar studies. This will enable the identification of novel transcriptional products.

6.7 Availability of Data and Materials

The data discussed in this chapter have been deposited in NCBI's Gene Expression Omnibus (Nia et al., 2020) and are accessible through GEO Series accession number GSE146254. (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE146254).

7 CHAPTER 4: ¹³⁷Cs Γ RAY AND ²⁸SI IRRADIATION INDUCED MURINE HEPATOCELLULAR CARCINOMA LIPID CHANGES IN LIVER ASSESSED BY MALDI-MSI COMBINED WITH SPATIAL SHRUNKEN CENTROID CLUSTERING ALGORITHM

7.1 Abstract

The characterization of lipids by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry Imaging (MALDI-MSI) is of great interest because not only are lipids important structural molecules in both the cell and internal organelle membranes, but they are also important signaling molecules. MALDI-MSI combined with spatial image segmentation has been previously used to identify tumor heterogeneities within tissues with distinct anatomical regions such as brain. However, there has been no systematic study utilizing MALDI-MSI combined with spatial image segmentation assessing the tumor microenvironment in the liver. Here, we present that image segmentation can be used to assess the tumor microenvironment in the liver. In particular, to better understand the molecular mechanisms of irradiation-induced hepatic carcinogenesis, we used MALDI-MSI in the negative ion mode to identify lipid changes 12 months post exposure to low dose ²⁸Si and ¹³⁷Cs γ ray irradiation. We report here the changes in lipid profiles of murine liver tissues after exposure to irradiation, analyzed using Spatial Shrunken Centroid Clustering Algorithm. These findings provide valuable information as astronauts will be exposed to high-charge, high-energy (HZE) and low energy gamma ray irradiation during deep space travel. Even at low doses, exposure to these irradiations can lead to cancer. Previous studies infer that irradiation of mice with low-dose HZE particles induces

oxidative damage and micro-environmental changes that are thought to play roles in the pathophysiology of hepatocellular carcinoma (HCC).

Keywords: Mass Spectrometry Imaging, Lipid, Tumor Microenvironment, Irradiationinduced Hepatocellular Carcinoma, Small Molecule Imaging, Laser Desorption Ionization

7.2 Introduction

The primary goal of NASA's space irradiation research is to assess the health effects of deep space irradiation on astronauts, in order to provide risk prediction and to develop preventive measures against diseases that would further slow space exploration. The irradiation encountered in space is a form of galactic cosmic rays (GCR), which include low energy gamma rays (137 Cs γ) and particle nuclei of HZE (Z>13), and other ions that are created during interactions within the spacecraft. [145] Even at low doses, exposure to HZE, such as 28 Si as well as low energy 137 Cs γ rays, can lead to cancer. [6] Previous studies have shown that irradiation of mice with low dose HZE significantly increases the incidence of HCC. [7] Current literature supports that irradiation of mice induces oxidative damage and micro-environmental changes that are thought to play roles in the pathophysiology of HCC. [7, 8] Tumor heterogeneity is now considered a key factor in the prognosis and clinical outcomes of patients, and the way they respond to chemotherapy. [146-150] Understanding the molecular basis and characterization of tumor heterogeneity is an important step to shed light on how HZE and $^{137}Cs \gamma$ ray irradiation induce liver tumors or HCC.

Mass Spectrometry Imaging (MSI) is a powerful tool that has been extensively utilized in cancer research to characterize heterogeneities, due to its exceptional advantage of maintaining the spatial organization of cells when analyzing tissue specimens. This allows researchers to conduct an in-depth analysis of the molecular content of their specimens. MALDI-MSI has indeed been able to characterize relevant tumor populations within cancer tissues. [151-157] It has also been exploited for identification of novel biomarkers as well as early detection and recognition of micro-environmental changes in lipid profiles. [22-26] The high abundance of various lipids in biological tissues has rendered MALDI-MSI a suitable method to detect these changes. Lipids are the main constituents of membranes in cells, as well as of internal organelles. Most membranes are lipid bilayers composed of different classes of lipids such as phospholipids, cholesterol, sphingolipids, triglycerides, and etc. The method has been shown to identify and quantify (relative to control) polar lipids per sample, providing information on the structural integrity of cells and the potential state of cellular communication. [27-29, 158] Changes in lipid expression have been shown to be involved in numerous pathological states. [30-34]

Each MALDI-MSI experiment produces a distribution of complex lipids in tissue, a wealth of information that requires extensive effort and time to analyze. The complexity and size of this data requires use of data reduction methods and more automated approaches to provide useful information. Various tools and image segmentation methods have been used to segment MALDI-MSI images, based on the characteristic masses for specific tissue regions.[159-162] Here we use Cardinal R package [163], an open-source R-based software package developed specifically for MALDI-MSI, to segment liver tissues based on their characteristic masses, and to further detect the significant lipid differences between non-irradiated controls and irradiated liver tissues from the tumor specimens. The Cardinal R package has been used in the context of brain tissue as a tool to segment different anatomical regions with different spectral characteristics. [164] However, multivariate statistical techniques and model-based image segmentation has not found application in liver tissue, due to liver tissue's homogeneous nature, as opposed to brain, which has distinct anatomical regions. Analyzing liver spectra is often quite tedious due to the large and homogeneous nature of this tissue, and due to the biological and technical variation in intensities of spectral features. Using statistical inference is crucial for differentiating the systematic signals in the spectra from the noise, and for further performing an unbiased statistical comparison between different experimental conditions.

To better understand the molecular mechanisms of low energy 137 Cs γ rays as well as HZE, in particular 28 Si irradiation, induced hepatic carcinogenesis, we used MALDI-MSI in negative ion mode to identify changes in lipid profiles from the tumor specimens in the livers of C3H/HeNCrl mice, compared to non-irradiated controls using Spatial Shrunken Centroid Clustering Algorithm.

7.3 Methods

7.3.1 ANIMAL EXPERIMENT

C3H/HeNCrl mice purchased from Charles River (Wilmington, MA) were used in this experiment. Mice were used for this study because they have been shown in the past to be a good experimental model for liver carcinogenesis. Strains used were based on a previous study which demonstrated that C3H/HeNCrl mice are sensitive to the induction of HCC after exposure to a dose of 0.2 Gy of 600 MeV/n ⁵⁶Fe. [7] Tumor induction studies and studies of molecular changes in the irradiated tissues can only be conducted in whole animals. *In vivo* studies are necessary to study the microenvironmental effects of HZE exposure because computer models or cell culture are inadequate based on extensive literature searches. Conducted studies were approved by the institutional animal care and use committees (IACUCs) that are charged with evaluating the appropriateness of the use of animals in specific experiments and the numbers of animals requested for each group. The numbers of animals used were based on the expected numbers of irradiation-related tumors that would develop if animals were allowed to live out their lifespan. Power calculations for numbers in this study are based on chi-square test for comparing two proportions, controlling two-sided significance level at 0.05 or with 95% confidence about our results, and with 80% power.

Serial sacrifice study consisted of 7 (2 per treatment and 3 control) male C3H/HeNCrl mice 360 days post-exposure to HZE ²⁸Si irradiation (0.2 Gy) (n=2), ¹³⁷Cs γ rays (1.0 Gy) (n=2), and non-irradiated/sham-irradiated control (n=3). The mice were shipped from the vendor to Brookhaven National Laboratories (BNL) and housed at the BNL animal facility until the time of irradiation at the NASA Space Radiation Laboratory (NSRL). Following irradiation, the animals were shipped to the UTMB Animal Resources Center (ARC), quarantined for one month and then maintained in the ARC for the duration of the experiment. Animals were housed in sterile cages with free access to food and water. Facilities at both BNL and UTMB are fully AAALAC accredited which ensured adequacy of all animal care issues at both animal facilities. At 12 months, animals from each treatment group and control were randomly selected and euthanized by using CO₂ asphyxiation as per current AVMA guidelines for euthanasia. Prior to euthanasia animals were weighed and weight recorded. Post euthanasia, tissues of the left lobe of livers were

collected, snap-frozen on either dry ice or liquid nitrogen and stored at -80°C until tissues could be extracted for MALDI-MSI. Livers were sampled by taking two 10 μ m slices using a cryotome at -20°C.

7.3.2 MALDI-MSI EXPERIMENT

7.3.2.1 Sample Preparation and Histological Annotation

In the present study, 2 tumor samples from biological replicates of C3H/HeNCrl mice irradiated with 137 Cs γ rays (1.0 Gy), 2 tumor samples from biological replicates of C3H/HeNCrl mice irradiated with 350 MeV/n²⁸Si (0.2 Gy), and 3 healthy samples from biological replicates of C3H/HeNCrl mice in non-irradiated/sham-irradiated control, were collected 12 months post-irradiation. Left lobes of the livers were harvested, frozen in liquid nitrogen vapor and stored at -80°C. All tissue samples were sectioned at 10 µm thickness using a Leica CM1950 cryostat (Leica Microsystems GmbH, Wetzlar, Germany) at -20°C and thaw mounted onto indium tin oxide (ITO) coated glass slides, (ITO glass, Type II, 0.7mm) (Hudson Surface Technology, Inc., West New York, NJ; cat. # PL-IC-000010-P100 (formerly PSI 1207000)). Each tissue slice for MALDI imaging was followed by a slice collected for morphological/immunocytochemical staining (H&E staining) and mounted on a regular Superfrost[™] Plus microscope slide (Fisher Scientific, Pittsburgh, PA; cat. # 12-550-15). Each slide was stored in a 50 ml plastic conical tube at -80°C. A detailed histological analysis of the cryosections was performed by an experienced pathologist (HSL) post acquisition hematoxylin and eosin (H&E) staining. Before matrix application, the slides were transferred to -20°C for 20 minutes and then placed into a vacuum desiccator for approximately 25 minutes.

7.3.2.2 MALDI Matrix Application and Mass Spectrometry Imaging

1,5-Diaminonaphthalene (DHB) (MilliporeSigma, St. Louis. MO; cat.# 149357) was applied by sublimation under vacuum using a procedure similar to that described by Wildburger (2017). [165] Sublimation of DHB was performed for 1 min at 120°C under 10-15 mTorr. Matrix coating density was approximately 500 µg/cm². After that, the slide was placed in a 50 ml plastic conical tube at -80°C. Prior to MALDI imaging, the slides were transferred to -20°C for 20 minutes, and then quickly transferred into a vacuum desiccator and brought to room temperature under vacuum for approximately 10 minutes. An Ultraflextreme MALDI-TOF/TOF MS (Bruker Daltonics, Billerica, MA) equipped with a smartbeam Nd: YAG 355 nm laser was utilized for MALDI analysis. The laser was operated at 250 Hz in negative ion reflector mode. Mass spectra were collected with a pulsed ion extraction time of 80 ns, an accelerating voltage of 20.0 kV, an extraction voltage of 17.90 kV, a lens voltage of 7.80 kV, and a reflector voltage of 21.15 kV. The laser spot size was set at medium focus (~50 µm laser spot diameter), and laser power was optimized at the start of each run and then fixed for the whole experiment. The mass spectra data were acquired over a mass range of m/z 400-1600 Da. Mass calibration was performed prior to data acquisition using Bruker Peptide Calibration Standard II (Bruker Daltonics, Billerica, MA) as an external standard. For mass spectrometry analysis, imaging spatial resolution was set to 100 µm. Each spectrum was a sum of 500 laser shots. Regions of interest were manually defined in the flexImaging 3.0.54 software, using a scan of the slide with the tissue sections acquired at 1200 dpi using an Epson 3170 photo scanner. MALDI mass spectra were processed with the total ion current (TIC) normalization, and the signal intensity of each imaging data was represented as the normalized intensity.

7.3.3 DATA ANALYSIS

7.3.3.1 Image Pre-processing

It is necessary to use appropriate pre-processing steps in oder to derive reliable conclusions and to obtain maximal biological information from MALDI-MSI data. In order to improve signal quality and compress the raw data acquired into a list of valuable peaks associated with relevant m/z values for further analysis, we used the Cardinal R package [163] to perform all preprocessing data. This includes normalization based on the total ion count (TIC), spectra smoothing, baseline correction, peak detection and spectra alignment.

7.3.3.2 Image Segmentation

We used the spatial shrunken centroids clustering algorithm provided in Cardinal R package [163], a model-based unsupervised image segmentation technique using adaptive weights that preserve edges between segments. The spatial shrunken centroids clustering algorithm uses a statistical regularization to enforce feature sparsity. As a result, the analysis automatically identifies informative m/z values and partitions the observations within a dataset into segments. The pixels in the dataset are partitioned according to their m/z similarity, expressed by their chemical and/or biological properties. [166] In particular, the parameters are r (the neighborhood smoothing radius), k (he initial number of segments /clusters), and s (the shrinkage parameter). We selected a set of parameters to get sharp/not pixelated segments with sharp edges (r=6, k=5, s=3). We then exported each segment with its corresponding list of m/z, and t-score, which is an enrichment score that is calculated based on the abundancy of specific m/z values in the corresponding segment compared to

other segments. In this analysis, the segmentation was performed on one slide/image with 7 different specimens on it partitioned toegher. In particular, the samples were 2 biological replicates from liver tumor section in ²⁸Si irradiated, 2 biological replicates from liver tumor section in 137 Cs γ rays irradiated, and 3 biological replicates from non-tumor liver section in non-irradiated/sham-irradiated control mice.

7.3.3.3 Statistical Comparison and MALDI-MSI Visualizations

After image segmentation, we picked the highly enriched up-regulated m/z, as well as down-regulated m/z, features in segment 1 (core tumor regions), compared to segment 3 (healthy non-irradiated control) using their t-score enrichment values. Evaluation of tscores from core tumor regions in irradiated liver sections compared to non-irradiated healthy control and healthy-looking non-core tumor regions revealed peaks that could discriminate between different segments based on their corresponding t-scores. These peaks were also confirmed using flexImaging 3.0.54 (Bruker Daltonics, Billerica, MA), by visualizing the hotspots and differences between the segments. Despite the unquestionable advantages of visualization software in visualizing the spatial distribution and relative abundance of m/z directly, the visualized features are often complex and easy to miss, which makes analysis and interpretation challenging. Therefore, using a model-based approached and t-score enrichment values allowed us to detect different features in a more systematic matter, as opposed to purely relying on the qualitative visualization of hot spots.

7.3.4 MS/MS VALIDATION OF SELECTED *M/Z*-VALUES

On-tissue MS/MS fragmentation spectra of the lipid species of interest were acquired using the Ultraflextreme mass spectrometer in negative ion LIFT mode. The laser

was operated at 1000 Hz; each MS-MS spectrum was a sum of 1500 shots for precursor ions and 5000-10000 shots for product ions, respectively. MS/MS spectra in the reflector mode were acquired with a pulsed ion extraction time of 80 ns, an accelerating voltage of 7.5 kV, an extraction voltage of 6.8 kV, a lens voltage of 3.5 kV, a reflector voltage of 29.5 kV, a lift 1 voltage of 19.00 kV, and a lift 2 voltage of 3.7 kV. Preliminary assignments for the detected lipid species and their identification by MS/MS spectra were performed using the LIPID MAPS Structure Database , Human Metabolome Database, and Swiss Lipids.

7.3.5 LIPIDS IDENTIFICATIONS

The selected parent ions with significant differences between irradiated core tumor region compared to healthy non-irradiated control were analyzed via direct MS/MS and were then manually searched for in the LIPID Metabolites and Pathway Strategy structure database using negative ion mode (LIPID MAPS Structure Database) Search results were further filtered by eliminating matches outside a mass error range of 100 ppm, thus reducing the potential for false positives.

7.4 Results

7.4.1 SCREENING OF LIPID BIOMARKERS IN ¹³⁷CS Γ RAY IRRADIATED TUMOR, ²⁸SI IRRADIATED TUMOR COMPARED TO HEALTHY NON-IRRADIATED CONTROL TISSUES

2 tumor liver slices from biological replicates of ²⁸Si irradiated, 2 tumor liver slices from biological replicates of ¹³⁷Cs γ ray irradiated, and 3 healthy non-tumor liver slices
from biological replicates of non-irradiated control were measured using MALDI-MSI and evaluated using the Spatial Shrunken Centroid Clustering Algorithm as shown in Figure 18. The image segmentation analysis was oriented to identify significant mass signatures in the irradiated tumor regions compared to healthy non-irradiated control. Figure 18 shows the different segmentations that resulted from spatial heterogeneities within the specimens. In particular, in tumor specimens (137 Cs γ ray and 28 Si irradiated), segment 1 (orange) originated from the sections of tumor/HCC that represented as the most disease looking segment histologically (H&E staining), also visible on the slide prepared for MALDI by naked eyes. This observation possibly represents the tumor initiation region (core tumor) where the initial cells transformed by a switching event common to all malignancies, to malignant cells. Table 28 shows the identified signature *m/z*-values with their corresponding t-scores in the irradiated core tumor segments (segment 1/orange) and the healthy segments which included non-irradiated control segments and the healthy-looking part of the tumor segments (segment 3/green).

Figure 18. Segmentation result of the MALDI-MSI dataset using the Spatial Shrunken Centroid Clustering Algorithm.

a) There are 2 biological replicates from tumor sections of ²⁸Si irradiated, 2 biological replicates from tumor sections of ¹³⁷Cs γ rays irradiated, and 3 biological replicates from healthy non-irradiated control murine liver tissues. The segmentation with Spatial Shrunken Centroids and Structurally Adaptive distance selected 5 tissue segments that are color coded. The colors correspond to numbers in the bottom figure legend b which represent segment 1 (orange), 2 (green), 3 (light blue), 4 (pink), and 5 (dark blue). Segment 1 (orange) shows the core tumor/HCC region on each tumor specimen where the disease looking part of the specimen was observed both histologically (H&E staining) and visible

by naked eye on the MALDI slide. Segment 2 (green), Segment 3 (light blue), and Segment 4 (pink) shows healthy looking part of the tumor sections as well as in control sections. Segment 5 (dark blue) shows a transition looking part of the specimens in which the tissue looks neither completely healthy nor tumor looking. (b) The t-statistics quantified the relative importance of the peaks in each segment. The spectra show that segment 1 (orange/core tumor) is enriched (upregulated) mainly in higher m/z-values (~1400) and downregulated in lower m/z-values (<600). Conversely, healthy parts of the tumor sections from irradiated and healthy non-irradiated specimens show upregulation of lower m/z-values (<600).

m/z Detected	t-score in Non- irradiated Healthy Control	t-score in Irradiated Core Tumor	Up/Down Regulated in Tumor vs. Control	Identified Lipid
533.48	42.33	-77.41	Down	PA(14:1(9Z)/10:0) or Isomer PA(10:0/14:1(9Z))
535.11	43.67	-76.21	Down	PA(25:0/0:0)
537.09	26.77	-53.50	Down	PG(15:1(9Z)/4:0) or PG(P-16:0/4:0)
551.06	47.62	-81.27	Down	PE(2 3:0/0:0)
553.11	51.72	-88.72	Down	PG(10:0/10:0) or Isomer PG(12:0/8:0) and PS(20:0/0:0)
567.1	32.33	-59.24	Down	PS(16:0/4:0)
569.1	54.51	-94.01	Down	PS(22:6(4Z,7Z,10Z,13Z,16Z,19Z)/0:0)
579.07	25.83	-50.63	Down	PG(18:1(11E)/4:0)
595.11	33.57	-60.59	Down	PS(23:0/0:0)
611.11	11.09	-30.47	Down	PS(2:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))
613.13	29.62	-59.52	Down	Mixture of PA(20:3(8Z,11Z,14Z)/10:0) and PS(20:5(5Z,8Z,11Z,14Z,17Z)/4:0)
705.12	7.77	-19.68	Down	PE(21:0/12:0) or Isomer PE(12:0/21:0)
885.38	-39.73	92.24	Up	PI(18:0/20:4(5Z,8Z,11Z,14Z))
1370.52	-63.40	177.15	Up	Ganglioside GM2 GalNAcβ1-4(NeuGcα2-3)Galβ1- 4Glcβ-Cer (undetermined tail)
1454.73	-72.08	116.29	Up	Ganglioside GM2 GalNAcβ1-4(NeuGcα2-3)Galβ1- 4Glcβ-Cer (d18:1/22:0)
1482.76	-75.94	143.95	Up	Ganglioside GM2 GalNAcβ1-4(NeuGcα2-3)Galβ1- 4Glcβ-Cer (undetermined tail)
1484.74	-76.40	144.59	Up	Ganglioside GM2 GalNAcβ1-4(NeuGcα2-3)Galβ1- 4Glcβ-Cer (undetermined tail)
1497.71	-121.51	304.79	Up	Ganglioside GM2 GalNAcβ1-4(NeuGcα2-3)Galβ1- 4Glcβ-Cer (undetermined tail)

Table 28. Identified signature m/z-values with their corresponding t-scores in segment 1/orange which represented the core-tumor in irradiated specimens vs. healthy segments 2/green which were identified in all control specimens as well as healthy parts of the tumor specimens. Identified Lipid column shows lipids that were identified by manual searching of on-tissue MS/MS fragmentations (100 ppm accuracy) of the corresponding m/z-values.

7.4.2 UPREGULATION OF HIGHER M/Z-VALUES AND DOWNREGULATION OF LOWER M/Z-VALUES FROM MICE LIVERS IN IRRADIATED TUMOR/HCC VS. HEALTHY SEGMENTS

Our findings show that irradiation induced HCC results in upregulation of lipids with higher masses and downregulation of lipids with lower masses in the liver. In particular, most upregulated peaks (Table 28) correspond to a mouse analogue (*N*-Glycolylneuraminic acid/Neu5Gc) of human GM2 (N-acetylneuraminic acid/Neu5Ac), a type of ganglioside with one sialic acid, as determined by *m/z* matches to lipid masses in the Lipid Maps Database and MS/MS fragmentations. The increased levels of the mouse analogue of GM2 post-exposure to low doses of HZE irradiation, in particular ²⁸Si (0.2 Gy), and low energy¹³⁷Cs γ ray (1.0 Gy) irradiation, appears to be a novel finding, as we know of no reports in the literature identifying higher levels of these GM2 analogues in mice in association with HCC. Additionally, downregulation of PA, PG, PS, and PE lipids was observed. Specifically, PA, phosphatidic acid, which can have many different combinations of fatty acids of varying lengths and saturation, was downregulated. PAs are important for biosynthesis of triacylglycerols and phospholipids and many other lipids, and their physical properties influence membrane curvature. They are maintained at low

concentration in order to act as a signaling molecule; [167-169] PG, phosphatidylglycerol which indirectly activates lipid-gated ion channels; [170] PS, phosphatidylserine, a component of the cell membrane which plays a key role in cell cycle signaling, and apoptosis; [171, 172] and finally, PE, phosphatidylethanolamine, a class of phospholipids found in biological membranes which play a role in the secretion of lipoproteins in the liver. [173, 174]

7.5 Discussion

Our study demonstrates for the first time that MALDI-MSI combined with unsupervised image segmentation can identify m/z changes in a homogenous tissue; specifically, liver where the distinct anatomical structures are challenging to identify, as opposed to tissues like brain, where different anatomical features are recognized relatively easily. Although unquestionably advantageous, the routinely used gene-expression profiling and proteomics methods not only require considerable amounts of tissue material, but use tissue homogenates which would negatively influence the diagnostic characterization based on tissue heterogeneity. On the other hand, MALDI-MSI segmentations of the liver would allow for a more specific identification of location of biological regions, leading to a better definition of m/z signatures obtained to describe tumor heterogeneity. The different segments identified in tumor sections (Figure 18) demonstrate the distinct heterogeneities and chemical properties within the tumor microenvironments. These heterogeneities are crucial to identify different subtypes of irradiation-induced HCC, each of which could have potentially different prognoses and require different approaches in clinical management.

Alterations in lipid metabolism and regulation are hallmarks of cancer which affect cellular function and growth. [175] The MALDI-MSI analysis of the livers in this study identified a 1454.73 m/z peak (Table 28) that corresponds to a glycosphingolipid (GSL) belonging to the ganglioside subfamily, shown in Figure 19. This GSL is upregulated in irradiated liver samples in contrast to control. This GSL is analogous to human GM2 (molecules only differ an OH or H on a terminal sugar). Several studies have described an association between increased level of GM2 and HCC in humans. One such study reported 20-100X increased levels of GM2 in sera from patients with HCC. [176] Additionally, peaks 551.06 and 705.12 identified as PEs were downregulated in core tumor regions. Previous studies have demonstrated a decrease in PC/PE ratio to be associated with hepatocyte nodules in rat livers. [177, 178] This might be due to decreased synthesis of PC, or decreased conversion of PE to PC following inactivation of the enzyme (PMET) responsible for the conversion of PE to PC. [179] The observation suggests that PE synthesis might be downregulated locally in tissues, regardless of this ratio. The decreased observed ratio could potentially be due to decreased PC synthesis through pathways (Kennedy pathway) not dependent upon PE to PC conversion. [180] Moreover, peaks 533.48, 535.11, and 613.13 identified as PAs were also downregulated in core tumor regions. Since PAs can act as lipid ligands which gate ion channels, this finding can help guide our understanding of lipid signaling cascades and their roles in the carcinogenic process of irradiation-induced HCC.

These novel findings on the lipid species post-exposure to low doses of 28 Si and 137 Cs γ rays support the strong potential of exploring these lipid species as early biomarkers of HCC risk in astronauts during deep space travel. In future works, the incorporation of

targeted gene expression, proteomics and comprehensive ultra-high resolution lipidomic arrays is planned to allow for identification of enzymes involved in the synthesis of these lipids, validate the potential identified biomarkers, and possibly determine targets for mediation of irradiation-induced HCC.

Figure 19. Structural formula of GalNAcβ1-4(NeuGcα2-3)Galβ1-4Glcβ-Cer (d18:1/22:0)

7.6 Conclusions

This investigation shows that even though MALDI-MSI datasets are complex and high dimensional and especially difficult to interpret quantitively in homogenous tissues such as liver, segmentation can provide a unique way to depict the complex lipid heterogeneity of liver tissues in one image. Utilizing the Spatial Shrunken Centroid Clustering Algorithm enabled us to extract meaningful information from the raw measurements by reducing dimensionality and identifying region-specific *m/z*-changes in irradiated vs. non-irradiated control mice liver tissues. We collected MS/MS data and refined the identification of the lipid species found in the study and have assigned lipid species identifications based on Lipid Maps Database searching of MS/MS fragmentations.

This approach has allowed us to reliably identify a number of lipid ion species (Table 1) whose levels were significantly changed in irradiated tumor/HCC compared to healthy non-irradiated controls, based on both signal intensity and spatial distribution. In particular, we have confirmed the identity of N-Glycolylneuraminic acid/Neu5Gc. Its upregulation is of special interest because the human analogue (N-acetylneuraminic acid/Neu5Ac) is elevated in patients with HCC. Comparative analysis of this data enabled us to get a better systematic picture of the oncogenic transformation and cancer progression induced by HZE and γ -ray irradiation in mice livers. Understanding this process and its mechanisms is critical to the safety of future manned spaceflights. Since lipids serve as an excellent source of information on various cellular signaling processes, and thus cancerous growth, our assigned lipid species can further be explored in future studies as potential biomarkers of HCC risk in astronauts during deep space travel. An attractive medical translation would be using lipid arrays in which the aforementioned potential lipids are immobilized and probed with astronauts' sera for the presence of immune reactivities against these lipids. [181]

8 CHAPTER **5**: CONCLUSIONS

8.1 New Results of this Work

In this dissertation, we have shed light on the carcinogenic process of irradiationinduced HCC utilizing RNA-Seq and MALDI-MSI.

1. In <u>Chapter 2</u>, we offered a new analytical pipeline to study the RNA-Seq dataset of ⁵⁶Fe irradiated compared to non-irradiated control mice liver tissues. This pipeline allowed us to determine gene interaction modules that were more biologically interpretable than those produced by existing methods.

2. In <u>Chapter 3</u>, we performed a comparative transcriptomic analysis in a mouse model for irradiation-induced cancer using the RNA-Seq data from HZE irradiated (⁵⁶Fe, ¹⁶O, and ²⁸Si) mice liver tissues compared to non-irradiated control. We have demonstrated the shared mechanisms, as well as their unique dynamic time dependent immunological responses, post-exposure to irradiation. Additionally, using the SOM machine learning algorithm, we were able to infer the biological functions of the unannotated transcripts that were significantly affected post-exposure to HZE.

3. In <u>Chapter 4</u>, we investigated the changes in lipid profiles of liver tissues after exposure to HZE, in particular, ²⁸Si and low energy ¹³⁷Cs γ rays, in a more HCC susceptible mice strain. Our findings demonstrated a handful of potential candidates as biomarkers of irradiation-induced HCC, which included upregulation in mice of a human GM2 analogue previously implicated in patients with HCC.

8.2 A Few Notes on the Importance of these Results

In Chapter 2, we discussed a new pipeline that combines the adjacency matrix notion of WGCNA with Modularity Maximization methods to find modules that are involved in various biological pathways of ⁵⁶Fe irradiation-induced HCC. Even though RNA-Seq has been the tool of choice for large-scale transcriptomics, it has unmet bioinformatics challenges that need to be addressed to make *de novo* discovery possible and to allow scientists to extract meaningful biological information. Differential co-expression analysis can identify significant co-expression modules that are affected by a treatment condition or disease. These modules are then used to find genes/transcripts underlying the differences between sample conditions. [182-187] WGCNA, one of the first co-expression tools used on RNA-Seq data, has been utilized in finding associations between modules and biological functions. [182, 188, 189] The utilization of WCGNA in our dataset resulted in a large number of unassigned transcripts, and modules with too many transcripts, which made biological interpretation more difficult. The nove discussed WGCNA-M pipeline allowed us to reduce the number of unassigned transcripts while maintaining an optimal number of modules. This method provides an additional avenue to explore various RNA-Seq datasets, and can be applied to other omics datasets, such as those produced by proteomics and lipidomics experiments. Biological processes are carried out by modules of interacting molecules. Genes with similar expression display an increased likelihood of being associated with a common functional module, following the guilt-by-association principle. However, although co-expression methods confer insights about most genes in an assigned module, assuming they are functionally related, it is important to remember the possibility that not every entity in a particular module is associated with the specific functions for

which it is enriched. Biological validation of the functionality of target genes is integral, prior to making conclusions regarding genes in the same modules.

In Chapter 3, we explored the effects of HZE on hepatic carcinogenesis by comparative transcriptomics analysis. Additionally, we utilized SOMs to identify functional associations for transcripts significantly affected by HZE, but that were unannotated by IPA. It is important to note that we used average-sized SOMs (n=16) since we also performed the analysis on the differentially expressed transcripts. One can also perform SOMs analysis with larger map sizes on all expressed transcripts. It has been previously reported that SOMs with maps sizes of greater than 100 modules can capture a variety of patterns that may not be otherwise revealed, and that such SOMs can show emergent behavior. [190, 191] For this study, we aimed to focus on finding a rather smaller list of candidates that can be validated in the future, for use as irradiation countermeasures. Consequently, we limited our SOM analysis to the list of differentially expressed transcripts. Subsequent mining and re-analyses of these datasets will allow users to extend the analysis and extract groups of transcripts that have implications not only for irradiation-induced HCC but other types of irradiation that show similar biological effects.

In Chapter 4, we utilized MALDI-MSI with the Spatial Shrunken Centroid Clustering Algorithm to identify lipid species affected by ²⁸Si and ¹³⁷Cs γ ray irradiation. Since lipids serve as an excellent source of information on various cellular signaling processes, and thus cancerous growth, our assigned lipid species can further be explored in future studies as potential biomarkers of HCC risk in astronauts during deep space travel. An attractive medical translation would be using lipid arrays in which the aforementioned

potential lipids are immobilized and probed with astronauts' sera for the presence of immune reactivities against these lipids. [181]

In conclusion, this dissertation aimed to determine the specific effects that low-dose HZE and ¹³⁷Cs γ ray irradiation have on biochemical pathways implicated in the development of HCC, and to identify potential countermeasures as novel therapeutic targets. The acquisition of this information was a critical first step in determining changes that occur at the molecular level in response to these irradiations. The presented findings on the effects of low-dose HZE and ¹³⁷Cs γ ray irradiation on hepatic carcinogenesis helped identify the micro-environmental changes in pathways and lipids that lead to irradiation-induced HCC. Additionally, we developed an analytical pipeline that can be applied to perform similar analyses based on relevant gene expression data.

8.3 Future Works

Several exciting research avenues can be pursued in the future. The long-term objective of the parent study (NNX15AD65G) was to understand the molecular mechanisms underlying HZE and 137 Cs γ ray irradiation-induced HCC and liver damage. The different ions that makeup the GCR spectrum have unique effects on gene expression patterns. [192] Our findings on the unique pathways and genes impacted by different ions will allow the development of targeted interventions to counteract irradiation-induced liver damage. The next step is to test potential therapeutic countermeasures identified from this work. Another possible next step is to study the differences in gene expression and lipid species identified from this dissertation and conduct global methylation studies. It has been

shown that exposure to irradiation is associated with changes in methylation status and the specific effects exhibit tissue, gender and strain specificity. [193-198]

9 **REFERENCES**

- 1. White RJ, Averner M: Humans in space. *Nature* 2001, **409**(6823):1115-1118.
- 2. Cucinotta FA, Durante M: Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. *The Lancet Oncology* 2006, **7**(5):431-435.
- Hayatsu K, Hareyama M, Kobayashi S, Yamashita N, Sakurai K, Hasebe N: HZE Particle and Neutron Dosages from Cosmic Rays on the Lunar Surface. 2009, 78(Suppl.A):149-152.
- 4. Hamilton SA, Pecaut MJ, Gridley DS, Travis ND, Bandstra ER, Willey JS, Nelson G, Bateman TA: **A murine model for bone loss from therapeutic and space-relevant sources of radiation**. *Journal of Applied Physiology* 2006, **101**(3):789-793.
- 5. Cucinotta FA, Wu H, Shavers MR, George K: **Radiation dosimetry and biophysical models of space radiation effects**. *Gravitational and Space Biology* 2003, **16**(2):11-19.
- 6. Wakeford R: The cancer epidemiology of radiation. 2004, 23(38):6404-6428.
- Weil MM, Bedford JS, Bielefeldt-Ohmann H, Ray FA, Genik PC, Ehrhart EJ, Fallgren CM, Hailu F, Battaglia CL, Charles B *et al*: Incidence of acute myeloid leukemia and hepatocellular carcinoma in mice irradiated with 1 GeV/nucleon (56)Fe ions. *Radiat Res* 2009, 172(2):213-219.
- Weil MM, Ray FA, Genik PC, Yu Y, McCarthy M, Fallgren CM, Ullrich RL: Effects of 28Si Ions, 56Fe Ions, and Protons on the Induction of Murine Acute Myeloid Leukemia and Hepatocellular Carcinoma. *PLoS ONE* 2014, 9(8):e104819.
- Burns FJ, Jin Y, Koenig KL, Hosselet S: The low carcinogenicity of electron radiation relative to argon ions in rat skin. *Radiation research* 1993, 135(2):178-188.
- Alpen E, Powers-Risius P, Curtis S, DeGuzman R: Tumorigenic potential of high-Z, high-LET charged-particle radiations. *Radiation research* 1993, 136(3):382-391.
- Dicello JF, Christian A, Cucinotta F, Gridley D, Kathirithamby R, Mann J, Markham A, Moyers M, Novak G, Piantadosi S: In vivo mammary tumourigenesis in the Sprague–Dawley rat and microdosimetric correlates. *Physics in Medicine & Biology* 2004, 49(16):3817.
- 12. Blakely EA, Kronenberg A: **Heavy-ion radiobiology: new approaches to delineate mechanisms underlying enhanced biological effectiveness**. *Radiation research* 1998, **150**(5s):S126-S145.
- 13. Sutherland BM, Bennett PV, Sidorkina O, Laval J: **Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation**. *Proceedings of the National Academy of Sciences* 2000, **97**(1):103-108.
- 14. Gulston M, de Lara C, Jenner T, Davis E, O'Neill P: **Processing of clustered DNA damage generates additional double-strand breaks in mammalian cells post-irradiation**. *Nucleic acids research* 2004, **32**(4):1602-1609.

- 15. Rydberg B, Cooper B, Cooper PK, Holley WR, Chatterjee A: **Dose-dependent misrejoining of radiation-induced DNA double-strand breaks in human fibroblasts: experimental and theoretical study for high-and low-LET radiation**. *Radiation research* 2005, **163**(5):526-534.
- Guo J, Zeitlin C, Wimmer-Schweingruber RF, Hassler DM, Ehresmann B, Köhler J, Böhm E, Böttcher S, Brinza D, Burmeister S: MSL-RAD radiation environment measurements. *Radiation protection dosimetry* 2015, 166(1-4):290-294.
- Weil MM, Ray FA, Genik PC, Yu Y, McCarthy M, Fallgren CM, Ullrich RL: Effects of 28Si ions, 56Fe ions, and protons on the induction of murine acute myeloid leukemia and hepatocellular carcinoma. *PloS one* 2014, 9(7):e104819.
- Covelli V, Di Majo V, Coppola M, Rebessi S: Neutron carcinogenesis in mice: A study of the dose-response curves. *Radiation research* 1991, 128(1s):S114-S116.
- 19. Spitz DR, Azzam EI, Li JJ, Gius D: Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. *Cancer Metastasis Rev* 2004, **23**(3-4):311-322.
- 20. Schonfeld SJ, Bhatti P, Brown EE, Linet MS, Simon SL, Weinstock RM, Hutchinson AA, Stovall M, Preston DL, Alexander BH *et al*: **Polymorphisms in oxidative stress and inflammation pathway genes, low-dose ionizing radiation, and the risk of breast cancer among US radiologic technologists**. *Cancer Causes Control* 2010, **21**(11):1857-1866.
- 21. Zhao W, Robbins ME: Inflammation and chronic oxidative stress in radiationinduced late normal tissue injury: therapeutic implications. *Curr Med Chem* 2009, **16**(2):130-143.
- 22. Aichler M, Walch A: MALDI Imaging mass spectrometry: current frontiers and perspectives in pathology research and practice. *Lab Invest* 2015, 95(4):422-431.
- 23. Cornett DS, Reyzer ML, Chaurand P, Caprioli RM: **MALDI imaging mass** spectrometry: molecular snapshots of biochemical systems. *Nat Methods* 2007, **4**(10):828-833.
- 24. Eriksson C, Masaki N, Yao I, Hayasaka T, Setou M: MALDI Imaging Mass Spectrometry-A Mini Review of Methods and Recent Developments. *Mass* Spectrom (Tokyo) 2013, 2(Spec Iss):S0022.
- 25. Walch A, Rauser S, Deininger SO, Hofler H: **MALDI imaging mass** spectrometry for direct tissue analysis: a new frontier for molecular histology. *Histochem Cell Biol* 2008, **130**(3):421-434.
- Franck J, Arafah K, Elayed M, Bonnel D, Vergara D, Jacquet A, Vinatier D, Wisztorski M, Day R, Fournier I *et al*: MALDI imaging mass spectrometry: state of the art technology in clinical proteomics. *Mol Cell Proteomics* 2009, 8(9):2023-2033.
- 27. Angel PM, Spraggins JM, Baldwin HS, Caprioli R: Enhanced sensitivity for high spatial resolution lipid analysis by negative ion mode matrix assisted laser desorption ionization imaging mass spectrometry. Anal Chem 2012, 84(3):1557-1564.

- 28. Murphy RC, Hankin JA, Barkley RM: **Imaging of lipid species by MALDI** mass spectrometry. *J Lipid Res* 2009, **50 Suppl**:S317-322.
- 29. Fuchs B, Suss R, Schiller J: An update of MALDI-TOF mass spectrometry in lipid research. *Prog Lipid Res* 2011, **50**(1):132.
- 30. Liu Y, Chen Y, Momin A, Shaner R, Wang E, Bowen NJ, Matyunina LV, Walker LD, McDonald JF, Sullards MC *et al*: Elevation of sulfatides in ovarian cancer: an integrated transcriptomic and lipidomic analysis including tissue-imaging mass spectrometry. *Mol Cancer* 2010, **9**:186.
- Farooqui AA: Lipid mediators in the neural cell nucleus: their metabolism, signaling, and association with neurological disorders. *Neuroscientist* 2009, 15(4):392-407.
- Lin ME, Herr DR, Chun J: Lysophosphatidic acid (LPA) receptors: signaling properties and disease relevance. *Prostaglandins Other Lipid Mediat* 2010, 91(3-4):130-138.
- Hu C, van der Heijden R, Wang M, van der Greef J, Hankemeier T, Xu G:
 Analytical strategies in lipidomics and applications in disease biomarker
 discovery. J Chromatogr B Analyt Technol Biomed Life Sci 2009, 877(26):2836-2846.
- 34. Watson AD: Thematic review series: systems biology approaches to metabolic and cardiovascular disorders. Lipidomics: a global approach to lipid analysis in biological systems. *J Lipid Res* 2006, **47**(10):2101-2111.
- 35. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK: **limma powers differential expression analyses for RNA-sequencing and microarray studies**. *Nucleic Acids Res* 2015, **43**(7):e47.
- 36. Barabasi AL, Oltvai ZN: **Network biology: understanding the cell's functional organization**. *Nature reviews Genetics* 2004, **5**(2):101-113.
- 37. Hartwell LH, Hopfield JJ, Leibler S, Murray AW: From molecular to modular cell biology. *Nature* 1999, **402**(6761 Suppl):C47-52.
- 38. Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. *Statistical applications in genetics and molecular biology* 2005, **4**:Article17.
- 39. Eisen MB, Spellman PT, Brown PO, Botstein D: **Cluster analysis and display of genome-wide expression patterns**. *Proceedings of the National Academy of Sciences of the United States of America* 1998, **95**(25):14863-14868.
- 40. Stuart JM, Segal E, Koller D, Kim SK: A gene-coexpression network for global discovery of conserved genetic modules. *Science (New York, NY)* 2003, 302(5643):249-255.
- 41. Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis. *BMC Bioinformatics* 2008, **9**(1):559.
- 42. Langfelder P, Zhang B, Horvath S: **Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R**. *Bioinformatics (Oxford, England)* 2008, **24**(5):719-720.
- 43. Jiang B, Gribskov M: Assessment of subnetwork detection methods for breast cancer. *Cancer informatics* 2014, **13**(Suppl 6):15-23.
- 44. Newman MEJ: **Detecting community structure in networks**. *The European Physical Journal B Condensed Matter* 2004, **38**(2):321-330.

- 45. Danon L, Díaz-Guilera A, Duch J, Arenas A: **Comparing community structure identification**. *Journal of Statistical Mechanics: Theory and Experiment* 2005, **2005**(09):P09008-P09008.
- 46. Fortunato S: **Community detection in graphs**. *Physics Reports* 2010, **486**(3-5):75-174.
- 47. Girvan M, Newman MEJ: **Community structure in social and biological networks**. *Proceedings of the National Academy of Sciences* 2002, **99**(12):7821-7826.
- 48. Newman MEJ: **The Structure and Function of Complex Networks**. *SIAM Review* 2003, **45**(2):167-256.
- 49. Newman ME, Girvan M: **Finding and evaluating community structure in networks**. *Phys Rev E Stat Nonlin Soft Matter Phys* 2004, **69**(2 Pt 2):026113.
- 50. Fortunato S, Barthelemy M: **Resolution limit in community detection**. *Proceedings of the National Academy of Sciences* 2007, **104**(1):36-41.
- 51. Ronhovde P, Nussinov Z: Local resolution-limit-free Potts model for community detection. *Physical Review E* 2010, **81**(4).
- 52. Arenas A, Fernández A, Gómez S: Analysis of the structure of complex networks at different resolution levels. *New Journal of Physics* 2008, 10(5):053039.
- 53. Aldecoa R, Marín I: Deciphering Network Community Structure by Surprise. 2011, 6(9):e24195.
- 54. Chen T, Singh P, Bassler KE: **Network community detection using modularity density measures**. *Journal of Statistical Mechanics: Theory and Experiment* 2018, **2018**(5):053406.
- 55. Cucinotta FA, Durante M: Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. *Lancet Oncol* 2006, 7(5):431-435.
- 56. Durante M, Cucinotta FA: **Heavy ion carcinogenesis and human space exploration**. *Nature reviews Cancer* 2008, **8**(6):465-472.
- 57. Yu MW, Lien JP, Chiu YH, Santella RM, Liaw YF, Chen CJ: Effect of aflatoxin metabolism and DNA adduct formation on hepatocellular carcinoma among chronic hepatitis B carriers in Taiwan. *Journal of hepatology* 1997, **27**(2):320-330.
- 58. de Martel C, Ferlay J, Franceschi S, Vignat J, Bray F, Forman D, Plummer M: Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. *The Lancet Oncology* 2012, **13**(6):607-615.
- 59. El-Serag HB: **Hepatocellular Carcinoma**. *New England Journal of Medicine* 2011, **365**(12):1118-1127.
- 60. Leach JK, Van Tuyle G, Lin PS, Schmidt-Ullrich R, Mikkelsen RB: **Ionizing** radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. *Cancer research* 2001, **61**(10):3894-3901.
- 61. Andrews S: **FastQC**. In., 0.11.8 edn; 2018.
- 62. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR: **STAR: ultrafast universal RNA-seq aligner**. *Bioinformatics (Oxford, England)* 2013, **29**(1):15-21.

- 63. Frankish A, Diekhans M, Ferreira A-M, Johnson R, Jungreis I, Loveland J, Mudge JM, Sisu C, Wright J, Armstrong J *et al*: GENCODE reference annotation for the human and mouse genomes. *Nucleic Acids Research* 2018, 47(D1):D766-D773.
- 64. Team RC: **R: A language and enviornment for statistical computing**. In. Vienna, Austria: R Foundation for Statistical Computing.
- 65. Robinson MD, McCarthy DJ, Smyth GK: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. *Bioinformatics* (*Oxford, England*) 2010, **26**(1):139-140.
- 66. McCarthy DJ, Chen Y, Smyth GK: **Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation**. *Nucleic Acids Res* 2012, **40**(10):4288-4297.
- 67. Cox DR, Reid N: **Parameter Orthogonality and Approximate Conditional Inference**. *Journal of the Royal Statistical Society Series B (Methodological)* 1987, **49**(1):1-39.
- 68. Lun ATL, Chen Y, Smyth GK: It's DE-licious: A Recipe for Differential Expression Analyses of RNA-seq Experiments Using Quasi-Likelihood Methods in edgeR. In: Statistical Genomics: Methods and Protocols. Edited by Mathé E, Davis S. New York, NY: Springer New York; 2016: 391-416.
- 69. Lund Steven P, Nettleton D, McCarthy Davis J, Smyth Gordon K: **Detecting Differential Expression in RNA-sequence Data Using Quasi-likelihood with Shrunken Dispersion Estimates**. In: *Statistical applications in genetics and molecular biology*. vol. 11; 2012.
- 70. Phipson B, Lee S, Majewski IJ, Alexander WS, Smyth GK: ROBUST HYPERPARAMETER ESTIMATION PROTECTS AGAINST HYPERVARIABLE GENES AND IMPROVES POWER TO DETECT DIFFERENTIAL EXPRESSION. The annals of applied statistics 2016, 10(2):946-963.
- 71. Love MI, Huber W, Anders S: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology* 2014, **15**(12):550.
- 72. Treviño S, Nyberg A, Del Genio CI, Bassler KE: **Fast and accurate** determination of modularity and its effect size. *Journal of Statistical Mechanics: Theory and Experiment* 2015, **2015**(2):P02003.
- 73. Bhavnani SK, Chen T, Ayyaswamy A, Visweswaran S, Bellala G, Rohit D, Kevin EB: Enabling Comprehension of Patient Subgroups and Characteristics in Large Bipartite Networks: Implications for Precision Medicine. AMIA Joint Summits on Translational Science proceedings AMIA Joint Summits on Translational Science 2017, 2017:21-29.
- 74. Krämer A, Green J, Pollard J, Jr, Tugendreich S: **Causal analysis approaches in Ingenuity Pathway Analysis**. *Bioinformatics* 2013, **30**(4):523-530.
- 75. Rand WM: **Objective Criteria for the Evaluation of Clustering Methods**. *Journal of the American Statistical Association* 1971, **66**(336):846-850.
- Hubert L, Arabie P: Comparing partitions. *Journal of Classification* 1985, 2(1):193-218.
- 77. Chauhan R, Ravi J, Datta P, Chen T, Schnappinger D, Bassler KE, Balázsi G, Gennaro ML: **Reconstruction and topological characterization of the sigma**

factor regulatory network of Mycobacterium tuberculosis. *Nature Communications* 2016, **7**:11062.

- 78. Azzam EI, Jay-Gerin JP, Pain D: **Ionizing radiation-induced metabolic** oxidative stress and prolonged cell injury. *Cancer letters* 2012, **327**(1-2):48-60.
- 79. Turrens JF, Alexandre A, Lehninger AL: Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. *Archives of biochemistry and biophysics* 1985, **237**(2):408-414.
- 80. Nohl H: A novel superoxide radical generator in heart mitochondria. *FEBS letters* 1987, **214**(2):269-273.
- 81. Boveris A, Chance B: **The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen**. *Biochemical Journal* 1973, **134**(3):707.
- 82. Cadenas E, Davies KJ: **Mitochondrial free radical generation, oxidative stress, and aging**. *Free radical biology & medicine* 2000, **29**(3-4):222-230.
- 83. Babior BM: NADPH Oxidase: An Update. *Blood* 1999, **93**(5):1464.
- 84. Los M, Schenk H, Hexel K, Baeuerle PA, Dröge W, Schulze-Osthoff K: IL-2 gene expression and NF-kappa B activation through CD28 requires reactive oxygen production by 5-lipoxygenase. *The EMBO journal* 1995, 14(15):3731-3740.
- 85. Behrmann I, Smyczek T, Heinrich PC, Schmitz-Van de Leur H, Komyod W, Giese B, Müller-Newen G, Haan S, Haan C: Janus Kinase (Jak) Subcellular Localization Revisited THE EXCLUSIVE MEMBRANE LOCALIZATION OF ENDOGENOUS JANUS KINASE 1 BY CYTOKINE RECEPTOR INTERACTION UNCOVERS THE Jak· RECEPTOR COMPLEX TO BE EQUIVALENT TO A RECEPTOR TYROSINE KINASE. Journal of Biological Chemistry 2004, 279(34):35486-35493.
- 86. Rahmani B, Zimmermann MT, Grill DE, Kennedy RB, Oberg AL, White BC, Poland GA, McKinney BA: Recursive Indirect-Paths Modularity (RIP-M) for Detecting Community Structure in RNA-Seq Co-expression Networks. Front Genet 2016, 7:80.
- 87. Bell AW, Deutsch EW, Au CE, Kearney RE, Beavis R, Sechi S, Nilsson T, Bergeron JJM: A HUPO test sample study reveals common problems in mass spectrometry–based proteomics. *Nature Methods* 2009, **6**(6):423-430.
- 88. Liu H, Sadygov RG, Yates JR: A Model for Random Sampling and Estimation of Relative Protein Abundance in Shotgun Proteomics. *Analytical Chemistry* 2004, **76**(14):4193-4201.
- 89. White MY, Brown DA, Sheng S, Cole RN, O'Rourke B, Van Eyk JE: **Parallel Proteomics to Improve Coverage and Confidence in the Partially Annotated Oryctolagus cuniculus Mitochondrial Proteome**. 2011, **10**(2):M110.004291-M004110.
- 90. Goh WWB, Lee YH, Chung M, Wong L: How advancement in biological network analysis methods empowers proteomics. 2012, **12**(4-5):550-563.
- 91. Lay JO, Liyanage R, Borgmann S, Wilkins CL: **Problems with the "omics"**. *TrAC Trends in Analytical Chemistry* 2006, **25**(11):1046-1056.

- 92. Navas-Iglesias N, Carrasco-Pancorbo A, Cuadros-Rodríguez L: From lipids analysis towards lipidomics, a new challenge for the analytical chemistry of the 21st century. Part II: Analytical lipidomics. 2009, 28(4):393-403.
- 93. Limoli CL, Giedzinski E, Baure J, Rola R, Fike JR: **Redox changes induced in hippocampal precursor cells by heavy ion irradiation**. *Radiat Environ Biophys* 2007, **46**(2):167-172.
- 94. Raber J, Yamazaki J, Torres ERS, Kirchoff N, Stagaman K, Sharpton T, Turker MS, Kronenberg A: **Combined Effects of Three High-Energy Charged Particle Beams Important for Space Flight on Brain, Behavioral and Cognitive Endpoints in B6D2F1 Female and Male Mice**. *Frontiers in Physiology* 2019, **10**.
- 95. Chang J, Luo Y, Wang Y, Pathak R, Sridharan V, Jones T, Mao XW, Nelson G, Boerma M, Hauer-Jensen M *et al*: Low Doses of Oxygen Ion Irradiation Cause Acute Damage to Hematopoietic Cells in Mice. 2016, **11**(7):e0158097.
- 96. Impey S, Jopson T, Pelz C, Tafessu A, Fareh F, Zuloaga D, Marzulla T, Riparip L-K, Stewart B, Rosi S *et al*: Short- and long-term effects of 56Fe irradiation on cognition and hippocampal DNA methylation and gene expression. 2016, 17(1).
- 97. Tungjai M, Whorton EB, Rithidech KN: **Persistence of apoptosis and** inflammatory responses in the heart and bone marrow of mice following whole-body exposure to 28Silicon (28Si) ions. 2013, 52(3):339-350.
- 98. Chen S, Ren C, Zhai J, Yu J, Zhao X, Li Z, Zhang T, Ma W, Han Z, Ma C: CAFU: a Galaxy framework for exploring unmapped RNA-Seq data. Brief Bioinform 2019.
- 99. Simon LM, Karg S, Westermann AJ, Engel M, Elbehery AHA, Hense B, Heinig M, Deng L, Theis FJ: MetaMap: An atlas of metatranscriptomic reads in human disease-related RNA-seq data. *GigaScience* 2018.
- 100. Whitacre LK, Tizioto PC, Kim J, Sonstegard TS, Schroeder SG, Alexander LJ, Medrano JF, Schnabel RD, Taylor JF, Decker JE: What's in your nextgeneration sequence data? An exploration of unmapped DNA and RNA sequence reads from the bovine reference individual. *BMC Genomics* 2015, 16:1114.
- 101. Jin M, Liu H, He C, Fu J, Xiao Y, Wang Y, Xie W, Wang G, Yan J: Maize pantranscriptome provides novel insights into genome complexity and quantitative trait variation. *Sci Rep* 2016, **6**:18936.
- 102. Kazemian M, Ren M, Lin JX, Liao W, Spolski R, Leonard WJ: **Comprehensive** assembly of novel transcripts from unmapped human RNA-Seq data and their association with cancer. *Mol Syst Biol* 2015, **11**(8):826.
- Laine VN, Gossmann TI, van Oers K, Visser ME, Groenen MAM: Exploring the unmapped DNA and RNA reads in a songbird genome. *BMC Genomics* 2019, 20(1):19.
- 104. Pennica D, Kohr WJ, Fendly BM, Shire SJ, Raab HE, Borchardt PE, Lewis M, Goeddel DV: **Characterization of a recombinant extracellular domain of the type 1 tumor necrosis factor receptor: evidence for tumor necrosis factoralpha induced receptor aggregation**. *Biochemistry* 1992, **31**(4):1134-1141.

- 105. Mitani K, Fujita H, Kappas A, Sassa S: Heme oxygenase is a positive acutephase reactant in human Hep3B hepatoma cells. *Blood* 1992, **79**(5):1255-1259.
- 106. Mueller CR: **The down-regulation of albumin transcription during regeneration is due to the loss of HNF-1 and the D-site transcription factors**. *DNA Cell Biol* 1992, **11**(7):559-566.
- 107. Mukwaya A, Lennikov A, Xeroudaki M, Mirabelli P, Lachota M, Jensen L, Peebo B, Lagali N: Time-dependent LXR/RXR pathway modulation characterizes capillary remodeling in inflammatory corneal neovascularization. Angiogenesis 2018, 21(2):395-413.
- 108. Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM: **Convergence of** 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. 1992, **358**(6389):771-774.
- 109. Hughes AR, Putney JW, Jr.: Metabolism and functions of inositol phosphates. *Biofactors* 1988, 1(2):117-121.
- 110. Reddy JK, Goel SK, Nemali MR, Carrino JJ, Laffler TG, Reddy MK, Sperbeck SJ, Osumi T, Hashimoto T, Lalwani ND: Transcription regulation of peroxisomal fatty acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase in rat liver by peroxisome proliferators. 1986, 83(6):1747-1751.
- 111. Guo B, Rothstein TL: **B Cell Receptor (BCR) Cross-Talk: IL-4 Creates an** Alternate Pathway for BCR-Induced ERK Activation That Is Phosphatidylinositol 3-Kinase Independent. 2005, **174**(9):5375-5381.
- 112. Kiyokawa H, Busquets X, Powell CT, Ngo L, Rifkind RA, Marks PA: **Cloning of a D-type cyclin from murine erythroleukemia cells**. 1992, **89**(6):2444-2447.
- 113. Bredt DS, Snyder SH: Isolation of nitric oxide synthetase, a calmodulinrequiring enzyme. 1990, 87(2):682-685.
- Altmann M, Sonenberg N, Trachsel H: Translation in Saccharomyces cerevisiae: initiation factor 4E-dependent cell-free system. 1989, 9(10):4467-4472.
- 115. Castrillo A, Tontonoz P: Nuclear receptors in macrophage biology: at the crossroads of lipid metabolism and inflammation. *Annu Rev Cell Dev Biol* 2004, **20**:455-480.
- 116. Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P: **Reciprocal** regulation of inflammation and lipid metabolism by liver X receptors. *Nature Medicine* 2003, **9**(2):213-219.
- 117. Cohen S: Cell mediated immunity and the inflammatory system. 1976, 7(3):249-264.
- 118. Detmers PA, Lo SK, Olsen-Egbert E, Walz A, Baggiolini M, Cohn ZA: Neutrophil-activating protein 1/interleukin 8 stimulates the binding activity of the leukocyte adhesion receptor CD11b/CD18 on human neutrophils. J Exp Med 1990, 171(4):1155-1162.
- 119. Smith WB, Gamble JR, Clark-Lewis I, Vadas MA: Interleukin-8 induces neutrophil transendothelial migration. *Immunology* 1991, **72**(1):65-72.
- 120. Levin AA, Sturzenbecker LJ, Kazmer S, Bosakowski T, Huselton C, Allenby G, Speck J, Ratzeisen C, Rosenberger M, Lovey A *et al*: **9-Cis retinoic acid**

stereoisomer binds and activates the nuclear receptor RXRα. 1992, **355**(6358):359-361.

- 121. Edwards CK, 3rd, Lorence RM, Dunham DM, Arkins S, Yunger LM, Greager JA, Walter RJ, Dantzer R, Kelley KW: Hypophysectomy inhibits the synthesis of tumor necrosis factor alpha by rat macrophages: partial restoration by exogenous growth hormone or interferon gamma. *Endocrinology* 1991, 128(2):989-986.
- 122. Kim JB, Spiegelman BM: **ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism**. 1996, **10**(9):1096-1107.
- 123. Tang QQ, Lane MD: Role of C/EBP homologous protein (CHOP-10) in the programmed activation of CCAAT/enhancer-binding protein-beta during adipogenesis. 2000, 97(23):12446-12450.
- 124. Choy L, Derynck R: Transforming Growth Factor-β Inhibits Adipocyte Differentiation by Smad3 Interacting with CCAAT/Enhancer-binding Protein (C/EBP) and Repressing C/EBP Transactivation Function. Journal of Biological Chemistry 2003, 278(11):9609-9619.
- 125. Sawyers CL, Callahan W, Witte ON: **Dominant negative MYC blocks transformation by ABL oncogenes**. 1992, **70**(6):901-910.
- 126. Towatari M, Adachi K, Kato H, Saito H: Absence of the human retinoblastoma gene product in the megakaryoblastic crisis of chronic myelogenous leukemia. *Blood* 1991, **78**(9):2178-2181.
- 127. Gishizky ML, Cortez D, Pendergast AM: Mutant forms of growth factorbinding protein-2 reverse BCR-ABL-induced transformation. 1995, 92(24):10889-10893.
- 128. Ali R, Sauerbier W: Effects of Ultraviolet Irradiation and Postirradiation Incubation on Heterogeneous Nuclear RNA Size in Murine Cells. 1978, 22(3):393-411.
- 129. Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J: Abnormal lung development and cleft palate in mice lacking TGF– β3 indicates defects of epithelial–mesenchymal interaction. 1995, 11(4):415-421.
- 130. Bissonnette RP, Brunner T, Lazarchik SB, Yoo NJ, Boehm MF, Green DR, Heyman RA: 9-cis retinoic acid inhibition of activation-induced apoptosis is mediated via regulation of fas ligand and requires retinoic acid receptor and retinoid X receptor activation. 1995, 15(10):5576-5585.
- 131. Sakamoto W, Fujie K, Handa H: Inhibition of prostaglandin E2 and superoxide anion production in rat peritoneal macrophages by the calcium antagonists nifedipine and nisoldipine. Arzneimittelforschung 1991, 41(8):781-785.
- 132. Collart MA, Belin D, Vassalli JD, de Kossodo S, Vassalli P: **Gamma interferon** enhances macrophage transcription of the tumor necrosis factor/cachectin, interleukin 1, and urokinase genes, which are controlled by short-lived repressors. *J Exp Med* 1986, **164**(6):2113-2118.
- 133. Nathan CF, Murray HW, Wiebe ME, Rubin BY: **Identification of interferongamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity**. *J Exp Med* 1983, **158**(3):670-689.

- 134. Baker SJ, Kerppola TK, Luk D, Vandenberg MT, Marshak DR, Curran T, Abate C: Jun is phosphorylated by several protein kinases at the same sites that are modified in serum-stimulated fibroblasts. 1992, **12**(10):4694-4705.
- 135. Myers MG, Backer JM, Sun XJ, Shoelson S, Hu P, Schlessinger J, Yoakim M, Schaffhausen B, White MF: **IRS-1 activates phosphatidylinositol 3'-kinase by associating with src homology 2 domains of p85**. 1992, **89**(21):10350-10354.
- 136. De Leon DD, Wilson DM, Powers M, Rosenfeld RG: Effects of Insulin-Like Growth Factors (IGFs) and IGF Receptor Antibodies on the Proliferation of Human Breast Cancer Cells. 1992, 6(4):327-336.
- 137. Sridharan DM, Asaithamby A, Bailey SM, Costes SV, Doetsch PW, Dynan WS, Kronenberg A, Rithidech KN, Saha J, Snijders AM *et al*: Understanding Cancer Development Processes after HZE-Particle Exposure: Roles of ROS, DNA Damage Repair and Inflammation. *Radiation Research* 2015, 183(1):1-26.
- 138. Tamir I, Cambier JC: Antigen receptor signaling: integration of protein tyrosine kinase functions. 1998, **17**(11):1353-1364.
- 139. Kurosaki T: GENETIC ANALYSIS OF B CELL ANTIGEN RECEPTOR SIGNALING. Annual Review of Immunology 1999, 17(1):555-592.
- 140. Pennica D, Kohr WJ, Fendly BM, Shire SJ, Raab HE, Borchardt PE, Lewis M, Goeddel DV: Characterization of a recombinant extracellular domain of the type 1 tumor necrosis factor receptor: evidence for tumor necrosis factor .alpha. induced receptor aggregation. *Biochemistry* 1992, **31**(4):1134-1141.
- 141. Li A, Dubey S, Varney ML, Dave BJ, Singh RK: IL-8 Directly Enhanced Endothelial Cell Survival, Proliferation, and Matrix Metalloproteinases Production and Regulated Angiogenesis. *The Journal of Immunology* 2003, 170(6):3369-3376.
- 142. Itoh Y, Joh T, Tanida S, Sasaki M, Kataoka H, Itoh K, Oshima T, Ogasawara N, Togawa S, Wada T: IL-8 promotes cell proliferation and migration through metalloproteinase-cleavage proHB-EGF in human colon carcinoma cells. 2005.
- 143. Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ, Gingeras TR *et al*: Genomic Maps and Comparative Analysis of Histone Modifications in Human and Mouse. *Cell* 2005, 120(2):169-181.
- 144. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA *et al*: **Distinct and predictive chromatin** *signatures of transcriptional promoters and enhancers in the human genome*. *Nature Genetics* 2007, **39**(3):311-318.
- 145. Guo J, Zeitlin C, Wimmer-Schweingruber RF, Hassler DM, Ehresmann B, Kohler J, Bohm E, Bottcher S, Brinza D, Burmeister S *et al*: **MSL-RAD radiation environment measurements**. *Radiat Prot Dosimetry* 2015, **166**(1-4):290-294.
- 146. Dagogo-Jack I, Shaw AT: **Tumour heterogeneity and resistance to cancer therapies**. *Nature Reviews Clinical Oncology* 2018, **15**(2):81-94.
- 147. McGranahan N, Swanton C: Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future. *Cell* 2017, **168**(4):613-628.
- 148. Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, Shafi S, Johnson DH, Mitter R, Rosenthal R *et al*: **Tracking the**

Evolution of Non–Small-Cell Lung Cancer. *New England Journal of Medicine* 2017, **376**(22):2109-2121.

- 149. Nowell P: The clonal evolution of tumor cell populations. Science 1976, 194(4260):23-28.
- 150. Piotrowska Z, Niederst MJ, Karlovich CA, Wakelee HA, Neal JW, Mino-Kenudson M, Fulton L, Hata AN, Lockerman EL, Kalsy A *et al*: Heterogeneity Underlies the Emergence of EGFRT790 Wild-Type Clones Following Treatment of T790M-Positive Cancers with a Third-Generation EGFR Inhibitor. *Cancer Discovery* 2015, 5(7):713-722.
- 151. Seeley EH, Caprioli RM: **MALDI imaging mass spectrometry of human** tissue: method challenges and clinical perspectives. 2011, 29(3):136-143.
- 152. Drake RR, Powers TW, Jones EE, Bruner E, Mehta AS, Angel PM: MALDI Mass Spectrometry Imaging of N-Linked Glycans in Cancer Tissues. *Adv Cancer Res* 2017, **134**:85-116.
- 153. Dekker TJA, Balluff BD, Jones EA, Schöne CD, Schmitt M, Aubele M, Kroep JR, Smit VTHBM, Tollenaar RAEM, Mesker WE *et al*: Multicenter Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI MSI) Identifies Proteomic Differences in Breast-Cancer-Associated Stroma. 2014, 13(11):4730-4738.
- 154. Buck A, Halbritter S, Späth C, Feuchtinger A, Aichler M, Zitzelsberger H, Janssen K-P, Walch A: Distribution and quantification of irinotecan and its active metabolite SN-38 in colon cancer murine model systems using MALDI MSI. Analytical and Bioanalytical Chemistry 2015, 407(8):2107-2116.
- 155. Willems SM, Van Remoortere A, Van Zeijl R, Deelder AM, McDonnell LA, Hogendoorn PC: **Imaging mass spectrometry of myxoid sarcomas identifies proteins and lipids specific to tumour type and grade, and reveals biochemical intratumour heterogeneity**. 2010, **222**(4):400-409.
- 156. Jones EA, Van Remoortere A, Van Zeijl RJM, Hogendoorn PCW, Bovée JVMG, Deelder AM, McDonnell LA: Multiple Statistical Analysis Techniques Corroborate Intratumor Heterogeneity in Imaging Mass Spectrometry Datasets of Myxofibrosarcoma. PLoS ONE 2011, 6(9):e24913.
- 157. Balluff B, Frese CK, Maier SK, Schöne C, Kuster B, Schmitt M, Aubele M, Höfler H, Deelder AM, Heck A, Jr. *et al*: De novo discovery of phenotypic intratumour heterogeneity using imaging mass spectrometry. 2015, 235(1):3-13.
- 158. Fuchs B, Suss R, Schiller J: An update of MALDI-TOF mass spectrometry in lipid research. *Prog Lipid Res* 2010, **49**(4):450-475.
- 159. Mann HB, Whitney DR: On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. *The Annals of Mathematical Statistics* 1947, **18**(1):50-60.
- 160. Hanselmann M, Kirchner M, Renard BY, Amstalden ER, Glunde K, Heeren RMA, Hamprecht FA: Concise Representation of Mass Spectrometry Images by Probabilistic Latent Semantic Analysis. Analytical Chemistry 2008, 80(24):9649-9658.
- 161. Diehl HC, Beine B, Elm J, Trede D, Ahrens M, Eisenacher M, Marcus K, Meyer HE, Henkel C: **The challenge of on-tissue digestion for MALDI MSI- a**

comparison of different protocols to improve imaging experiments. *Anal Bioanal Chem* 2015, **407**(8):2223-2243.

- 162. Gut Y, Boiret M, Bultel L, Renaud T, Chetouani A, Hafiane A, Ginot Y-M, Jennane R: Application of chemometric algorithms to MALDI mass spectrometry imaging of pharmaceutical tablets. 2015, **105**:91-100.
- 163. Bemis KD, Harry A, Eberlin LS, Ferreira C, van de Ven SM, Mallick P, Stolowitz M, Vitek O: Cardinal: an R package for statistical analysis of mass spectrometry-based imaging experiments. *Bioinformatics* 2015, 31(14):2418-2420.
- 164. Fülöp A, Sammour DA, Erich K, Von Gerichten J, Van Hoogevest P, Sandhoff R, Hopf C: Molecular imaging of brain localization of liposomes in mice using MALDI mass spectrometry. *Scientific Reports* 2016, 6(1):33791.
- 165. Wildburger NC, Wood PL, Gumin J, Lichti CF, Emmett MR, Lang FF, Nilsson CL: ESI–MS/MS and MALDI-IMS Localization Reveal Alterations in Phosphatidic Acid, Diacylglycerol, and DHA in Glioma Stem Cell Xenografts. *Journal of Proteome Research* 2015, 14(6):2511-2519.
- 166. Tibshirani R, Hastie T, Narasimhan B, Chu G: **Diagnosis of multiple cancer types by shrunken centroids of gene expression**. *Proceedings of the National Academy of Sciences* 2002, **99**(10):6567-6572.
- Robinson CV, Rohacs T, Hansen SB: Tools for Understanding Nanoscale Lipid Regulation of Ion Channels. *Trends in Biochemical Sciences* 2019, 44(9):795-806.
- 168. Comoglio Y, Levitz J, Kienzler MA, Lesage F, Isacoff EY, Sandoz G: Phospholipase D2 specifically regulates TREK potassium channels via direct interaction and local production of phosphatidic acid. 2014, 111(37):13547-13552.
- 169. Welti R: Profiling Membrane Lipids in Plant Stress Responses. ROLE OF PHOSPHOLIPASE Dalpha IN FREEZING-INDUCED LIPID CHANGES IN ARABIDOPSIS. 2002, 277(35):31994-32002.
- 170. Yang SF, Freer S, Benson A: **Transphosphatidylation by phospholipase D**. *Journal of Biological Chemistry* 1967, **242**(3):477-484.
- 171. Kannan M, Riekhof WR, Voelker DR: **Transport of phosphatidylserine from the endoplasmic reticulum to the site of phosphatidylserine decarboxylase2 in yeast**. *Traffic* 2015, **16**(2):123-134.
- 172. Vickers NJ: Animal Communication: When I'm Calling You, Will You Answer Too? *Current Biology* 2017, **27**(14):R713-R715.
- 173. Wellner N, Diep TA, Janfelt C, Hansen HS: N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 2013, 1831(3):652-662.
- 174. Vance JE: Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. *J Lipid Res* 2008, 49(7):1377-1387.
- 175. Das UN, Madhavi N, Kumar GS, Padma M, Sangeetha P: Can tumour cell drug resistance be reversed by essential fatty acids and their metabolites? 1998, 58(1):39-54.

- 176. Higashi H, Hirabayashi Y, Hirota M, Matsumoto M, Kato S: **Detection of** ganglioside GM2 in sera and tumor tissues of hepatoma patients. *Jpn J Cancer Res* 1987, **78**(12):1309-1313.
- 177. Abel S, Smuts CM, de Villiers C, Gelderblom WCA: Changes in essential fatty acid patterns associated with normal liver regeneration and the progression of hepatocyte nodules in rat hepatocarcinogenesis. *Carcinogenesis* 2001, 22(5):795-804.
- Abel S, De Kock M, Smuts C, De Villiers C, Swanevelder S, Gelderblom W: Dietary modulation of fatty acid profiles and oxidative status of rat hepatocyte nodules: Effect of different n- 6/n- 3 fatty acid ratios. *Lipids* 2004, 39(10):963-976.
- 179. Tessitore L, Sesca E, Vance DE: Inactivation of phosphatidylethanolamine Nmethyltransferase-2 in aflatoxin-induced liver cancer and partial reversion of the neoplastic phenotype by PEMT transfection of hepatoma cells. International journal of cancer 2000, 86(3):362-367.
- 180. Gibellini F, Smith TK: The Kennedy pathway-De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. *IUBMB Life* 2010:n/an/a.
- 181. Kanter JL, Narayana S, Ho PP, Catz I, Warren KG, Sobel RA, Steinman L, Robinson WH: Lipid microarrays identify key mediators of autoimmune brain inflammation. *Nature Medicine* 2006, **12**(1):138-143.
- 182. Langfelder P, Luo R, Oldham MC, Horvath S: Is my network module preserved and reproducible? *PLoS computational biology* 2011, **7**(1).
- 183. Amar D, Safer H, Shamir R: Dissection of regulatory networks that are altered in disease via differential co-expression. *PLoS computational biology* 2013, 9(3).
- 184. Hu R, Qiu X, Glazko G, Klebanov L, Yakovlev A: **Detecting intergene correlation changes in microarray analysis: a new approach to gene selection**. *BMC bioinformatics* 2009, **10**(1):20.
- 185. Kostka D, Spang R: Finding disease specific alterations in the co-expression of genes. *Bioinformatics* 2004, **20**(suppl_1):i194-i199.
- 186. Hudson NJ, Reverter A, Dalrymple BP: A differential wiring analysis of expression data correctly identifies the gene containing the causal mutation. *PLoS computational biology* 2009, 5(5).
- 187. Pierson E, Koller D, Battle A, Mostafavi S, Consortium G: Sharing and specificity of co-expression networks across 35 human tissues. *PLoS computational biology* 2015, **11**(5).
- 188. Yang Y, Han L, Yuan Y, Li J, Hei N, Liang H: Gene co-expression network analysis reveals common system-level properties of prognostic genes across cancer types. Nat Commun. 2014; 5: 3231. In.
- 189. Kogelman LJ, Cirera S, Zhernakova DV, Fredholm M, Franke L, Kadarmideen HN: Identification of co-expression gene networks, regulatory genes and pathways for obesity based on adipose tissue RNA Sequencing in a porcine model. *BMC medical genomics* 2014, 7(1):57.
- 190. Mortazavi A, Pepke S, Jansen C, Marinov GK, Ernst J, Kellis M, Hardison RC, Myers RM, Wold BJ: **Integrating and mining the chromatin landscape of cell-**

type specificity using self-organizing maps. *Genome Research* 2013, **23**(12):2136-2148.

- 191. Ultsch A: Data mining and knowledge discovery with emergent selforganizing feature maps for multivariate time series. In: *Kohonen maps*. Elsevier; 1999: 33-45.
- 192. Ding L-H, Park S, Peyton M, Girard L, Xie Y, Minna JD, Story MD: Distinct transcriptome profiles identified in normal human bronchial epithelial cells after exposure to γ-rays and different elemental particles of high Z and energy. *BMC genomics* 2013, 14(1):372.
- 193. Miousse IR, Chang J, Shao L, Pathak R, Nzabarushimana É, Kutanzi KR, Landes RD, Tackett AJ, Hauer-Jensen M, Zhou D: Inter-strain differences in LINE-1 DNA methylation in the mouse hematopoietic system in response to exposure to ionizing radiation. *International journal of molecular sciences* 2017, 18(7):1430.
- 194. Koturbash I, Miousse IR, Sridharan V, Nzabarushimana E, Skinner CM, Melnyk SB, Pavliv O, Hauer-Jensen M, Nelson GA, Boerma M: Radiation-induced changes in DNA methylation of repetitive elements in the mouse heart. *Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis* 2016, 787:43-53.
- 195. Wang J, Zhang Y, Xu K, Mao X, Xue L, Liu X, Yu H, Chen L, Chu X: Genomewide screen of DNA methylation changes induced by low dose X-ray radiation in mice. *PloS one* 2014, **9**(3).
- 196. Newman MR, Sykes PJ, Blyth BJ, Bezak E, Lawrence MD, Morel KL, Ormsby RJ: **The methylation of DNA repeat elements is sex-dependent and temporally different in response to X radiation in radiosensitive and radioresistant mouse strains**. *Radiation research* 2014, **181**(1):65-75.
- 197. Prior S, Miousse IR, Nzabarushimana E, Pathak R, Skinner C, Kutanzi KR, Allen AR, Raber J, Tackett AJ, Hauer-Jensen M: Densely ionizing radiation affects DNA methylation of selective LINE-1 elements. *Environmental research* 2016, 150:470-481.
- 198. Kennedy E, Powell D, Li Z, Bell J, Barwick B, Feng H, McCrary M, Dwivedi B, Kowalski J, Dynan W: Galactic cosmic radiation induces persistent epigenome alterations relevant to human lung cancer. *Scientific reports* 2018, **8**(1):1-14.

10 VITA

BIOGRAPHICAL

Anna M. Nia U.S. Citizen Email: anna.nia@ucla.edu Email: amnia@utmb.edu Cell: +1-310-467-8324 ORCID ID: 0000-0003-2757-7267 https://orcid.org/0000-0003-2757-7267 Google Scholar Profile: https://scholar.google.com/citations?user=ahhZ6awAAAAJ&hl=en

PRESENT POSITION

Aug 2015 - Present: **M.D.-Ph.D. Candidate**, School of Medicine and Department of Molecular Biophysics University of Texas Medical Branch (UTMB), Galveston, TX, USA

EDUCATION

Aug 2015 - Present: **M.D.-Ph.D Candidate**, Medicine and Ph.D. in Molecular Biophysics University of Texas Medical Branch (UTMB), Galveston, TX, USA Ph.D. Thesis Advisor: Dr. Mark Emmett

Sep 2013 - Aug 2015: **M.S.**, Bioengineering University of California, Los Angeles (UCLA), Los Angeles, CA, USA Master's Thesis Advisor: Dr. Alan Garfinkel

Sep 2008 - Dec 2012: **B.S.**, Major in Neuroscience, Minor in Biomedical Research Departmental Highest Honors, Magna Cum Laude, College Honors University of California, Los Angeles (UCLA), Los Angeles, CA, USA Undergraduate Thesis Advisor: Dr. Felix Schweizer

PUBLICATIONS

[6] <u>Nia, A.M.</u>, Chen, T., Barnette, B.L., Khanipov, K., Ullrich, R., Bhavnani, S., Emmett, M.R.
(2020), "Efficient Identification of Multiple Pathways: RNA-Seq Analysis of Livers from ⁵⁶Fe Ion Irradiated Mice", *BMC Bioinformatics*, DOI: 10.1186/s12859-020-3446-5
Retrieved from https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-020-3446-5?utm_source=other&utm_medium=other&utm_content=null&utm_campaign=BSCN_2_DD01_CN_bmcs o article paid XMOL

[5] <u>Nia, A.M.</u>, Zavlin, D. (2019). "The Burden of Physicians' Administrative Workload Affects Clinical and Scientific Mentoring" *AMEE MedEdPublish*, DOI: 10.15694/mep.2019.000074.1 Retrieved from https://www.mededpublish.org/manuscripts/2318

 [4] <u>Nia, A.M.</u>, Branch, D.W., Maynard, K., Frank, T., Zavlin, D., Patterson, J.T., Lall, R.R. (2019).
 "Metabolic Syndrome Associated with Increased Rates of Medical Complications Following Intracranial Tumor Resection" *World Neurosurgery*, PMID: 30878753, DOI: 10.1016/j.wneu.2019.03.046 Retrieved from https://www.sciencedirect.com/science/article/pii/S1878875019306734?via%3Dihub

[3] Zavlin, D., Chegireddy, V., Nguyen-Lee, J.J., Shih, L., <u>Nia A.M.</u>, Friedman, J.D., Echo, A. (2018). "Training E_ects of Visual Stroboscopic Impairment on Surgical Performance: A Randomized-Controlled Trial." *Journal of Surgical Education*, PMID: 30131280, DOI: 10.1016/j.jsurg.2018.07.018. Retrieved from https://www.sciencedirect.com/science/article/pii/S1931720418304057?via%3Dihub

[2] Zavlin, D., Chegireddy, V., Boukovalas, S., <u>Nia, A.M.</u>, Branski, L.K., Friedman, J.D., Echo, A. (2018).
 "Multi-Institutional Analysis of Independent Predictors for Burn Mortality in the United States." *Burns & Trauma*, PMID: 30151396, DOI: 10.1186/s41038-018-0127-y
 Retrieved from https://burnstrauma.biomedcentral.com/articles/10.1186/s41038-018-0127-y

[1] <u>Nia, A.M.</u> (2015). "Multi Negative Feedback Loops and Nonlinear Time-Delays in a Mathematical Model of Bone Morphogenetic Protein (BMP) Signaling in Vascular Endothelial Cells." *eScholarship*, UCLA, ProQuest ID: Nia_ucla_0031N_13904. Merritt ID: ark:/13030/m5vx3bjw. Retrieved from https://escholarship.org/uc/item/5m96170m

SUBMITTED FOR PUBLICATION

[3] <u>Nia, A.M.</u>, Khanipov, K., Barnette, B.L., Ullrich, R., Golovko, G., Emmett, M.R. (2020), "Comparative RNA-Seq Transcriptome Analyses Reveal Dynamic Time-Dependent Effects of ⁵⁶Fe, ¹⁶O, and ²⁸Si Irradiation on the Induction of Murine Hepatocellular Carcinoma", *BMC Genomics*, DOI: 10.21203/rs.3.rs-17127/v1

Retrieved from https://www.researchsquare.com/article/rs-17127/v1

[2] <u>Nia, A.M.</u>, Branch, D.W., Maynard, K., Frank, T., Guillet, J.Y., Patterson, J.T., Lall, R.R. (2020), "How the Elderly Fare After Brain Tumor Surgery Compared to Younger Patients: A National Surgical Quality Improvement Program Analysis of 30,183 Cases", *Journal of Clinical Neuroscience*

[1] Golovko, G., Khanipov, K., Albayrak, L., <u>Nia, A.M.</u>, Duarte, R.S.A., Chumakov, S., Fofanov, Y., (2020), "Identification of Multidimensional Boolean Patterns in Microbial Communities", *Microbiome*

ABSTRACTS AND RESEARCH PRESENTATIONS

[25] <u>Nia, A.M.</u> (presenting author), Allison, R., Branch, D.W., Khanipov, K., Golovko, G., Guillet, J.Y., Patterson, J.T., Lall, R.R., "Using Machine Learning Algorithms for Prediction of Postoperative Length of Hospital Stay and Discharge Disposition After Craniotomy for Resection of Craniopharyngiomas in Adults: A National Surgical Quality Improvement Program Analysis of 2011 to 2017" Poster Presentation, American Association of Neurological Surgeons, Boston, MA, April 2020

[24] Golovko, G. (presenting author), Khanipov, K., <u>Nia, A.M.</u>, Evangelista, L., Fofanov, Y., "Methodology and Infrastructure of Integrating Multi-Omics Data with EMR to Advance Precision Medicine Research " Oral Presentation, Association for Clinical and Translational Science, Data Science Session, Washington, DC, April 2020 [23] Khanipov, K. (presenting author), Golovko, G., <u>Nia, A.M.</u>, Evangelista, L., Fofanov, Y., "Interactions of the Infant Nasopharyngeal Microbiota and Subjects' Clinical Traits in Development of Viral Upper Respiratory Tract Infections and Acute Otitis Media "Poster Presentation, Association for Clinical and Translational Science, Data Science Session, Washington, DC, April 2020

[22] Ali, A. (presenting author), Moth, J.L., McFarland, J.R., Crandall, C.K., Sweeney, M., <u>Nia, A.M.</u>, Miles, B.L., Korst, G., Hrushka J.M., Merrill, A.D., Allison, R.Z., "Impact of Hard Hats for Little Heads in L.A. Morgan Elementary School" Poster Presentation, Public Health Symposium, The University of Texas Medical Branch, Galveston, TX, April 2020

[21] <u>Nia, A.M.</u> (presenting author), Khanipov, K., Golovko, G., "Effects of Injectable, Erythropoietin and Glucocorticoids Combinational Therapy on Erythrocyte Sedimentation Rate Following Spinal Cord Injury" Poster Presentation, Association for Clinical and Translational Science, Data Science Session, Washington, DC, April 2020

[20] <u>Nia, A.M.</u> (presenting author), Chen, T., Barnette, B., Khanipov, K., Ullrich, R., Bhavnani, S., Emmett, M.R., "Application of Modularity Maximization Algorithm for RNA-Seq Analysis of Livers from ⁵⁶Fe Ion Irradiated Mice" Poster Presentation, NASA Human Research Program Investigator's Conference, Galveston, TX, January 2020

[19] Nia, A.M. (presenting author), Branch, D.W., Maynard, K., Frank, T., Guillet, J.Y., Patterson, J.T., Lall, R.R., "Complications and Total Length of Hospital Stay after Craniotomy for Tumor in Elderly Patients: A National Surgical Quality Improvement Program Analysis of 30,183 Patients from 2008 to 2016" Poster Presentation, American Association of Neurological Surgeons, San Diego, CA, April 2019

[18] Zavlin, D. (presenting author), Chegireddy, V., Nguyen-lee, J.J., Shih, L., <u>Nia, A.M.</u>, Friedman, J.D., Echo, A. "E_ects of Limited Visual Input on Surgical Performance: a Randomized-Controlled Trial" Poster Presentation, The Society of American Gastrointestinal and Endoscopic Surgeons, Baltimore, MD, April 2019

[17] Chegireddy, V. (presenting author), Zavlin, D., Nguyen-lee, J.J., Shih, L., <u>Nia, A.M.</u>, Friedman, J.D., Echo, A. "Effects of Limited Visual Input on Surgical Performance: a Randomized-Controlled Trial" Oral Presentation, American Society for Reconstructive Microsurgery, Palm Desert, CA, February 2019

[16] Emmett, M.R. (presenting author), Barnette, B.L., <u>Nia, A.M.</u>, Strain, S.K., Lichti, C.F., Yu, Y., Ullrich, R.L., "Molecular Biosynthetic Pathway Alterations Induced By Low Dose, High Charge, High-Energy Ions (HZE): A Multi-Omics Study of HZE-Induced Hepatocelullar Carcinoma (HCC)" Poster Presentation, NASA Human Research Program Investigator's Conference, Galveston, TX, January 2019

[15] Barnette, B.L. (presenting author), <u>Nia, A.M.</u>, Strain, S.K., Lichti, C.F., Yu, Y., Ullrich, R.L., Emmett, M.R. "An Integrated Omics Approach to Define the Molecular Mechanisms Induced by Low Dose, High-Energy, High Charge Ions (HZE) in Relation to Hepatocellular Carcinoma (HCC)" Poster Presentation, NASA Human Research Program Investigator's Conference, Galveston, TX, January 2019

[14] <u>Nia, A.M.</u> (presenting author), Shavkunov, A., Ullrich, R.L., Emmett, M.R. "Radiation Induced Lipid Changes in Liver by MALDI Imaging Combined with Spatial Shrunken Centroid Clustering" Poster Presentation, NASA Human Research Program Investigator's Conference, Galveston, TX, January 2019

[13] Barnette, B.L. (presenting author), <u>Nia, A.M.</u>, Strain, S.K., Lichti, C.F., Yu, Y., Ullrich, R.L., Emmett, M.R. "An Integrated Omics Approach to Define the Molecular Mechanisms Induced by Low Dose, High-Energy, High Charge Ions (HZE) in Relation to Hepatocellular Carcinoma (HCC)" Poster Presentation, University of Texas Medical Branch, Department of Biochemistry and Molecular Biology Annual Retreat, Galveston, TX, October 2018 [12] <u>Nia, A.M.</u> (presenting author), Barnette, B.L., Strain, S.K., Lichti, C.F., Yu, Y., Ullrich, R., Emmett, M.R. "Computational Mathematics Assimilation of Large Multi-Omics Datasets" Poster Presentation, University of Texas Medical Branch, Department of Biochemistry and Molecular Biology Annual Retreat, Galveston, TX, October 2018

[11] <u>Nia, A.M.</u> (presenting author), Branch, D.W., Maynard, K., Frank, T., Patterson, J.T., Lall, R.R., "Ramifications of Metabolic Syndrome on Intracranial Tumor Resections in the United States" Oral Presentation, Tumor Session, Congress of Neurological Surgeons, Houston, TX, October 2018

[10] Steinberg, A.J. (presenting author), Zavlin, D., Chegireddy, V., <u>Nia, A.M.</u>, Ellsworth, W.A. "Impact of Breast Ptosis on Contralateral Prophylactic Mastectomy and Postoperative Morbidity during Microsurgical Reconstruction." Oral Presentation, Texas Society of Plastic Surgeons, San Antonio, TX, September 2018

[9] <u>Nia, A.M.</u> (presenting author), Barnette, B.L., Strain, S.K., Lichti, C.F., Yu, Y., Ullrich, R., Emmett, M.R. "Computational Mathematics Assimilation of Large Multi-Omics Datasets" Poster Presentation, Informatics Session, American Society of Mass Spectrometry, San Diego, CA, June 2018

[8] Barnette, B.L. (presenting author), <u>Nia, A.M.</u>, Strain, S.K., Lichti, C.F., Yu, Y., Ullrich, R., Emmett, M.R. "An Integrated Omics Approach to Define the Molecular Mechanisms of Galactic Cosmic Ray Induced Hepatocellular Carcinoma" Poster Presentation, System Biology Session, American Society of Mass Spectrometry, San Diego, CA, June 2018

[7] Zavlin, D. (presenting author), Chegireddy, V., Nguyen-lee, J.J., Shih, L., <u>Nia, A.M.</u>, Friedman, J.D., Echo, A. "E_ects of Limited Visual Input on Surgical Performance: a Randomized-Controlled Trial." Oral Presentation, Houston Methodist Bookout Symposium, Houston, TX, June 2018

[6] Barnette, B.L. (presenting author), <u>Nia, A.M.</u>, Strain, S.K., Lichti, C.F., Yu, Y., Ullrich, R., Emmett, M.R. "An Integrated Omics Approach to Define the Molecular Mechanisms of Hepatocellular Carcinoma (HCC) Induced by Low Dose, High-Energy, High Charge Ions (HZE)" Oral Presentation, NASA Human Research Program Investigator's Conference, Galveston, TX, January 2018

[5] <u>Nia, A.M.</u> (presenting author), Guo, Y., Guihard, P., Bostrom, K., Garfinkel, A., "Multi-Negative Feedback Loops and Nonlinear Time-Delays in a Mathematical Model of Bone Morphogenetic Protein (BMP) Signaling in Vascular Endothelial Cells" Poster Presentation, American Physician Scientists Association (APSA), Texas A&M Health Science Center, College Station, TX, October 2015

[4] <u>Nia, A.M.</u> (presenting author), Caputo, A, Schweizer, F.E. "Role of SNAP-25 Ubiquitination in Neurotransmitter Release" Poster Presentation, 15th Annual Science Poster Session, University of California, Los Angeles (UCLA), Los Angeles, CA, May 2012

[3] <u>Nia, A.M.</u> (presenting author), Caputo, A, Schweizer, F.E. "Role of SNAP-25 Ubiquitination in Neurotransmitter Release" Poster Presentation, 13th Annual Neuroscience Poster Session, University of California, Los Angeles (UCLA), Los Angeles, CA, May 2012

[2] <u>Nia, A.M.</u> (presenting author), Caputo, A, Schweizer, F.E. "Strategies to Study the Role of Fast Dynamic Ubiquitination at Synapses" Oral Presentation, 37th West Coast Biological Sciences Research Conference, Loyola Marymount University, Los Angeles, CA, April 2012

[1] Caputo, A, (presenting author), <u>Nia, A.M.</u>, Schweizer, F.E. "Strategies to Study the Role of Fast Dynamic Ubiquitination at Synapses" Poster Presentation, Department of Neurobiology Retreat, University of California, Los Angeles (UCLA), Los Angeles, CA, March 2012