• Login
    View Item 
    •   UTMB Health SHARED Home
    • Electronic Theses and Dissertations
    • Published ETD Collection
    • View Item
    •   UTMB Health SHARED Home
    • Electronic Theses and Dissertations
    • Published ETD Collection
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Biological and Functional Consequences of Single Nucleotide Polymorphisms of the O6-Methylguanine-DNA-Methyltransferase Gene

    Thumbnail
    View/Open
    Cross Submitted Dissertation.pdf (2.904Mb)
    Author
    Cross, Courtney 1981-
    Metadata
    Show full item record
    Abstract
    Single nucleotide polymorphisms (SNPs) in DNA repair genes could alter the transcriptional levels, structure and function of DNA repair proteins and alter DNA repair proficiency. Consequently, these SNPs could significantly influence the level of genetic damage, which is an early critical factor in the cascade of events leading to cancer. Molecular epidemiological studies indicate that SNPs in the 06-Methylguanine-DNA-Methyltransferase (MGMT) gene, which repairs alkyl adducts at the 06-position of guanine, may be associated with an increased risk of lung cancer. However, the functional and biological significance of these SNPs has yet to be systematically characterized. We used two biologically relevant endpoints in an exposed population of 350 individuals to determine the association between genetic damage and SNPs in MGMT; chromosome aberrations to examine macrolesions, and mutation frequency to examine microlesions. In addition, we used the luciferase reporter assay to determine effects of SNPs in the promoter/enhancer region of MGMT on promoter activity. Coding SNPs had a marginal effect on macrolesion damage after exposure to alkylating agents. However a strong effect of coding SNPs on microlesion damage was observed. The luciferase expression data demonstrated a significant increase in promoter activity in the presence of the enhancer SNP compared to the wild-type form. This indicates that, in a biological system, inheritance of one copy of these SNPs could affect the level of genetic damage, especially after accumulated exposure to alkylating agents. While the coding SNPs evaluated are predicted to be detrimental, as indicated by the accumulation of genetic damage, the promoter/enhancer SNP evaluated may be protective as levels of cellular protein would be increased.
    URI
    http://hdl.handle.net/2152.3/797
    Collections
    • Published ETD Collection

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV
     

     

    Browse

    All of UTMB Health SHAREDCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsBy DepartmentThis CollectionBy Issue DateAuthorsTitlesSubjectsBy Department

    My Account

    Login

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    TDL
    Theme by 
    Atmire NV