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Cells are constantly exposed to numerous genotoxic lesions that inhibit replication. The 

inability of cells to correctly repair these lesions results in mutations or chromosomal 

aberrations that threaten the integrity of the genome. DNA damage tolerance 

mechanisms, including translesion synthesis (TLS), alleviate this block at the expense of 

increasing mutagenesis.  

 

Minor groove DNA lesions result from lipid peroxidation or exposure to environmental 

pollutants. Prevalent among these lesions are those produced by tobacco products, 

particularly benzo(a)pyrene-diolepoxide (BPDE), a polycyclic aromatic hydrocarbon 

strongly associated with carcinogenesis, particularly lung cancer. Alkylating lesions 

result from exposures to endogenous methylating agents and naturally occurring methyl 

halides. They might interfere with base pairing and are cytotoxic. The long-term goal is 

to understand the mechanisms by which replication through such ubiquitous lesions 

occurs in human cells. 

 

Tumorigenesis is a multistep process associated with accumulation of mutations. 

Understanding of the biochemical basis of lesion bypass and the role of TLS polymerases 

will result in insights on how human cells handle exposure to environmental carcinogens 

and how the TLS processes contribute to cancer avoidance or to cancer risk. 
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Chapter 1 Introduction 

TRANSLESION DNA SYNTHESIS 

Introduction 

DNA repair processes are crucial for maintaining the integrity of the genome. The 

consequence of non-functional repair systems can result in mutagenesis, carcinogenesis, 

and cell death. Cells are constantly exposed to genotoxic lesions that inhibit replication. 

DNA is highly reactive and is under constant attack by endogenous and exogenous 

sources resulting in ~100,000 different DNA lesions per day (70, 71). This high number 

of lesions means that the cell will at some point encounter a situation where its DNA 

repair processes have not removed a DNA replication block, which can have dire 

consequences to the cell. The inability to replicate across a lesion leads to accumulation 

of stalled replication forks, which can generate double stranded breaks (DSBs) and lead 

to genomic instability. The presence of DSBs increases the level of chromosomal 

translocations in cells (64, 198). DNA damage tolerance mechanisms, including 

translesion synthesis (TLS) allow for replication of DNA containing lesions and alleviate 

this block, but do so at the expense of increasing mutagenesis (15, 16, 17).  

 

Experiments with excision defective mutants (uvrA, uvrB, or uvrC) of Escherichia coli 

exposed to ultraviolet (UV) irradiation have shown that UV delays DNA replication, but 

cells were eventually able to replicate DNA even in the presence of UV induced 

cyclobutane pyrimidine dimers (CPDs) (200). This replication across UV damage was 

referred to as post replication repair (PRR) and its mechanism was poorly understood at 

the time. It was believed that recombination played an important role in PRR since 

excision (uvrA) and recombination (recA) defective mutants were more sensitive than 

excision defective mutants alone and were killed by a single pyrimidine lesion in the cell 
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(200). However, later studies demonstrated that protein synthesis was required for PRR 

and the inhibition of protein synthesis by chloramphenicol in bacterial cells (199) or 

hydroxyurea in human lymphoma cells resulted in inhibition of PRR and mutagenesis 

(201). Furthermore, labeling of DNA with bromouracil revealed that PRR in lymphoma 

cells required de novo DNA synthesis (201). The induction of this repair process required 

the recA and lexA genes and UV mutability was eliminated by mutations in either of 

these genes. However, although recombination as demonstrated by Howard-Flanders was 

an important contributor to PRR in an error-free manner, a portion of mutagenic PRR 

was independent of recombination as demonstrated from recombination defective 

mutants (recA+recB-recF-) (199). Experiments with the 174 by Radman, demonstrated 

the inability of the phage to replicate after infection of wt E. coli but able to replicate 

after infection on E. coli that were irradiated with UV and induced for a PRR response 

(199). However, the failure to purify a protein with polymerase activity led to the 

conclusion that an inducible factor was modifying the activity of the DNA replicative 

polymerases. 

 

In 1999, it was discovered that one of these inducible mutagenesis proteins, Rad30, a 

protein involved in UV mutagenesis in Saccharomyces cerevisiae, was a novel DNA 

polymerase, which could perform accurate lesion bypass across a CPD (16). This study 

served to illuminate several aspects of mutagenesis and the rationale for mutagenesis 

changed from the idea that mutagenesis proteins regulate the activities of the replicative 

DNA polymerases to the novel concept that these mutagenesis proteins were themselves 

in fact actual DNA polymerases (16,43). These TLS polymerases have recently been 

characterized and proof has emerged that they are not error-prone when replicating a 

respective cognate lesion, in other words they have distinct biological properties that 

allows error-free lesion bypass. A paradigm has emerged that these polymerases are 

regulated during specific DNA damage and their deregulation is implicated with 
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mutations, genomic instability, and cancer (35). The idea is that lesion bypass by TLS 

polymerases, on a non-cognate DNA lesion caused by a carcinogen, results in a particular 

mutation signature. Carcinogenesis studies have revealed that there exists a specific 

mutation fingerprint for each carcinogen (14, 22, 24, 33, 34). The better characterized 

models are that of UV’s link with skin cancer and that of tobacco smoke’s link with lung 

cancer. Studies have revealed that deficiency of polymerase  is associated with the 

xeroderma pigmentosum variant (XPV) and is correlated with skin cancer (16, 45-48). 

Importantly, biochemical studies have revealed that lack of polymerase  results in 

switching to error-prone polymerases resulting in the mutation signature that is associated 

with UV carcinogenesis (49).  

 

General Mechanism 

The cell has strategies to tolerate DNA replication blocking lesions. At sites of DNA 

damage the cell utilizes a number of PRR mechanisms, also known as damage tolerance 

or damage avoidance mechanisms, to replicate DNA. The cell can directly avoid the 

damaged site by utilizing the nascent daughter strand as the template for replication or 

could utilize homologous recombination to repair a  gap in the newly synthesized strand 

(Figure 1). These damage avoidance mechanisms utilize the alternate undamaged DNA 

strand and are error-free, however they can be disruptive and time consuming and a 

mistake might lead to a high probability of gene rearrangements (57). 

 

TLS on the other hand utilizes specialized polymerases to replicate across the damaged 

site. When the replication fork stalls, specialized polymerases are recruited to the lesion 

site, a polymerase switch between the replicative and TLS pols occurs which allows 

insertion across the damage site. Depending on the lesion, the TLS pol that is recruited 

might extend various nucleotides after initially inserting across the lesion, or a second 
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in TLS are Pol  from the B family, Polsand  from the X family, and Pols  and  

from the A family (73, 74). Although they possess a similar basic structure, they have a 

large degree of functional divergence and they play different roles depending on the type 

of lesion encountered. They possess some functional similarities, they are error prone 

when copying undamaged DNA, have low catalytic efficiency, and are non-processive 

compared with the replicative pols. They also possess the remarkable ability to bypass 

different types of DNA lesions (35, 74). The conservation of these TLS polymerases in 

all domains of life and expansion in higher organisms points to their critical role in the 

maintenance of the genome (75). 

 

Crystal structures of the various TLS polymerases reveal similar structural features. The 

TLS Pols maintain the overall right handed topology as the replicative polymerases with 

a palm, fingers, and thumb subdomains. The palm domain is the catalytic center and 

contains invariant acidic residues necessary for catalysis indicative of a conserved 

catalytic mechanism (35). The fingers and thumb subdomain are strikingly different from 

the replicative pols. In the replicative pols two -helices form a large tight closing 

structure with the incoming nucleotide resulting in the proper geometric alignment of the 

catalytic residues for the nucleotidyl transfer reaction. In contrast the TLS pols contain 

small, stubby finger and thumb subdomains. The TLS pols, because of this, have lower 

processivities and fidelities. TLS pols do not possess 3’  5’ exonuclease activity.  In 

addition, they also contain a polymerase associated domain (PAD) which increases the 

potential DNA binding surface area from ~600-700 Å to ~1000-1100 Å comparable to 

the replicative pols (35). The active sites of the TLS pols vary tremendously from the 

replicative pols. They are more open and sterically less constrained to help accommodate 

various DNA lesions. Additionally, the TLS pols possess unique structural features 

suggestive of their evolutionary specialization to bypass various types of DNA damage 

(35). 
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ALKYLATING AGENTS 

Reactivity of Alkylating Agents 

Alkylating agents are an ubiquitous family of reactive electrophiles that react with the 

ring nitrogens and exocyclic oxygen atoms of nucleic acid bases to generate a variety of 

covalent adducts. The types of DNA lesions generated by these agents depend on several 

factors, among these are the type of alkylating group, the number of reactive sites within 

the alkylating agent, the reaction mechanism, and the type of nucleic acid substrate 

(Figure 2). Alkylating agents are affected by the nucleophicity of the ring substituent. 

Because of this, the major adduct formed by monofunctional agents is at the N7 position 

of guanine accounting for ~60-80% of the total alkylation lesions in DNA (76, 77). The 

7-Methyl guanine (7-MeG) lesion is relatively innocuous, it is not reactive, mutagenic, or 

cytotoxic by itself, but can result in spontaneous depurination of the base generating an 

apurinic site (AP), which is toxic and mutagenic.  SN1 alkylating groups react readily 

with oxygens to generate the lesion O-6Methyl guanine which mispairs with thymine 

during replication and causes mutagenic and cytotoxic events. O-alkyl lesions, however, 

are generated far less frequently than N-alkyl lesions. Ethylating lesions are known to be 

more mutagenic than methylating lesions. Bifunctional alkylating groups react similarly 

to monofunctional agents, but because of their two reactive moieties, they can lead to the 

formation of interstrand crosslinks (76, 77).  
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The 1-MeA lesion prevents the N1 site of adenine from WC hydrogen bonding and 

affects the base pair structure of the DNA double helix. The 1-MeA lesion switches the 

base orientation from the anti to a syn orientation with respect to their sugar rings. This 

forces 1-MeA to adopt Hoogsteen base pairing but retain pairing specificity with thymine 

and stacking interactions within the double helix, causing little perturbation in the sugar 

pucker or the DNA double helix structure. Because of this, 1-MeA is a very stable adduct 

comparable to adenine with very little of the expected Dimroth rearrangement occurring 

(80, 81).  

 

The 1-MeA lesion can be generated by various endogenous and exogenous sources of 

alkylating agents and has been detected both in vitro (84-87) and in vivo (88-90, 81). S-

adenosyl methionine (SAM) is a common cosubstrate of methyl group transfers.  Because 

of its high transfer potential, it spontaneously methylates cellular nucleic acids in a 

similar manner as methyl methanesulfonate (MMS) through an SN2 mechanism (91, 92). 

The intracellular concentration of 4x105 M SAM is enough to create mutagenic adducts 

(91, 93) and it has been estimated that this concentration of SAM would be equivalent to 

the continuous exposure of a cell to ~20nM of MMS (91). Other metabolic products that 

create 1-MeA include betain or choline (94) and nitrosation products of cellular amines 

(95). The most abundant methylating agents are the alkyl halogens produced from 

decaying vegetation (96). Other exogenous sources include methyl nitrates from tobacco 

smoke, combustion products, and byproducts of industrial production of alkyl derivatives 

(77). 

 

Repair of 1-MeA Lesion 

Alkylating lesions have been deemed a threat to human health through their cytotoxic, 

teratogenic, and carcinogenic properties (97). The 1-MeA lesion is a strong inhibitor to 
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replication because it impedes WC hydrogen bonding and the action of replicative DNA 

polymerases. Estimates of overall lesion frequency are ~1.6 lesions/kilobase (82, 83). 

This has been demonstrated in vitro (85) and in reactivation experiments of a phage 

model system after MMS damage (98). Organisms possess several repair systems for 

alkylation damage. 1-MeA is directly removed by the action of a dioxygenase, AlkB in E. 

Coli, and ABH2/ABH3 in mammals. These enzymes utilize -ketogluterate and Fe2+ for 

oxidative methyl transfer, resulting in the release of formaldehyde and the modified base 

(99). The importance of this direct reversal is demonstrated by the increase in sensitivity 

to MMS in AlkB- cells (100) as well as a small increase in mutagenesis (98). Similarly, 

mouse models lacking the AlkB homolog ABH2 demonstrated accumulated 1-MeA in 

liver genomic DNA and mouse embryonic fibroblasts derived from ABH2-/- mice are 

hypersensitive to MMS damage (101). A mutagenesis study of the individual lesions 

created by MMS again demonstrated that these lesions inhibit replication. Interestingly, 

activation of the SOS inducible repair system in E. coli relieved the block created by 

MMS, suggesting that TLS plays an important in role in alleviating methylation induced 

DNA damage (81). Mutational analysis of 1-MeA in AlkB- and SOS induced cells 

revealed low mutagenicity, suggesting that TLS is error free across 1-MeA (81). Further 

evidences for a role of TLS in alleviating the block of replication from alkylating damage 

are the degradation of HLTF and increase interaction of SHPRH with TLS polymerases 

by MMS treatment (102) and the increase in sensitivity to MMS by deletion of Rev3 

(103-106). Deletion of Dot1 in S. cerevisiae, a protein involved in the checkpoint 

response, increases Rev1/Pol  mediated tolerance to MMS (107) and increases Rev1 

replication foci (108).  

 

The role of TLS polymerases in the bypass of 1-MeA has not been fully elucidated. 

Greater understanding of the biological factors activated in response to alkylation damage 

might lead to strategies for cancer prevention and novel therapeutics. 
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Persistent Minor Groove DNA Lesions 

NMR structural studies of a minor groove lesion with the (+) anti-benzo()pyrene diol 

epoxide-dG (BPDE) revealed minimal perturbation of the overall structure. The 

benzo()pyrene ring intercalates into the DNA helix with displacement of the pyrenyl 

ring into the minor groove of DNA with a plane parallel to the helix axis. The aromatic 

ring system provides base stacking interactions which increase the stability of the DNA 

adduct (111). The DNA helix remains  shaped with normal C2-endo sugar pucker. 

Importantly WC base pairing is unperturbed with overall deviation of only 0.68 Å (109, 

110). This probably contributes to the resistance of BPDE to lesion removal by NER 

processes. NER recognizes specific conformational features created by the lesion with the 

DNA, such as base pair disruptions or DNA helical distortions. BPDE lesions, among 

other PAHs causing minor groove lesions, retain their base pairing by accommodating 

adducts on the major or minor groove of DNA and make for poor substrates for 

recognition by NER (111-113).  

 

Minor groove DNA lesions occur commonly in response to many types of exogenous or 

endogenous damage. These types of lesions have important implications to human health. 

Polyunsaturated fatty acids are a major target of oxygen radicals. Lipid peroxidation can 

lead to formation of exocyclic adducts such as etheno or propano adducts. Elevated levels 

of etheno adducts have been observed in patients with familial adenomatous polyposis. 

Propano adducts are similarly elevated in tissues of smokers (7). Formation of minor 

groove adducts due to oxidation with glucose intermediates result in the formation of 

advanced glycation end products which are associated with aging, diabetes, and uremia. 

Women with tamoxifen therapy for breast cancer, have elevated levels of minor groove 

adducts and higher risks of developing endometrial cancer. Estrogens, form minor groove 
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adducts with DNA, and these adducts have been documented to increase cancer risk (12, 

13). 

 

Minor groove lesions are a potent inhibitor to replication (116). There are two main 

consequences of failure to correctly address minor groove DNA adducts, the inability to 

replicate across the lesions leads to accumulation of stalled replication forks which can 

generate DSBs, resulting in genomic instability. Importantly hereditary cancers have 

elevated levels of genomic instability and this instability is closely associated with 

defects in various DNA repair proteins (64, 65). A second consequence is incorrect 

replication of the lesion by DNA damage tolerance mechanisms, such as translesion 

synthesis (TLS), which alleviates the replication block but at the expense of increasing 

mutagenesis (15-17). Minor groove lesions can directly contribute to cancer risk either by 

increasing DSBs, leading to genomic instability, or by increasing mutagenesis. 

 

Benzo()Pyrene: The Classic Model of Chemical Carcinogenesis 

Studies in the 19th century revealed that certain occupational exposures, such as paraffin 

refining, shale oil work, and work with coal tar correlated with an increased incidence of 

cancer. Early attempts to introduce an experimental model of chemical carcinogenesis 

were unsuccessful until the induction of skin tumors by coal tar in the ears of rabbits 

(117, 5). This led to the hunt for the chemical responsible for induction of carcinogenesis 

by coal tar. Through organic synthesis and spectroscopic methods, E.L. Kenneway’s 

group in the Research Institute of Cancer was able to synthesize teratogenic tars and 

identify aromatic compounds with increasing carcinogenic potential. This eventually led 

to the isolation of a polycyclic aromatic hydrocarbon (PAH), benzo(a)pyrene (BP), as 

the principal carcinogen from 2 tons of coal tar (118-120).  
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Mutations and genomic instability have been associated with cancer (18). 

Epidemiological, occupational, and migration studies have demonstrated the major role 

of environmental factors as contributors to carcinogenesis (19). These links with cancer 

are especially strong among sunlight and skin cancer (33), tobacco and lung cancer (14, 

22), and aflatoxin and liver cancer (34). Eighty percent of the estimated number of cancer 

deaths are due to environmental exposure, with tobacco accounting for ~30% of cancer 

deaths, making smoking one of the leading causes of preventable global cancer deaths 

(20). Tobacco is a mixture of chemical compounds that can be divided into a particulate 

and a vapor phase. Studies have demonstrated the carcinogenic potential of many of these 

compounds, which strongly implicate PAHs as causative agents in cancer development. 

Among PAHs, the most characterized compound, due to its high concentration in 

cigarette smoke and potential for mutagenicity upon metabolism, is BP.  

 

BP is a procarcinogen that is formed from incomplete combustion of organic 

compounds. Enzymatic metabolism by the cytochrome p450 system is required for 

conversion of BP into the reactive bay region diol epoxide. The reaction occurs in three 

steps: (1) BP is oxidized by cytochrome p450 into BaP-7,8 epoxide; (2) Epoxide 

hydrolase opens the ring to produce BaP-7,8-dihydrodiol; (3)  The cytochrome system 

oxidizes the ring to form 4 possible stereoisomers of BPDE (Figure 5). The (+)-trans-

anti-BPDE is the most mutagenic metabolite of BP.  
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revealed similar patterns of mutations as well as elevated levels of lung cancer (123). 

Another important observation is that changing the design of cigarettes to decrease the 

amount of BP decreased small cell lung carcinomas characteristic of BPDE 

carcinogenesis, however, the increasing amount of nitrosamines led to a corresponding 

increase of adenocarcinoma cases which are correlated with nitrosamine exposure (124). 

These studies provide strong evidence of BPDE as the principal chemical carcinogen in 

tobacco smoke and as a causative agent in cancer development. 

 

Recent studies of TLS across minor groove lesions have revealed insight into the 

mechanisms of lesion bypass (28-32,36-42). However these studies have been performed 

in in vitro settings leading to contradictory information and have not clarified the 

physiological roles of TLS polymerases in the extension and insertion activities across 

minor groove adducts. Many of these studies utilized gapped plasmids transfected into 

host cells, which do not provide information of the role of TLS polymerases during 

replication. The innovation of our shuttle vector approach is the fact that our 

heteroduplex vector can accurately measure and distinguish the contribution of each of 

the DNA damage tolerance mechanisms. More importantly, unlike gapped plasmids, our 

shuttle vector provides information on the role of TLS polymerases during replication.  

Additionally, by utilizing NER deficient cell lines, we can ensure that the lesions 

introduced into our plasmid system will not be repaired before lesion bypass mechanisms 

are activated. The in vivo positive mutation screening mouse system we use provides an 

excellent model for measuring the contributions of each TLS polymerase to lesion bypass 

in a chromosomal gene. These methods coupled with the powerful technology of siRNA 

knockdown provide a powerful rationale for identifying the molecular basis of lesion 

bypass across the minor groove N2-BPDE-dG lesion. This knowledge may reveal insights 

into the etiology of cancer and provide for novel therapeutics to be developed. 
 



C

 

 

 

T

m

g

la

si

re

II MUTATIO

The big blue

mutagenesis o

enomes the 

acI repressor

imple to an

egulation of 

Figure 6
Reprinted
copyright

C

ONAL ASSAY

e mouse sys

of test comp

LIZ shuttle

r. The cI rep

nalyze and 

its lysogeni

6. Overview
d by permissi
t (2005). 

Chapter 2 

Y IN MOUSE 

stem is a po

pounds (Strat

e vector, wh

pressor targe

sequence. T

ic and lytic c

w of the  Se
on from Mac

31 

Materials

CELLS 

owerful met

tagene). The

hich contain 

et was utiliz

The system

cycle. The b

elect-cII mu
cmillan Publis

s and Meth

thod for ass

e big blue m

two reporte

zed due to it

m utilizes th

bacteriophag

utation detec
shers Ltd: [Re

hods 

sessing the 

mice have int

er genes, a cI

ts small size

he bacteriop

ge’s cII prote

ction system
eviews in Mu

 

genotoxicity

tegrated into

I repressor, 

e, which mak

phage system

ein is involv

m 
utation Resear

 

y and 

o their 

and a 

kes it 

m of 

ved in 

rch] (206), 



th

in

tr

g

th

M

ly

nu

co

b

nu

 

 

 

si

T

D

an

w

in

he commitm

nduces trans

ranscription 

enes require

he bacteriop

Mutations of 

ytic cycle. In

umber of b

onditions 37

acteriophage

umber of ba

iRNA Knoc

The big blu

Dulbecco’s m

nd 1X of an

with Lipofec

ncubated in 

Figure 7.

The cII p
the lytic 
 
Reprinted
copyrigh

ment of the 

scription of 

of the cI rep

ed for the lyt

phage’s lyso

f the cII gen

n order to co

bacteria infe

7 °C, under 

e to undergo

acteria infect

ckdown in M

ue transgeni

modified eag

ntibiotic/anti

ctamine 200

750 M of 

. Target chr

protein comm
cycle. The  cI

d by permissi
ht (2005). 

phage to ei

several gen

pressor prote

tic cycle. Th

ogenic respo

ne result in a

orrectly quan

ected by th

which the t

o the lytic cy

ted (Figure 6

Mammalian 

ic mouse e

le medium (

imycotic (GI

00 (Thermo

Opti-MEM 

romosomal t

its the λ phag
I(1857), is a t

ion from Mac

32 

ither the ly

nes required 

ein. The cI r

e bacterial h

onse by incr

a nonfunctio

ntify mutatio

he phage, th

time sensitiv

ycle, allowin

6, 62). 

Cells 

embryonic f

(DMEM) co

IBCO). Tran

oFisher). Fi

(Thermo Fi

transgene in

ge to either th
temperature-s

cmillan Publis

ytic or lysog

for the lyso

repressor inh

host strain ca

reasing the 

onal cII and

on events, it

herefore, a 

ve mutation 

ng the corre

fibroblasts 

ntaining 10%

nsfection wa

fty M of 

isher) for 5 

nserted in t

e lysogenic o
sensitive cI re

shers Ltd: [Re

genic cycle. 

ogenic cycle

hibits transcr

arries mutati

stability of

d the phage 

t is necessar

titer is pla

cI857 will 

ect determin

(BBMEFs) 

% Fetal Bov

as carried o

f Lipofectam

minute at ro

the mouse ce

or 
epressor prote

eviews in Mu

The cII pr

e and establ

ription of va

ons that faci

f the cII pro

will underg

ry to quantif

ated at sele

always forc

nation of the

were grow

vine Serum (

out by lipofe

mine 2000

oom tempera

ells 

ein. 

utation Resear

 

rotein 

lishes 

arious 

ilitate 

otein. 

go the 

fy the 

ective 

ce the 

e total 

 

wn in 

(FBS) 

ection 

were 

ature. 

rch] (206), 



 

33 

The Lipofectamine mixture was then added to 750 M Opti-MEM containing 50 pmoles 

of a corresponding siRNA and incubated for 20 minutes at room temperature.  BBMEFs 

cells were collected by removing the media from the plate, washing once with 5 ml of 

Dulbecco’s phosphate-buffered saline (DPBS), and incubating the cells with 1.5 ml of 

0.25% Trypsin-EDTA for 5 minutes. The cells were collected with 5 ml of DMEM, 

centrifuged for 5 minutes at 200 G, and resuspended in 5 ml of DMEM. Approximately 5 

x 106 cells were plated on 100 mm plates and the transfection media containing 500 

pmoles of synthetic duplex siRNA and 50 g of the Lipofectamine 2000 was added to the 

plates. The cells were incubated with the lipofection siRNA mixture for 4 hours in 

minimal media. After 4 hours the media was changed with regular media. BPDE 

treatment was performed after 48 hours. The media was removed and the cells were 

treated with 500 nM of BPDE in Hank’s buffered saline solution (HBSS) for 30 min at 37 

ᵒC. A second siRNA knockdown was performed after 24 hours of the BPDE treatment. 

The cells were allowed to grow for mutation fixation for 5 days following BPDE 

treatment. siRNA knockdown has been confirmed by western blotting and RT-PCR, 

previously in our lab. 

Genomic DNA Isolation 

The cells were collected by trypsinization, spun down and washed with DPBS 5 days 

after the treatment with BPDE. Genomic DNA was extracted utilizing the Blood and Cell 

culture genomic kit (QIAGEN). Briefly, the cell pellet was resuspended in 8 ml of ice 

cold Buffer C1 1X (Blood and Cell culture genomic kit - QIAGEN). Lysis was 

performed for 10 min on ice, the sample was inverted several times until the suspension 

became clear. Sample was spun at 4 ᵒC for 15 minutes at 1,300 g. The pellet was 

resuspended by vortexing in 8 ml ice cold Buffer C1 1X and spun again at 4 ᵒC for 15 

minutes at 1,300 g. The supernatant was discarded and the white pellet resupended in 5 

ml of Buffer G2 (QIAGEN). Protein was removed from the samples by incubating the 
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samples for 1 hour at 37 ᵒC with 100 l of 10 mg/ml proteinase K. The genomic DNA 

was then purified by a gravity flow anion-exchange column (QIAGEN). The DNA was 

precipitated by addition of 3.5 ml of 100% isopropanol, spool to precipitate the DNA and 

then the DNA was transferred to a 1.5 ml eppendorf tube. The DNA was spun at 13,000 

rpm for 5 minutes, the supernatant was discarded and then the DNA was washed with 

750 l of 70 % ethanol, spun a second time at 13,000 rpm for 5 minutes, and then the 

supernatant was discarded and the DNA resuspended in 50 l of TE buffer pH 8.0. 

 

cII Mutation Assay 

G1250 (Stratagene) E. coli cells were grown overnight at 30 ᵒC in 30 ml TB1 media 

(1.0% Peptone, 0.5% Sodium Chloride, 1.2% Agar, 0.0001% Thiamine HCl, 50µg/mL 

Kanamycin) supplemented with 300 l of 20% maltose-1 M MgSO4. The cells were 

collected after 24 hours by centrifugation at 1,500 g for 15 minutes. The supernatant was 

discarded and the cell pellet resuspended in 10 ml of ice cold 10 mM MgSO4 solution.  

The cell suspension was adjusted to OD ~0.500 spectrophotometer reading. Eight l of 

genomic DNA were utilized to reassemble a lambda phage for infection and 

transformation of the G1250. Eight l of genomic DNA was added to the orange tube 

transpackaging reaction (Stratagene cII Transpack Kit). Mix by pipetting and incubated 

for 90 minutes in a 30 °C water bath. Following this, 12 l of the blue tube 

transpackaging reaction (Stratagene cII Transpack Kit) was added to the genomic DNA 

mix and incubated for 90 minutes in a 30 °C water bath. One ml of SM buffer (100 mM 

NaCl, 8 mM MgSO4, 50 mM Tris-HCl, and 0.01% gelatin) was added to each sample. 

Dilution titers were prepared by adding 10 l of the sample mix in 990 l of SM buffer. 

Six samples were prepared by adding 250 l of the G1250 cell culture in MgSO4 to a 

bacterial tube and adding 160 l of the genomic transpack reaction mixture. Separately 3 

dilution titers per sample were prepared by adding 100 l of the genomic transpack 
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reaction titer to 250 l of the G1250 cell culture in MgSO4. The samples were incubated 

for 30 minutes at room temperature. Four ml of TB1 top agar (1.0% Peptone, 0.5% 

Sodium Chloride,0.7% Agar, 0.0001% Thiamine HCl) was added to the samples and the 

samples were plated in TB1 Kan+ plates and grown at 30 ᵒC for 48 hours. Separately 3 

plates of 1/1000 dilution titers were prepared in the same way in TB1 Kan+ plates and 

grown at 37 ᵒC overnight to calculate total number of infected cells. The dilution titers 

were counted after 24 hours and the samples plates were counted 48 hours after plating 

and the mutation rate was calculated from the total infected cells. 

 

Mutational Spectra 

Mutant plaques obtained from the cII mutation assays were utilized as the template for 

amplification of their cII gene utilizing the cII specific primers LP2177 (5’-

CCAGCCCTGAAAAAGGG-3’) and LP 2178 (5’-CCTCTGCCGAAGTTGAG-3’). The 

DNA was then purified by a silica column (QIAGEN) and sequenced by the Sealy Center 

for Molecular Medicine Molecular Genomics Core at UTMB. Spectra were constructed 

from the data.  

BPDE SENSITIVITY ASSAY 

MTT Assay 

Normal human fibroblasts were transfected with 10 pmoles of siRNA and 10 g of 

Lipofectamine 2000. Ten M of Lipofectamine 2000 were incubated in 250 M of Opti-

MEM (Thermo Fisher) for 5 minute at room temperature. The Lipofectamine mixture 

was then added to 250 M Opti-MEM containing 10 pmoles of a corresponding siRNA 

and incubated for 20 minutes at room temperature.   Three hundred thousand cells were 

plated in a multi well 6 well and depletion of the target gene was performed by 

incubating the cells for 4 hours with the siRNA lipofectamine mixture in minimal media. 
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After 4 hours the media was replaced with regular DMEM media. Forty eight hours after 

transfection the cells were treated with 500 nM BPDE at 37 ᵒC in HBSS buffer for 1 

hour. The cells were allowed to grow for 2 days and then a colorimetric assay utilizing 3-

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was performed. 

Briefly, the cell media was removed and 1 ml of MTT 1X solution added to each well. 

The cells were incubated for 30 min at 37 ᵒC. The media was collected and analyzed by 

spectrophotometer. 

 

DNA REPLICATION FOCI 

Fluorescent Constructs 

The Open Reading Frame (ORF) for TLS Pols , and Rev1 were cloned into an 

eukaryotic expression vector containing the GFP gene (pGFP-N1 Clonetech) or the RFP 

gene (pcDNA3mRFP Addgene). Briefly, the ORF from the TLS pols was cut from CMV 

eukaryotic expression vectors by digestion with BamHI and ligated into the BamHI site 

of pGFP-N1 or the pcDNA3-mRFP. The vectors were sequenced to confirm correct 

construction and the protein expression was further confirmed by western blotting and 

fluorescence microscopy. 

 

DNA Replication Foci Assay 

Normal human fibroblasts were seeded in multiwell 6 plates at 300,000 x 106 cells/well. 

Ten M of Lipofectamine 2000 were incubated in 250 M of Opti-MEM for 5 minute at 

room temperature. The Lipofectamine mixture was then added to 250 M Opti-MEM 

containing 1 g of DNA of the fluorescence tagged TLS Pols DNA and incubated for 20 

minutes at room temperature. The transfection mixture was added to the multiwell 6 

containing the human fibroblasts and incubated for 4 hours in minimal media. After 4 
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hours, the media was changed to regular DMEM media. Forty eight hours after 

transfection the cells were treated with 500 nM BPDE in HBSS buffer for 1 hr at 37 ᵒC. 

Six hours after BPDE treatment the cells were fixed with 4 % formaldehyde for 15 

minutes and stained with 0.2 g/ml of 4',6-diamidino-2-phenylindole (DAPI). The cells 

were mounted on a microscope slide with mounting solution (ProLong Gold 

LifeTechnologies). Slides were examined under a fluorescence microscope and DNA 

replication foci were quantified. 

 

TLS PLASMID ASSAY 

Construction of Plasmid Vectors Containing Lesion 

Oligonucleotides containing either 1MeA or N2-BPDE-dG lesion were purchased from 

Trilink Biotechnologies (SantaCruz, CA) were utilized to create a heteroduplex plasmid 

containing an inframe target LacZ gene containing either the 1-MeA lesion and harboring 

an MfeI restriction site and encoding for a functional -galactosidase and on the opposite 

strand harboring an SpeI site and containing an out of frame +1 -galactosidase. The 

lesion strand contains a Kan+ resistance cassette while the opposite strand is Kan-. 

Similarly the N2-BPDE-dG lesion plasmid encodes for a functional -galactosidase with 

no MfeI restriction site and with an opposite strand harboring a XhoI site. 
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generates blue colonies (Figure 7B) whereas replication through the lesion by template 

switching results in an out of frame lacZ’ gene and white colonies on x-gal plates (Figure 

7C).  TLS levels are calculated from the number of blue colonies among the Kan+ 

colonies. The TLS plasmid system allows for the determination of strand bias since the 

lesion can inserted into the leading or lagging strand. 

 

In Vivo Translesion Synthesis Assay in Human Cells 

Normal human fibroblasts were grown as described previously and ~3 x105 cells plated 

in a 6 well plate. The cells were transfected by lipofection as described previously with 

100 pmole of siRNA. Forty-eight hours after transfection a second knockdown with 50 

pmole of siRNA and co-transfection with 1 g of the heteroduplex plasmid vector was 

performed by lipofection. The cells were incubated and 30 hours after co-transfection the 

plasmid DNA was isolated by the alkaline lysis method and digested with DpnI to 

remove unreplicated plasmid. The plasmid DNA was used for transformation of E. coli 

XL1Blue cells (Stratagene). The cells were plated in LB plates containing kanamycin and 

1 μM isopropyl-1-thio-β-D-galactopyranoside (X-gal). Blue and white colonies were 

counted and TLS frequency calculated.  

 

Mutational Analysis 

Blue colonies from the TLS plasmid assay were utilized to amplify the LacZ target gene 

by PCR amplification with the primers LP2366 (5’-CGC CCA ATA CGC AAA CC-3’) 

and LP 2367 (5’-AAC GTG GAC TCC AAC GTC-3’). The PCR products were purified 

by silica column and sent for sequencing to the Sealy Center for Molecular Medicine 

Molecular Genomics Core at UTMB. Analysis of the sequencing resulted in the mutation 

frequency and mutational changes incorporated.  
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GENERATION OF STABLE CELL LINES 

Site directed mutagenesis was utilized to create deletion or single amino acid substitution 

mutants of the TLS polymerases. PCR mutagenesis was performed utilizing the Flag tag 

eukaryotic expression vectors containing the ORF of Pols , and Rev1 with the 

following overlapping primer pairs: Pol , LP2780 (5’- 

GGGCTTATTGATGCTGCTTTAATGCCATCATTA-3’) and LP2781 (5’- 

TAATGATGGCATTAAAGCAGCATCA ATAAGCCC-3’); LP2782 (5’- 

GAGGAGTATTATCTGCCGCCTCT AAAAAACAAATG-3’) and LP2783 (5’- 

CATTTGTTTTTTAGAGGCGG CAGATAATACTCCTC-3’); LP2784 (5’- 

CTGAAGGTGTTGCCC AAGAAGTCTTC-3’) and LP2785 (5’- 

GAAGACTTCTTGGGC AACACCTTCAG-3’); LP2786 (5’- 

GTCTTCAAGCAGGCAGC AGTAGATATTC-3’) and LP2787 (5’- 

GAATATCTACTGCTGCC TGCTTGAAGAC-3’); LP 2788 (5’- 

CTTCTGACATTGCACCTC AAGTTTTC-3’) and LP2789 (5- 

GAAAACTTGAGGTGCAAT GTCAGAAG-3’); and LP2790 (5’- 

GTTTTCTATGAAGCAGCAG AAGCAGTAC-3’) LP2791 (5’- 

GTACTGCTTCTGCTGCTTC ATAGAAAAC-3’); LP2816 (5’- CTTCTTACATGg 

CTAGCCAAAAG-3’); and LP 2817 (5’- CTTTTGGCTAGCCATGTAAGAAG-3’);  

LP2818 (5’- GATGAACGAATAGCACAAGGACCTAAAG-3’) and LP2819 (5’- 

CTTTAGGTCCTTGTGCTATTCGTTCATC-3’); Pol , LP2794 (5’- 

GCATCAGTCTGGAAGCCTTGAATAAAGCCGTAGATGAATGTCTTGATGGACC

TTC-3’) and LP2795 (5’- TGATTGAAGGTCCATCAAGACATTCATCT 

ACGGCTTTATTCAAGGCTTCCAGACTGATGC-3’); LP2796 (5’- GCATCAGTC 

TGGAAGCCTTGAATAAACATGTAGCCGAATGTCTTGATGGACCTTCAATC-3’)  

and LP2797 (5’- CACTGATTGAAGGTCCATCAAGACATTCGGCTAC 
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ATGTTTATTCAAGGCTTCCAGACTGATGC-3’); LP2798 (5’- GACTTCAG 

ATCTAACCCTGTTCAATGTGGCTGTGGATGTTTGCTTAAATAAAAG-3’) and 

LP2799 (5’- CTTTTATTTAAGCAAACATCCACAGCCACATTGAACAGG 

GTTAGATCTGAAG-3’); and LP2800 (5’- CAGATCTAACCCTGTTCAATGTGCAT 

GTGGCTGTTTGCTTAAATAAAAGTTTTATCC-3’) and LP2801 (5’- GGATAAAAC 

TTTTATTTAAGCAAACAGCCACATGCACATTGAACAGGGTTAGATC-3’); and 

Rev1 LP2837 (5’- GTCCCGTCACCTGATCAGCTGGATCAG-3’) and LP2838 (5’- 

CTGATCCAGCTGATCAGGTGACGGGAC-3’); LP 2839 (5’- GTCCCGTCACCT 

GAACAGCTGGATCAG-3’) and LP2840 (5’- CTGATCCAGCTGTTCA 

GGTGACGGGAC-3’); LP 2841 (5’- CTTCCAGCATTTGACCAGGTGGACCC-3’) and 

LP2842 (5’- GGGTCCACCTGGTCAAATGCTGGAAG-3’); and LP2843 (5’- 

CTTCCAGCATTTGAACAGGTGGACC-3’) and LP2844 (5’ GGTCCACCTGTTC 

AAATGCTGGAAG-3’) .  Mutagenesis was performed by two steps PCR introducing the 

mutation on the first step by amplifying the ORF with the complementary primers on two 

different reactions and the vector specific primers for the pMEV27 vector LP2113 (5’- 

GGACTTTCCAAAATGTCGT-3’) and LP2114 (5’- TACAGGTTGTCTTCCCAACT-

3’). The products of the PCR reaction then were utilized as the template on the second 

PCR with the pMEV27 specific primers LP2113 and LP 2114. The PCR product was 

then digested with BamHI and ligated into the eukaryotic expression vector. Transfection 

by lipofection of normal human fibroblasts was carried out with 1 g of DNA of the 

mutant construct as described previously. Twenty-four hours after transfection selection 

was performed with 500 g/ml of zeocin for 2 weeks. Protein expression was confirmed 

by western blotting and immunohistochemistry with anti-Flag antibodies. 
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Chapter 3 Replication Through 1-Methyl Adenine 

Alkylating agents are an unavoidable class of chemicals that react with a broad range of 

biological molecules resulting in cytotoxicity and mutagenicity in living organisms. The 

broad range and ubiquitous presence of alkylating agents implicates them as an important 

threat to human health (96). The cell activates a variety of DNA repair mechanisms in a 

complex biological response to protect the integrity of the genome (76). 

 

Methylating agents, in particular, can readily react with DNA and form mutagenic and 

replication inhibiting lesions. The importance of these lesions can be observed by the 

number of methods that the cell has evolved in order to handle these lesions (76, 99). 

Reactions with the N1 group of adenine are preferable when the nucleic acid is single 

stranded, due to the nucleophicity of the nitrogen group. These lesions strongly inhibit 

replication due to their disruptions of WC bonding and are particularly important when 

DNA is transiently exposed such as during replication, recombination, or transcription. 

The cell has develop direct reversal methods of repair (76,99) to handle this lesion, 

however due to their abundance this lesion is often present during replication and the 

methods that the cell uses to repair or tolerate this lesion are not known. Greater 

understanding of the biological factors in response to 1-MeA damage is necessary in 

order to increase cancer prevention and develop new therapeutics. 

 

ROLE OF TLS POLYMERASES IN REPLICATION THROUGH 1-MEA LESION 

Role of TLS Polymerases in Replication Across a Single 1-MeA Lesion 

In order to identify the TLS Pols responsible for replicating through a 1-MeA lesion 

carried on the leading strand of an SV40-based plasmid, TLS frequency was determined 
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after siRNA depletion in human fibroblasts (Table 1). TLS was assessed by a functional 

lacZ gene and blue/white screening with X-gal. 

 

Table 1. Effects of siRNA knockdown of TLS polymerases 
on the replicative bypass of 1-MeA lesions

siRNA KO 
Total 

Colonies 
Blue 

Colonies 
% TLS 

NC (GFP) or (Luc) 423 276 65.2 
Pol  356 187 52.5 
Pol 428 193 45.1 
Rev 3 (Subunit of Pol ) 524 228 43.5 
Rev 7 (Subunit of Pol ) 458 205 44.8 
Pol  415 163 39.3 
Pol  + Pol  372 161 43.3 
Pol  + Pol  302 93 30.8 
Pol  + Pol  408 122 29.9 
Pol  + Rev 3 350 100 28.6 
Pol  + Rev 7 296 92 31.1 
Pol  + Rev 3 228 63 27.6 
Pol  + Rev 7 295 80 27.1 

 

As seen in Table 1 the frequency of lesion bypass across the 1-MeA lesion in human 

fibroblasts treated with negative control was ~65%. Knockdown of Pols and the 

subunits of Pol, Rev3 and Rev7, led to a significant reduction in the TLS frequency 

suggestive of their role in lesion bypass across 1-MeA lesions (Table 1). Simultaneous 

depletion of Pols  and , Pols  and , or Pols and resulted in additive effects on 

TLS frequency compared with single depletions (Table 1) suggesting that Pol  is 

involved in a pathway different from that of Pols  or . Simultaneous depletion of 

Pols and  resulted in additive effects compared to depletion of Pols or  alone, 

suggesting that Pol and  are involved in different bypass pathways across 1-MeA 

lesions. Finally simultaneous depletion of Polsand  resulted in no additive effects in 
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the TLS frequency suggesting that Pols  and  function together to replicate across the 1-

MeA lesion. 

 

Table 2. Effects of siRNA knockdown of TLS polymerases 
on the replicative bypass of 1-MeA lesions in XPV human 
fibroblasts 

siRNA KO 
Total 

Colonies 
Blue 

Colonies 
% TLS 

NC (GFP) or (Luc) 254 120 47.2 
Pol 292 90 30.8 
Pol  260 78 30.0 
Rev 3 (Subunit of Pol ) 224 71 31.7 
Rev 7 (Subunit of Pol ) 212 60 28.3 
Pol  + Pol  312 86 27.6 
Pol  + Rev 3 238 10 4.2 
Pol  + Rev 3 308 16 5.2 

 

In order to further confirm the role of TLS Pols in lesion bypass across 1-MeA, TLS 

frequency was analyzed after depletion of TLS Pols in a human XPV (XP30R0) 

fibroblast cell line. These cells lack Pol  due to mutational inactivation and their TLS 

frequency is similar to normal human fibroblasts depleted of Pol  by siRNA (Table 2 

compared with Table 1). As expected, depletion of either Pols  or resulted in a 

reduction in the TLS frequency similar to the simultaneous depletion with Pol  in 

normal human fibroblasts (Table 1 compared with Table 2), again confirming the 

independent functions of these TLS pols with Pol . Simultaneous depletion of Pols 

and resulted in no additive effects in the TLS frequency confirming that these Pols are 

involved in the same bypass pathway across 1-MeA. Simultaneous depletion of Pols  

and  resulted in additive effects suggesting that they are involved in independent 

pathways of bypass of 1-MeA lesions. Finally, simultaneous depletion of Pols  and  or 
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Pols  and  resulted in a drastic reduction of TLS, statistically close to zero, confirming 

that across 1-MeA the cell utilizes 3 independent pathways for bypassing this lesion. 

 

MUTAGENICITY OF TLS OPPOSITE 1-MEA 

The blue mutant colonies from the TLS heteroduplex plasmid system assay were utilized 

for amplification of the lacZ gene by PCR and the samples were analyzed by restriction 

enzyme and sequencing to determine the types of mutations that occur after depletion of 

the TLS pols in response to 1-MeA damage.  

 

Table 3. Effects of siRNA knockdowns of TLS Pols on the frequencies of 
nucleotides inserted oppostie 1-MeA 

siRNA KO 
No of 
Kan+ 

colonies

Nucleotide Inserted 
Mutation 

Frequency 
A G C T % 

NC (Luc) 384 2 2 0 380 1.0 
Pol  308 0 0 0 380 0.0 
Pol 190 2 1 0 187 1.6 
Pol  176 2 0 0 174 1.1 
Rev 3 (Subunit of Pol ) 288 3 1 1 284 1.4 
Rev 7 (Subunit of Pol ) 192 3 0 0 189 1.6 

 

TLS across 1-MeA occurs in a predominantly error-free manner. In negative control cells 

mutations appear in only ~1% of the cases. Lesion bypass may function in an error-free 

or mutagenic manner. In order to further explore the roles of the TLS Pols in the bypass 

of 1-MeA lesions, depletion of the TLS Pols responsible for bypassing 1-MeA was 

performed. Interestingly, depletion of the TLS Pols had no effect on the mutation 

frequency across 1-MeA lesions (Table 3). Inactivation of a bypass pathway might result 

in an increase or decrease in overall mutagenesis depending on whether that pathway was 

mutagenic or error-free. The fact that mutations did not increase after inactivation of any 

one of the 3 pathways suggests that the other 2 functional pathways were themselves 
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error-free and that TLS across 1-MeA is not mutagenic with any of the 3 bypass 

pathways. 

 

Together these genetic observations allow us to conclude that opposite a 1-MeA lesion 

TLS occurs through at least 3 independent pathways: One where Pol  alone or in 

combination with another Pol bypasses the 1-MeA lesion, a second one where Pol in 

combination with Pol bypasses the 1-MeA lesion, and a third one where Pol  alone or 

in combination with an unidentified Pol bypasses the 1-MeA lesion. 
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Chapter 4 Replication Through DNA Minor Groove Lesions 

Reactions with the N2 amino group of guanine are very favorable allowing the 

accommodation of bulky adducts into the minor groove of DNA resulting in minimal 

steric clashes and disruption to the DNA backbone (4,5). Minor groove DNA lesions at 

the N2 position of guanine have been documented from endogenous (6-13) and 

exogenous sources (14). These lesions threaten the integrity of the genome by blocking 

replication. DNA damage tolerance mechanisms, such as translesion synthesis (TLS), 

lead to alleviation of the replication block but do so at the expense of increasing 

mutagenesis (15-17). 

 

Genetic instability is one of the hallmarks of cancer (18). Studies have revealed the 

contribution by environmental factors to carcinogenesis (19). Among environmental 

factors strongly associated with cancer are those of the tobacco compounds. Tobacco use 

is one of the leading causes of preventable cancer deaths in the developed world (20). 

Studies have demonstrated the carcinogenic potential of tobacco compounds and 

implicated polycyclic aromatic hydrocarbons (PAHs) as causative agents in cancer 

development (5,14,21). Among PAHs one of the chemicals with the highest 

concentration in cigarette smoke and potential for mutagenicity is benzo()pyrene (BP) 

(5). Studies with BPDE, the activated metabolite of B()P, have implicated it with minor 

groove adduct formation in the TP53 (tumor suppressor p53) gene, which is very 

frequently mutated in tobacco-associated human cancers (14,22). The mutations in TP53 

correlate with the sites of PAH adduct formation and are positively correlated with 

tobacco usage (12). Importantly TP53 mutations in lung cancer tissues of smokers have a 

preferential mutation signature (14, 23-27). 
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Carcinogenesis is often a multistep process requiring multiple mutations (18). The 

mutational fingerprint of a carcinogen provides clues into the mechanisms by which cells 

repair replication fork stalling lesions created by exposure to tobacco or other 

carcinogens. Such mutational fingerprints are similar among minor groove adduct lesions 

by compounds other than PAHs suggesting a conserved mechanism by which the cell 

handles this ubiquitous lesion (28-32). Understanding the molecular actors in such lesion 

bypass is necessary for determining the biochemical basis of mutations which will 

provide insights for cancer risk and therapeutics. Identifying the Pols involved in the 

bypass of minor groove lesions might allow us to avoid the mutagenesis of tobacco 

smoke that leads to carcinogenesis. 

 

ROLE OF TLS POLYMERASES IN REPLICATION THROUGH DNA MINOR GROOVE 

LESIONS 

TLS Polymerase Involvement in DNA Minor Groove Bypass 

In order to identify the TLS Pols that are required for replicating through the N2-BPDE-

dG minor groove lesion, siRNA depletion of various TLS Pols was carried out in mouse 

embryonic fibroblasts derived from the BBMEFs after treatment with BPDE. The 

genomic DNA was isolated, utilized to reassemble  phage particles, and used to 

transform G1250 hf1-E. coli. Mutagenesis was then assessed by a functional cII gene and 

formation of plaques.  
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Table 4. Effect of TLS Pols on BPDE induced mutations in 
the cII gene 

siRNA KO Mutation Frequency    (x 10-5) 

No BPDE 11.4 + 2.9 
BPDE, 200 nM, 0.5 h 

NC (GFP) or (Luc) 41.7 + 3.3 
Pol  45.3 + 3.5 
Pol 16.9 + 3.1 
Pol 22.3+ 3.4 
Pol  24.3 + 1.7 
Rev 1 22.6 + 2.0 
Rev 3 (Subunit of Pol ) 40.4 + 1.8 
Pol  39.0 + 0.8 
Pol  25.7 + 2.8 

BBMEF cells were treated with BPDE 200 nM for 30 min at 37 °C 

 

As seen in Table 4, the spontaneous mutation frequency in untreated cells (DMSO) was 

~11 x 105. This mutation frequency rose almost fourfold to ~42 x 105 in cells treated with 

BPDE for 30 min. siRNA depletion of Pols , and  had no significant effect on the 

frequency of BPDE induced mutations suggesting that these polymerases are not 

involved in lesion bypass of BPDE adducts. Knockdown of Pols , and Rev1 led 

to a significant reduction in the frequency of BPDE induced mutations suggestive of their 

role in lesion bypass of BPDE adducts (Table 4). 

 

Lesion bypass by TLS Pols might be carried out by a single Pol such as Pol ’s bypass of 

CPD lesions or by the concerted action of two TLS Pols in which one Pol will insert 

across the lesion and a second one will extend from the lesion site such as in the case of 

Pols  and  bypass of (6-4) photoproducts (35). The role of the TLS Pols is influenced 

by the type of lesion. Structural and biochemical studies have offered evidence of the 

roles that the TLS Pols will play in either being an efficient extender or be prone to 
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participate in the insertion step of TLS. From these we can suggest that the actions of 

Pols  and  will be in the extension step while Pols , and Rev1 will participate in the 

insertion step of lesion bypass of BPDE adducts. 

 

Pol  has been demonstrated to be unable to extend across an N2-BPDE-dG lesion in 

vitro (56) or in gapped plasmids (40, 130, 53). However Pol  has been demonstrated to 

be able to efficiently bypass a major groove N6-BPDE-dA adduct (40, 169). Studies with 

nuclear foci formation revealed that Pol  does not form DNA replication foci in 

response to BPDE treatment (170), however slight sensitivity was found in MEF’s that 

are Pol  (171). This suggests that Pol  might act on major groove BPDE adducts 

which are formed in 5-8% of the cases after BPDE treatment vs 85-90% of N2-BPDE 

minor groove adducts (19). However, in order to conclusively rule out a role for Pol  in 

the bypass of minor groove BPDE lesions, the mutational spectra of Pol  knockout in 

the cII gene as well as TLS measurements across a single BPDE lesion by a plasmid 

system was performed (Table 6). 

 

Pol  differs from other TLS pols in its higher rate of nucleotide incorporation, 

specificity, and ability to proficiently extend mispaired termini (35). Evidence for a role 

for Pol  in bypass of minor groove lesions comes from studies in vitro from plasmid 

extension assays (38, 56, 42, 30, 36), gapped plasmid assays (40, 130), as well as 

functional studies in mouse embryonic fibroblasts (MEFs) of sensitivity (42) and DNA 

replication foci studies (160, 172, 42). Lesion bypass assays have revealed that Pol  is 

unable to insert nucleotides opposite a variety of lesions such as cis-syn TT, (6-4) TT, 8-

OxoG, thymine glycol (Tg), or BPDE adducts (35). However, it is proficient in extending 

from C opposite various minor groove lesions (173, 35). Structurally, Pol  has a small 

active site that can accommodate only a single WC base pair and would probably be 

blocked from replication by a bulky adduct. It is referred to as an extender polymerase 
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because of its ability to efficiently extend mismatched primer termini (51). Pol  has a 

structural component, the N-clasp, which augments the conventional right-handed grasp 

of the template-primer locking the thumb, finger, palm, and PAD subdomains around the 

DNA. This complete encirclement of the DNA by Pol  might allow the misaligned 

3’OH to acquire the proper alignment for nucleophilic attack and the polymerase action 

to occur (51).  

 

Much less is known about Pol . Lesion bypass activity across an AP and Tg has been 

demonstrated in vitro by plasmid extension assays (174), as well as in vivo in which Pol  

performs both the insertion and extension step across a Tg lesion (175) but only the 

extension step across a 1-MeA lesion (176). It has a critical role for alternative Ku-

independent end joining of double stranded breaks (177, 178) as well as being able to 

influence DNA replication timing (179). Interestingly biochemical experiments revealed 

the ability to efficiently extend from minimally paired primers (178) which would 

suggest a role as an extender polymerase in TLS. Structurally Pol  utilizes a strategy 

similar to Pol  for directly synthesizing from unmatched primer-termini (180). Pol  

utilizes positively charged residues to strongly bind the negatively charged phosphate 

backbone of DNA creating a primer-grip strategy where the specialized thumb 

subdomain establishes unique contacts and firmly grasps the DNA template (180) which, 

similar to Pol , might allow for alignment of the 3’ OH and for the polymerase reaction 

to occur. 

 

Pol is different from other TLS pols having increased efficiency and fidelity opposite 

templates purines rather than pyrimidines (35).  Pol has been shown before to be able to 

carry out the insertion step in lesion bypass of AP, (6-4) TT, or N2 adducted guanine (35).  

It has been demonstrated by plasmid extension assays that Pol is able to participate in 

the insertion step of minor groove adducts (181) or in combination with Pol  to be able 
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to replicate past a minor groove lesion (182-184).  This is due to the unique structure of 

Pol which utilizes amino acid residues from its finger domain to tilt and rotate the 

template DNA to adopt a syn conformation allowing the adduct to go into the major 

groove of DNA and utilizing Hoogsteen base pairing for DNA synthesis (50). 

 

Pol  is an A family member TLS Pol closely related to Pol , it plays a role in lesion 

bypass of Tg lesions (185) and major groove adducts (186). The structure of Pol  

revealed that its Oa and Ob helices swing over the DNA duplex and occlude the DNA 

duplex from the template binding site requiring its finger domain to swing sideways to 

accommodate the nascent base pair (187) this would make it a poor enzyme for extension 

of mispaired primer termini. Interestingly, K679 of Pol  binds with guanines and 

stabilize a T-G wobble mispair, conferring a unique mutation signature for Pol  of GT 

transversions (187). Interestingly, mutations of BPDE are predominantly GT 

transversions (12, 14, 22-27) which might be expected if a TLS Pol prone for this type of 

mutation was active in bypassing BPDE adducts. 

 

The role of Rev1 is more difficult to decipher. Rev1 has a peculiar and most extreme 

DNA Pol incorporation specificity; it preferentially inserts a dCTP opposite any template 

(188, 189). This specificity has a structural basis, both the yeast and human Rev1 utilize a 

radical protein-template replication strategy for their deoxycytidyl transferase activity 

(50, 190). A conserved region for Rev1, the N-digit, utilizes a Leu residue to evict the 

incoming template residue from the active site. The enzyme then utilizes an Arg residue 

as the template resulting in pairing and insertion of an incoming dCTP (50, 190). The 

templating guanine pairs with the G loop of Rev1 through its Hoogsteen edge N7 and O6 

and in human Rev1 this template is further accommodated by the presence of a “flap” on 

its hydrophobic pocket. This “flap”, a collection of 54 amino acid inserts in the catalytic 

core, is in position to accommodate the N2 amino group of template G and might 
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accommodate bulky adducts at this position. The N2 group is highly susceptible to 

chemical modifications and in vitro studies have revealed that Rev1 is capable of 

inserting a nucleotide opposite various minor groove lesions, such as Hydroxy-1,N2-

propano-2 deoxyguanosine  (N2-HoPdG) for yeast Rev1 (182, 50) or N2 alkyl adducts 

for human Rev1 (191). Since Rev1 inserts only dCTP, this will result in error free bypass 

of minor groove adducts of guanine.  

 

Rev1, in addition to insertion of dCTP, has a structural role in TLS. Rev1 is necessary for 

AP and UV mutagenesis (35, 202). However, its DNA synthetic activity is dispensable 

for UV mutagenesis (192) and for insertion across an AP site (193, 194). Furthermore, N2 

major groove adducts of acetyl aminofluorene (AAF)-dG require Rev1 but not its 

synthetic activity. The C terminal ~100 amino acids of Rev1 bind to Pols , and 

Rev7 (195-197) and competition experiments between Pols  and Rev7 with Rev1 

suggest that Rev1 can switch between TLS pols (195). These experiments suggest a 

possible structural role of Rev1 in assembly of other TLS pols in lesion bypass (35). 

 

Epistasis Analysis of TLS Pols in Minor Groove Lesions 

Table 5. Effect of knockdowns of combinations of TLS Pols on BPDE 
induced mutations in the cII gene integrated in the mouse genome 

siRNA KO Mutation Frequency    ( X10-5) 

No BPDE 11.4 + 2.9 

NC (GFP) or (Luc) 41.7 + 3.3 
Pol + Pol 16.0 + 1.0 
Pol + Pol 13.9 + 1.6 
Pol + Pol 15.8 + 3.2 

Pol + Pol 25.4 + 3.6 
Pol + Pol 13.4 + 1.6 
Pol + Pol 22.9 + 4.1 

BBMEF cells were treated with BPDE 200nm for 30 min at 37 °C 
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In order to determine whether these Pols function together, or independently of one 

another in replicating across the BPDE lesion, epistasis analysis after simultaneous 

knockdown of two TLS Pols was performed. Double knockdown of Pols and (Table 

5) revealed additive effects compared with single knockdown (Table 4) suggesting at 

least 2 independent pathways of bypass across BPDE lesions. This is not surprising since, 

as mentioned before, both of these Pols are probably involved in the extension step across 

the BPDE lesion.   

 

Depletion of Polsand or Polsand resulted in no additive effect on mutagenesis, 

suggesting that Pol inserts and extension is carried out by either Pol  or Pol  across 

the BPDE lesion (Table 5). Depletion of Pols and  had an additive decrease in 

mutagenesis suggesting that Pol  and Pol  participate in pathways independent of each 

other (Table 5). Polsand  are known as inserter polymerases so it is not surprising that 

they would be involved in 2 different pathways of BPDE lesion bypass. Furthermore, the 

mutation frequency obtained from the simultaneous depletion of Pols and  is 

statistically the same as no treatment control suggesting that together these two 

polymerases are responsible for the mutagenesis of lesion bypass of BPDE adducts. 

Similarly, depletion of Pol  and either Pols  or  had no additive effect suggesting that 

Pol  utilizes either Pol  or Pol  for extension of minor groove lesions (Table 5). The 

role of Rev1 is difficult to ascertain from epistasis in the cII assay and these experiments 

will be performed with a plasmid system containing a single BPDE lesion and with a 

catalytic deficient Rev1 in the future. 
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ROLE OF TLS POLYMERASES IN REPLICATION ACROSS A SINGLE N2-BPDE-DG 

ADDUCT 

The big blue mice fibroblast cells offer an excellent model for mutagenesis studies in a 

chromosomal gene. Studying lesion bypass across a chromosomal gene allows for 

validation of our shuttle vector as a model for lesion bypass replication. The system 

however can be influenced by non-minor groove lesions such as those made by reaction 

of BPDE with N6-dA BPDE (19).  The mutational studies provide no indication of the 

relative contributions of TLS Pols to replication through the N2-dG BPDE adduct.  For 

this purpose, we have analyzed the contributions of TLS Pols to replicating through the 

N2-dG BPDE adduct carried on a SV40-based duplex plasmid.   

 

We utilized a heteroduplex plasmid system previously developed in our laboratory (49). 

The system is based on a modified plasmid pBluescript vector (Stratagene) containing a 

target sequence with a single DNA lesion, a lacZ’ reporter, and an SV40 replication 

origin for bidirectional replication in SV40 transformed mammalian cells. The rationale 

for this plasmid assay is as follows: replication of a plasmid containing a single N2-

BPDE-dG adduct could occur either by TLS or template switch, and in most studies, it is 

difficult to determine which damage tolerance process is utilized  (57). However, the 

heteroduplex TLS plasmid assay functions in an elegant way to differentiate between 

TLS and template switch.  The strand with the N2-BPDE-dG adduct has an in frame lacZ’ 

gene while the opposite strand has a lacZ gene that is out frame (Figure 8 in 

Introduction). TLS produces a lacZ’ gene which is in frame and generates blue colonies 

(Figure 8) whereas replication through the lesion by template switching results in an out 

of frame lacZ’ gene and white colonies on x-gal plates (Figure 8).  TLS levels are 

calculated from the number of blue colonies among the Kan+ colonies. The TLS plasmid 

system allows for the determination of strand bias since the lesion can inserted into the 

leading or lagging strand. 
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Table 6. Effect of siRNA knockdown of TLS Pols on the 
Frequency of Replicative Bypass of N2-BPDE-dG Lesions in 
Human Cells 

siRNA KO 
No of Kan+ 

colonies 

No blue 
colonies 

among Kan+ 
% TLS 

NC (GFP) or (Luc) 555 88 15.9 
Pol  452 69 15.3 
Pol  466 40 8.6 
Pol  656 43 6.6 
Rev 1 774 37 4.8 
Rev 3 (Subunit of Pol ) 564 97 17.2 
Rev 7 (Subunit of Pol ) 250 38 15.2 
Pol  335 39 11.6 
Pol  230 26 11.3 

 

The TLS frequency across a single N2-BPDE-dG adduct after depletion of various TLS 

Pols closely mirrors the results obtained from the cII assay system (Table 6 compared 

with Table 5). Depletion of Pol ’s subunits Rev3 or Rev7, or Pol  had no effect on the 

TLS frequency across BPDE adducts. The lack of any discernible effect in TLS 

frequency after depletion of Pol  further suggests that Pol ’s role in the cell after BPDE 

damage is in bypassing major groove N6-BPDE-dA lesions and that Pol  is dispensable 

for bypassing minor groove N2-BPDE-dG lesions. Depletion of Pols or Rev1 

resulted in large decreases in the TLS frequency across a single minor groove lesion, 

again demonstrating that these are the TLS Pols responsible for bypassing minor groove 

BPDE lesions. Depletion of Pols  orresulted in a smaller decrease in TLS activity 

than depletion of Pols orsuggesting that Pols  orare the major error prone 

inserter and extender polymerases respectively, if previous structural studies are taken 

into account. The large decrease in TLS activity after depletion of Rev1 might be due to 

both its error-free insertion activity and its ability to acts as a platform for recruitment of 

other TLS Pols. 
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BPDE SENSITIVITY AFTER DEPLETION OF TLS POLS 

Deregulation of TLS polymerases can be harmful for the survival of a cell affected by the 

cognate DNA damage of such polymerase. Deficiency of Pol  results in the xeroderma 

pigmentosum variant, these cells are hypersensitive to UV irradiation, matching the role 

of Pol ’s error-free role in TLS across cis-syn TT dimers (45-49). Similarly, defects of 

Pol  have revealed a hypersensitivity towards BPDE (42). However, sensitivity towards 

minor groove N2-BPDE-dG adducts has not been extensively studied with the other TLS 

polymerases. Increased sensitivity would confirm an important role in lesion bypass by 

any of the TLS polymerases and complement the mutagenesis studies.  
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Figure 9. Sensitivity to BPDE after depletion of TLS Pols  

Survival of human fibroblasts after siRNA depletion of TLS Pols and exposure to 500 
nM BPDE. 
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BPDE sensitivity assay data for human fibroblasts closely mirrors the results from 

the cII mutagenesis and the TLS plasmid assay (refer to Table 4, Table 6, and Figure 9). 

The high sensitivity of human cells to BPDE upon Rev1 knockdown points to the central 

role of Rev1 in replication across BPDE lesions and, coupled with previous structural and 

biochemical studies of Rev1, would suggest that Rev1’s role is to act as the major error-

free inserter polymerase across BPDE lesions. Sensitivity of BPDE after depletion of pols 

 and increases slightly suggesting that these TLS pols play a smaller role in lesion 

bypass of minor groove adducts. Sensitivity to pols  and  , together with the cII 

mutagenesis and the TLS assay data, and previous structural and biochemical studies, 

further suggest that Pol  might be the major extender polymerase in these lesions and 

that the major error-prone inserter polymerase is Pol  not . Sensitivity increases after 

depletion of Pol  might be due to its role in bypassing N6-BPDE adducts. Sensitivity 

depletion of Pol  might be due to its role in recombinatorial repair. 

 

MUTATION SPECTRA AFTER DEPLETION OF TLS POLS IN THE CII GENE 

Mutations vary depending on the gene and DNA damage but they tend to accumulate at 

specific hotspots. These mutational hotspots reflect intrinsic properties of the 

mutagenesis process and can provide insights into the molecular mechanisms of 

mutagenesis. In order to understand the role that the TLS Pols play in mutagenesis across 

BPDE lesions the cII gene from mutant plaques was amplified by PCR, sequenced, and 

analyzed for mutational hotspots. 
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Mutational spectra data from control siRNA experiments in the BBMEF cells reveal that 

the majority of mutations induced after BPDE treatment are GT transversions at GC 

base pairs (Figure 10). Importantly, this correlates with the mutational fingerprint 

obtained from tissues in studies of tobacco smoke carcinogenesis (14, 23-27).  Mutations 

accumulated at 8 different hot spots throughout the cII gene (Figure 10). Depletion of Pol 

results in the disappearance of a large number of hot spots 2, 3, 4, and 5 and decreases 

in hot spots 1 and 6 with only hot spots 7 and 8 remaining, reflecting the probable role of 

Pol  as the main error prone inserter across BPDE lesions (Figure 11 and 17). In contrast, 

depletion of Pol results in the disappearance of hot pots 4 and decreases in hot spot 6 

while the remaining hot spots were unaffected, reflective of Pol ‘s minor role in 

insertion across BPDE lesions (Figure 12 and 17). The large differences in hot spot 

patterns are probably indicative of the different roles of Pols  and in insertion across 

BPDE lesions.  

 

The mutagenesis experiments suggested a role for Pol  in conjunction with Pol  in 

lesion bypass of BPDE minor groove adducts. The pattern of hot spots after depletion of 

Pol  is similar to Pol  with decreases in all the hot spots except 2, 7, and 8 probably 

reflecting the importance of Pol  as the major extender polymerase across BPDE lesions 

(Figure 14). Interestingly, hot spot 7 was only decreased when Pol  (Figure 15 and 17) 

was depleted and the hot spot pattern after Pol  depletion resulted in decreases of hot 

spots 7 and 8 which are both maintained after depletion of Pol  (Figure 11 and 17) and 

Pol  (Figure 14 and 17) suggesting that Pol  is not involved with Pol and might have 

a smaller role with Pol . Simultaneous depletion of both Pols  and  resulted in large 

decreases in all the mutational hot spots except 7 (Figure 15 and 17) further adding to the 

evidence that Pol  and act in different pathways to replicate across BPDE lesions. This 

large decrease in mutational hot spots would be expected if TLS across BPDE lesions 

was blocked by depleting the Pols responsible for the extension step of TLS. Depletion of 
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Rev1 resulted in decreases throughout the cII gene and in most of the mutational hot 

spots with only hot spots 4, 6, and 7 remaining (Figure 13 and 17). This might reflect the 

probable role of Rev1 as a structural element in TLS opposite BPDE lesion. This pattern 

is also interesting since Pol  had a large effect in hot spots 4 and 6 and Pol  was the 

only polymerase to affect hot spot 7. This might indicate that if Rev1 is serving as a 

structural platform for TLS in BPDE minor groove lesions it might be acting only with 

Pols  and and not with Pols  and Pol . 

 

MUTAGENICITY OF TLS OPPOSITE N2-BPDE-DG 

The blue mutant colonies from the TLS heteroduplex plasmid system assay were utilized 

for amplification of the lacZ gene by PCR and the samples were analyzed by restriction 

enzyme and sequencing to determine the types of mutations that occur after depletion of 

the TLS pols in response to BPDE damage.  

 
Table 7. Effects of siRNA knockdowns of TLS Pols on the frequencies of 
mutations opposite N2-BPDE-dG 

siRNA KO 
No of 
Kan+ 

colonies 

Nucleotide Inserted 
Mutation 

Frequency 

A G C T  % 

XPA NC (Luc) 135 25 1 107 1 18.5 

 

As determined from Table 7, TLS opposite N2-BPDE-dG is highly mutagenic with 

mutations occurring ~18.5% of the time in NER deficient XPA-/- human fibroblasts. The 

majority of the mutations were GT transversions similar to the cII mutations seen in 

response to BPDE damage.  
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REQUIREMENT OF TLS POLS FOR DNA REPLICATION FOCI IN BPDE TREATED 

HUMAN CELLS 

The results from previous aims suggest the existence of at least three pathways of bypass 

of BPDE lesions. These include a Rev1 pathway utilizing either Pols or for extension, 

an error-prone pathway utilizing Pol  and Pol  or  for extension and finally a third 

minor error-prone pathway utilizing Pol  with or  for extension It now becomes 

important to understand how these TLS Pols are regulated and how the cell activates 

these pathways in response to BPDE treatment.  It has been previously reported that the 

TLS Pols are regulated by recruitment to the lesion sites by the clamp loader PCNA. 

Rev1 has also been suggested to play a structural role by mediating recruitment of the 

TLS Pols at the lesion site (35).  We find that Rev1 knockdown results in a decrease in 

mutagenesis (Table 4). This is surprising since Rev1 is limited in its polymerase activity 

to insertion of a deoxycytidyl which should result in error-free bypass of the N2-dG 

BPDE lesion (35). Replication foci formation studies were performed in order to further 

explore the idea that Rev1 is playing a structural role in promoting lesion bypass by the 

error-prone pathways.   
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Table 8. Effect of BPDE on foci formation in normal 
human fibroblasts carrying  GPP-tagged TLS Pols 

GFP-Pol siRNA 
% Foci 

Positive Cells 
% Change 

GFP-Pol  

NC (Luc) 31.3 100 

Pol  27.5 91 
Pol   20.8 66 
Pol   35 112 
Pol   37 118 

Rev1 21 69 

GFP‐Pol  

NC (Luc) 23.5 100 
Pol   19.1 81 
Pol   11.8 34 
Pol   19.8 94 
Pol   21 89 
Rev1 9 38 

GFP-Rev1 

No Damage 17.1 - 

NC (Luc) 44.5 100 
Pol   51.9 117 
Pol   27.6 62 
Pol   46.5 104 
Pol   57 128 

Normal cells were treated with BPDE 500nm for 30 min at 37 °C 
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For this purpose, it was determined whether the knockdown of Rev1 results in a 

reduction in the accumulation of Pols  or  into replication foci in response to BPDE 

treatment.   Exposure of cells to BPDE results in the accumulation of TLS Pols into 

replication foci at the lesion site (Figure 18).  Importantly, Rev1 knockdown resulted in a 

decrease in replication foci formation for TLS Pols  and  (Table 8), suggesting that 

Rev1 plays a structural role in the recruitment of these Pols to the lesion site. Depletion 

of Polresulted in a decrease in Pol  replication foci, while depletion of Polresulted 

Normal-GFP-Rev1

No damage

BPDE

Normal-GFP-Pol iota Normal-GFP-Pol kappa

Figure 18. TLS pols DNA replication foci formation after treatment with BPDE  

Human fibroblasts were transfected with GFP tagged TLS pols. Twenty-four hours after 
transfection the cells were treated with 500 nM BPDE, incubated for 6 h then fixed with 
paraformaldehyde and stained with DAPI. 
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in a decrease in Pol   foci, further suggesting that these pols are involved in the same 

lesion bypass pathway across BPDE lesions. Depletion of Pols , or  had no effect on 

Pols , or Rev1 foci formation (Table 8) which is expected since Pol  is not involved 

in lesion bypass of N2-BPDE-dG lesions and Pols  and are involved in a different 

minor mutagenic bypass across BPDE lesions. Interestingly, depletion of Pol  resulted 

in a decrease in Rev1 foci after BPDE treatment (Table 8). A simple model of foci 

accumulation would imply a stepwise assembly where Rev1 recruits Pols and . The 

fact that Pol  affects Rev1 foci formation is rather surprising since it implies that Pol  

can itself modulate the assembly of Rev1 at lesion sites. It will be interesting to see 

whether the same effect is present after depletion of Pol . The implications for this 

finding are that recruitment of TLS Pols to lesion sites is not a simple stepwise model, 

rather it is probable that the TLS Pols are being assembled into multi-protein complexes 

and that the interactions between TLS Pols and other unidentified proteins are essential 

for successful assembly at DNA lesion sites. 

 

THE ROLE OF POL  IN DAMAGE TOLERANCE ACROSS BPDE MINOR GROOVE 

ADDUCTS 

Mutagenesis data from exposure to BPDE in a chromosomal gene and single N2-BPDE-

dG demonstrate that in normal lesion bypass Pol  is not utilized by the cell. A small 

effect on sensitivity occurred after depletion of Pol and exposure to BPDE. Other 

studies have noted an effect in sensitivity and cell cycle progression in human fibroblasts 

after reduction of hRev7 expression. However, mutagenesis and the types of mutations 

after BPDE exposure remained unchanged (125). Studies in vitro have been contradictory 

with some finding no bypass activity (56), error-free extension (126), or error-prone 

incorporation (127). Studies in yeast have revealed that Pol is required for mutations 

(128, 129), as well as in human cells in gapped plasmid assays (40, 53, 130). However, 
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mutagenesis studies in human cells with the HPRT assay have found no effects in 

mutations after depletion of Rev3 or Rev7 (125, 131). This might be due to the fact that 

lesion bypass in a gapped plasmid would closely resemble bypass of lesions in yeast, 

whose TLS occurs post-replicatively in gaps (132, 133) and the role of Pol would be in 

gap filling rather than TLS coordinated with the replication fork machinery.  

 

Pol introduces complex mutations with multiple changes within short DNA stretches 

(134-136), which might be due to its role in recombinatorial repair (137-139). 

Interestingly, removal of the NER (140, 136), base excision repair (BER) (141), or 

homologous recombination (HR) pathways (136) results in an elevated level of 

endogenous replication blocking lesions which are channeled into alternate pathways of 

repair under which Pol recruited by Rev1, has a high contribution to spontaneous 

mutagenesis under these conditions. Further evidence for this lies on studies inhibiting 

template switching mechanisms through Rad 52 or Mms2 depletion, leading to activation 

of Pol and increases in mutagenesis (142, 143) and the role of Pol in inhibiting HR 

and stimulating non-homolohous end joining (NHEJ) (144). Furthermore, increases in 

replisome impairment through undamaged DNA by defects of Pol  or  results in a 

similar mutator phenotype attributed to Pol activity (139).  This all suggests that 

PolRev1 provide an efficient and generalized mutagenic means of replicating at stalled 

forks when other methods of repair or DNA damage tolerance have been exhausted, 

possibly through template switching and strand realignment followed by extension of the 

mismatched primer termini (139, 145). This increase in mutagenesis prevents DSB 

formation and chromosomal rearrangements and the lack of this generalized Pol 

pathway results in increases in tumorigenesis (145, 146). 

 

 

 



 

74 

Table 9. Effect of TLS Pols on HR deficient Fibroblast after 
BPDE induced mutations in the cII gene 

siRNA KO Mutation Frequency    ( X10-5) 

No BPDE 11.4 + 2.9 

NC (GFP) or (Luc) 38.1 + 3.3 
Rad51 61.2 + 8.0 
Rad52 55.9  
Rev1 22.6 + 2.0 
Rev3 (Subunit of Pol ) 40.4 + 1.8 
Rad51 +Rev3 (Subunit of Pol ) 37.3 + 1.7 
Rad51 +Rev1 24.5 + 1.8 
BBMEF cells were treated with BPDE 200 nm for 30 min at 37 °C 

 

In order to test the role of Pol across BPDE lesions, HR was inhibited by depletion of 

either Rad51 or Rad52 (Table 9) resulting in an increase in mutagenesis as the error-free 

recombinatorial repair was blocked. This is unsurprising, as previous studies in human 

cancer cells have demonstrated similar increases in mutagenicity and cytotoxicity by 

depletion of HR proteins (147- 150). Interestingly, this increase in mutagenesis was 

attributed solely to increases in the activity of Pol as depletion of Rev3, the catalytic 

subunit of Pol resulted in mutagenesis decreasing to wt levels. Importantly, this 

activity of Pol was regulated by the activity of Rev1 since depletion of Rev1 resulted in 

the loss of this increase in mutagenesis to levels similar to depletion of Rev1 alone (Table 

9).  

 

REGULATION OF TLS ACROSS BPDE LESIONS 

DNA Damage Responses After BPDE Treatment  

We have now identified the TLS Pols responsible for bypassing minor groove adducts. 

Next, we wanted to identify the methods by which the cell regulates the activities of the 
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TLS Pols to lesion bypass of minor groove lesions. Individual TLS Pols have different 

specificities and their activities must be closely regulated to particular DNA lesions. The 

DNA clamp proliferating cell nuclear antigen (PCNA) plays a key structural role in DNA 

replication and repair mechanisms (151). Ubiquitination of PCNA is believed to play a 

role in the polymerase switch from replicative to TLS Pols during lesion bypass (152). 

The interaction of the TLS Pols with PCNA increases their efficiency of incorporation 

(153). The Rad6/Rad18 group of proteins have been demonstrated to be able to 

monoubiquitinate PCNA at K164 allowing the polymerase switch (152, 154). Opposite 

this it was speculated that the Rad5 group would be able to polyubiquitinate PCNA and 

activate template switching mechanisms (152). The mammalian homologues of Rad5 are 

the E3 ubiquitin ligase HLTF and SHPRH. Their roles in TLS are more complicated than 

initially though. Across UV lesions HLTF enhances PCNA monoubiquitination and 

recruitment of Pol to replication foci while inhibiting the activity of SHPRH. When 

treated with an alkylating agent however, HLTF is degraded and SHPRH interacts with 

Rad18 to promote Pol recruitment to sites of DNA damage (102).  

Table 10. Effect of HLTF on BPDE induced mutations in 
the cII gene 

siRNA KO Mutation Frequency    ( X10-5) 

No BPDE 11.4 + 2.9 

NC (GFP) or (Luc) 41.7 + 3.3 
HLTF 18.0 + 2.4 

BBMEF cells were treated with BPDE 200 nm for 30 min at 37 °C 

 

In order to explore whether ubiquitination and the Rad5 homolog HLTF was playing a 

role across BPDE lesions depletion of HLTF was performed in BBMEF cells followed by 

mutagenesis assays in the cII gene. As seen from Table 10, depletion of HLTF resulted in 

a decrease in mutagenesis suggesting that HLTF is responsible for part of the regulation 
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of TLS Pols in lesion bypass of minor groove adducts through a possible mechanism 

involving ubiquitination.  

 

In addition to ubiquitination, evidence has pointed to a role of post translational 

modifications such as phosphorylation as a method of regulation of the TLS Pols. Ataxia 

Telangiectasia and Rad3 related (ATR) is known to regulate cellular responses to DNA 

replication stress and the activity of DNA repair proteins (155, 156).  Pol is 

phosphorylated after UV damage at S587 and T617 through ATR and Protein Kinase C 

(PKC) (157). This phosphorylation mediates Pol ’s recruitment to replication foci. 

Additionally, Chk1 a downstream effector of ATR has a PCNA interacting motif and a 

study revealed that Chk1 can recruit Pol  to sites of UV damage while surprisingly Pol 

 can itself increase phosphorylation of Chk1’s S317 (158). Yeast Rev1 has similarly 

been associated with recruitment and phosphorylation by the yeast’s ATR homolog 

MEC1 (159) which further promote activity of a Pol /Rev1 complex (207). ATR, Chk1, 

and Replication Protein A (RPA) have been implicated in PCNA foci formation after 

BPDE treatment (160).  

Table 11. Effect of Checkpoint genes on BPDE induced 
mutations in the cII gene. 

siRNA KO Mutation Frequency    ( X10-5) 

No BPDE 11.4 + 2.9 

NC (GFP) or (Luc) 18.8 + 2.3 
ATR 13.6 + 0.9 
Chk1 11.5 + 1.0 

BBMEF cells were treated with BPDE 100 nm for 30 min at 37 °C 

 

In order to explore whether ATR and phosphorylation were involved in regulation of 

lesion bypass across BPDE lesions depletion of ATR and its downstream effector Chk1 
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was performed in BBMEF cells followed by mutagenesis assays in the cII gene. Either 

ATR or Chk1 depletions were extremely toxic to the cell after BPDE treatment 

suggestive of the central role of ATR in the cellular DNA damage response. Therefore, 

the BPDE dosage was decreased to 100 nM for these experiments. As seen from Table 

11, depletion of either ATR or Chk1 resulted in a decrease in mutagenesis compared to 

the siRNA control suggesting that ATR is involved in regulating the activities of the TLS 

Pols possibly through phosphorylation. 

 

Mutagenesis of Conserved Protein Domains in TLS Pols 

The TLS Pols have conserved Ubiquitin Binding Motifs (UBM or UBZ), which might 

play a role in their regulation across various DNA lesions (161-164). The TLS Pols also 

contain conserved PCNA Interacting Protein Boxes (PIP) which allows interactions with 

PCNA (153, 165, 166). Studies with TLS Pols containing deletions of their PIP domains 

resulted in interference with the TLS ability of the polymerase in both Pol  and UV 

lesions (167), and Pol  and Tg lesions (168). In order to explore the roles of 

ubiquitination, phosphorylation, and protein-protein interactions in the regulation of 

lesion bypass across BPDE lesions, site directed mutagenesis was performed to create 

UBM/UBZ substitution mutants, PIP substitution mutants, phosphorylation deficient, or 

phosphomimetic mutants of TLS Pols , or Rev1 (Figures 19-21). 
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Chapter 5 Discussion 

ROLE OF TLS POLS IN BYPASS OF 1-MEA AND N2-BPDE-DG LESIONS 

We have determined the role that TLS Pols play in bypassing 1-MeA and N2-BPDE-dG 

lesions. We have identified a role for Pols and in the bypass of 1-MeA lesions. 

Furthermore, based on epistasis analysis after simultaneous depletion of TLS Pols and 

TLS frequency we have identified three independent pathways of 1-MeA bypass 

involving: 1) Pol ; 2) Pol  and ; and 3) Pol (Figure 23). Depending on the lesion, 

bypass can be performed by one or two polymerases. In the case of 1-MeA, due to 

previous structural studies it is probable that Polis functioning as an inserter 

polymerase and Pol  would serve as an extender polymerase. Pol  has been known to 

be able to carry out both the insertion and extension steps across UV lesions and could be 

performing both steps across 1-MeA lesions. For the Pol  pathway, it is probable that 

Pol , which has been known to play a role in extension of mismatch primer termini 

across various lesions, is functioning as an extension Pol. Currently, it is unknown 

whether another TLS Pol is involved in insertion across the 1-MeA lesion through which 

Pol  would then extend from the lesion. Biochemical studies of the TLS Pols bypassing 

a 1-MeA lesion will clarify the role of the various TLS Pols as inserters or extenders 

across 1-MeA lesions. Further TLS frequency experiments after depletion with other TLS 

Pols such as , or  might reveal a function for the bypass with Pol  across 1-MeA 

lesions. Such experiments will be performed in the future. 
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Pols  and  are more limited than Pols , and Rev1, mutagenesis, sensitivity, as well 

as TLS frequency data, demonstrate a larger effect with Pols , and Rev1 (Tables 4 and 

6; Figure 9) which would be expected if they are acting in the same bypass pathway as 

each other and in different pathways as Pols , and Rev1. Similarly, Pol  and  share 

similar hotspots and this might indicate that they are functioning in the same pathway 

(Figures 12, 15 and 17). More importantly, Rev1 does not act as a structural element for 

Pols  and Table 8) which would suggest that these Pols are regulated differently than 

Polsand  and are probably not involved in a pathway with them.  Nevertheless, in 

order to fully understand the roles of these TLS Pols to each other it is necessary in the 

future to carry out simultaneous depletion of the TLS Pols and test for epistasis by 

measuring the effects in TLS frequency. Biochemical experiments of lesion bypass with 

purified TLS Pols will help clarify the role of insertion vs extension across BPDE lesions. 

 

THE ROLE OF TLS IN REPLICATION ACROSS VARIOUS LESIONS 

Previous work has identified the role of TLS Pols in replicating across cis-syn TT, (6-4) 

TT photoproduct, and Tg. Across these lesions TLS provides a substantial contribution 

~40% of TLS frequency in XPA fibroblasts (49, 175, 202, 203). Surprisingly, owing to 

the fact that biochemical studies of TLS Pols have revealed low fidelity and efficiencies, 

the TLS Pols bypass these lesions mostly in an error-free manner with only ~2% of 

mutations occurring. Similarly, opposite 1-MeA lesions TLS contributes substantially to 

the lesion bypass ~65% in XPA fibroblasts (Table 1) and surprisingly all three pathways 

replicating past the lesion do so in an error-free manner with <2% of mutations occurring.  

In contrast, lesion bypass across BPDE lesions is far more mutagenic ~20% in XPA 

fibroblasts (Table 6) and occurs less frequently ~16% (Table 7). The reasons for this are 

not known but are probably influenced by the structure of the lesion, the identity of the 

TLS Pols recruited by the cell for the bypass, and the role of as of now unidentified 
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accessory proteins. Structurally, the lesions previously studied in our lab do not cause 

large distortions with the exception of the (6-4) photoproduct which bends the DNA helix 

by ~44ᵒ. In contrast, the CPD lesion does not interfere with WC base pairing and has only 

modest effects on the DNA structure. The Tg lesion does not interfere with WC base 

pairing but becomes non-planar preventing extension synthesis from the lesion. The 

lesions now studied have larger effects on the DNA structure and base pairing. The 1-

MeA lesion affects the base pair structure of adenine switching the base orientation to syn 

and forcing the base to adopt Hoogsteen base pairing, furthermore the methyl group 

prevents WC base pairing. The BPDE lesion is a large bulky adduct that prevents normal 

WC base pairing. The adduct can be accommodated in the minor groove of DNA 

resulting in little perturbation to the DNA helix structure. In order to be able to replicate 

across the 1-MeA lesion, a TLS Pol must be able to accommodate the methyl group or be 

able to replicate without utilizing WC base pairing. Pol  with its large active site would 

be capable of accommodating the methyl group. Pol utilizes Hoogsteen base pairing and 

would not be blocked by lesions that interfere with WC H-bonding. The BPDE lesion on 

the other hand is far larger and distorted. Again, Pol  utilizing Hoogsteen base pairing 

would be capable of bypassing the lesion but other Pols would be blocked by the large 

bulky adduct. Rev1 by flipping the bulky adduct from the active site and utilizing its 

peculiar protein directed catalytic mechanism would not be inhibited by this lesion. The 

bulkiness of the adduct might interfere with correct or fast insertion across the lesion 

which might influence the fidelity of the reaction or force the cell to utilize a more error-

prone TLS Pol. Finally, from replication foci studies and previous studies of Rev1 it is 

known that Rev1 can affect the placement of TLS Pols to lesion sites possibly due to the 

formation of multiprotein assemblies (201). These assemblies could contribute to the 

regulation and fidelity of the bypass. The identification of the identities of these proteins 

as well as their role in the regulation of TLS will be an important area of research that 

will need to be studied if TLS is to be understood. 
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SELECTION OF TLS POLS TO LESION SITES 

An important consideration for TLS is how does the cell select for the TLS Pols to be 

recruited to each lesion site? Biochemical studies with Pols  and  have revealed the 

ability to replicate across Tg lesions (204, 205). Pol is in fact highly efficient for 

replicating across this lesion in vitro but will do so with a higher error rate (205). Yet in 

vivo studies of TLS have not indicated a role for these TLS Pols across the Tg lesion 

(175). This implies that the selection of TLS Pols is not based on their catalytic 

efficiencies alone and the fact that, across UV, Tg, and 1-MeA lesions mutagenesis is 

low, implies that the cell adapted the TLS machinery so that error-free TLS is utilized 

over more efficient but mutagenic TLS.  

 

Previous studies of TLS frequency across various lesions have revealed small statistically 

insignificant differences between TLS across the leading or lagging strand of DNA (49, 

175, 202, 203). This is significant because it suggests an important method of regulation. 

A lesion on the leading strand will present a strong block for fork progression while a 

lesion on the lagging strand would not be a significant block for fork progression but 

would block Okazaki fragment completion. It could be anticipated that TLS would be 

more active on the leading strand while other methods such as template switching could 

be utilized for the lagging strand, in this way, replication would be rapidly completed 

across a lesion. The fact that TLS activity is very similar suggests that TLS in both 

strands is regulated by the same genetic controls and that the stalling of the replication 

fork is closely coordinated with the stalled replisome irrespective of on which strand the 

lesion is located. Therefore, TLS across mammalian cells is closely coordinated and 

possibly regulated with the replication machinery. The fact that PCNA has been shown to 

be able to regulate TLS supports this idea (152). This link of TLS with replication makes 

it imperative that in order to understand the cell’s lesion bypass system TLS must be 
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studied in a situation where the replisome is present and not post-replicatively in artificial 

gaps. 

 

Furthermore, previous work with the TLS Pol Rev1 has implied that it is an indispensable 

component of TLS mediated by the Y family Pols, the requirement of Rev1 for foci 

formation in Pols  and  across UV lesions (202) and Polsand  across BPDE 

lesions (Table 8) and the ability of the TLS Pols to modulate Rev1 foci formation implies 

the functional and physical interactions with other proteins and the formation of 

multiprotein assemblies at DNA lesion sites. The identity of these proteins is not known 

but they could regulate the activities of TLS Pols. This is probable since the basic 

structural features of the TLS Pols do not offer a sufficient explanation of their selection 

or fidelity to various DNA lesions. Modulation by protein-protein interactions, and 

association with other proteins as well as the replication ensemble might allow for 

regulation of the efficiency and fidelity of bypass across lesions. Mutagenesis studies 

with HLTF (Table 10) and ATR (Table 11) suggests this is the case and that at least 

across BPDE, TLS might be regulated by ubiquitination in the case of HLTF and 

phosphorylation in the case of ATR/Chk1. Future studies of TLS Pols conserved 

domains, which we have generated, might help decipher the methods of regulation as 

well as the components regulating the TLS machinery. These studies will help elucidate 

the genetic control by which the cell integrates, signals, and activate the repair pathways 

to coordinate TLS. Importantly, these studies might helped link TLS to other repair 

pathways and might provide clues to the regulation of replication and DNA repair 

tolerance mechanisms. 
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THE ROLE OF POL  IN BPDE LESION BYPASS 

Mutagenesis (Table 4) and TLS frequency data (Table 6) have demonstrated that across 

BPDE lesions Pol  does not play a role in replicative bypass. Previous studies with 

gapped plasmids have demonstrated a wide role for Pol  across a variety of DNA lesions 

(130), including BPDE lesions. The current studies as well as studies with the HPRT 

assay system in human fibroblasts (135) do not support a role for Pol  in lesion bypass 

of BPDE. Gapped plasmid TLS occurs post-replicatively in gaps (132, 133) and is a good 

model system for explaining gap filling or bypass that would occur on simpler organisms 

such as yeast. However, the regulation of TLS in humans is more complex, as mentioned 

before, previous studies of Rev1 and UV (202), as well as the current DNA replication 

foci studies (Table 8) suggest the possibility of multi-protein assemblies with the 

replisome. TLS assays of the leading and lagging strand demonstrate small differences in 

TLS frequencies, this and the fact that many of the replication machinery of the cell, such 

as PCNA, is closely associated with TLS in human cells suggests that in humans TLS is 

regulated in concert with the stalled replisome and quite differently than in gap filling. 

Such model will not be sufficient to study TLS in human cells and lack the genetic 

controls that the cell utilizes for TLS. 

 

Pol introduces complex mutations with multiple changes within short DNA stretches. 

Inhibition of HR in cancer cells has been demonstrated to increase mutagenicity and 

cytotoxicity. Similarly, inhibition of other repair pathways such as NER or BER result in 

an increase in mutagenesis, which like depletion of HR, could be attributed to increases 

in the levels of replication blocking lesions and channeling these lesions into alternate 

lesion bypass pathways. Across BPDE lesions TLS does not provide the only means to 

bypass the lesion making recombination and template switching mechanisms critical 

methods for the cell to avoid replication blocking lesions. In a situation where the cell is 
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faced with high levels of BPDE lesions and a large part of its repertoire for dealing with 

these lesions is inhibited, the cell would have to rely on TLS for the entirety of its bypass. 

Unlike other DNA lesions, the frequency of TLS across BPDE lesions is lower than 

across UV, Tg, or 1-MeA lesions. This might be attributed to the bulky nature of BPDE 

and the difficulty for the cell to correctly bypass the lesion. When faced with high levels 

of replication blocking lesions the cell might utilize a generalized TLS mechanism and 

avoid the BPDE lesion at the cost of loss on the ability to regulate TLS and increasing 

mutagenesis but preventing the formation of DSBs and protecting the stability of the 

replication fork. The current data (Table 9) on recombination deficient TLS supports this. 

Importantly, this generalized method of TLS has been demonstrated before with UV 

lesions (136), with replisome impairment (139), or in cancer cells (147 -150). This 

method of TLS might be similar to the TLS observed in gapped plasmids (130) and might 

not be as stringently regulated by the cell. It would be interesting to explore whether this 

generalized method of TLS is utilized predominantly by cancer cells and whether cancer 

cells derive a benefit in their growth or survival from it. However, it has to be noted that 

although this method of TLS exists, in a situation where a normal human cell encounters 

a BPDE lesion the cell will not utilize Pol  for bypassing the lesion and will instead 

utilize one of the 3 pathways listed above for bypassing the lesion (Figure 23). 

 

FUTURE DIRECTIONS 

The data presented here demonstrates the differences of how a cell bypasses different 

DNA replication blocking lesions. More important than understanding which 

polymerases are recruited to the different types of DNA lesions is the emerging picture of 

TLS as a highly regulated mechanism of DNA damage tolerance that has evolved to 

promote the fidelity of replication. Understanding the higher mechanisms of regulation of 

TLS and the identities of the multiprotein complex that are responsible for recruiting the 
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TLS Pols as well as their regulation will be necessary in the future, if TLS is to be 

understood. These knowledge might help increase the understanding that lesion bypass 

plays in mutagenesis and carcinogenesis and provide novel targets for therapeutics. 
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Summary of Dissertation 

Cells are constantly exposed to numerous genotoxic lesions that inhibit replication. The 
inability of cells to correctly repair these lesions results in mutations or chromosomal 
aberrations that threaten the integrity of the genome. DNA damage tolerance 
mechanisms, including translesion synthesis (TLS), alleviate this block at the expense of 
increasing mutagenesis.  
Minor groove DNA lesions result from lipid peroxidation or exposure to environmental 
pollutants. Prevalent among these lesions are those produced by tobacco products, 
particularly benzo(a)pyrene-diolepoxide (BPDE), a polycyclic aromatic hydrocarbon 
strongly associated with carcinogenesis, particularly lung cancer. Alkylating lesions 
result from exposures to endogenous methylating agents and naturally occurring methyl 
halides. They might interfere with base pairing and are cytotoxic. The long-term goal is 
to understand the mechanisms by which replication through such ubiquitous lesions 
occurs in human cells. 
Tumorigenesis is a multistep process associated with accumulation of mutations. 
Understanding of the biochemical basis of lesion bypass and the role of TLS polymerases 
will result in insights on how human cells handle exposure to environmental carcinogens 
and how the TLS processes contribute to cancer avoidance or to cancer risk. 
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