A mechanism of activation of c-MET receptor tyrosine kinase

dc.contributor.advisorLisa A. Elferinken_US
dc.contributor.committeeMemberVincent J. Hilseren_US
dc.contributor.committeeMemberStanley J. Watowichen_US
dc.contributor.committeeMemberRolf Konigen_US
dc.contributor.committeeMemberJames C. Leeen_US
dc.contributor.committeeMemberBing Suen_US
dc.creatorPayal Shethen_US
dc.date.accessioned2011-12-20T16:05:03Z
dc.date.available2010-09-28en_US
dc.date.available2011-12-20T16:05:03Z
dc.date.created2006-07-24en_US
dc.date.issued2006-06-23en_US
dc.description.abstractc-MET receptor tyrosine kinase-mediated signaling governs numerous important cellular responses including cellular proliferation, differentiation, migration and apoptosis. Deregulation of these signals result in malignant behaviors, often leading to cancers. While the identity of the many signaling molecules that are activated following hepatocyte-growth factor (HGF)-induced activation of c-MET had been established, little was known about the mechanism of activation of c-MET. From a therapeutic perspective, it is necessary to understand the detailed molecular mechanisms regulating c-MET activation to selectively target these molecules. c-MET, in presence of its cognate ligand, is oligomerized, and is autophosphorylated on specific tyrosines on its cytoplasmic domain. The phosphorylated tyrosines in specific sub-domains of c-MET cytoplasmic region perform specific functions including increase in catalytic activity and recruitment of effector molecules. Classically, it has been believed that the sole role of ligand-induced oligomerization was to autophosphorylate the receptor, thereby switching the receptor’s kinase activity on. However, in light of a recent body of evidence suggesting that certain RTKs are kinase active on cell surface in absence of ligand-induced oligomerization, we hypothesized that oligomerization could be important for other aspects of RTK activation. Using c-MET as our model system, we investigated the role of oligomerization, irrespective of its role in autophosphorylation, in regulating c-MET activation. Previous studies from our laboratory have conclusively shown that oligomerization increases c-MET’s substrate binding affinity and substrate phosphorylation kcat. The work presented here addresses the role of oligomerization in regulating c-MET’s susceptibility to dephosphorylation, another important regulator of c-MET activation. The biochemical parameters measured for c-MET are used to build a unified kinetic model for c-MET activation. The model building and its subsequent validation using cell culture experiments are described here. Furthermore, the model is probed using parameter sensitivity analyses to understand how oligomerization-induced changes in the kinetic, thermodynamic and dephosphorylation properties of c-MET work synergistically to selectively induce specific signaling from the dimeric and not the monomeric receptor. Using these data, we propose an alternative feed-forward model for c-MET activation mechanism differs from the traditional view of the RTK activation.en_US
dc.format.mediumelectronicen_US
dc.identifier.otheretd-07242006-111212en_US
dc.identifier.urihttp://hdl.handle.net/2152.3/181
dc.language.isoengen_US
dc.rightsCopyright © is held by the author. Presentation of this material on the TDL web site by The University of Texas Medical Branch at Galveston was made possible under a limited license grant from the author who has retained all copyrights in the works.en_US
dc.subjectcell signalingen_US
dc.subjectcanceren_US
dc.titleA mechanism of activation of c-MET receptor tyrosine kinaseen_US
dc.type.genredissertationen_US
dc.type.materialtexten_US
thesis.degree.departmentBiochemistry and Molecular Biologyen_US
thesis.degree.grantorThe University of Texas Medical Branchen_US
thesis.degree.levelDoctoralen_US
thesis.degree.namePhDen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Payal_dissertation.pdf
Size:
1.93 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
891 B
Format:
Plain Text
Description: