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The gap-junctional channels that mediate intercellular communication are formed 

by head-to-head docking of two gap-junctional hemichannels from adjacent cells. The 
hemichannels are hexamers of connexins, proteins that have four transmembrane helices. 
The transmembrane helices that line the gap-junctional pore have not been identified, and 
their identification was the main goal of my dissertation project. To accomplish this goal, 
I used a combination of molecular biology, biochemical and biophysical techniques that 
include poly-alanine helix scanning mutagenesis, the substituted cysteine accessibility 
method and luminescence resonance energy transfer. Using the latter methodology in 
particular, as well as a new method to produce purified hemichannels of controlled 
subunit composition, I was able to assign all helices in the available low-resolution 
cryoelectron microscopy structure published by others, where helices are named A 
through D, and generate the first model of gap-junctional channels and hemichannels 
based on experimental structural measurements. In this model, connexin transmembrane 
helices 1 through 4 correspond to helices A, C, B and D, respectively. Luminescence 
resonance energy transfer is a powerful method for structural studies of membrane 
proteins in their native bilayer environment. Taken advantage of this methodology, in 
combination with the generation of hemichannels of controlled subunit composition, I 
was also able to determine that PKC-mediated phosphorylation of Ser368 produces a 
partial closure of the Cx43 hemichannel pore, that this effects requires phosphorylation of 
all six Cx43 monomers in the hemichannel, and that the decrease in permeability is 
accompanied by significant conformational changes of the connexin molecules. These 
changes involve increases of the distances separating the C-terminal ends of the subunits 
and decreases in the distances separating the pore-lining helices; both changes in inter-
subunit distances are of the order of several Angstroms. These results indicate that a 
simple ball-and-chain mechanism cannot explain the gating of Cx43 hemichannels by 
PKC-mediated phosphorylation and that a significant re-arrangement of pore helices 
takes place instead. In summary, my results allowed me to generate an experimentally-
based model gap-junctional channels and hemichannels and to gain insight into the 
molecular mechanism of Cx43 regulation by PKC-mediated phosphorylation. 
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